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ABSTRACT

We propose ZeroSARAH—a novel variant of the variance-reduced method
SARAH (Nguyen et al., 2017)—for minimizing the average of a large number of
nonconvex functions 1

n

∑n
i=1 fi(x). To the best of our knowledge, in this noncon-

vex finite-sum regime, all existing variance-reduced methods, including SARAH,
SVRG, SAGA and their variants, need to compute the full gradient over all n data
samples at the initial point x0, and then periodically compute the full gradient once
every few iterations (for SVRG, SARAH and their variants). Note that SVRG,
SAGA and their variants typically achieve weaker convergence results than vari-
ants of SARAH: n2/3/ε2 vs. n1/2/ε2. Thus we focus on the variant of SARAH.
The proposed ZeroSARAH and its distributed variant D-ZeroSARAH are the first
variance-reduced algorithms which do not require any full gradient computations,
not even for the initial point. Moreover, for both standard and distributed set-
tings, we show that ZeroSARAH and D-ZeroSARAH obtain new state-of-the-art
convergence results, which can improve the previous best-known result (given by
e.g., SPIDER, SARAH, and PAGE) in certain regimes. Avoiding any full gradient
computations (which are time-consuming steps) is important in many applications
as the number of data samples n usually is very large. Especially in the distributed
setting, periodic computation of full gradient over all data samples needs to pe-
riodically synchronize all clients/devices/machines, which may be impossible or
unaffordable. Thus, we expect that ZeroSARAH/D-ZeroSARAH will have a prac-
tical impact in distributed and federated learning where full device participation is
impractical.

1 INTRODUCTION

Nonconvex optimization is ubiquitous across many domains of machine learning (Jain & Kar, 2017),
especially in training deep neural networks. In this paper, we consider the nonconvex finite-sum
problems of the form

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where f : Rd → R is a differentiable and possibly nonconvex function. Problem (1) captures the
standard empirical risk minimization problems in machine learning (Shalev-Shwartz & Ben-David,
2014). There are n data samples and fi denotes the loss associated with i-th data sample. We
assume the functions fi : Rd → R for all i ∈ [n] := {1, 2, . . . , n} are also differentiable and
possibly nonconvex functions.

Beyond the standard/centralized problem (1), we further consider the distributed/federated noncon-
vex problems:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, fi(x) :=

1

m

m∑
j=1

fi,j(x), (2)
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where n denotes the number of clients/devices/machines, fi denotes the loss associated with m data
samples stored on client i, and all functions are differentiable and can be nonconvex. Avoiding any
full gradient computations is important especially in this distributed setting (2), periodic computation
of full gradient over all data samples needs to periodically synchronize all clients, which may be
impossible or very hard to achieve.

There has been extensive research in designing first-order (gradient-type) methods for solving cen-
tralized/distributed nonconvex problems (1) and (2) such as SGD, SVRG, SAGA, SCSG, SARAH
and their variants, e.g., (Ghadimi & Lan, 2013; Ghadimi et al., 2016; Allen-Zhu & Hazan, 2016;
Reddi et al., 2016; Lei et al., 2017; Li & Li, 2018; Zhou et al., 2018; Fang et al., 2018; Wang et al.,
2018; Ge et al., 2019; Pham et al., 2019; Li, 2019; Li & Richtárik, 2020; Horváth et al., 2020; Li
et al., 2021). Note that SVRG and SAGA variants typically achieve weaker convergence results than
SARAH variants, i.e., n2/3/ε2 vs.

√
n/ε2. Thus the current best convergence results are achieved

by SARAH variants such as SPIDER (Fang et al., 2018), SARAH (Pham et al., 2019) and PAGE (Li
et al., 2021; Li, 2021).

However, all of these variance-reduced algorithms (no matter based on SVRG, SAGA or SARAH)
require full gradient computations (i.e., compute ∇f(x) = 1

n

∑n
i=1∇fi(x)) without assuming ad-

ditional assumptions except standard L-smoothness assumptions. We would like to point out that
under an additional bounded variance assumption (e.g., Ei[‖∇fi(x) −∇f(x)‖2] ≤ σ2, ∀x ∈ Rd),
some of them (such as SCSG (Lei et al., 2017), SVRG+ (Li & Li, 2018), PAGE (Li et al., 2021)) may
avoid full gradient computations by using a large minibatch of stochastic gradients instead (usually
the minibatch size is O(σ2/ε2)). Clearly, there exist some drawbacks: i) σ2 usually is not known;
ii) if the target error ε is very small (defined as E[‖∇f(x̂)‖2] ≤ ε2 in Definition 1) or σ is very large,
then the minibatch size O(σ2/ε2) is still very large for replacing full gradient computations.

In this paper, we only consider algorithms under the standard L-smoothness assumptions, with-
out assuming any other additional assumptions (such as bounded variance assumption mentioned
above). Thus, all existing variance-reduced methods, including SARAH, SVRG, SAGA and their
variants, need to compute the full gradient over all n data samples at the initial point x0, and then
periodically compute the full gradient once every few iterations (for SVRG, SARAH and their vari-
ants). However, full gradient computations are time-consuming steps in many applications as the
number of data samples n usually is very large. Especially in the distributed setting, periodic com-
putation of full gradient needs to periodically synchronize all clients/devices, which usually is im-
practical. Motivated by this, we focus on designing new algorithms which do not require any full
gradient computations for solving standard and distributed nonconvex problems (1)–(2).

2 OUR CONTRIBUTIONS

In this paper, we propose the first variance-reduced algorithm ZeroSARAH (and also its dis-
tributed variant D-ZeroSARAH) without computing any full gradients for solving both standard
and distributed nonconvex finite-sum problems (1)–(2). Moreover, ZeroSARAH and Distributed
D-ZeroSARAH can obtain new state-of-the-art convergence results which improve previous best-
known results (given by e.g., SPIDER, SARAH and PAGE) in certain regimes (see Tables 1–2 for
the comparison with previous algorithms). ZeroSARAH is formally described in Algorithm 2, which
is a variant of SARAH (Nguyen et al., 2017). See Section 4 for more details and comparisons
between ZeroSARAH and SARAH. Then, D-ZeroSARAH is formally described in Algorithm 3 of
Section 5, which is a distributed variant of our ZeroSARAH.

Now, we highlight the following results achieved by ZeroSARAH and D-ZeroSARAH:

• ZeroSARAH and D-ZeroSARAH are the first variance-reduced algorithms which do not require
any full gradient computations, not even for the initial point (see Algorithms 2–3 or Tables 1–2).
Avoiding any full gradient computations is important in many applications as the number of data
samples n usually is very large. Especially in the distributed setting, periodic computation of full
gradient over all data samples stored in all clients/devices may be impossible or very hard to achieve.
We expect that ZeroSARAH/D-ZeroSARAH will have a practical impact in distributed and federated
learning where full device participation is impractical.

• Moreover, ZeroSARAH can recover the previous best-known convergence result O(n +
√
nL∆0

ε2 )
(see Table 1 or Corollary 1), and also provide new state-of-the-art convergence results without any
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Table 1: Stochastic gradient complexity for finding an ε-approximate solution of nonconvex prob-
lems (1), under Assumption 1

Algorithms
Stochastic gradient

complexity
Full gradient computation

GD (Nesterov, 2004) O(nL∆0
ε2

) Computed for every iteration

SVRG (Reddi et al., 2016;
Allen-Zhu & Hazan, 2016),

SCSG (Lei et al., 2017),
SVRG+ (Li & Li, 2018)

O
(
n+ n2/3L∆0

ε2

) Computed for the initial point
and periodically computed

for every l iterations

SNVRG (Zhou et al., 2018),
Geom-SARAH (Horváth et al., 2020)

Õ
(
n+

√
nL∆0

ε2

) Computed for the initial point
and periodically computed

for every l iterations
SPIDER (Fang et al., 2018),

SpiderBoost (Wang et al., 2018),
SARAH (Pham et al., 2019),

SSRGD (Li, 2019),
PAGE (Li et al., 2021)

O
(
n+

√
nL∆0

ε2

) Computed for the initial point
and periodically computed

for every l iterations

ZeroSARAH
(this paper, Corollary 1)

O
(
n+

√
nL∆0

ε2

) Only computed once for
the initial point 1

ZeroSARAH
(this paper, Corollary 2)

O
(√

n(L∆0+G0)

ε2

)
Never computed 2

1 In Corollary 1, ZeroSARAH only computes the full gradient ∇f(x0) = 1
n

∑n
i=1∇fi(x

0)

once for the initial point x0, i.e., minibatch size b0 = n, and then bk ≡
√
n for all iterations

k ≥ 1 in Algorithm 2.
2 In Corollary 2, ZeroSARAH never computes full gradients, i.e., minibatch size bk ≡

√
n for

all iterations k ≥ 0.

full gradient computations (see Table 1 or Corollary 2) which can improve the previous best result
in certain regimes.

