
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODED-SMOOTHING: CODING THEORY HELPS GENER-
ALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the coded-smoothing module, which can be seamlessly integrated into
standard training pipelines, both supervised and unsupervised, to regularize learn-
ing and improve generalization with minimal computational overhead. In addition,
it can be incorporated into the inference pipeline to randomize the model and en-
hance robustness against adversarial perturbations. The design of coded-smoothing
is inspired by general coded computing, a paradigm originally developed to miti-
gate straggler and adversarial failures in distributed computing by processing linear
combinations of the data rather than the raw inputs. Building on this principle, we
adapt coded computing to machine learning by designing an efficient and effective
regularization mechanism that encourages smoother representations and more gen-
eralizable solutions. Extensive experiments on both supervised and unsupervised
tasks demonstrate that coded-smoothing consistently improves generalization and
achieves state-of-the-art robustness against gradient-based adversarial attacks.

1 INTRODUCTION

Reliable prediction remains a central challenge in modern machine learning. Although deep neural
networks have achieved remarkable success across computer vision, natural language processing,
and reinforcement learning, their generalization beyond training data remains imperfect, and their
reliability under adversarial perturbations is still limited (Szegedy et al., 2013; Goodfellow et al., 2014;
Wen et al., 2020; Liu et al., 2020). This vulnerability is largely a consequence of overparameterization
combined with limited training data, which makes models prone to overfitting, memorization, and
brittle behavior when faced with unseen or corrupted inputs. Regularization techniques therefore play
a key role in improving reliability: by guiding models toward simpler and smoother solutions, they
reduce generalization error while simultaneously enhancing robustness to adversarial attacks.

Classical regularization strategies such as weight decay (Krogh & Hertz, 1991), dropout (Srivastava
et al., 2014), and batch normalization (Ioffe & Szegedy, 2015) have long been established. More
recently, data-centric approaches such as label smoothing (Szegedy et al., 2016), mixup and its
variations (Zhang et al., 2017; Verma et al., 2019; Berthelot et al., 2019; Yun et al., 2019; Yao
et al., 2022; Pinto et al., 2022; Bouniot et al., 2023) have become widely adopted for supervised
learning. Nonetheless, data-centric approaches that are broadly applicable to both supervised and
unsupervised models, and that simultaneously enhance generalization and adversarial robustness,
remain insufficiently investigated.

In this paper, we take a step toward closing this gap, and introduce a new powerful regularization
method, using coded-smoothing module, which applies seamlessly in both supervised and unsu-
pervised settings. Our approach draws inspiration from an unexpected source: coded computing.
Originally developed for distributed computing systems to mitigate the effects of straggler servers
(Yu et al., 2017; 2020; Dutta et al., 2020; Jahani-Nezhad & Maddah-Ali, 2022; Moradi et al., 2024;
Moradi & Maddah-Ali, 2025) and adversarial servers (Yu et al., 2019; Soleymani et al., 2022; Moradi
et al., 2025), coded computing injects redundancy into the computational process. In this approach,
instead of directly processing raw data and computing the designated results, the servers operate
on carefully designed weighted linear combinations of the data, referred to as coded inputs. The
number of coded inputs exceeds that of the original raw inputs. This coded redundancy enables the
recovery of the original computation through a decoding procedure, even in the presence of missing
results from stragglers or corrupted results from adversarial servers. In particular, in general coded

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 1: (a) In a coded computing module, instead of directly computing f(x1), . . . , f(xK), the
system computes f(x̃1), . . . , f(x̃N), where N > K and each coded input x̃i is a unique weighted
linear combination of the originals. The desired outputs are then reconstructed via a decoding
procedure, yielding approximations f̂(x1) ≈ f(x1), . . . , f̂(xK) ≈ f(xK). (b) Classification
boundaries on the 2D spiral dataset, trained with Mixup (left) versus with the coded-smoothing
module. The decision boundaries produced by the coded-smoothing model are noticeably smoother
and less sensitive to individual data points, maintaining a more stable margin around the data.

computing (Moradi et al., 2024), the smoother the function representing the computation task, the
more accurate the approximated result.

The coded-smoothing module has impactful structure. Given a batch of K input samples, it first
generates a new batch of N coded samples through an encoding process, where each coded sample is
formed as a combination of all inputs in the batch. The network is then evaluated on these coded
samples, and a subsequent decoding step reconstructs estimates of the network outputs on the original
inputs (see Figure 1a). Importantly, enforcing closeness between these decoded estimates and the true
outputs induces local smoothness in the learned network and effectively reduces its complexity. To
achieve this, during training we augment the objective with an auxiliary penalty term that encourages
the decoded outputs to remain close to their true counterparts (see Fig. 2), thereby guiding the model
toward smoother and more generalizable solutions (see Fig. 1b).

