
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RIG: SYNERGIZING REASONING AND IMAGINATION
IN GENERALIST POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning before action and imagining potential outcomes (i.e., world models)
are essential for embodied agents operating in complex open-world environments.
Yet, prior work either incorporates only one of these abilities in an end-to-end
agent or integrates multiple specialized models into an agent system, limiting the
learning efficiency and generalization of the policy. Thus, this paper makes the
first attempt to synergize Reasoning and Imagination in an end-to-end Generalist
policy, termed RIG. To train RIG in an end-to-end manner, we construct a data
pipeline that progressively integrates and enriches the content of imagination and
reasoning in the trajectories collected from existing agents. The joint learning of
reasoning and next image generation explicitly models the inherent correlation be-
tween reasoning, action, and dynamics of environments. It thus exhibits more than
17× sample efficiency improvements and generalization in comparison with pre-
vious works. During inference, RIG first reasons about the next action, produces
potential action, and then predicts the action outcomes, which offers the agent a
chance to review and self-correct based on the imagination before taking real ac-
tions. Experimental results show that the synergy of reasoning and imagination
not only improves the robustness, generalization, and interoperability of generalist
policy but also enables test-time scaling to enhance overall performance.

1 INTRODUCTION

To navigate the complexities of open-world environments, two quintessential human faculties are de
facto to embodied agents: imagination of prospective outcomes and reasoning. Although reasoning
endows agents with the ability to deconstruct task objectives into executable plans through logical
inference, it inherently operates within the constraints of perceptual history. This limitation under-
scores the complementarity of world models that learn the environmental dynamics, which not only
allows the agent to predict action consequences but also facilitates risk-aware decision-making by
evaluating hypothetical trajectories.

The synergistic integration of reasoning and imagination constitutes an indispensable foundation
for more intelligent and robust embodied agents operating in dynamically evolving environments.
However, these two abilities are typically implemented in separate models. Specifically, reasoning
primarily exists in large vision language models (VLMs) (Zhao et al., 2023; Wang et al., 2023a;b;
Zhao et al., 2024a) that parse visual input and produce textual insights and actions (Figure 1(a)),
which lack explicit mechanisms for future prediction. In contrast, world models (Lin et al., 2023;
Hafner et al., 2023) specialize in predicting future frames from video data (Figure 1(b)), which suffer
from data inefficiency due to the implicit learning of concepts, physical laws, and environment
dynamics. Recent attempts (Zhou et al., 2024b; Zhang et al., 2023; Zhao et al., 2024b) combine
reasoning and imagination by connecting VLMs and visual generative models (VGMs). Yet, the
integrated system (Figure 1(c)) prevents end-to-end optimization of the agent, leaving the mutual
benefits between reasoning and world models underexplored.

To bridge these gaps, this paper makes the first attempt to synergize Reasoning and Imagination
in an end-to-end Genralist policy, termed RIG ( Figure 1(d)), RIG learns textual reasoning, low-
level action control, and image generation through the sequence-to-sequence modeling objective
within an autoregressive Transformer, as we hypothesize that the explicit modeling of the logic and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

world 
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(d) RIG:  synergized agent(c) hybrid-system agent
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low-level actionReasoning Imagination

+

Figure 1: Comparison between conventional agents and RIG. RIG produces reasoning, actions,
and imagination within a single Transformer.

motivation behind actions and their consequences could make RIG capture open-world dynamics
more comprehensively and improve the sample efficiency of training.

We develop RIG by adopting a progressive data collection strategy because existing datasets typi-
cally lack trajectories that contain interleaved image observations, precise actions, and high-quality
textual reasoning. Based on initial trajectories collected from humans (Fan et al., 2022) and exist-
ing agents (Lifshitz et al., 2023) that contain only actions and image frames, we first use VLM to
insert textual rationales before each action on the trajectory and train RIG-basic with the reasoning-
enriched trajectories. During inference, RIG-basic generates actions purely from textual and visual
inputs, without leveraging imagined future frames, as decisions are executed immediately based on
current observations.

To further leverage visual imagination in reasoning to further improve the robustness of the policy,
we collect unsuccessful trajectories from RIG-basic and adopt GPT-4o to review and revise these
trajectories. Then, the suboptimal trajectories are taken as dreamed trajectories and combined with
their corresponding revisions to form dream-review style trajectories for training RIG (also noted as
RIG-lookahead for clarity). In contrast to RIG-basic that conduct reasoning without imagination,
RIG-lookahead learns to first generate a trajectory by taking the predicted images as the environ-
ment states, and then review the hypothetical trajectory in reasoning, and predict revised action that
changes the environment. Such a design provides scalability at inference time, where the number of
steps in the dream trajectory can be scaled so that the agent can more comprehensively understand
the effectiveness of the action and make future-aware decisions.

We extensively evaluate RIG in the diverse, open-world Minecraft environment. Experimental re-
sults show that RIG upgrades the state-of-the-art results on embodied tasks, image generation, and
reasoning benchmarks by 3.29×, 2.42×, and 1.33×, respectively. Such a superior performance is
achieved by training RIG on only 111 hours of videos, which is 17× fewer than previous works that
rely on 2000 hours of videos. Moreover, when scaling the training data, environmental interactions,
and the lookahead steps during reasoning, the generalization ability and robustness of RIG consis-
tently improve, which implies the potential of synergizing reasoning and imagination in embodied
agents. Our main contributions are summarized as follows:

• We introduce an end-to-end generalist policy that synergistically integrates explicit embodied rea-
soning and visual imagination.

• We propose a progressive data collection strategy coupled with straightforward language model-
based training to efficiently implement our method.

• Our method naturally supports test-time scaling, enabling dynamic lookahead reasoning that en-
hances action robustness and reduces trial-and-error during inference.

2 RELATED WORK

Embodied Agents in Minecraft. Minecraft presents a significantly open-ended and complex en-
vironment (Johnson et al., 2016; Guss et al., 2019; Fan et al., 2022; Wang et al., 2023c; Cai et al.,
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Action Text

S0: Refined MineRL S1: Vision-Action S2: Vision-Reasoning S4: Temporal Alignment

{"camera": Box(low, high)
"forward":  Discrete(2), ...}

Action Dict

S3: Vision-Reviewing

 Policy

camera: [-5, 15], forward,...
Action Text

 Dataset  Policy  Policy

1. Birch is in front of you 
2. Forward to get closer …
3. forward...

Action Text

1. Crosshair is not aligned
2. Turn down the view...
3. camera: [10, 0]

+ Wait! Let’s re-observe...”

Action Text

   Reasoner

    Reviewer

+

Dream

   Textualize

Figure 2: Illustration of the data collection pipeline (S0–S4). Note that at S3 (Vision-Reviewing),
we run the trained RIG-basic and policy model (STEVE-1 (Lifshitz et al., 2023)) in parallel, keeping
instances where RIG-basic performs poorly compared to STEVE-1.

2023a) for embodied agents. Early approaches leveraged explicit world models to predict future
states (Hafner et al., 2023; Cai et al., 2023b) but lack textual reasoning capabilities. Inspired by large
language models (LLMs) (Brown et al., 2020; Touvron et al., 2023), subsequent methods combined
LLMs with low-level controllers to address long-horizon tasks. For example, Voyager (Wang et al.,
2023a) and STEVE (Zhao et al., 2023) used LLMs for high-level planning integrated with code
databases, while others like Jarvis-1 (Wang et al., 2023b) paired LLMs with pre-trained low-level
policy models such as VPT (Baker et al., 2022). However, these methods typically lack a world
model to explicitly anticipate future visual outcomes. More recently, MineDreamer (Zhou et al.,
2024b) integrates a world model and a policy controller, yet treats vision generation and policy con-
trol as separate modules, limiting coherent multi-modal reasoning. In contrast, RIG first attempts to
explore an end-to-end generalist policy that simultaneously learns textual reasoning, visual imagi-
nation, and low-level action predictions to achieve high generalization ability and sample efficiency.

World Models for Embodied Agents. Learning robust world models is essential for embodied
agents to effectively plan and act within simulated environments (Oh et al., 2015; Kaiser et al.,
2020). Early approaches primarily focused on action-conditioned video prediction or latent imag-
ination for sample-efficient rollouts (Hafner et al., 2020; 2021; Schrittwieser et al., 2020; Hansen
et al., 2022; Lin et al., 2023), yet they often tightly coupled the world model with specific policies,
limiting their adaptability. Inspired by recent successes in large-scale pre-training (Wu et al., 2023;
Mendonca et al., 2023) and Transformer-based architectures (Micheli et al., 2023), several methods
now leverage generalizable knowledge to model visual and textual distributions. However, these
models typically overlook explicit reasoning and deeper causal relationships between actions and
resulting visual states. RIG explicitly learns to model the joint distribution of textual reasoning,
actions, and their visual consequences to enable more accurate predictions of complex and evolving
environment dynamics.