• Besides, for the distributed nonconvex setting (2), the distributed D-ZeroSARAH (Algorithm 3) en-
joys similar benefits as our ZeroSARAH, i.e., D-ZeroSARAH does not need to periodically synchro-
nize all n clients to compute any full gradients, and also provides new state-of-the-art convergence
results. See Table 2 and Section 5 for more details.

• Finally, the experimental results in Section 6 show that ZeroSARAH is slightly better than the
previous state-of-the-art SARAH. However, we should point out that ZeroSARAH does not compute
any full gradients while SARAH needs to periodically compute the full gradients for every l iter-
ations (here l =

√
n). Thus the experiments validate our theoretical results (can be slightly better

than SARAH (see Table 1)) and confirm the practical superiority of ZeroSARAH (avoid any full gra-
dient computations). Similar experimental results of D-ZeroSARAH for the distributed setting are
provided in Appendix A.2.

3 PRELIMINARIES

Notation: Let [n] denote the set {1, 2, · · · , n} and ‖ · ‖ denote the Euclidean norm for a vector
and the spectral norm for a matrix. Let 〈u, v〉 denote the inner product of two vectors u and v. We
use O(·) and Ω(·) to hide the absolute constant, and Õ(·) to hide the logarithmic factor. We will
write ∆0 := f(x0) − f∗, f∗ := minx∈Rd f(x), G0 := 1

n

∑n
i=1 ‖∇fi(x0)‖2, ∆̂0 := f(x0) − f̂∗,

f̂∗ := 1
n

∑n
i=1 minx∈Rd fi(x) and G′0 := 1

nm

∑n,m
i,j=1,1 ‖∇fi,j(x0)‖2.

3
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Table 2: Stochastic gradient complexity for finding an ε-approximate solution of distributed non-
convex problems (2), under Assumption 2

Algorithms
Stochastic gradient

complexity
Full gradient computation

DC-GD 1

(Khaled & Richtárik, 2020; Li & Richtárik, 2020)
O(mL∆0

ε2
) Computed for every iteration

D-SARAH 2

(Cen et al., 2020)
O
(
m+

√
m logmL∆0

ε2

) Computed for the initial point
and periodically computed

across all n clients

D-GET 2

(Sun et al., 2020)
O
(
m+

√
mL∆0

ε2

) Computed for the initial point
and periodically computed

across all n clients
SCAFFOLD 3

(Karimireddy et al., 2020)
O
(
m+ m

n1/3
L∆0
ε2

) Only computed once for
the initial point

DC-LSVRG/DC-SAGA 1

(Li & Richtárik, 2020)
O
(
m+ m2/3

n1/3
L∆0
ε2

) Computed for the initial point
and periodically computed

across all n clients

FedPAGE 3

(Zhao et al., 2021)
O
(
m+ m√

n
L∆0
ε2

) Computed for the initial point
and periodically computed

across all n clients

(Distributed) SARAH/SPIDER/SSRGD 4

(Nguyen et al., 2017; Fang et al., 2018; Li, 2019)
O
(
m+

√
m
n
L∆0
ε2

) Computed for the initial point
and periodically computed

across all n clients

D-ZeroSARAH
(this paper, Corollary 3)

O
(
m+

√
m
n
L∆0
ε2

) Only computed once for
the initial point

D-ZeroSARAH
(this paper, Corollary 4)

O
(√

m
n

L∆0+G′0
ε2

)
Never computed

1 Distributed compressed methods. Here we translate their results to this distributed setting (2).
2 Decentralized methods. Here we translate their results to this distributed setting (2).
3 Federated local methods. Here we translate their results to this distributed setting (2).
4 Distributed version of previous SARAH-type methods (see e.g., Algorithm 4 in Appendix A.2).

Definition 1 A point x̂ is called an ε-approximate solution for nonconvex problems (1) and (2) if
E[‖∇f(x̂)‖2] ≤ ε2.

To show the convergence results, we assume the following standard smoothness assumption for
nonconvex problems (1).

Assumption 1 (L-smoothness) A function fi : Rd → R is L-smooth if ∃L > 0, such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (3)

It is easy to see that f(x) = 1
n

∑n
i=1 fi(x) is also L-smooth under Assumption 1. We can also

relax Assumption 1 by defining Li-smoothness for each fi. Then if we further define the average
L2 := 1

n

∑n
i=1 L

2
i , we know that f(x) = 1

n

∑n
i=1 fi(x) is also L-smooth. Here we use the same L

just for simple representation.

For the distributed nonconvex problems (2), we use the following Assumption 2 instead of Assump-
tion 1. Similarly, we can also relax it by defining Li,j-smoothness for different fi,j . Here we use
the same L just for simple representation.

Assumption 2 (L-smoothness) A function fi,j : Rd → R is L-smooth if ∃L > 0, such that

‖∇fi,j(x)−∇fi,j(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (4)

4
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Algorithm 1 SARAH (Nguyen et al., 2017; Pham et al., 2019)
Input: initial point x0, epoch length l, stepsize η, minibatch size b
1: x̃ = x0

2: for s = 0, 1, 2, . . . do
3: x0 = x̃

4: v0 = ∇f(x0) = 1
n

n∑
i=1

∇fi(x0) // compute the full gradient once for every l iterations

5: x1 = x0 − ηv0

6: for k = 1, 2, . . . , l do
7: Randomly sample a minibatch data samples Ib with |Ib| = b
8: vk = 1

b

∑
i∈Ib

(
∇fi(xk)−∇fi(xk−1)

)
+ vk−1

9: xk+1 = xk − ηvk
10: end for
11: x̃ randomly chosen from {xk}k∈[l] or x̃ = xl+1

12: end for

Algorithm 2 SARAH without full gradient computations (ZeroSARAH)
Input: initial point x0, stepsize {ηk}, minibatch size {bk}, parameter {λk}
1: x−1 = x0

2: v−1 = 0, y−1
1 = y−1

2 = · · · = y−1
n = 0 // no full gradient computation

3: for k = 0, 1, 2, . . . do
4: Randomly sample a minibatch data samples Ikb with |Ikb | = bk

5: vk = 1
bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+(1− λk)vk−1 + λk

(
1
bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+ 1

n

n∑
j=1

yk−1
j

)
// no full gradient computations for vks

6: xk+1 = xk − ηkvk

7: yki =

{
∇fi(xk) for i ∈ Ikb
yk−1
i for i /∈ Ikb

// the update of {yki } directly follows from the stochastic gradients computed in Line 5
8: end for

4 ZeroSARAH ALGORITHM AND ITS CONVERGENCE RESULTS

In this section, we consider the standard/centralized nonconvex problems (1). The distributed setting
(2) is considered in the following Section 5.

4.1 ZeroSARAH ALGORITHM

We first describe the proposed ZeroSARAH in Algorithm 2, which is a variant of SARAH (Nguyen
et al., 2017). To better compare with SARAH and ZeroSARAH, we also recall the original SARAH
in Algorithm 1.

Now, we highlight some points for the difference between SARAH and our ZeroSARAH:

• SARAH requires the full gradient computations for every epoch (see Line 4 of Algorithm 1).
However, ZeroSARAH combines the past gradient estimator vk−1 with another estimator to avoid
periodically computing the full gradient. See the difference between Line 8 of Algorithm 1 and Line
5 of Algorithm 2 (also highlighted with blue color).

• The gradient estimator vk in ZeroSARAH (Line 5 of Algorithm 2) does not require more stochastic
gradient computations compared with vk in SARAH (Line 8 of Algorithm 1) if the minibatch size
bk = b.

• The new gradient estimator vk of ZeroSARAH also leads to simpler algorithmic structure, i.e.,
single-loop in ZeroSARAH vs. double-loop in SARAH.

5
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•Moreover, the difference of gradient estimator vk also leads to different results in expectation, i.e.,
1) for SARAH: Ek[vk −∇f(xk)] = vk−1 −∇f(xk−1); 2) for ZeroSARAH: Ek[vk −∇f(xk)] =
(1− λk)(vk−1 −∇f(xk−1)).

4.2 CONVERGENCE RESULTS FOR ZeroSARAH

Now, we present the main convergence theorem (Theorem 1) of ZeroSARAH (Algorithm 2) for solv-
ing nonconvex finite-sum problems (1). Subsequently, we formulate two corollaries which present
the detailed convergence results by specifying the choice of parameters. In particular, we list the
results of these two Corollaries 1–2 in Table 1 for comparing with convergence results of previous
works.