Beyond training, using coded-smoothing module offers a striking additional benefit at inference time.
Since the coded-smoothing module works independently from the order of data in the input batch,
we can inject randomness by applying a random shuffle before encoding and restoring the order after
decoding. This simple yet powerful mechanism disrupts gradient-based adversarial attacks such
as FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017), which rely on precise gradient
information to craft adversarial examples. As a result, the model attains substantially improved
robustness against adversarial perturbations. Notably, this method imposes negligible computational
overhead, making it both effective and practical for real-world deployment.

Our experiments show that the coded-smoothing module consistently improves generalization across
a wide range of architectures and benchmarks in both supervised and unsupervised settings. Moreover,
coded-smoothing provides substantial gains in adversarial robustness. Compared to mixup (Zhang
et al., 2017), it achieves an 8.8% higher accuracy under the FGSM attack (ϵ = 8/255) (Goodfellow
et al., 2014), a 31.8% improvement under PGD with 10 steps, and a 37% improvement under PGD
with 100 steps (Madry et al., 2017).

Contributions. In summary, this work makes the following key contributions:

• We introduce the coded-smoothing module, a novel and computationally efficient regulariza-
tion mechanism for neural networks inspired by principles of coded computing (Section 3
and Appendix D).

• We provide a theoretical characterization showing that coded-smoothing enforces higher-
order local smoothness, thereby acting as a powerful regularizer (Section 4.1).

• We propose a randomized coded inference procedure based on the coded-smoothing module
that substantially improves adversarial robustness without requiring adversarial training
(Section 5).

• We conduct extensive experiments demonstrating that coded-smoothing consistently en-
hances both generalization and robustness across datasets and architectures, while incurring
minimal computational overhead (Section 6).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1: Pseudo-code for coded-smoothing module
Input: Input tensor X of shape (K, ·), where K is the batch size; Computation function f (e.g.,

a neural network model).
Output: Estimated output tensor f̂(X) of shape (K, ·).
class CodedSmoothing(nn.Module):

def __init__(self, K, N):
super().__init__()
self.alpha = generate_encoding_points(K)
self.beta = generate_decoding_points(N)
self.enc = Spline(knots=alpha)
self.dec = Spline(knots=beta)

def forward(self, X, f):
self.enc.fit(self.alpha, X)
x_coded = self.enc.predict(self.beta)
f_coded = f(x_coded)
self.dec.fit(self.beta, f_coded)
f_hat = self.dec.predict(self.alpha)
return f_hat

2 EMPIRICAL RISK MINIMIZATION (ERM)

In the supervised learning setting, let D := {(xi, yi)}ni=1 denote a training dataset of size n, sampled
from a distribution P, where xi ∈ X is the input and yi ∈ Y is the corresponding label. Here, X and
Y represent the input and output spaces, respectively, and θ ∈ Θ denotes the parameter space. Given
a loss function ℓ(·, ·), ERM aims to learn a mapping fθ : X → Y by minimizing the expected loss
with respect to the empirical distribution Pe(x, y) :=

1
n

∑n
i=1 δ(x = xi, y = yi).

θ∗ = argmin
θ

EPe(x,y)[ℓ(fθ(x), y)] =

∫
ℓ(fθ(x), y) dPe(x, y) =

1

n

n∑
i=1

ℓ(fθ(xi), yi) . (1)

The goal is for the learned model to generalize well to unseen samples drawn from a test distribution
Pt, in both in-distribution (Pt = P) and out-of-distribution (Pt ̸= P) settings.

3 CODED-SMOOTHING MODULE

Building on the general coded computing Moradi et al. (2024), we propose the coded-smoothing
module as a regularization technique to model smoothness. We first describe the architecture of
the proposed module, and then explain how coded-smoothing integrates into both the training and
inference pipelines. This integration leads to improved generalization as well as enhanced adversarial
robustness of the model.

3.1 ARCHITECTURE

The coded-smoothing module consists of three components: an encoder function uenc : R → U , a
computation function f : U → V , and a decoder function udec : R → V . Here, U and V are the input
and output domains of the function f(·), and f may represent a machine learning model or a set of
consecutive layers in a deep neural network. Given a batch of input data {x1, . . . , xK}, the module
produces an estimate of the computation function on these inputs, denoted by {f̂(xi)}Ki=1.

The end-to-end process proceeds as follows:

(1) Encoding: the encoder function uenc is fitted to the set of points {(αi, xi)}Ki=1, where
α1 < α2 < · · · < αK ∈ [−1, 1] are referred to as encoding points. Therefore,

uenc(αi) = xi, ,∀i ∈ [K]. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Then, N coded samples are generated by evaluating the encoder at another fixed set {βj}Nj=1

with β1 < β2 < · · · < βN ∈ [−1, 1], called decoding points x̃j = uenc(βj), for j ∈ [N].
We note that each coded sample x̃j is a combination of the original input dataset {xi}Ki=1.