Unified Understanding and Generation. Multi-modal Large Language models (MLLMs) aim to
tackle understanding and generation tasks across different modalities (Lu et al., 2023; Zhou et al.,
2024a) within a unified architecture. Existing methods typically train on large-scale image-text
datasets to improve general visual understanding and generation capabilities (Wang et al., 2024;
Yu et al., 2023; Xie et al., 2024; Zhou et al., 2024a). However, these datasets lack the interleaved
action and reasoning trajectories required for training embodied agents, limiting their direct appli-
cability to real-world embodied scenarios. Generalist policies like GATO (Reed et al., 2022) and
RT-1 (Brohan et al., 2023) demonstrate multitask capabilities but optimize each task individually
without fully leveraging inter-modal synergies. Our work synergizes textual reasoning, low-level
action predictions, and visual generation.

3
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3 METHOD

This paper makes the first attempt to explore the synergy of Reasoning and Imagination in an end-
to-end Generalist policy, termed RIG. RIG models image, textual reasoning, and textual action in
a sequence-to-sequence manner (§ 3.1). We adopt a progressive data collection strategy to first
obtain RIG-basic that can reason before action but without imagination (§ 3.2), then approach RIG-
lookahead that learns to reason based on generated trajectories (§ 3.3).

3.1 PRELIMINARY

Typical generalist policies follow an autoregressive paradigm to predict actions based on observa-
tions (Hafner et al., 2023; Lin et al., 2023). RIG extends this framework by explicitly generat-
ing intermediate textual reasoning before action prediction. Specifically, given multi-modal inputs
X = {xIMG, xTXT} comprising visual tokens xIMG and textual tokens xTXT, RIG learns to autore-
gressively generate textual reasoning tokens Y , low-level action tokens A, and visual prediction
tokens P :

(Y,A, P ) = F(X), X = {xIMG, xTXT}. (1)
The model is trained in an end-to-end manner using only cross-entropy loss:

L = −
∑
i=1

logPθ(xi | x<i). (2)

where Pθ(· | ·) denotes the conditional probability distribution parameterized by the weights θ of
RIG.

3.2 REASONING WITHOUT IMAGINATION

Our primary goal is to develop a synergized model capable of simultaneously generating textual
reasoning, precise low-level actions, and visual outcome predictions. Since existing agents mainly
produce actions, existing accessible datasets typically lack comprehensive trajectories containing
all these elements. Therefore, we propose a progressive data collection strategy to gradually enrich
these elements in accessible agentic trajectories. Inspired by the recent success of vision-language
models (OpenAI, 2023) that can conduct chain-of-thought (CoT) reasoning given images, our first
step is to add reasoning into the action-image trajectories using VLMs to obtain RIG-basic that can
conduct reasoning before action.

Data Collection (S0–S2). As shown in Figure 2, we first refine or collect data from relabeled human
play trajectories (S0) and specialized policies (S1), unify their formats, and add reasoning contents
before each action (S2). The details are as below:

• S0 (Refined MineRL-V0): We use trajectories from MineRL-V0 (Guss et al., 2019) and quantize
the camera actions of the original trajectory into discrete 5-degree intervals and then represent
them as textual tokens. All other discrete low-level actions retain their original semantic labels.

• S1 (Vision-Action, 446K): We use a pretrained policy, STEVE-1 (Lifshitz et al., 2023), to col-
lect high-resolution (384×384) image-action pairs and ensure precise visual-action alignment for
learning low-level control.

• S2 (Vision-Reasoning, 200K): To integrate reasoning in the original trajectories, we employ GPT-
4o as a Reasoner to annotate explicit textual rationales conditioned on visual observations xIMG

and the corresponding low-level actions A, formed as Y = Reasoner(xIMG, A).

All these trajectories are rigorously filtered based on task success, diversity across environment
seeds, and manual validation of reasoning quality. We train RIG-basic using datasets obtained from
S0, S1, and S2.

Reasoning without Imagination. After training on datasets (S0, S1, S2), the resulting model, RIG-
basic naturally supports multi-round interactions with the environment. As shown in Figure 3, at
each step, it autoregressively generates textual CoT reasoning Y , low-level actions A, and action
outcomes P :

(Yi+1, Ai+1, Pi+1)
F←− (Xi, Yi, Ai). (3)

This unified approach achieves significantly better generalization than traditional methods, requiring
substantially fewer training samples (Figure 4).
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Conversation Flow
: “look around for tree... ” “mine logs...”

...

encenc

“turn to another tree...”

...

“A birch is in front of you... ”

IMG token
TXT token

DreamBasic 
Reason

Lookahead 
Reason

...

dec dec

: camera:[-5,-10], forward : attack camera:[5,-10], left : left, forward, ...
: The tree is ahead... : Hit the tree...

Figure 3: Inference process in RIG. RIG follows a structured conversation flow through multi-turn
interactions. It consistently uses the fixed word Imagine: to clearly separate internally imagined
scenarios from real observations, thereby guiding coherent reasoning, action prediction, and visual
imagination.

3.3 LOOKAHEAD REASONING

Although RIG-basic demonstrates strong baseline performance, the reasoning is still purely based
on the perceptual history and does not fully exploit the generative imagination capabilities. To
address this, we further augment our datasets with reflective reviewing annotations in stages 3 and
4 (S3 and S4 in Figure 2), to endow the model with the ability to conduct lookahead reasoning, i.e.,
internally simulate imagined trajectories first, and then take actions after reviewing the predicted
future outcomes.

Data Collection (S3–S4). We collect reflective annotations and temporal alignment data through
the following stages:

• S3 (Vision-Reviewing, 27K): We use a state-wise advantage filter where we only retain initial
states for which STEVE-1 achieves higher expected return than the current RIG-basic. It avoids
using a weaker policy as positive globally and ensures the positive/negative trajectories are locally
comparable under identical initial conditions. We generate S3 as follows:

– Negative trajectory: Generated by the previously trained RIG-basic model, yielding subopti-
mal outcomes X−, Y −, A−.

– Positive trajectory: Generated by the superior-performing policy STEVE-1 (Lifshitz et al.,
2023), yielding optimal outcomes X+, A+.

We then adopt GPT-4o as a Reviewer to explicitly compare these parallel trajectories and gener-
ate refined reasoning: Y + = Reviewer(X−, Y −, A−, A+), so that we get corrective reasoning
annotations:

Y = {Y −, “Wait! Let’s re-observe...”, Y +}. (4)
This reflection annotation significantly enhances the ability of the model to review and correct
reasoning mistakes.

• S4 (Temporal Alignment, 38K): We further generate multi-step imagined visual predictions (P )
and explicitly align them with observed ground-truth visual tokens (xIMG) to enhance long-horizon
stability: Pi+1 → xIMG

i+1 .

Lookahead Reasoning with Imagination. Training on datasets from stages 3 and 4 produces RIG-
lookahead, a model that performs reasoning conditioned on imagined futures. Stage 3 employs

5
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Figure 4: Performance and data-efficiency comparison. RIG-basic significantly outperforms
other baselines with higher sample efficiency and achieves superior performance using only 111
hours of training data (42h S0 MineRL-V0 and 69h S1-S4). MineDreamer (Zhou et al., 2024b),
a hybrid-system model, separately trains a visual generation model (139 hours) but also relies on
VPT for the policy model, increasing total data requirements. Duration of VPT (Baker et al., 2022)
reflects only the IDM data used, measured as video frames, while STEVE-1 (Lifshitz et al., 2023)
and Jarvis-1 (Wang et al., 2023b) also leverage the VPT dataset.

Rejection Sampling Fine-tuning (RFT) to enhance reasoning through model-generated rollouts. We
apply RFT in embodied agents by leveraging joint reasoning and visual generation, which enables
self-prediction of future states, previously infeasible due to the lack of visual prediction. Only the
positive trajectory Y + is optimized, while the negative Y − is excluded from loss, encouraging better
self-correction.

RIG-lookahead simulates “dream trajectories” before acting. As shown in Figure 3, imagined steps
are marked with a fixed token “<Imagine:>” to distinguish from observations, allowing decisions
to be refined by looking n steps ahead:

(Y ∗
i+1, A

∗
i+1, P

∗
i+1)

F←− (Xi, Pi+1, Yi+1, ..., Pi+n, Yi+n). (5)

This lookahead mechanism enables internal review and correction, reducing trial-and-error interac-
tions and enhancing decision robustness in complex embodied tasks, as shown in Figure A3.