Theorem 1 Suppose that Assumption 1 holds. Choose stepsize ηk ≤ 1

L
(

1+
√
Mk+1

) for any k ≥ 0,

where Mk+1 := 2
λk+1bk+1

+ 8λk+1n
2

b3k+1
. Moreover, let λ0 = 1, γ0 ≥ η0

2λ1
and α0 ≥ 2nλ1η0

b21
. Then the

following equation holds for ZeroSARAH (Algorithm 2) for solving problem (1), for any iteration
K ≥ 0:

E[‖∇f(x̂K)‖2] ≤ 2∆0∑K−1
k=0 ηk

+
(n− b0)(4γ0 + 2α0b0)G0

nb0
∑K−1
k=0 ηk

. (5)

Remark: Note that we can upper bound both terms on the right-hand side of (5). It means that there
is no convergence neighborhood of ZeroSARAH and hence, ZeroSARAH can find an ε-approximate
solution for any ε > 0.

In the following, we provide two detailed convergence results in Corollaries 1 and 2 by specifying
two kinds of parameter settings. Note that the algorithm computes full gradient in iteration k if the
minibatch bk = n. Our convergence results show that without computing any full gradients actually
does not hurt the convergence performance of algorithms (see Table 1).

In particular, we note that the second term of (5) will be deleted if we choose minibatch size b0 = n
for the initial point x0 (see Corollary 1 for more details). Here Corollary 1 only needs to compute the
full gradient once for the initialization, and does not compute any full gradients later (i.e., bk ≡

√
n

for all k > 0).

Also note that even if we choose b0 < n, we can also upper bound the second term of (5). It means
that ZeroSARAH can find an ε-approximate solution without computing any full gradients even for
the initial point, i.e., minibatch size bk < n for all iterations k ≥ 0. For instance, we choose
bk ≡

√
n for all k ≥ 0 in Corollary 2 , i.e., ZeroSARAH never computes any full gradients even for

the initial point.

Corollary 1 Suppose that Assumption 1 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0,

minibatch size bk ≡
√
n and parameter λk = bk

2n for any k ≥ 1. Moreover, let b0 = n and λ0 = 1.
Then ZeroSARAH (Algorithm 2) can find an ε-approximate solution for problem (1) such that

E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations can be bounded by

#grad :=

K−1∑
k=0

bk ≤ n+
2(1 +

√
8)
√
nL∆0

ε2
= O

(
n+

√
nL∆0

ε2

)
.

Remark: In Corollary 1, ZeroSARAH only computes the full gradient ∇f(x0) = 1
n

∑n
i=1∇fi(x0)

once for the initial point x0, i.e., minibatch size b0 = n, and then bk ≡
√
n for all iterations k ≥ 1

in Algorithm 2.

In the following Corollary 2, we show that ZeroSARAH without computing any full gradients even
for the initial point does not hurt its convergence performance.

6
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Corollary 2 Suppose that Assumption 1 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0,

minibatch size bk ≡
√
n for any k ≥ 0, and parameter λ0 = 1 and λk = bk

2n for any k ≥ 1. Then
ZeroSARAH (Algorithm 2) can find an ε-approximate solution for problem (1) such that

E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations can be bounded by

#grad = O

(√
n(L∆0 +G0)

ε2

)
.

Note that G0 can be bounded by G0 ≤ 2L∆̂0 via L-smoothness Assumption 1, then we also have

#grad = O

(√
n(L∆0 + L∆̂0)

ε2

)
.

Remark: In Corollary 2, ZeroSARAH never computes any full gradients even for the initial point,
i.e., minibatch size bk ≡

√
n for all iterations k ≥ 0 in Algorithm 2. If we consider L, ∆0, G0 or

∆̂0 as constant values then the stochastic gradient complexity in Corollary 2 is #grad = O(
√
n
ε2 ),

i.e., full gradient computations do not appear in ZeroSARAH (Algorithm 2) and the term ‘n’ also
does not appear in its convergence result. Also note that the parameter settings (i.e., {ηk}, {bk} and
{λk} in Algorithm 2) of Corollaries 1 and 2 are exactly the same except for b0 = n (in Corollary 1)
and b0 =

√
n (in Corollary 2). Moreover, the parameter settings (i.e., {ηk}, {bk} and {λk}) for

Corollaries 1 and 2 only require the values of L and n, which is the same as all previous algorithms.
If one further allows other values, e.g., ε, G0 or ∆̂0, for setting the initial b0, then the gradient
complexity can be further improved (see Appendix D for more details).

5 D-ZeroSARAH ALGORITHM AND ITS CONVERGENCE RESULTS

Now, we consider the distributed nonconvex problems (2), i.e., minx∈Rd

{
f(x) := 1

n

∑n
i=1 fi(x)

}
with fi(x) := 1

m

∑m
j=1 fi,j(x),where n denotes the number of clients/devices/machines, fi denotes

the loss associated with m data samples stored on client i.

5.1 D-ZeroSARAH ALGORITHM

To solve distributed nonconvex problems (2), we propose a distributed variant of ZeroSARAH (called
D-ZeroSARAH) and describe it in Algorithm 3. Same as our ZeroSARAH, D-ZeroSARAH also does
not need to compute any full gradients at all. Avoiding any full gradient computations is important
especially in this distributed setting, periodic computation of full gradient across all n clients may be
impossible or unaffordable. Thus, we expect the proposed D-ZeroSARAH (Algorithm 3) will have a
practical impact in distributed and federated learning where full device participation is impractical.

5.2 CONVERGENCE RESULTS FOR D-ZeroSARAH

Similar to ZeroSARAH in Section 4.2, we also first present the main convergence theorem (The-
orem 2) of D-ZeroSARAH (Algorithm 3) for solving distributed nonconvex problems (2). Subse-
quently, we formulate two corollaries which present the detailed convergence results by specifying
the choice of parameters. In particular, we list the results of these two Corollaries 3–4 in Table 2
for comparing with convergence results of previous works. Note that here we use the smoothness
Assumption 2 instead of Assumption 1 for this distributed setting (2).

Theorem 2 Suppose that Assumption 2 holds. Choose stepsize ηk ≤ 1

L
(

1+
√
Wk+1

) for any k ≥ 0,

whereWk+1 := 2
λk+1sk+1bk+1

+ 8λk+1n
2m2

s3k+1b
3
k+1

. Moreover, let λ0 = 1 and θ0 := nm
(nm−1)λ1

+ 4nmλ1s0b0
s21b

2
1

.
Then the following equation holds for D-ZeroSARAH (Algorithm 3) for solving distributed problem
(2), for any iteration K ≥ 0:

E[‖∇f(x̂K)‖2] ≤ 2∆0∑K−1
k=0 ηk

+
(nm− s0b0)η0θ0G

′
0

nms0b0
∑K−1
k=0 ηk

. (6)
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Algorithm 3 Distributed ZeroSARAH (D-ZeroSARAH)
Input: initial point x0, parameters {ηk}, {sk}, {bk}, {λk}
1: x−1 = x0

2: v−1 = 0, y−1
1 = y−1

2 = · · · = y−1
n = 0 // no full gradient computation

3: for k = 0, 1, 2, . . . do
4: Randomly sample a subset of clients Sk from n clients with size |Sk| = sk
5: for each client i ∈ Sk do
6: Sample the data minibatch Ikbi (with size |Ikbi | = bk) from the m data samples in client i
7: Compute its local minibatch gradient information:

gki,curr = 1
bk

∑
j∈Ikbi

∇fi,j(xk), gki,prev = 1
bk

∑
j∈Ikbi

∇fi,j(xk−1), yki,prev = 1
bk

∑
j∈Ikbi

yk−1
i,j

yki,j =

{
∇fi,j(xk) for j ∈ Ikbi
yk−1
i,j for j /∈ Ikbi

, yki = 1
m

m∑
j=1

yki,j

8: end for
9: vk = 1

sk

∑
i∈Sk

(
gki,curr − gki,prev

)
+ (1− λk)vk−1 + λk

1
sk

∑
i∈Sk

(
gki,prev − yki,prev

)
+ λky

k−1

// no full gradient computations for vks
10: xk+1 = xk − ηkvk

11: yk = 1
n

n∑
i=1

yki // here yki = yk−1
i for client i /∈ Sk

12: end for

Corollary 3 Suppose that Assumption 2 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0,

clients subset size sk ≡
√
n, minibatch size bk ≡

√
m and parameter λk = skbk

2nm for any k ≥ 1.
Moreover, let s0 = n, b0 = m, and λ0 = 1. Then D-ZeroSARAH (Algorithm 3) can find an
ε-approximate solution for distributed problem (2) such that

E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations for each client can be bounded by

#grad = O
(
m+

√
m

n

L∆0

ε2

)
.