(2) Computation: In this step, f(x̃j), for j = 1, . . . , N , are computed.

(3) Decoding: In this stage, first, decoder function udec is fitted to the set of points
{(βj , f(x̃j))}Nj=1F , therefore,

udec(βj) = f(x̃j) = f(uenc(βj)), ∀j ∈ [N], (3)

where the second equation follows from (2). If the decoder udec(·) generalizes well, then
udec(z) ≈ f(uenc(z)), for all z ∈ [−1, 1]. In particular, at the encoding points, we have,

udec(αi) ≈ f(uenc(αi)) = f(xi), (4)

where the first approximation relies on the generalization ability of udec, and the second
equation follows from (2). Thus, udec(αi) approximates f(xi). We define f̂(xi) ≜ udec(αi),
for i ∈ [K].

Algorithm 1 presents PyTorch-style pseudo-code for the coded-smoothing module. As suggested
by (Moradi et al., 2024), we use natural cubic splines (cubic smoothing splines with smoothing
parameter of zero) for both the encoder and decoder.

With a careful choice of encoding and decoding points, the following lemma provides a bound on the
approximation error of the coded-smoothing module.

Lemma 1. For a coded-smoothingmodule with N coded samples, we have:

1

K

K∑
i=1

∣∣∣f̂(xi)− f(xi)
∣∣∣2 ≤ 2C

N3

(
∥u′′

enc · f ′◦ uenc∥
2
L2(Ω) + ∥u′′

enc · f ′◦ uenc∥
2
L2(Ω)

)
, (5)

for some constant C.

For proof, see Appendix B. Lemma 1 highlights an important property of coded-smoothing module:
The larger the number of coded samples N or the smoother the function f , the smaller the mean
squared estimation error.

Spline representation. Let St⃗,y⃗(·) denote the smoothing spline fitted on {(ti, yi)}ni=1, where
ti ∈ R, yi ∈ Rd, y⃗ := [y1, . . . , yn]

T , and t⃗ := [t1, . . . , tn]
T . It is well-known that St⃗,y⃗(z) =∑n

i=1 yiϕ(z, ti), where ϕ(., .) is the kernel of the second-order Sobolev space (i.e. functions with
square-integrable derivatives up to order two). Thus, St⃗,y⃗(·) is a linear function of y⃗ (Wahba, 1975).
Therefore, for any evaluation set v⃗ := [v1, . . . , vm]T , there exists a matrix At⃗,v⃗ ∈ Rn×m, which
depends only on the knot set t⃗, the evaluation points v⃗, and the smoothing parameter λ (but not on y⃗),
such that [St⃗,y⃗(v1), . . . , St⃗,y⃗(vm)]T = AT

t⃗,v⃗
y⃗. Recall that in the coded-smoothing module, both the

encoder and decoder are implemented using smoothing splines. Therefore, we have:

uenc(z) =

K∑
i=1

xiϕ(z, αi), udec(z) =

N∑
j=1

f(x̃j)ϕ(z, βj). (6)

For detailed expression of matrix form of encoder and decoder functions, see Appendix C.

4 TRAINING REGULARIZATION USING THE CODED-SMOOTHING MODULE

We now describe how the coded-smoothing module can be integrated into the training pipeline of
machine learning models to improve generalization. Since coded-smoothing does not require label
information, it can be applied in both supervised (Section 6.1) and unsupervised (Section 6.2) settings.

Figure 2 illustrates the role of coded-smoothing during training. The computation function f may
represent the entire network or a part of the network, which we refer to as the target block. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The proposed CODED-SMOOTHING as a regularization in training: the coded path includes
a coded-smoothing module and runs in parallel to the original forward pass and contributes to the
training objective.

integration of coded-smoothing introduces an additional coded path that runs in parallel to the original
forward path.

Formally, consider training a deep neural network of the form net(x) = g1(f(g2(x))), where f(·)
is an intermediate target block. Suppose we apply coded-smoothing to f(·). After the input is passed
through g1(·), we branch it and follow two parallel paths: the original path and the coded path (see
Fig. 2). In the coded path, there is a coded-smoothing module. The encoder generates a set of coded
samples {z̃j}Nj=1, which form a new batch and are processed by the target block. The outputs of the
target block on the coded samples are then passed through the decoder, producing estimated outputs
{f̂(zi)}Ki=1, which are approximately equal to {f(zi)}Ki=1. These estimated outputs are forwarded to
the remainder of the network, denoted by g2(·). During training, both paths contribute to the loss.
Let Lmain denote the loss from the original forward path, i.e., the standard training loss. Similarly, let
Lcoded denote the loss from the coded path, which has the same form as Lmain but with the outputs
of the original network replaced by those of the auxiliary coded path. The overall objective is then
defined as

L = (1− µ)Lmain + µLcoded, (7)

where µ ∈ [0, 1] is a weighting hyperparameter controlling the contribution of two paths. The
parameters of the target block are shared between the original and coded paths, and the entire network
is optimized with respect to the combined objective.