4 EXPERIMENTS

We conduct comprehensive experiments to validate the effectiveness of RIG across diverse tasks,
focusing on data efficiency, scalability, and the benefits of integrating generation, reasoning, and
lookahead. Evaluations on embodied tasks are performed under both Manual (hand-only) and Tool
(e.g., iron pickaxe) to assess performance in varied embodied scenarios. More details about metrics
are listed in Appendix A.3 and detailed qualitative studies are listed in Appendix A.8.

4.1 EXPERIMENT SETUP

Embodied tasks. Six tasks set up in MineRL Guss et al. (2019) (Collect: Wood/Seeds/Dirt; Explore:
Dig/Explore/Tower) under Manual (bare-hand) and Tool (iron tools) settings; success and sample
definitions follow Appendix A.3. Training and evaluation seeds are disjoint.

Language & generation metrics. Reasoning and Understanding are blind-graded; Score-Static is
STEVE-21K static QA, for generation, we report FID (lower is better) and PSNR (higher is better),
see Appendix A.3.

Base model. RIG builds on Janus-1.3B (Chen et al., 2025) with 4,096 context. SigLIP-L/16-
384 (Zhai et al., 2023) encodes images; a VQ tokenizer (Sun et al., 2024) provides discrete visual
IDs for the unified Transformer. Training uses sequence packing and mixed data types on XTuner-
lite (Contributors, 2023).
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Figure 5: Comparison across embodied, generation, and VQA/Reasoning. RIG-basic equips
reasoning. RIG-lookahead further adds reviewing.
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Figure 6: Scalability over training data, iterations, and lookahead steps. Shaded areas denote
variance. The 42h MineRL-V0 pretraining is excluded from the 111h total; the training-ratio panel
counts data before lookahead.

4.2 DATA EFFICIENCY

As shown in Figure 4, RIG significantly surpasses other methods in terms of collected samples
per iteration while requiring drastically lower total training time. Notably, RIG achieves superior
performance using only 111 hours of total data collection, considerably less than other baselines
(VPT: 1962h, MineDreamer: 2101h (139h + VPT), STEVE-1 and Jarvis-1: nearly 2000h).

4.3 MAIN RESULTS

We first evaluate the data efficiency of RIG against prior approaches (VPT (Baker et al., 2022),
STEVE-1 (Lifshitz et al., 2023), Jarvis-1 (Wang et al., 2023b), and MineDreamer (Zhou et al.,
2024b)). We then benchmark its performance across three core task categories: Embodied Tasks,
Generation Tasks, and Understanding & Reasoning Tasks. For more qualitative analysis, please
refer to the case study in Appendix A.8.

Performance in Embodied Tasks. As shown in Figure 6, RIG-basic have surpassed all other
baselines with 93.4% accuracy and 101.1 collected samples. RIG-lookahead (extended from RIG-
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ID Capabilities Number of Samples Accuracy (%)

Action Gen. Reason Lookahead wood grass dirt avg. ∆ Dig Explore Tower avg. ∆

Manual (ID 0–4)

0 ✓ 7.9 6.2 8.9 7.7 +0.0 9.1 11.7 4.4 8.4 +0.0
1 ✓ ✓ 11.0 16.5 12.1 13.2 +5.5 12.2 36.8 41.8 30.3 +21.9
2 ✓ ✓ 17.3 24.5 22.5 21.4 +13.8 34.2 31.8 37.8 34.6 +26.2
3 ✓ ✓ ✓ 22.2 45.9 38.7 35.6 +27.9 29.2 65.2 37.9 44.1 +35.7
4 ✓ ✓ ✓ ✓ 28.3 137.5 74.8 80.2 +72.5 65.8 84.2 88.7 79.6 +71.2

Tool (ID 0–4)

0 ✓ 24.6 33.1 42.4 33.4 +0.0 17.9 11.7 8.2 12.6 +0.0
1 ✓ ✓ 25.8 29.9 48.4 34.7 +1.3 27.2 36.8 41.8 35.3 +22.7
2 ✓ ✓ 26.9 49.9 51.0 42.6 +9.2 24.2 31.8 29.8 28.6 +16.0
3 ✓ ✓ ✓ 79.4 115.3 108.6 101.1 +67.7 85.1 100.4 94.7 93.4 +80.8
4 ✓ ✓ ✓ ✓ 128.7 295.6 315.5 246.6 +213.2 95.4 84.2 102.8 94.1 +81.5

Table 1: Ablation study on embodied tasks under different capability settings. We compare
different combinations of Action, Generation (Gen.), Reasoning (Reason), and Reviewing (Review).
The table is divided into two groups: Manual (ID 0–4) and Tool (ID 0-4). The “Num.” column
represents the number of completed collecting tasks (wood, grass, dirt), while “Acc.” denotes the
success rate of exploration tasks. The columns “avg.” is the average performance. For both metrics,
we report the absolute values, along with the improvement (+x) over the baseline (ID 0 for Manual
and Tool).

ID Capabilities Generation Understanding Reasoning

Action Gen. Reason Lookahead FID ↓ PSNR ↑ Score-Stc.↑ Score-Env.↑ Score-Env.↑
0 ✓ 214.5 16.4 - - -
1 ✓ ✓ 225.6 16.3 - - -

2 ✓ ✓ - - 9.0 7.8 6.1
3 ✓ ✓ ✓ 156.5 17.9 9.4 8.4 7.3

4 ✓ ✓ ✓ ✓ 77.6 18.4 9.6 8.1 8.5

Table 2: Ablation study on Generation, Understanding, and Reasoning performance. We
compare different combinations of Action, Generation (Gen.), Reasoning (Reason), and Looka-
head capabilities. “Score-Env.” represents the environment-specific evaluation score from online
understanding testing, while “Score-Env.” denotes reasoning-specific evaluation. “Score-Stc.” is
computed on the static dataset STEVE-21K Zhao et al. (2023), and “FID” / “PSNR” measure image
generation quality.

basic) produce even greater progress than RIG-basic, with the highest accuracy of 94.1% and 246.6
collected samples. For extended analysis, we conduct additional scalability and ablation studies, as
shown in Figure 6 and Table 1.

Performance in Generation and Understanding. RIG-lookahead achieves the best Minecraft-
style generation quality among baselines (FID 77.6, PSNR 18.4) (see Appendix A.8), general VQA
remains on par with Janus-1.3B (see Table A5).

4.4 SCALABILITY.

We evaluate the scalability of RIG along three key dimensions, training data ratio, iteration count,
and inference steps, as illustrated in Figure 6.

Training Scalability. RIG exhibits strong scalability with training data volume. Increasing training
data from 10% to 100% dramatically improves performance, especially at the 20% training thresh-
old, where accuracy jumps substantially (manual: 10.53%→24.06%, tool: 17.0%→62.50%). Data
diversity significantly increases at this point, allowing the agent to encounter and adapt to a broader
spectrum of complex scenarios. Beyond 20% data usage, the rate of accuracy improvement stabi-
lizes, indicating the training paradigm reaches a steady state and that the agent’s action diversity
nears its upper bound. With full training data (100%), RIG achieves superior results, outperforming
existing approaches such as VPT (Baker et al., 2022) and Jarvis-1 (Wang et al., 2023b) in accuracy
and even surpassing STEVE-1 (Lifshitz et al., 2023) in task collection efficiency, reaching 101.13
collected tasks and 93.35% accuracy. Notably, these results are attained purely through forward
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reasoning, without lookahead, suggesting substantial untapped potential for further enhancement by
incorporating advanced reasoning mechanisms.

Iteration Scalability. RIG demonstrates robust performance growth over iterations. Under standard
forward inference, task collection grows consistently from 9.25 samples at iteration 200 to 101.13
at iteration 3000, particularly pronounced in tool-assisted tasks, showing rapid convergence due to
effective data utilization and stable trajectory patterns. However, variance, illustrated by shaded ar-
eas, tends to increase with iterations, reflecting longer and more diverse trajectories that introduce
complexity and fluctuation. Tasks involving exploration, which inherently contain more combina-
torial subtasks (e.g., material gathering followed by building structures), show larger variance and
complexity over time. It potentially highlights the model’s adaptive response to increasingly diverse
scenarios.

Inference Scalability. The results from different lookahead steps demonstrate significant benefits
from lookahead reasoning. Evaluating from the baseline at 3000 iterations, increasing steps (gen-
erating “dream trajectories”) substantially improves performance. Task collection metrics exhibit
rapid initial improvement and relatively low variance up to four steps, indicating accurate and stable
trajectory predictions. However, variance increases at five steps, suggesting accumulated prediction
errors or hallucinations become more prominent. For accuracy metrics, tool-assisted tasks maintain
high performance (peaking at 94.12% at 3 steps), with a slight decrease afterward due to ceiling
effects and increased prediction uncertainty. Conversely, manual tasks show consistent performance
improvement through stepwise lookahead, significantly benefiting from iterative reasoning, reaching
a peak of 79.58% accuracy at 5 steps.