Corollary 4 Suppose that Assumption 2 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0,

clients subset size sk ≡
√
n and minibatch size bk ≡

√
m for any k ≥ 0, and parameter λ0 = 1 and

λk = skbk
2nm for any k ≥ 1. Then D-ZeroSARAH (Algorithm 3) can find an ε-approximate solution for

distributed problem (2) such that
E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations for each client can be bounded by

#grad = O

(√
m

n

L∆0 +G′0
ε2

)
.

Remark: Similar discussions and remarks of Theorem 1 and Corollaries 1–2 for ZeroSARAH in
Section 4.2 also hold for the results of D-ZeroSARAH (i.e., Theorem 2 and Corollaries 3–4).

6 EXPERIMENTS

Now, we present the numerical experiments for comparing the performance of our ZeroSARAH/D-
ZeroSARAH with previous algorithms. In the experiments, we consider the nonconvex robust linear
regression and binary classification with two-layer neural networks, which are used in (Wang et al.,
2018; Zhao et al., 2010; Tran-Dinh et al., 2019). All datasets used in our experiments are down-
loaded from LIBSVM (Chang & Lin, 2011). The detailed description of these objective functions
and datasets are provided in Appendix A.1.
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Figure 1: Performance between SARAH and ZeroSARAH under different datasets (columns) with
respect to different stepsizes (rows). In rows, we have stepsizes 0.01, 0.1, 1, respectively. In
columns, we have LIBSVM datasates ‘abalone’, ‘triazines’, ‘mg’, ‘pyrim’, respectively.

In Figure 1, the x-axis and y-axis represent the number of stochastic gradient computations and
the norm of gradient, respectively. The numerical results presented in Figure 1 are conducted on
different datasets with different stepsizes. Regrading the parameter settings, we directly use the
theoretical values according to the theorems or corollaries of SARAH and ZeroSARAH, i.e., we do
not tune the parameters. Concretely, for SARAH (Algorithm 1), the epoch length l =

√
n and the

minibatch size b =
√
n (see Theorem 6 in Pham et al. (2019)). For ZeroSARAH (Algorithm 2),

the minibatch size bk ≡
√
n for any k ≥ 0, λ0 = 1 and λk = bk

2n ≡
1

2
√
n

for any k ≥ 1

(see our Corollary 2). Note that there is no epoch length l for ZeroSARAH since it is a loopless
(single-loop) algorithm while SARAH requires l for setting the length of its inner-loop (see Line 6
of Algorithm 1). For the stepsize η, both SARAH and ZeroSARAH adopt the same constant stepsize
η = O( 1

L ). However the smooth parameter L is not known in the experiments, thus here we use
three stepsizes, i.e., η = 0.01, 0.1, 1.

Remark: The experimental results validate our theoretical convergence results (our ZeroSARAH can
be slightly better than SARAH (see Table 1)) and confirm the practical superiority of ZeroSARAH
(avoid any full gradient computations). To demonstrate the full gradient computations in Figure 1,
we point out that each circle marker in the curve of SARAH (blue curves) denotes a full gradient
computation in SARAH. We emphasize that our ZeroSARAH never computes any full gradients. Note
that in this section we only present the experiments for the standard/centralized setting (1). Similar
experiments in the distributed setting (2) are provided in Appendix A.2, e.g., Figure 2 demonstrates
similar performance between distributed SARAH and distributed ZeroSARAH.

7 CONCLUSION

In this paper, we propose ZeroSARAH and its distributed variant D-ZeroSARAH algorithms for solv-
ing both standard and distributed nonconvex finite-sum problems (1) and (2). In particular, they are
the first variance-reduced algorithms which do not require any full gradient computations, not even
for the initial point. Moreover, our new algorithms can achieve better theoretical results than previ-
ous state-of-the-art results in certain regimes. While the numerical performance of our algorithms
is also comparable/better than previous state-of-the-art algorithms, the main advantage of our algo-
rithms is that they do not need to compute any full gradients. This characteristic can lead to practical
significance of our algorithms since periodic computation of full gradient over all data samples from
all clients usually is impractical and unaffordable.
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A EXTRA EXPERIMENTS

In this appendix, we first describe the details of the objective functions and datasets used in our
experiments in Appendix A.1. Then in Appendix A.2, we present the experimental results in the
distributed setting (2).

A.1 OBJECTIVE FUNCTIONS AND DATASETS IN EXPERIMENTS

The nonconvex robust linear regression problem (used in Wang et al. (2018)) is:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

`(bi − xTai)

}
, (7)

where the nonconvex loss function `(x) := log(x
2

2 + 1).

The binary classification with two-layer neural networks (used in Zhao et al. (2010); Tran-Dinh et al.
(2019)) is:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

`
(
aTi x, bi

)
+
λ

2
‖x‖2

}
(8)

where {ai} ∈ Rd, bi ∈ {−1, 1}, λ ≥ 0 is an `2-regularization parameter, and the function ` is
defined as

`(x, y) :=

(
1− 1

1 + exp(−xy)

)2

.

All datasets are downloaded from LIBSVM (Chang & Lin, 2011). The summary of datasets infor-
mation is provided in the following Table 3.

Table 3: Metadata of datasets
Dataset n (# of datapoints) d (# of features)

a9a 32561 123
abalone 4177 8

mg 1385 6
mushrooms 8124 112

phishing 11055 68
pyrim 74 27

triazines 186 60
w8a 49749 300

A.2 EXPERIMENTS FOR THE DISTRIBUTED SETTING

Before presenting the experimental results in the distributed setting (2), we also need a distributed
variant of SARAH-type methods in order to compare with our distributed variant of ZeroSARAH.
Here we describe one possible version in Algorithm 4. Note that distributed SARAH also requires
to periodically computes full gradients (see Line 7 of Algorithm 4), but it is not required by our
D-ZeroSARAH (Algorithm 3).

In order to mimic distributed setup, we represented clients as parallel processes. We implement the
training process using Python 3.8.8, mpi4py library. We run it on the workstation with 48 Cores,
Intel(R) Xeon(R) Gold 6246 CPU @ 3.30GHz. We partition the dataset among 10 threads; having
M datapoints and n clients, k-thread gets datapoints in range kbMn c+ 1, . . . , (k + 1)bMn c. In case
of nbMn c+ 1 ≤M , datapoints nbMn c+ 1, . . .M are ignored.
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Algorithm 4 Distributed SARAH-type methods (one possible version)
Input: initial point x0, epoch length l, stepsize η, client minibatch size s, data minibatch size b
1: x−1 = x0

2: for k = 0, 1, 2, . . . do
3: if k mod l = 0 then
4: for each client i ∈ {1, . . . , n} do

5: Compute full gradient of each client: gki = 1
m

m∑
j=1

∇fi,j(xk) // = ∇fi(xk)

6: end for
7: vk = 1

n

n∑
i=1

gki // full gradient computations

8: else
9: Randomly sample a subset of clients Sk from n clients with size |Sk| = s

10: for each client i ∈ Sk do
11: Sample minibatch Iki of size |Iki | = b (from the m data samples in client i)
12: Compute the local minibatch gradient information:

gki,curr = 1
b

∑
j∈Iki

∇fi,j(xk) and gki,prev = 1
b

∑
j∈Iki

∇fi,j(xk−1)

13: end for
14: vk = 1

s

∑
i∈Sk

(
gki,curr − gki,prev

)
+ vk−1

15: end if
16: xk+1 = xk − ηkvk
17: end for
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Figure 2: Performance between distributed SARAH and distributed ZeroSARAH under different
datasets (columns). We show convergence using the theoretical stepsize in red lines; in blue lines,
we scale it by factor ×3; in green lines, we scale it by factor ×9.

In Figure 2, we present numerical results for the distributed setting. The solid lines and dashed lines
denote the distributed ZeroSARAH and distributed SARAH, respectively. Regrading the parameter
settings, we also use the theoretical values according to the theorems or corollaries. In particular,
from Tran-Dinh et al. (2019), we know that the smoothness constant L ≈ 0.15405 maxi ‖ai‖2 + λ

for objective function (8). We choose the regularizer parameter to be λ = 0.15405·10−6 maxi ‖ai‖2.
In order to obtain comparable plots similar to the standard/centralized setting (Figure 1), we also
use multiple stepsizes. We choose the theoretical stepsize from Corollary 4 (i.e., 1

(1+
√

8)L
) scaled

by factors of ×1 (red curves), ×3 (blue curves), ×9 (green curves), respectively.