4.5 ABLATIONS STUDY

Embodied tasks. Adding generation improves targeting and exploration stability; adding reason-
ing reduces redundant actions and enables goal-directed plans; adding lookahead yields the largest
gains with minimal extra data (27K). The full model (Action+Gen+Reasoning+Lookahead) delivers
the best sample efficiency and success (see Table 1). As shown in Table 1, the synergy of Ac-
tion, Generation, Basic Reasoning and Lookahead Reasoning leads to the most robust performance,
which enables structured learning and improves short-term decisions and long-horizon task comple-
tion. In the Manual setting (ID 4), there are significant gains in sample collection (from 7.7 to 80.2,
+72.5) and accuracy (from 8.4% to 79.6%, +71.2). In the Tool setting, the impact is even greater,
with sample counts rising from 33.4 to 246.6 (+213.2) and accuracy from 12.6% to 94.1% (+81.5),
highlighting the effectiveness of the unified framework.

Generation quality. Action-only slightly worsens FID, but combining action with reasoning and
lookahead markedly improves FID/PSNR (e.g., 156.5→77.6 FID; 17.9→18.4 PSNR), confirming
that structured reasoning stabilizes the visual predictor (see Table 2). By jointly optimizing gener-
ation, reasoning, and reviewing, RIG achieves the best trade-off between action prediction, visual
understanding, and environmental reasoning. The best model (ID 4) shows that lookahead reason-
ing enhances decision-making, improving sample efficiency and interaction robustness. This under-
scores the benefit of integrating multiple modalities for coherent perception and action. As shown
in Table 2, enabling lookahead reasoning substantially enhances image-generation quality. RIG-
lookahead (ID 4) attains the lowest FID (77.6) and highest PSNR (18.4), significantly surpassing
variants without lookahead reasoning (e.g., ID 3, FID: 156.5, PSNR: 17.9).

5 CONCLUSION

This paper introduces RIG, an end-to-end Generalist policy that integrates Reasoning and
Imagination with superior adaptability and robustness in open-world environments. RIG unifies
the understanding and generation of visual generation, action, and textual reasoning within a sin-
gle autoregressive Transformer, and is capable of reasoning and planning by looking ahead with the
dreamed trajectories to further improve its robustness. RIG obtains new state-of-the-art performance
across embodied tasks, image generation, and reasoning tasks, with higher sample efficiency and
generalization. RIG also exhibits higher scalability with training and test-time compute. As cases
shown in Appendix A.8, we hope the results of RIG could inspire future research on synergizing
reasoning and imagination in embodied agents.
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Ethics statement. We adhere to the ICLR Code of Ethics and confirm that all authors have read
and complied with it. Our experiments are conducted entirely in a simulated Minecraft environ-
ment using publicly available datasets and policies (e.g., MineRL-V0, STEVE-1/STEVE-21K) and
model-generated rollouts. No human subjects, personally identifiable information, or sensitive at-
tributes are collected; therefore IRB approval was not required. Reasoning annotations and blind
grading use GPT-4o under dataset and API terms; we release the exact prompts, filtering rules (e.g.,
legality weighting), and sampling criteria to document potential annotator/model bias. We discuss
model limitations (e.g., hallucinated “imagination” frames) and restrict claims to simulation. To mit-
igate dual-use risks (e.g., unsafe autonomous control), we do not deploy to physical robots, provide
research-only artifacts where applicable, and include safety notes in the repository. All third-party
assets are cited and used within their licenses. We also report compute and data usage in the appendix
and will provide an estimated carbon footprint to support environmentally responsible research.

Reproducibility statement. We prioritize reproducibility through clear documentation and arti-
fact release. The training/evaluation protocol (tasks, metrics, seeds, success criteria) is specified
in Appendix A.3 with full seed lists and episode counts in the appendix. Data construction S0–S4
(sources, prompts, filters, reviewer settings) is detailed in the main text and supplementary. We
release the exact prompts and scripts. Model and optimization details (backbone, context length, vi-
sion encoders/tokenizers, hyperparameters) appear in §4.1 and the supplementary materials, with all
configs provided as YAML files. We supply evaluation harnesses for embodied control, generation
(FID/PSNR), and VQA, including Docker/Conda environment files, fixed random seeds, and com-
mit hashes. Anonymous links in the supplemental materials include: (1) inference/training code,
(2) checkpoints for basic and lookahead, (3) ablation/plot scripts to regenerate all figures/tables.
Together, these materials enable end-to-end replication of results and verification of claims.
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our work develops a multimodal LLM-based world model. Concretely, RIG builds on a 1.3B-
parameter LLM backbone with unified visual–text decoding; we train and improve it using Su-
pervised Finetuning (SFT) and Rejection Sampling Fine-Tuning (RFT) to enhance reasoning and
lookahead capabilities. In addition to the backbone itself, we employ an external LLM (GPT-4o)
only for technical purposes, like a reasoner and baseline in the research pipeline: generating rea-
soning annotations and conducting blind grading of text-only outputs under the dataset/API terms.
Prompts, legality filters, and sampling criteria are documented and released to aid auditability.

Beyond these technical roles, LLMs did not play a significant part in research ideation, experi-
mental design, or manuscript writing, the authors conceived the study, designed/evaluated experi-
ments, analyzed results, and wrote the paper. Any automated assistance, if present, was limited to
non-substantive copy-editing/LaTeX linting. The authors take full responsibility for all contents,
including verifying any machine-generated intermediate artifacts, and acknowledge that LLMs are
not eligible for authorship. This disclosure follows the ICLR policy on LLM usage and research
integrity.

The appendix is organized as follows:

• Inference Pipeline (Appendix A.1) illustrates how RIG performs end-to-end inference: generat-
ing textual reasoning, imagined visual rollouts, and executable actions, with explicit use of the
<Imagine:> token to support self-review and temporal consistency. Meanwhile, we compare
the inference costs to STEVE-1 and MineDreamer.
• Training Pipeline (Appendix A.2) presents our multi-stage training framework, including offline

supervised learning, GPT-4o-based reasoning and review relabeling, and imagination-grounded
alignment strategies that enable lookahead-based decision-making. Meanwhile, we list the train-
ing costs of RIG.
• Evaluation Protocol and Metrics (Appendix A.3) presents detailed evaluation protocal and met-

rics.
• Data Distribution (Appendix A.4) analyzes the diversity of embodied tasks within our datasets,

and illustrates how data volume scales with task complexity, from atomic skills like collection to
composite ones like exploration and construction.
• Component Comparison (Appendix A.5) offers a systematic comparison with existing models,

emphasizing RIG’s unique capabilities in multimodal alignment, action granularity, and unified
policy formulation without relying on task-specific modules.
• Tokenizer and Base Model Selection (Appendix A.6) explains our design choice of combining

LlamaGen’s VQ tokenizer with Janus as the vision-language foundation, offering a lightweight
and effective setup for image-text grounding in Minecraft-like settings.
• General VQA Benchmark Result (Appendix A.7) compares RIG with state-of-the-arts on mul-

timodal understanding benchmarks.
• Qualitative Results and Case Study (Appendix A.8) showcases examples where RIG performs

internal reasoning, detects failure cases via self-review, and corrects actions before execution. We
further compare RIG to GPT-4o (from reasoning and imagination comparison in Figure A5 to
lookahead comparison in Figure A6), demonstrating that strong visual generation alone does not
guarantee robust policy reasoning.
• Multi-Modal Understanding Evaluation (Appendix A.9) evaluates RIG’s embodied knowledge

across diverse functional categories using the STEVE-21K QA benchmark, covering survival,
crafting, entity understanding, and more.
• Multi-turn Visual Reasoning Format (Appendix A.10) details our multi-round reasoning and

imagination format, which supports fine-grained learning of vision-language-action alignment
through step-by-step trajectory prediction.
• Environment Details (Appendix A.11) describes our experimental platform based on Min-

eRL (Guss et al., 2019), featuring low-level egocentric control and programmable environment
setup for robust and reproducible embodied evaluation.
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Reasoning

enc

“Collect wood for crafting planks”

Instruction

“Forward, Jump …”
History

Review

dec

Reason

“Left, Forward, 
Camera: [0, 10]” 

1. A pit ahead …
2. Detour and get closer 
3. View at the trunk…

Action

Figure A1: Detailed inference pipeline. RIG generates imagined visual states and corresponding
reasoning to simulate multiple action trajectories, enabling self-review and corrective prediction.