Remark: Similar to Figure 1, the experimental results in Figure 2 also validate our theoretical
convergence results (distributed ZeroSARAH (D-ZeroSARAH) can be slightly better than distributed
SARAH (see Table 2)) and confirm the practical superiority of D-ZeroSARAH (avoid any full gradi-
ent computations) for the distributed setting (2).
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B MISSING PROOFS FOR ZeroSARAH

In this appendix, we provide the missing proofs for the standard nonconvex setting (1). Concretely,
we provide the detailed proofs for Theorem 1 and Corollaries 1–2 of ZeroSARAH in Section 4.

B.1 PROOF OF THEOREM 1

First, we need a useful lemma in Li et al. (2021) which describes the relation between the function
values after and before a gradient descent step.

Lemma 1 (Li et al. (2021)) Suppose that function f is L-smooth and let xk+1 := xk − ηkvk. Then
for any vk ∈ Rd and ηk > 0, we have

f(xk+1) ≤ f(xk)− ηk
2
‖∇f(xk)‖2 −

( 1

2ηk
− L

2

)
‖xk+1 − xk‖2 +

ηk
2
‖vk −∇f(xk)‖2. (9)

Then, we provide the following Lemma 2 to bound the last variance term of (9).

Lemma 2 Suppose that Assumption 1 holds. The gradient estimator vk is defined in Line 5 of
Algorithm 2, then we have

Ek[‖vk −∇f(xk)‖2] ≤ (1− λk)2‖vk−1 −∇f(xk−1)‖2 +
2L2

bk
‖xk − xk−1‖2

+
2λ2

k

bk

1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2. (10)

Proof of Lemma 2. First, according to the gradient estimator vk of ZeroSARAH (see Line 5 of
Algorithm 2), we know that

vk =
1

bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+ (1− λk)vk−1 + λk

( 1

bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+

1

n

n∑
j=1

yk−1
j

)
(11)

Now we bound the variance as follows:

Ek[‖vk −∇f(xk)‖2]

(11)
= Ek

[∥∥∥∥ 1

bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+ (1− λk)vk−1

+ λk

( 1

bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+

1

n

n∑
j=1

yk−1
j

)
−∇f(xk)

∥∥∥∥2
]

= Ek

[∥∥∥∥ 1

bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+∇f(xk−1)−∇f(xk) + (1− λk)(vk−1 −∇f(xk−1))

+ λk

( 1

bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+

1

n

n∑
j=1

yk−1
j −∇f(xk−1)

)∥∥∥∥2
]

= Ek

[∥∥∥∥ 1

bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+∇f(xk−1)−∇f(xk)

+ λk

( 1

bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+

1

n

n∑
j=1

yk−1
j −∇f(xk−1)

)∥∥∥∥2
]

+ (1− λk)2‖vk−1 −∇f(xk−1)‖2
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≤ 2Ek

[∥∥∥∥ 1

bk

∑
i∈Ikb

(
∇fi(xk)−∇fi(xk−1)

)
+∇f(xk−1)−∇f(xk)

∥∥∥∥2
]

+ 2Ek

[
λ2
k

∥∥∥∥ 1

bk

∑
i∈Ikb

(
∇fi(xk−1)− yk−1

i

)
+

1

n

n∑
j=1

yk−1
j −∇f(xk−1)

∥∥∥∥2
]

+ (1− λk)2‖vk−1 −∇f(xk−1)‖2

≤ 2L2

bk
‖xk − xk−1‖2 +

2λ2
k

bk

1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2 + (1− λk)2‖vk−1 −∇f(xk−1)‖2,

(12)

where (12) uses the L-smoothness Assumption 1 and the fact that E[‖x−Ex‖2] ≤ E[‖x‖2], for any
random variable x. �

To deal with the last term of (10), we use the following Lemma 3.

Lemma 3 Suppose that Assumption 1 holds. The update of {yki } is defined in Line 7 of Algorithm 2,
then we have, for ∀βk > 0,

Ek

[
1

n

n∑
j=1

‖∇fj(xk)− ykj ‖2
]
≤
(
1− bk

n

)
(1 + βk)

1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2

+
(
1− bk

n

)(
1 +

1

βk

)
L2‖xk − xk−1‖2. (13)

Proof of Lemma 3. According to the update of {yki } (see Line 7 of Algorithm 2), we have

Ek

[
1

n

n∑
j=1

‖∇fj(xk)− ykj ‖2
]

=
(
1− bk

n

) 1

n

n∑
j=1

‖∇fj(xk)− yk−1
j ‖2 (14)

=
(
1− bk

n

) 1

n

n∑
j=1

‖∇fj(xk)−∇fj(xk−1) +∇fj(xk−1)− yk−1
j ‖2

≤
(
1− bk

n

)
(1 + βk)

1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2 +

(
1− bk

n

)(
1 +

1

βk

)
L2‖xk − xk−1‖2, (15)

where (14) uses the update of {ykj } (see Line 7 of Algorithm 2), and (15) uses Young’s inequality
and L-smoothness Assumption 1. �

Now we combine Lemmas 1–3 (i.e., (9), (10) and (13)) to prove Theorem 1.

Proof of Theorem 1. First, we take expectation to obtain

E

[
f(xk+1)− f∗ +

(
γk −

ηk
2

)
‖vk −∇f(xk)‖2 +

( 1

2ηk
− L

2

)
‖xk+1 − xk‖2 + αk

1

n

n∑
j=1

‖∇fj(xk)− ykj ‖2
]

≤ E

[
f(xk)− f∗ − ηk

2
‖∇f(xk)‖2 + γk(1− λk)2‖vk−1 −∇f(xk−1)‖2

+
2γkL

2

bk
‖xk − xk−1‖2 +

2γkλ
2
k

bk

1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2

+ αk(1− bk
n

)(1 +
1

βk
)L2‖xk − xk−1‖2 + αk(1− bk

n
)(1 + βk)

1

n

n∑
j=1

‖∇f(xk−1)− yk−1
j ‖2

]

15
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= E

[
f(xk)− f∗ − ηk

2
‖∇f(xk)‖2 + γk(1− λk)2‖vk−1 −∇f(xk−1)‖2

+
(2γkL

2

bk
+ αk(1− bk

n
)(1 +

1

βk
)L2
)
‖xk − xk−1‖2

+
(2γkλ

2
k

bk
+ αk(1− bk

n
)(1 + βk)

) 1

n

n∑
j=1

‖∇fj(xk−1)− yk−1
j ‖2

]
. (16)

Now we choose appropriate parameters. Let γk = ηk−1

2λk
and γk ≤ γk−1, then γk(1−λk)2 ≤ γk−1−

ηk−1

2 . Let βk = bk
2n , αk = 2nλkηk−1

b2k
and αk ≤ αk−1, we have 2γkλ

2
k

bk
+αk(1− bk

n )(1+βk) ≤ αk−1.

We also have 2γkL
2

bk
+ αk(1− bk

n )(1 + 1
βk

)L2 ≤ 1
2ηk−1

− L
2 by further letting stepsize

ηk−1 ≤
1

L
(
1 +
√
Mk

) , (17)

where Mk := 2
λkbk

+ 8λkn
2

b3k
.

Summing up (16) from k = 1 to K − 1, we get

0 ≤ E

[
f(x1)− f∗ −

K−1∑
k=1

ηk
2
‖∇f(xk)‖2 + γ1(1− λ1)2‖v0 −∇f(x0)‖2

+
(2γ1L

2

b1
+ α1(1− b1

n
)(1 +

2n

b1
)L2
)
‖x1 − x0‖2

+
(2γ1λ

2
1

b1
+ α1(1− b1

n
)(1 +

b1
2n

)
) 1

n

n∑
j=1

‖∇fj(x0)− y0
j ‖2
]
. (18)

For k = 0, we directly uses (9), i.e.,

E[f(x1)− f∗] ≤ E
[
f(x0)− f∗ − η0

2
‖∇f(x0)‖2 −

( 1

2η0
− L

2

)
‖x1 − x0‖2 +

η0

2
‖v0 −∇f(x0)‖2

]
.

(19)

Now, we combine (18) and (19) to get

E

[
K−1∑
k=0

ηk
2
‖∇f(xk)‖2

]
≤ E

[
f(x0)− f∗ +

(
γ1(1− λ1)2 +

η0

2

)
‖v0 −∇f(x0)‖2

+
(2γ1λ

2
1

b1
+ α1(1− b1

n
)(1 +

b1
2n

)
) 1

n

n∑
j=1

‖∇fj(x0)− y0
j ‖2
]

(20)

≤ E
[
f(x0)− f∗ +

η0(1− λ1(1− λ1))

2λ1
‖v0 −∇f(x0)‖2 +

2nλ1η0

b21

1

n

n∑
j=1

‖∇fj(x0)− y0
j ‖2
]

(21)

≤ E
[
f(x0)− f∗ + γ0‖v0 −∇f(x0)‖2 + α0

1

n

n∑
j=1

‖∇fj(x0)− y0
j ‖2
]

(22)

≤ f(x0)− f∗ + γ0
n− b0

(n− 1)b0

1

n

n∑
j=1

‖∇fj(x0)‖2 + α0(1− b0
n

)
1

n

n∑
j=1

‖∇fj(x0)‖2 (23)

= f(x0)− f∗ +
(
γ0

n− b0
(n− 1)b0

+ α0(1− b0
n

)
) 1

n

n∑
j=1

‖∇fj(x0)‖2, (24)
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where (20) follows from the definition of η0 in (17), (21) uses γ1 = η0
2λ1

and α1 = 2nλ1η0
b21

, (22)

holds by choosing γ0 ≥ η0
2λ1
≥ η0(1−λ1(1−λ1))

2λ1
and α0 ≥ 2nλ1η0

b21
, and (23) uses λ0 = 1. By

randomly choosing x̂K from {xk}K−1
k=0 with probability ηk/

∑K−1
t=0 ηt for xk, (24) turns to

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
2∑K−1

k=0 ηk

(
γ0

n− b0
(n− 1)b0

+ α0(1− b0
n

)
) 1

n

n∑
j=1

‖∇fj(x0)‖2

≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(n− b0)(4γ0 + 2α0b0)

nb0
∑K−1
k=0 ηk

1

n

n∑
j=1

‖∇fj(x0)‖2. (25)

�

B.2 PROOFS OF COROLLARIES 1 AND 2

Now, we prove the detailed convergence results in Corollaries 1–2 with specific parameter settings.

Proof of Corollary 1. First we know that (25) with b0 = n turns to

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

. (26)

Then if we set λk = bk
2n and bk ≡

√
n for any k ≥ 1, then we know that Mk := 2

λkbk
+ 8λkn

2

b3k
≡ 8

and thus the stepsize ηk ≤ 1

L
(

1+
√
Mk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0. By plugging ηk ≤ 1

(1+
√

8)L

into (26), we have

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

= ε2,

where the last equality holds by letting the number of iterations K = 2(1+
√

8)L(f(x0)−f∗)
ε2 . Thus the

number of stochastic gradient computations is

#grad =

K−1∑
k=0

bk = b0 +

K−1∑
k=1

bk = n+ (K − 1)
√
n ≤ n+

2(1 +
√

8)
√
nL(f(x0)− f∗)
ε2

.

�

Proof of Corollary 2. First we recall (25) here:

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(n− b0)(4γ0 + 2α0b0)

nb0
∑K−1
k=0 ηk

1

n

n∑
j=1

‖∇fj(x0)‖2. (27)

In this corollary, we do not compute any full gradients even for the initial point. We set the minibatch
size bk ≡

√
n for any k ≥ 0. So we need consider the second term of (27) since b0 =

√
n is

not equal to n. Similar to Corollary 1, if we set λk = bk
2n for any k ≥ 1, then we know that

Mk := 2
λkbk

+ 8λkn
2

b3k
≡ 8 and thus the stepsize ηk ≤ 1

L
(

1+
√
Mk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0. For

the second term, we recall that γ0 ≥ η0
2λ1

=
√
n

(1+
√

8)L
and α0 ≥ 2nλ1η0

b21
= 1

(1+
√

8)L
√
n

. It is easy to

see that γ0 ≥ α0b0 since b0 =
√
n ≤ n. Now, we can change (27) to

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

+
6(n−

√
n)

nK

1

n

n∑
j=1

‖∇fj(x0)‖2

≤ 2(1 +
√

8)L(f(x0)− f∗) + 6G0

K
(28)

= ε2,

17
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where (28) is due to the definition G0 := 1
n

∑n
i=1 ‖∇fi(x0)‖2, and the last equality holds by letting

the number of iterations K = 2(1+
√

8)L(f(x0)−f∗)+6G0

ε2 . Thus the number of stochastic gradient
computations is

#grad =

K−1∑
k=0

bk =
√
nK =

√
n

2(1 +
√

8)L(f(x0)− f∗) + 6G0

ε2
= O

(√
n(L∆0 +G0)

ε2

)
.

Note that G0 can be bounded by G0 ≤ 2L(f(x0) − f̂∗) via L-smoothness Assumption 1, then we
have

#grad = O

(√
n(L∆0 + L∆̂0)

ε2

)
.

Note that ∆0 := f(x0) − f∗, where f∗ := minx f(x), and ∆̂0 := f(x0) − f̂∗, where f̂∗ :=
1
n

∑n
i=1 minx fi(x). �

C MISSING PROOFS FOR D-ZeroSARAH

In this appendix, we provide the missing proofs for the distributed nonconvex setting (2). Concretely,
we provide the detailed proofs for Theorem 2 and Corollaries 3–4 of D-ZeroSARAH in Section 5.

C.1 PROOF OF THEOREM 2

Similar to Appendix B.1, we first recall the lemma in Li et al. (2021) which describes the change of
function value after a gradient update step.

Lemma 1 (Li et al. (2021)) Suppose that function f is L-smooth and let xk+1 := xk − ηkvk. Then
for any vk ∈ Rd and ηk > 0, we have

f(xk+1) ≤ f(xk)− ηk
2
‖∇f(xk)‖2 −

( 1

2ηk
− L

2

)
‖xk+1 − xk‖2 +

ηk
2
‖vk −∇f(xk)‖2. (29)

Then, we provide the following Lemma 4 to bound the last variance term of (29).

Lemma 4 Suppose that Assumption 2 holds. The gradient estimator vk is defined in Line 9 of
Algorithm 3, then we have

Ek[‖vk −∇f(xk)‖2] ≤ (1− λk)2‖vk−1 −∇f(xk−1)‖2 +
2L2

skbk
‖xk − xk−1‖2

+
2λ2

k

skbk

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2. (30)

Proof of Lemma 4. First, according to the gradient estimator vk of D-ZeroSARAH (see Line 9 of
Algorithm 3), we know that

vk =
1

sk

∑
i∈Sk

(
gki,curr − gki,prev

)
+ (1− λk)vk−1 + λk

1

sk

∑
i∈Sk

(
gki,prev − yki,prev

)
+ λky

k−1 (31)

Now we bound the variance as follows:

Ek[‖vk −∇f(xk)‖2]

(31)
= Ek

[∥∥∥∥ 1

sk

∑
i∈Sk

(
gki,curr − gki,prev

)
+ (1− λk)vk−1 + λk

( 1

sk

∑
i∈Sk

(
gki,prev − yki,prev

)
+ yk−1

)
−∇f(xk)

∥∥∥∥2
]

= Ek

[∥∥∥∥ 1

sk

∑
i∈Sk

(
gki,curr − gki,prev

)
+∇f(xk−1)−∇f(xk) + (1− λk)(vk−1 −∇f(xk−1))

18
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+ λk

( 1

sk

∑
i∈Sk

(
gki,prev − yki,prev

)
+ yk−1 −∇f(xk−1)

)∥∥∥∥2
]

= Ek

[∥∥∥∥ 1

sk

∑
i∈Sk

(
gki,curr − gki,prev

)
+∇f(xk−1)−∇f(xk)

+ λk

( 1

sk

∑
i∈Sk

(
gki,prev − yki,prev

)
+ yk−1 −∇f(xk−1)

)∥∥∥∥2
]

+ (1− λk)2‖vk−1 −∇f(xk−1)‖2

≤ 2Ek

[∥∥∥∥ 1

skbk

∑
i∈Sk

∑
j∈Ikbi

(
∇fi,j(xk)−∇fi,j(xk−1)

)
+∇f(xk−1)−∇f(xk)

∥∥∥∥2
]

+ 2Ek

[
λ2
k

∥∥∥∥ 1

skbk

∑
i∈Sk

∑
j∈Ikbi

(
∇fi,j(xk−1)− yk−1

i,j

)
+ yk−1 −∇f(xk−1)

∥∥∥∥2
]

+ (1− λk)2‖vk−1 −∇f(xk−1)‖2

≤ 2L2

skbk
‖xk − xk−1‖2 +

2λ2
k

skbk

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2 + (1− λk)2‖vk−1 −∇f(xk−1)‖2,

(32)

where (32) uses the L-smoothness Assumption 2, i.e., ‖∇fi,j(x)−∇fi,j(y)‖ ≤ L‖x− y‖, and the
fact that E[‖x− Ex‖2] ≤ E[‖x‖2] for any random variable x. �

To deal with the last term in (30), we uses the following Lemma 5.