A.1 INFERENCE PIPELINE

As illustrated in Figure A1, RIG follows a multimodal autoregressive generation process. Given
current observations and the task, the model produces (i) textual reasoning, (ii) low-level actions,
and (iii) visual predictions of future frames. These imagined states, denoted by the fixed token
<Imagine:>, are recursively fed back for internal reviewing and decision refinement. This mech-
anism allows iterative planning without environmental interaction.

Inference costs. For a typical control step, the policy without visual imagination (Reasoning +
Action) requires approximately 2×1012 FLOPs, while the full RIG pipeline with imagination (Rea-
soning + Action + Prediction) requires about 6.38× 1012 FLOPs. As summarized in Table A1, the
per-step FLOPs of STEVE-1 Lifshitz et al. (2023) is about 6 × 1010, whereas MineDreamer Zhou
et al. (2024b) requires roughly 3 × 1014 FLOPs per step (6 × 1010 for the controller and 3 × 1014

for the backend image generator). Thus, among agents with an explicit world model, our synergized
RIG design remains two orders of magnitude cheaper than a hybrid world-model + RL controller
such as MineDreamer, while providing integrated reasoning, imagination, and lookahead. Compared
to a low-level policy like STEVE-1, RIG’s per-step inference cost is higher, but it offers substantially
stronger performance and richer capabilities (reasoning, visual imagination, and self-review) under
a 17× smaller environment interaction budget.

A.2 TRAINING PIPELINE

As illustrated in Figure A2, the training of RIG proceeds in four progressive stages:
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Method Env. h Imag. Reason. Look. Summary Infer FLOPs

STEVE-1 ∼2000 ✓ Low-level policy 6× 1010

MineDreamer ∼2000† ✓ ✓ World-model + RL 3× 1014

RIG-basic 111 ✓ ✓ World-model 6× 1012

RIG-lookahead (Ours) 111 ✓ ✓ ✓ World-model 6× 1012

Table A1: Comparison between STEVE-1, MineDreamer, and RIG. “Env. h” counts environ-
ment interaction used to train each agent (our 17× factor compares RIG’s 111 h to STEVE-1’s
2000 h). “Imag.” denotes explicit visual imagination / world model, “Reason.” denotes textual
reasoning / review head, and “Look.” denotes lookahead-based self-review. Infer FLOPs. are ap-
proximate per-step costs of inference under our setup.

• S0/S1. Offline Supervised Fine-tuning (SFT): The model learns to align the dream flow (model-
generated predictions) with the real flow (observed data) through supervised learning. This phase
improves visual state prediction quality, enhancing the accuracy of subsequent action decisions.
Input: past frame, past action, task. Output: subtask, next action, next frame.

• S2. Reasoning Relabeling: A two-step process enhances decision quality. (1) An environment-
based evaluator filters high-quality trajectories. (2) GPT-4o acts as a Reviewer to generate explicit
reasoning traces and refined labels.
Input: past frame, past action, task. Output: reasoning, next action, optionally lookahead reason-
ing, next frame.

• S3. Review Relabeling: The trained model interacts in the environment, and an evaluator filters
poor trajectories. GPT-4o as a Reviewer analyzes the imagined traces and relabels corrections for
better trajectory quality.
Input: past frame, past action, task, imagined frame (<Imagine:>). Output: lookahead reason-
ing , corrected action, next frame.

• S4. Temporal Alignment: An imagined dream trajectory is generated via the autoregressive
model. The entire sequence is behavior-cloned into the real environment, enabling frame-by-
frame alignment and relabeling via the Reasoner.
Input: dream trace (states/actions). Output: real visual alignment, updated reasoning annotations.

Note that RIG is trained on 111 hours of data by collecting, without reusing weights from STEVE-1
or its 2k hour corpus. We just focus solely on the final data used for training to ensure a direct
metric.

Stages 0–2 are used to train RIG-basic, while Stages 3–4 further enhance RIG-lookahead with
imagination-based alignment and long-horizon correction.

Eq. 4 for Stages 3-4 shows RIG-basic is co-trained reasoning→action→imagination. The “Reason-
ing without Imagination” means RIG-basic has not directly used imagination as input to looka-
head. Stage 3 let GPT-4o prompted to generate a coherent reasoning Y + that: (1) analyzes the
failure in A−, and then (2) justifies the correction leading to A+. X− and X+ used in Stage 3 are
all observation frames, X− is a bad trial through RIG-basic interact with environment by action.
Stage 4 is trained on generated frame P and real interaction outcome frame X .

Reasoning before action makes RIG globally stabler on long horizons, yet occasional local mis-
actions remain. STEVE-1’s greedier traces supply those hard local positives.

Training costs. For the training setup reported in the paper, RIG-basic (without lookahead imag-
ination) requires about 704 GPU hours to train on 111 hours of interaction data, using 64 × A100
80GB GPUs. The additional lookahead stage for RIG-lookahead requires about 280 GPU hours on
the same hardware.

A.3 EVALUATION PROTOCOL AND METRICS
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Dream Flow
P0 P1 Pn

Real Flow

X0 X1 Xn

A0 A1

Real Flow

X0 X1 Xn

A0 A1

Reasoner / Reviewer

...

...

S2./S3. Reason + Review  

S0, S1. Offline SFT

S4. Temporal Align

Dream Flow
P0 P1 Pn

Real Flow

X0 X1 Xn

Y0, A0 Y1, A1

...

S0, S1, S2 + S3, S4

Figure A2: Training pipeline of RIG. S0/S1 pretrain the model by aligning real and imagined flows.
S2/S3 enhance reasoning and reviewing via GPT-4o relabeling. S4 aligns temporally predicted
trajectories (dream flow) with environment-grounded traces.

Method Vision Encoder Parameters Vision Quality (Gen.) MM Quality (Und.) Evaluations

Autoregressive (AR)
Emu3 Wang et al. (2024) VQ (D) 8B 0.68 -0.1 POPE, SEEDBench-Img, VQAv2 (85.2, 68.2, 75.1)
LlamaGen Sun et al. (2024) VQ (D) 111M, 343M, 775M, 1.4B, 3B 0.68 -0.34 -
Chameleon Lu et al. (2023) VQ (D) 7B, 34B 0.68 -0.29 VQAv2 (69.6)
Anole Chern et al. (2024) VQ (D) 7B - - -
Janus Chen et al. (2025) VQ (D) 1.3B 0.68 -0.07 POPE, VQAv2 (87, 77.3)

AR + Diffusion
Show-o Xie et al. (2024) Magvitv2 (D/C), Clip-ViT (C) 1.3B 0.68 -0.15 POPE, VQAv2 (84.5, 74.7)
Transfusion Zhou et al. (2024a) VAE (C) 0.16B, 0.37B, 0.76B, 1.4B, 7B 0.68 -0.01 -
Fluid Fan et al. (2024) VQ (D), VAE (C) 369M, 665M, 1.1B, 3.1B, 10.5B 0.68 0.02 -

Table A2: Comparison of various unified multimodal methods, categorized by their training ap-
proach (Autoregressive and AR + Diffusion), detailing vision encoder type, parameter scale, vision
generation quality (GenEval SD3 8B), multimodal understanding quality, and evaluation bench-
marks.

Embodied tasks. 6 tasks (Collect: Wood/Seeds/Dirt, Explore: Dig/Explore/Tower). (1) One itera-
tion means one forward pass or frame used. (2) Num. of samples stands for the number of collected
blocks. (3) Accuracy refers to the success rate of completing tasks. (4) Explore success: Dig z
∈ [7, 20]; Explore travel ≥ 300 blocks; Tower height ≥ 15. (5) Training seeds (e.g. 1-34, 701-706
for Wood) are listed in the appendix. (6) Evaluation always starts with random seeds for the random
scene. (7) Tool/Manual toggles iron tools to shorten bare-hand loops.
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Lookahead Reasoning 

You are in a forest biome surrounded by a mix of 
oak and birch trees. The terrain consists of dirt, 
and grass patches, with a nearby body of water 
to the left. The crosshair is positioned directly on 
the trunk of an oak tree...

Understanding

1. The tree trunk is already centered in the crosshair, meaning the player does 
not need to adjust their aim.
2. The player is standing on gravel, and there is a slight gap between them 
and the tree.
3. Moving forward will bring the player closer, ensuring they are within 
breaking range to chop the tree efficiently.
4. Since the tree is directly in front, there is no need for camera 
adjustments at this moment, only movement.

“Wait! Let's re-observe the frame and Imagine...”
1. A pit ahead …
2. Detour and get closer 
3. View at the trunk…

“Left, Forward, Camera: [0, 10]” 

1 2

3

4

Figure A3: Qualitative example of lookahead and review. The agent understands the environment
(1–2), simulates future states (3), and refines its decision through internal review before acting (4),
successfully avoiding a hidden hazard.