Lemma 5 Suppose that Assumption 2 holds. The update of {yki,j} is defined in Line 7 of Algo-
rithm 3, then we have, for ∀βk > 0,

Ek

[
1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk)− yki,j‖2
]
≤
(
1− skbk

nm

)
(1 + βk)

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2

+
(
1− skbk

nm

)(
1 +

1

βk

)
L2‖xk − xk−1‖2. (33)

Proof of Lemma 5. According to the update of {yki,j} (see Line 7 and Line 11 of Algorithm 3), we
have

Ek

[
1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk)− yki,j‖2
]

=
(
1− skbk

nm

) 1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk)− yk−1
i,j ‖

2 (34)

=
(
1− skbk

nm

) 1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk)−∇fi,j(xk−1) +∇fi,j(xk−1)− yk−1
i,j ‖

2

≤
(
1− skbk

nm

)
(1 + βk)

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2 +
(
1− skbk

nm

)(
1 +

1

βk

)
L2‖xk − xk−1‖2,

(35)

where (34) uses the update of {yki,j} in Algorithm 3, and (35) uses Young’s inequality and L-
smoothness Assumption 2. �

Now we combine Lemmas 1, 4 and 5 (i.e., (29), (30) and (33)) to prove Theorem 2.
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Proof of Theorem 2. First, we take expectation to obtain

E

[
f(xk+1)− f∗ +

(
γk −

ηk
2

)
‖vk −∇f(xk)‖2 +

( 1

2ηk
− L

2

)
‖xk+1 − xk‖2

+ αk
1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk)− yki,j‖2
]

≤ E

[
f(xk)− f∗ − ηk

2
‖∇f(xk)‖2 + γk(1− λk)2‖vk−1 −∇f(xk−1)‖2

+
2γkL

2

skbk
‖xk − xk−1‖2 +

2γkλ
2
k

skbk

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2

+ αk
(
1− skbk

nm

)(
1 +

1

βk

)
L2‖xk − xk−1‖2

+ αk
(
1− skbk

nm

)
(1 + βk)

1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2

]

= E

[
f(xk)− f∗ − ηk

2
‖∇f(xk)‖2 + γk(1− λk)2‖vk−1 −∇f(xk−1)‖2

+
(2γkL

2

skbk
+ αk

(
1− skbk

nm

)(
1 +

1

βk

)
L2
)
‖xk − xk−1‖2

+
(2γkλ

2
k

skbk
+ αk

(
1− skbk

nm

)
(1 + βk)

) 1

nm

n,m∑
i,j=1,1

‖∇fi,j(xk−1)− yk−1
i,j ‖

2

]
. (36)

Now we choose appropriate parameters. Let γk = ηk−1

2λk
and γk ≤ γk−1, then γk(1−λk)2 ≤ γk−1−

ηk−1

2 . Let βk = skbk
2nm , αk = 2nmλkηk−1

s2kb
2
k

and αk ≤ αk−1, we have 2γkλ
2
k

skbk
+αk

(
1− skbk

nm

)
(1 +βk) ≤

αk−1. We also have 2γkL
2

skbk
+ αk

(
1− skbk

nm

)(
1 + 1

βk

)
L2 ≤ 1

2ηk−1
− L

2 by further letting stepsize

ηk−1 ≤
1

L
(
1 +
√
Wk

) , (37)

where Wk := 2
λkskbk

+ 8λkn
2m2

s3kb
3
k

.

Summing up (36) from k = 1 to K − 1, we get

0 ≤ E

[
f(x1)− f∗ −

K−1∑
k=1

ηk
2
‖∇f(xk)‖2 + γ1(1− λ1)2‖v0 −∇f(x0)‖2

+
(2γ1L

2

s1b1
+ α1

(
1− s1b1

nm

)(
1 +

2nm

s1b1

)
L2
)
‖x1 − x0‖2

+
(2γ1λ

2
1

s1b1
+ α1

(
1− s1b1

nm

)(
1 +

s1b1
2nm

)) 1

nm

n,m∑
i,j=1,1

‖∇fi,j(x0)− y0
i,j‖2

]
. (38)

For k = 0, we directly uses (29), i.e.,

E[f(x1)− f∗] ≤ E
[
f(x0)− f∗ − η0

2
‖∇f(x0)‖2 −

( 1

2η0
− L

2

)
‖x1 − x0‖2 +

η0

2
‖v0 −∇f(x0)‖2

]
.

(39)

Now, we combine (38) and (39) to get

E

[
K−1∑
k=0

ηk
2
‖∇f(xk)‖2

]
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≤ E
[
f(x0)− f∗ +

(
γ1(1− λ1)2 +

η0

2

)
‖v0 −∇f(x0)‖2

+
(2γ1λ

2
1

s1b1
+ α1

(
1− s1b1

nm

)(
1 +

s1b1
2nm

)) 1

nm

n,m∑
i,j=1,1

‖∇fi,j(x0)− y0
i,j‖2

]
(40)

≤ E
[
f(x0)− f∗ +

η0(1− λ1(1− λ1))

2λ1
‖v0 −∇f(x0)‖2

+
2nmλ1η0

s2
1b

2
1

1

nm

n,m∑
i,j=1,1

‖∇fi,j(x0)− y0
i,j‖2

]
(41)

≤ f(x0)− f∗ +
η0

2λ1

nm− s0b0
(nm− 1)s0b0

1

nm

n,m∑
i,j=1,1

‖∇fi,j(x0)‖2

+
2nmλ1η0

s2
1b

2
1

nm− s0b0
nm

1

nm

n,m∑
i,j=1,1

‖∇fi,j(x0)‖2 (42)

= f(x0)− f∗ +
(nm− s0b0)η0θ0

2nms0b0
G′0, (43)

where (40) follows from the definition of η0 in (37), (41) uses γ1 = η0
2λ1

and α1 = 2nmλ1η0
s21b

2
1

,

(42) uses λ0 = 1, and (43) uses the definitions θ0 := nm
(nm−1)λ1

+ 4nmλ1s0b0
s21b

2
1

and G′0 :=
1
nm

∑n,m
i,j=1,1 ‖∇fi,j(x0)‖2.

By randomly choosing x̂K from {xk}K−1
k=0 with probability ηk/

∑K−1
t=0 ηt for xk, (43) turns to

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(nm− s0b0)η0θ0G

′
0

nms0b0
∑K−1
k=0 ηk

(44)

�

C.2 PROOFS OF COROLLARIES 3 AND 4

Now, we prove the detailed convergence results in Corollaries 3–4 with specific parameter settings.

Proof of Corollary 3. First we know that (44) with s0 = n and b0 = m turns to

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

. (45)

Then if we set λk = skbk
2nm , sk ≡

√
n, and bk ≡

√
m for any k ≥ 1, then we know that Wk :=

2
λkskbk

+ 8λkn
2m2

b3ks
3
k
≡ 8 and thus the stepsize ηk ≤ 1

L
(

1+
√
Wk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0. By

plugging ηk ≤ 1
(1+
√

8)L
into (45), we have

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

= ε2,

where the last equality holds by letting the number of iterations K = 2(1+
√

8)L(f(x0)−f∗)
ε2 . Thus the

number of stochastic gradient computations for each client is

#grad =

K−1∑
k=0

bk = m+
(K − 1)

√
m√

n
≤ n+

√
m

n

2(1 +
√

8)L(f(x0)− f∗)
ε2

.

�

Proof of Corollary 4. First we recall (44) here:

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(nm− s0b0)η0θ0G

′
0

nms0b0
∑K−1
k=0 ηk

. (46)
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In this corollary, we do not compute any full gradients even for the initial point. We set the client
sample size sk ≡

√
n and minibatch size bk ≡

√
m for any k ≥ 0. So we need consider the

second term of (46) since s0b0 =
√
nm is not equal to nm. Similar to Corollary 3, if we set

λk = skbk
2nm for any k ≥ 1, then we know that Wk := 2

λkskbk
+ 8λkn

2m2

b3ks
3
k
≡ 8 and thus the stepsize

ηk ≤ 1

L
(

1+
√
Wk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0. Now, we can change (46) to

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

+
(nm− s0b0)θ0G

′
0

nms0b0K

≤ 2(1 +
√

8)L(f(x0)− f∗) + 4G′0
K

(47)

= ε2,

where (47) holds by plugging the initial values of the parameters into the last term, and the last
equality holds by letting the number of iterations K =

2(1+
√

8)L(f(x0)−f∗)+4G′0
ε2 . Thus the number

of stochastic gradient computations for each client is

#grad =

K−1∑
k=0

bk =
K
√
m√
n

=

√
m

n

2(1 +
√

8)L(f(x0)− f∗) + 4G′0
ε2

= O

(√
m

n

L∆0 +G′0
ε2

)
.