Tokenizer Compression Ratio Quantization MS-COCO ImageNet-1K FFHQ CelebA-HQ

PSNR↑ SSIM↑ rFID↓ PSNR (Minecraft)↑ PSNR↑ SSIM↑ rFID↓ PSNR↑ SSIM↑ rFID↓ PSNR↑ SSIM↑ rFID↓
Open-MAGVIT2 Luo et al. (2024) 16× 16 LFQ 30.06 0.502 6.649 27.21 29.62 0.398 2.701 31.77 0.774 1.994 32.36 0.844 2.865
LlamaGen Sun et al. (2024) 8× 8 VQ 30.71 0.616 4.123 28.93 30.28 0.498 1.403 33.39 0.868 0.701 34.82 0.937 0.502
LlamaGen Sun et al. (2024) 16× 16 VQ 29.93 0.491 6.077 27.06 29.81 0.448 1.657 31.58 0.772 1.366 32.18 0.837 1.113
Cosmos-Tokenizer-DI Agarwal et al. (2025) 8× 8 FSQ 31.74 0.730 4.564 30.84 31.73 0.725 1.841 35.35 0.892 0.555 37.77 0.948 0.261
Cosmos-Tokenizer-DI Agarwal et al. (2025) 16× 16 FSQ 30.74 0.591 12.252 29.91 30.69 0.582 6.529 33.17 0.808 7.663 33.86 0.854 5.953
Emu-3 Wang et al. (2024) 16× 16 VQ - - - 24.16 - - - - - - - - -

Table A3: Comparison of Tokenizers across different benchmarks. PSNR, SSIM, and rFID
are measured on MS-COCO, ImageNet-1K, FFHQ, and CelebA-HQ datasets. PSNR for Minecraft
images is provided separately.

Benchmarks and splits. All embodied evaluations are conducted in the Minecraft simulator fol-
lowing the STEVE-1 protocol (Lifshitz et al., 2023). Unless otherwise specified, training seeds
and evaluation seeds are disjoint (training: list in Appendix, evaluation: random seeds per episode).
Each reported number is averaged over N evaluation episodes per task (we set N = 50).

Settings: Manual vs. Tool. Manual disables iron tools and requires bare-hand interactions; Tool
enables iron tools to shorten long loops while preserving task logic. We evaluate both settings to
cover distinct difficulty regimes.

Iteration, sample, and efficiency. One iteration denotes a single forward step (one frame) of
the policy during evaluation. A sample denotes a collected unit in material-gathering tasks (e.g.,
number of wood blocks). We report samples per iteration as data-efficiency (higher is better).
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Method VPT Baker
et al. (2022)

DreamerV3 Hafner
et al. (2023)

DECKARD Not-
tingham et al.
(2023)

DEPS Wang
et al. (2023c)

Plan4MC Yuan
et al. (2023)

Voyager Wang
et al. (2023a)

STEVE Lif-
shitz et al.
(2023)

RIG (Ours)

Demos Videos None Videos None None None Videos Videos

Rewards Sparse Dense Sparse None Dense None None None

Observations Pixels Only Pixels
& Meta

Pixels
& Inventory

Feedback
& Inventory

Pixels
& Meta

Feedback
& Meta
& Inventory

Pixels
& Feedback
& Meta
& Inventory

Pixels Only

Actions Keyboard &
Mouse

Discrete Keyboard &
Mouse

Keyboard &
Mouse

Discrete Code Code Keyboard &
Mouse

Reasoning ✓ ✓ ✓ ✓

Generation ✓

Extra Database 9 172 210 -

Table A4: Comparison between RIG (Ours), and existing works. This system-level comparison
of LLM-based and RL-based methods focuses on data sources, reward setup, observation type,
action representation, iterative planning, and skill database usage.

(b) RIG-4s Task Distribution (c) RIG-MineRL Task Distribution

Figure A4: Task distribution. Our datasets include various embodied tasks with varying complex-
ity, ensuring strong generalization across downstream goals.

Task success metrics. For collection tasks we report the number of collected samples; for explo-
ration tasks we report success rate (%). Success is defined as: Dig: depth z∈ [7, 20]; Explore: travel
distance ≥ 300; Tower: height ≥ 15.

Language and reasoning metrics. Reasoning is a blind grade produced by GPT-4o with a legal-
ity weight {0.5 (illegal), 1 (legal)} to penalize unsafe or infeasible plans. Understanding is graded
via Minecraft QA. Score-Static is accuracy on STEVE-21K static QA (0/1, averaged, then rescaled
to [0,10]). We release the exact prompts and grading rubric in the Appendix to ensure reproducibil-
ity.

On claims vs. GPT-4o. When stating that our model “surpasses GPT-4o,” we strictly refer to
the above task-specific rubric and blind grading setting, where GPT-4o is not evaluating its own
responses. We further use alternative prompts and cross-checkers to mitigate grader bias.

A.4 DATA DISTRIBUTION

Figure A4 visualizes the task distribution across our training datasets, which cover a spectrum of
embodied scenarios such as resource collection, tower building, and exploration. As task complex-
ity increases, we progressively expand the dataset size to ensure adequate supervision. Notably,
harder tasks like building structures require significantly more data than simpler ones like gathering
materials, highlighting the varying difficulty levels and skill composition in our training corpus.
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Type Model # LLM Params Core VQA Exams
POPE ↑ MME-P ↑ MMB ↑ SEED ↑ VQAv2(test) ↑ GQA ↑ MMMU ↑ MM-Vet ↑

Und. Only

Und. Only LLaVA-v1.5-Phi-1.5 Xie et al. (2024) 1.3B 84.1 1128.0 - - 75.3 56.5 30.7 -
Und. Only LLaVA Liu et al. (2024c) 7B 76.3 809.6 38.7 33.5 - - - 25.5
Und. Only LLaVA-v1.5 Liu et al. (2024b) 7B 85.9 1510.7 64.3 58.6 78.5 62.0 35.4 31.1
Und. Only InstructBLIP Dai et al. (2023) 7B - - 36.0 53.4 - 49.2 - 26.2
Und. Only Emu3-Chat Wang et al. (2024) 8B 85.2 - 58.5 68.2 75.1 60.3 31.6 -
Und. Only InstructBLIP Dai et al. (2023) 13B 78.9 1212.8 - - - 49.5 - 25.6

Und. and Gen.

Und.&Gen. Show-o Xie et al. (2024) 1.3B 73.8 948.4 - - 59.3 48.7 25.1 -
Und.&Gen. LWM Liu et al. (2024a) 7B 75.2 - - - 55.8 44.8 - 9.6
Und.&Gen. VILA-U Wu et al. (2024) 7B 85.8 1401.8 - 59.0 79.4 60.8 - 33.5
Und.&Gen. Janus Chen et al. (2025) 1.3B 87.0 1338.0 69.4 63.7 77.3 59.1 30.5 34.3
Und.&Gen. RIG (Ours)‡ 1.3B 82.8 1302.0 68.9 59.0 77.1 59.4 30.9 35.0

Table A5: Comparison with state-of-the-arts on multimodal understanding benchmarks.
“Und.” and “Gen.” denote “understanding” and “generation”, respectively.

A.5 COMPONENT COMPARISON

As summarized in Table A2 and Table A4, we compare RIG to prior works along multiple dimen-
sions, including input modality, action granularity, and reasoning capabilities. Unlike prior methods
relying on handcrafted API actions or curated codebooks, RIG operates solely on raw pixels and out-
puts keyboard-mouse controls, offering higher flexibility and lower task bias. Notably, our design
unifies reasoning and generation into a single transformer policy with self-review and imagination
steps, offering better trajectory-level coherence and enabling multi-turn lookahead.

A.6 TOKENIZER AND BASE MODEL SELECTION

We adopt LlamaGen 16×16 VQ tokenizer and Janus-1.4B as our vision and language backbone. Ta-
ble A3 reports their favorable reconstruction quality (PSNR 27.06) and semantic alignment. Janus
uses a dual loss combining RGB and SigLIP-guided feature reconstruction, while LlamaGen pro-
vides discrete, compression-friendly tokens. Together, they form a scalable pipeline for visual imag-
ination and reasoning, trained with simple cross-entropy objectives.

A.7 GENERAL VQA BENCHMARK RESULTS

Setup. To assess whether embodied specialization compromises general multimodal ability, we
evaluate RIG (1.3B) on a standard VQA/exam suite covering Core perception (POPE, MME-P,
MMB, SEED), VQA (VQAv2, GQA), and Exams (MMMU, MM-Vet). Thanks to Janus Chen
et al. (2025), all results and settings about the compared baselines are coordinated with it. And we
compare with parameter-matched against Janus-1.3B for fairness, see Table A5.

Overall parity with slight gains on exam-style reasoning. Across VQA benchmarks, RIG re-
mains on par with Janus (VQAv2: 77.1 vs. 77.3; GQA: 59.4 vs. 59.1), indicating no catastrophic
forgetting of generic visual QA. On Exams that emphasize compositional reasoning and multi-hop
understanding, RIG shows small but consistent improvements (MMMU: 30.9 vs. 30.5; MM-Vet:
35.0 vs. 34.3). We attribute these gains to the explicit reasoning curriculum (S2) and lookahead
reviewing (S3–S4), which strengthen structured CoT and long-horizon inference even outside the
embodied environment.

Core perception remains competitive. On Core perception metrics, RIG is competitive with
Janus (MMB: 68.9 vs. 69.4). Slight drops on POPE and MME-P (82.8 and 1302.0) are within typical
variance for domain-specialized finetuning and can be further mitigated by a short generic-VQA
refresh stage or lightweight anti-hallucination regularization (left for future work). Importantly,
these changes do not translate into regressions on downstream VQA/Exam tasks.

Takeaways. (1) Embodied adaptation does not erode general VQA competence, (2) reasoning-
centric training provides transferable benefits on exam-style evaluations, (3) any minor perception
drift is small and local, while end-task metrics remain stable or improved. Together, Table A5 sup-
ports our claim that RIG maintains broad multimodal understanding while gaining domain-relevant
reasoning skills.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.8 QUALITATIVE RESULTS AND CASE STUDY

Figure A3 demonstrates the full inference cycle of RIG, where the agent understands the scene, rea-
sons about its next move, simulates imagined outcomes, and conducts self-review before taking real
action. In this wood-chopping task, the agent first identifies a tree in front, then reasons that moving
forward seems viable. However, by simulating future states, it spots a hidden pit and triggers a self-
correction: “Wait! Let’s re-observe...”. It updates its decision to Left, Forward,
Camera: [0, 10]: right, successfully avoiding the hazard. This highlights our agent’s
ability to perform proactive planning, visual forecasting, and risk-aware correction through imagi-
nation and reviewing.

Comparison with GPT-4o image generation updated version. Figure A5 further compares
RIG-lookahead with GPT-4o image generation updated version. Both receive similar prompt and
visual input. While GPT-4o generates a visually plausible prediction, it incorrectly judges the dis-
tance to the tree, prematurely issuing an attack command that leads to a deadlock. It continues
to hallucinate progress without correcting the faulty assumption. In contrast, RIG accurately de-
tects that the tree is blocked and unreachable, reasons about terrain features, and adjusts its position
before action. The generated image aligns with the actual environment response, showing stronger
spatial consistency and robustness in long-horizon decision-making.

Comparison on lookahead performance. Figure A6 shows more detailed case studies between
RIG-lookahead with the latest GPT-4o image generation upgraded. It illustrates that GPT-4o mis-
judges the distance, issues an attack command, and ends up “attacking air”. In contrast, RIG-
lookahead realizes the trunk is out of reach by imagination, adjusts plans, and finally succeeds.
Note that we compare RIG with GPT-4o under identical prompts. GPT-4o frequently issues invalid
attack actions and stalls, with a valid-action rate of only 11%, while ours achieves 98%.

The training process involves S1 to S3, where imagination is predicted but used only as an auxiliary
target, without a feedback loop. In S4, we apply an autoregressive method over successive imagined
frames, rolling out the same action path in the real environment and training on the paired traces.
This leads to RIG-lookahead, which produces stable predictions (Figure A6) that enhance true look-
ahead reasoning and improve performance.

Data pipeline comparison between GPT-4o and Qwen3-VL-8B-Instruct. To assess whether a
lighter open-source VLM can replace GPT-4o in our data pipeline, we run a small-scale comparison
using Qwen3-VL-8B-Instruct Yang et al. (2025) as a drop-in annotator under the same prompts
and first-person observations. Figure A7 shows two representative cases from the “collect more
wood” task, where the next action is “jump” (top) or “forward” (bottom). In both examples, GPT-4o
(right) produces concise, first-person reasoning that is tightly grounded in the visual input, correctly
describing the relative position to the target tree and why the proposed action moves the agent
toward a successful state. By contrast, Qwen3-VL-8B-Instruct (left) often adopts a third-person
narrative (“the player”), hallucinates objects or properties (e.g., claiming the agent is holding a
wooden pickaxe when the hands are empty), and generates long, redundant text that only loosely
matches the current frame and task. Colored highlights mark correct statements (green), factual
errors (red), and redundant or off-task content (gray). These qualitative results indicate that Qwen3-
VL-8B-Instruct currently produces substantially lower-quality reasoning labels in our setting, which
is why we rely on GPT-4o for the prototype. We believe that future stronger open-source VLMs, or
student models distilled from GPT-4o, may close this gap and make the pipeline more accessible to
the broader community.

A.9 MULTI-MODAL UNDERSTANDING EVALUATION

We further evaluate RIG on the STEVE-21K (Zheng et al., 2023) benchmark, testing its general
world knowledge and Minecraft-specific understanding. Drawing from the Minecraft Wiki and Red-
dit corpus, the dataset spans multiple knowledge dimensions:

• World Understanding: Terrain, entities, and biome behaviors.

• Player Mechanics: Combat, mobility, and health systems.
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You are now a Minecraft simulator. I will give you the current frame and 
the task you need to do. You need to help me predict the best action and 
the next frame of the action. Action space {forward, back, left, right, jump, 
attack, sprint, ..., camera:[left or right, up or down]}. 
Current frame: <IMG>, 
current task: chop a tree. 
Predict: next action:..., next frame: <IMG>

According to the current screen, you are facing a tree, very close to the 
target, and the task is to "chop a tree". The best strategy should be to 
get close to the trunk and start attacking.
Prediction:
• Next action: attack (attack the trunk with your hands)
Next frame speculation:
• Cracks will appear on the trunk (animation effect of attacking wood in 
Minecraft)
• Player position remains unchanged
• HUD state is the same (no tools, only bare hands)
• View is still aimed at the trunk

Reasoning:
1. In the first frame, the tree trunk in front of you is blocked by leaves 
but it is not close enough cannot attack immediately.
2 The tree on the right is closer and more suitable for immediate tree-
cutting.
3. From the terrain point of view, you can attack the tree on flat ground 
by slightly adjusting to the right.
Next action: forward, sprint, camera:[0,10]

Gen IMG Next IMG

Current IMG

Reasoning

Prompt

GPT-4o Image Generation Updated Version

Correct

Wrong

Figure A5: Case study on reasoning and imagination. Given the same input and prompt (chop a
tree), RIG reasons and imagines future states to choose a reachable tree and adjust position before
acting. GPT-4o, despite high visual quality, misjudges the distance, executes an invalid action, and
fails to revise its plan.

• Survival Strategies: Food sourcing, shelter, and threat avoidance.

• Resource Management: Gathering, mining, and inventory use.

• Crafting and Construction: Recipes and structural planning.

• Tool Usage: Equipment selection and upgrades.

We evaluate with 1000 QA pairs, categorized as: World & Entities (332), Mechanics & Survival
(152), Knowledge & Discovery (108), Crafting (219), Tools (169), and Miscellaneous (20). Our
model demonstrates strong accuracy and reasoning coherence across categories.

A.10 MULTI-TURN VISUAL REASONING FORMAT

To supervise step-level visual reasoning, we define a structured multi-turn dialogue format, as shown
in below. Each entry logs the task instruction, prior action, current frame, reasoning, next action, and
imagined future frame. This design aligns with autoregressive generation and supports fine-grained
analysis and supervision.

• Task Instruction: Natural language goal (e.g., “build a tower”).

• Previous Action: Last executed action (e.g., “camera:[0,10]”).

• Current Frame: Visual observation from the environment.

• Step Reasoning: Textual reasoning for the next decision.
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You are now a Minecraft simulator. I will give you the current frame 
and the task you need to do. You need to help me predict the best 
action and the next frame of the action. Action space {forward, back...}. 
Current frame: <IMG>, 
current task: chop a tree. 
Predict: next action:..., next frame: <IMG>

According to the current screen, you are facing a tree, very close to the 
target, and the task is to "chop a tree". The best strategy should be to 
get close to the trunk and start attacking.
Prediction:
• Next action: attack (attack the trunk with your hands)
Next frame speculation:
• Cracks will appear on the trunk (animation effect of attacking wood)

Reasoning:
In the first frame, a tree trunk is directly ahead. There’s no need to 
adjust the camera. Simply begin collecting wood by attacking the tree.
Wait! Let’s re-observe the imagination, the tree remains unchanged.
1. The tree is not close enough, so you cannot attack immediately.
2. The tree on the right is closer and more suitable for immediate tree-
cutting.
3. From the terrain point of view, you can attack the tree on flat ground 
by slightly adjusting to the right.
Next action: forward, sprint, camera:[0,10]

Gen IMG Next IMG

Current IMG

Reasoning

Prompt
Correct

Wrong

Key

attack

Imagine before Reason

camera:[0,10]...