Note that ∆0 := f(x0)− f∗ where f∗ := minx f(x). �

D FURTHER IMPROVEMENT FOR CONVERGENCE RESULTS

Note that all parameter settings, i.e., {ηk}, {bk} and {λk} in ZeroSARAH for Corollaries 1–2, only
require the values of L and n, and {ηk}, {sk}, {bk}, {λk} in D-ZeroSARAH for Corollaries 3–4
only require the values of L, n and m, both are the same as all previous algorithms. If one further
allows other values, e.g., ε, G0 or ∆̂0, for setting the initial b0, then the gradient complexity can be
further improved. See Appendices D.1 and D.2 for better results of ZeroSARAH and D-ZeroSARAH,
respectively.

D.1 BETTER RESULT FOR ZeroSARAH

Corollary 5 Suppose that Assumption 1 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0, mini-

batch size bk ≡
√
n and parameter λk = bk

2n for any k ≥ 1. Moreover, let b0 = min
{√

nG0

ε2 , n
}

and λ0 = 1. Then ZeroSARAH (Algorithm 2) can find an ε-approximate solution for problem (1)
such that

E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations can be bounded by

#grad = O

(√
n
(L∆0

ε2
+ min

{√G0

ε2
,
√
n
}))

.

Similarly, G0 can be bounded by G0 ≤ 2L∆̂0 via Assumption 1. Let b0 = min
{√

nL∆̂0

ε2 , n
}

, then
we also have

#grad = O

(√
n
(L∆0

ε2
+ min

{√L∆̂0

ε2
,
√
n
}))

.

Remark: The result of Corollary 5 for ZeroSARAH is the best one compared with Corollaries 1–2.
In particular, it recovers Corollary 1 when b0 = n. In the case b0 < n (never computes any full

gradients even for the initial point), then #grad = O
(√

n
(
L∆0

ε2 +
√

G0

ε2

))
which is better than the

result O
(√

n(L∆0+G0)
ε2

)
in Corollary 2. Similar to the Remark after Corollary 2, if we consider L,
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∆0, G0 or ∆̂0 as constant values then the stochastic gradient complexity in Corollary 5 is #grad =

O(
√
n
ε2 ), i.e., full gradient computations do not appear in ZeroSARAH and the term ‘n’ also does not

appear in its convergence result. If we further assume that loss functions fi’s are non-negative, i.e.,
∀x, fi(x) ≥ 0 (usually the case in practice), we can simply bound ∆̂0 := f(x0)− f̂∗ ≤ f(x0) and

then b0 can be set as min
{√

nLf(x0)
ε2 , n

}
for Corollary 5.

Proof of Corollary 5. First we recall (25) here:

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(n− b0)(4γ0 + 2α0b0)

nb0
∑K−1
k=0 ηk

1

n

n∑
j=1

‖∇fj(x0)‖2. (48)

Note that here we also need consider the second term of (48) since b0 may be less than n. Similar
to Corollary 2, if we set λk = bk

2n and bk ≡
√
n for any k ≥ 1, then we know that Mk :=

2
λkbk

+ 8λkn
2

b3k
≡ 8 and thus the stepsize ηk ≤ 1

L
(

1+
√
Mk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0. For the

second term, we recall that γ0 ≥ η0
2λ1

=
√
n

(1+
√

8)L
and α0 ≥ 2nλ1η0

b21
= 1

(1+
√

8)L
√
n

. It is easy to see
that γ0 ≥ α0b0 since b0 ≤ n. Now, we can change (48) to

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

+
6(n− b0)√
nb0K

1

n

n∑
j=1

‖∇fj(x0)‖2

=
2(1 +

√
8)L(f(x0)− f∗)

K
+

6(n− b0)G0√
nb0K

(49)

= ε2,

where (49) is due to the definition G0 := 1
n

∑n
i=1 ‖∇fi(x0)‖2, and the last equality holds by letting

the number of iterations K = 2(1+
√

8)L(f(x0)−f∗)
ε2 + 6(n−b0)G0√

nb0ε2
. Thus the number of stochastic

gradient computations is

#grad =

K−1∑
k=0

bk = b0 +

K−1∑
k=1

bk

= b0 + (K − 1)
√
n ≤ b0 +

2(1 +
√

8)
√
nL(f(x0)− f∗)
ε2

+
6(n− b0)G0

b0ε2
.

By choosing b0 = min{
√

nG0

ε2 , n}, we have

#grad ≤
√
n

(
2(1 +

√
8)L(f(x0)− f∗)

ε2
+ min

{
7

√
G0

ε2
,
√
n
})

= O

(√
n
(L∆0

ε2
+ min

{√G0

ε2
,
√
n
}))

.

Similarly, G0 can be bounded by G0 ≤ 2L(f(x0) − f̂∗) via Assumption 1 and let b0 =

min{
√

nL∆̂0

ε2 , n}, then we have

#grad = O

(√
n
(L∆0

ε2
+ min

{√L∆̂0

ε2
,
√
n
}))

.

Note that ∆0 := f(x0) − f∗, where f∗ := minx f(x), and ∆̂0 := f(x0) − f̂∗, where f̂∗ :=
1
n

∑n
i=1 minx fi(x). �

D.2 BETTER RESULT FOR D-ZeroSARAH

Corollary 6 Suppose that Assumption 2 holds. Choose stepsize ηk ≤ 1
(1+
√

8)L
for any k ≥ 0,

clients subset size sk ≡
√
n, minibatch size bk ≡

√
m and parameter λk = skbk

2nm for any k ≥ 1.
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Moreover, let s0 = min
{√

nG′0
mε2 , n

}
and b0 = m (or b0 = min

{√
mG′0
nε2 ,m

}
and s0 = n),

and λ0 = 1. Then D-ZeroSARAH (Algorithm 3) can find an ε-approximate solution for distributed
problem (2) such that

E[‖∇f(x̂K)‖2] ≤ ε2

and the number of stochastic gradient computations for each client can be bounded by

#grad = O

(√
m

n

(L∆0

ε2
+ min

{√G′0
ε2
,
√
nm
}))

.

Proof of Corollary 6. First we recall (44) here:

E[‖∇f(x̂K)‖2] ≤ 2(f(x0)− f∗)∑K−1
k=0 ηk

+
(nm− s0b0)η0θ0G

′
0

nms0b0
∑K−1
k=0 ηk

. (50)

Similar to Corollary 4, here we also need consider the second term of (50) since s0b0 may be less
than nm. Similarly, if we set λk = skbk

2nm , sk ≡
√
n, and bk ≡

√
n for any k ≥ 1, then we know that

Wk := 2
λkskbk

+ 8λkn
2m2

b3ks
3
k
≡ 8 and thus the stepsize ηk ≤ 1

L
(

1+
√
Wk+1

) ≡ 1
(1+
√

8)L
for any k ≥ 0.

Then (50) changes to

E[‖∇f(x̂K)‖2] ≤ 2(1 +
√

8)L(f(x0)− f∗)
K

+
(nm− s0b0)θ0G

′
0

nms0b0K

=
2(1 +

√
8)L(f(x0)− f∗)

K
+

6(nm− s0b0)G′0√
nms0b0K

(51)

= ε2,

where (51) by figuring out θ0 with the initial values of the parameters, and the last equality holds
by letting the number of iterations K = 2(1+

√
8)L(f(x0)−f∗)

ε2 +
6(nm−s0b0)G′0√

nms0b0ε2
. Thus the number of

stochastic gradient computations for each client is

#grad =

K−1∑
k=0

bk =
s0

n
b0 +

(K − 1)
√
m√

n

≤
√
m

n

2(1 +
√

8)L(f(x0)− f∗)
ε2

+
s0b0
n

+
6(nm− s0b0)G′0

ns0b0ε2

≤
√
m

n

(
2(1 +

√
8)L(f(x0)− f∗)

ε2
+ min

{
7

√
G′0
ε2
,
√
nm
})

(52)

= O

(√
m

n

(
L∆0

ε2
+ min

{√
G′0
ε2
,
√
nm

}))
,

where (52) holds by choosing s0b0 = min
{√

nmG′0
ε2 , nm

}
. It can be satisfied by letting s0 =

min
{√

nG′0
mε2 , n

}
and b0 = m (or s0 = n and b0 = min

{√
mG′0
nε2 ,m

}
). The last equation uses the

definition ∆0 := f(x0)− f∗ where f∗ := minx f(x). �
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