<Imagine>

GPT-4o Image Generation Updated Version

attack...
Wait! Let’s re-observe

Reason

Figure A6: Case study on lookahead ability. This ability is crucial in embodied tasks such as
fault review, helping agents accurately estimate distances and take correct actions in open-world
environments.

• Next Action: Predicted action.

• Next Frame: Imagined visual result of the action.

A.11 ENVIRONMENT DETAILS

We use Minecraft as the testbed for embodied agents due to its open-ended nature and support for
low-level human-like interactions. Agents act through egocentric RGB images and execute actions
using keyboard and mouse inputs, making the environment ideal for sequential decision-making.

Our experiments are based on MineRL (Guss et al., 2019) v1.0 (Minecraft 1.16.5), which provides
agents with first-person RGB observations and removes access to any privileged information. This
version aligns with setups in prior works such as VPT (Baker et al., 2022) and STEVE-1 (Lifshitz
et al., 2023). Agents only perceive visual inputs and interact through low-level actions, resembling
human play

In our experiments, we use S = 64 environment seeds per task, covering 6 different biomes (plains,
forest, taiga, mountains, desert, and snowy variants). After filtering, no single seed contributes
more than K = 5 trajectories. The filtering is done in three steps: 1. Task success: we discard all
trajectories that do not satisfy the task success criterion. And then rollout 6 successful trajectories
on each node failure happens. 2. Seed diversity: we enforce the per-seed cap (K = 5) to avoid over-
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representing any specific layout or biome. 3. Reasoning quality: for a stratified subset of trajectories,
we manually check that the textual reasoning is consistent with the visual scene and the executed
actions; trajectories with hallucinated or clearly inconsistent reasoning are removed.

A.12 OBSERVATION AND ACTION SPACE

The agent receives 640×360 RGB images rendered from a first-person view with a 70-degree field
of view. When the inventory is opened, the GUI and mouse cursor are visible. No voxel, depth, or
structured APIs (e.g., “craft”, “smelt”) are used.

As shown in Table A4, the action space includes 14 types of keyboard and mouse operations, cover-
ing movement (WASD), item use, inventory management, and camera rotation (yaw, pitch). These
mirror human inputs and do not rely on high-level abstractions.

For the camera action, which is originally a 2D continuous vector [a, b] representing pitch and
yaw in [−180◦, 180◦], we quantize it into discrete steps of 5 degrees to adapt to language models,
where a<0/a>0 denote looking up/down and b<0/b>0 denote turning left/right; all other actions
are binary (0/1), indicating whether to execute them.

A.13 ENVIRONMENT SETTINGS AND RULES

To ensure diversity and generalization, each episode is initialized with a random agent position and
world seed, exposing the model to varying terrains, structures, and objectives.

We adapt the MineRL (Guss et al., 2019) environment to support instruction-based initialization via
a custom chat action, enabling programmatic task injection and faster evaluation cycles.

Programmatic Evaluation. For instruction-following tasks, we fix the seed and biome across dif-
ferent models to ensure a fair comparison. Each experiment runs under conditions most favorable
for the given instruction, and multiple seeds are used across different trials.

Long-Horizon Tasks with Command Switching. In these scenarios, agents operate in a shared en-
vironment initialized with a common seed and biome. To reduce noise and stabilize training/testing,
we apply the following environment rules:

• /difficulty peaceful: Disables hostile mobs.

• /gamerule doDaylightCycle false: Locks the environment in perpetual daytime.

• /gamerule keepInventory true: Prevents item loss upon death.

These configurations help maintain consistency across runs while preserving the task’s difficulty
and realism. They also support efficient benchmarking of embodied reasoning and planning in long-
horizon, open-ended environments.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

I should jump to climb onto the dirt block directly in 
front of me. The birch tree, which I can use to get 
wood, is on the higher ground ahead. By jumping up 
this step, I move closer to the tree so that I can reach 
its trunk and start punching it to collect wood.

GPT-4o Qwen3-VL-8B-Instruct
The player is currently holding a wooden pickaxe 
and is standing on a grassy ledge. To get wood, 
they need to access more trees or wooden 
blocks, which are located higher up on the terrain. 
Jumping will allow them to reach the elevated 
ground where more wood is available, enabling 
them to gather more resources and progress 
toward their task. Therefore, the next logical 
action is to jump to access higher ground and 
continue collecting wood.

<System> You are an experienced Minecraft player with the first-person 
view. You will get the task and the correct next action for the task, and 
you should make proper reasoning for the next action.

Your task is collecting more wood, the next action is “jump”. Please 
make the reasoning on the first-person view for the next action to realize 
the task.

Correct

Wrong

Redundancy

The player is currently holding a wooden 
pickaxe and is standing near a tree — a key 
source of wood in Minecraft. However, to 
efficiently gather wood, they need to position 
themselves directly in front of the tree to break its 
trunk or branches. The “forward” action moves 
the player closer to the tree, allowing them to:
Better aim their pickaxe at the tree trunk or 
leaves.
• Access the tree from a more optimal angle for 

harvesting.
• Prepare to break the tree and collect wood 

planks or logs.
Since the task is to get wood, moving forward is 
the logical next step to reach the tree and begin 
harvesting it. This action directly contributes to 
completing the task by positioning the player for 
interaction with the wood source.

I should move forward to get closer to the tree 
right in front of me. From this distance I still can’t 
reach the trunk blocks to punch them. Walking 
forward puts me directly next to the tree, so on 
the next steps I can start breaking the wood 
blocks and collect logs to complete the “getting 
wood” task.

Qwen3-VL-8B-Instruct GPT-4o 

<System> You are an experienced Minecraft player with the first-person 
view. You will get the task and the correct next action for the task, and 
you should make proper reasoning for the next action.

Your task is collecting more wood, the next action is “forward”. Please 
make the reasoning for the next action to realize the task.

Prompt

Prompt

Figure A7: Qualitative comparison of reasoning labels produced by Qwen3-VL-8B-Instruct
(left) and GPT-4o (right). Given the same first-person observation and prompt (top: next action is
“jump”; bottom: next action is “forward”) in a wood-collecting task, GPT-4o generates grounded
first-person reasoning that correctly describes the relative position to the target tree and the effect of
the action. Qwen3-VL-8B-Instruct, however, often adopts a third-person perspective, hallucinates
objects (e.g., a wooden pickaxe), and produces redundant or off-task text. Green, red, and gray
highlights denote correct, wrong, and redundant statements, respectively.
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Prompt Format for Minecraft Conversation Reasoning

SYSTEM:
You are assisting in generating step-by-step reasoning data for Minecraft embodied agents in
complex tasks like “build a tower”. Each step should contain (1) the reasoning process, (2)
the predicted next action, and (3) the generated next image frame. We follow a multi-turn
conversation structure with visual context.

Input Format:

• Task: Given current task like “build a tower”
• Previous Action: e.g., camera:[0,10]
• Current Frame: Image observation

Human Prompt (Input):

<image>
Please make reasoning of action and predict the next action
based on the current frame, current task and previous action,
and generate the next frame based on the current frame and the
next action.
The current task: build a tower.
The previous action: camera:[0,10].

RIG Output (Response):

The reasoning: In the current frame, the task is to build a tower, but no suitable
material is directly targeted. The player may be exploring for logs or stone. The
previous action moved the camera upward to scout surroundings...
Next action: left, sprint, and next frame: <image>

Special Cases: Lookahead and Imagination

• When the model performs internal reflection or imagines the future, use the special token:
<Imagine:> to prefix the reasoning block.

• Example: <Imagine:> Reasoning forward n steps into future environment outcomes.

Fields to be included in JSON:

• name, id, action, images, conversations, subtask (optional)

Example JSON Structure:

{
"name": "build_a_tower_seed203",
"id": 10,
"action": "left, sprint",
"conversations": [

{
"from": "human",
"value": "<image>\n <Imagine:> Please make reasoning of
action...
task: build a tower...",
"images": ["..._10_current.png"]

},
{

"from": "RIG",
"value": "The reasoning: ... Next action: left, sprint,
sand next frame: <image>",
"images": ["..._10_next.png"]

}
]
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