The second term in the loss function (7) acts as a regularizer, encouraging the coded path to match the
predictive performance of the original path. In particular, it drives the coded-smoothing estimations
of the target block toward their true outputs {f(zi)}Ki=1. Consequently, and in line with Lemma 1,
the module implicitly enforces smoothness on the target block f(·). The effect of this regularization
depends on the weighting coefficient µ: when µ ≈ 1, training is dominated by the coded path,
whereas when µ ≈ 0, the process reduces to training only with the original loss.

4.1 CODED-SMOOTHINGIS A LOCAL HIGHER-ORDER SMOOTHER

In this subsection, we provide intuition for how the proposed approach encourages smoothness of
the function. Recall from (4) that the accuracy of the approximation f̂(xi) := udec(αi) ≈ f(xi)
depends on the quality of the approximation f(uenc(z)) ≈ udec(z). Moreover, from (6) we have
udec(z) =

∑N
j=1 f(x̂j)ϕ(z, βj). Hence, enhancing the approximation f̂(xi) ≈ f(xi) is equivalent

of improving the approximation

f(uenc(z)) ≈
∑
j∈[N]

f(x̂j)ϕ(z, βj). (8)

The right-hand side is a weighted sum of some smooth functions, which implies that during training
the regularized loss in (7) promotes smoothness of f(uenc(z)), and consequently enforces smoothness
in f(·) itself (see Fig. 3b).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Mixup Regularization (Zhang et al., 2017) (b) Coded Smoothing

Figure 3: Coded Smoothing versus Mixup

To further clarify the concept, we next discuss the well-known Mixup method (Zhang et al., 2017) and
highlight its connection to the proposed approach. In mixup, instead of empirical risk minimization,
the model is trained by minimizing the expected loss with respect to a vicinal distribution Pv(x, y) :=
1
n

∑n
i=1 δ(x = x̄i, y = ȳi), where x̄i = λxi + (1 − λ)xj and ȳi = λyi + (1 − λ)yj for λ ∼

Beta(α, α). As a result, the model is encouraged to align the prediction f(λxi + (1− λ)xj) with
the target λyi + (1− λ)yj for λ ∈ [0, 1]. At the endpoints (λ = 0, 1), this also recovers the original
labels, i.e. f(xi) ≈ yi and f(xj) ≈ yj . Consequently, training implicitly enforces local linearity on
the model which regularizes f to vary smoothly along the line segment connecting f(xi) and f(xj)
(see Figure 3a):

f(λxi + (1− λ)xj) ≈ λf(xi) + (1− λ)f(xj), λ ∈ [0, 1]. (9)

Comparing (8) and (9) reveals an intriguing connection between the two schemes. While the coded-
smoothing module encourages f(uenc(z)) to approximate a linear combination of smooth functions,
mixup explicitly encourages f(·) to behave like a linear function. In other word, coded-smoothing
module imposes a higher-order smoothness constraint on f , regularizing it beyond pairwise linearity.
Although both approaches promote smoothness in f(·), coded smoothness admits a richer structure
and may potentially lead to improved generalization (See Section 6 on experiment results).

5 ROBUST INFERENCE USING A RANDOMIZED CODED-SMOOTHING MODULE

After training a model with the coded-smoothing module, both the coded path and the original path
can be used during inference. Since the coded path generates a smooth approximation of the original
outputs, its standalone generalization performance is dominated by that of the original path. However,
the coded path possesses a useful property that can be exploited to substantially enhance adversarial
robustness.

The key observation is that the proposed module performance does not depend on the order of input
samples within a batch: the coded-smoothing module generates a good estimate for each input
regardless of its position in the batch. During training, due to random shuffling across epochs, each
sample xi appears at different indices and the network aligns the estimation f̂(xi) with its true output
f(xi) independently of the sample’s index.

Consequently, at inference time, one can introduce additional randomness by applying a random
permutation π to the batch before feeding it into the encoder, and subsequently restoring the original
order using π−1 before passing the outputs to the remainder of the network. We refer to this approach
as Randomized Coded Inference (RCI). Figure 4 illustrates this inference approach.

This strategy disrupts adversarial attacks, particularly gradient-based methods such as FGSM (Good-
fellow et al., 2014) and PGD (Madry et al., 2017), which rely on precise gradients to craft adversarial
examples. The core idea in these methods is to generate an adversarial sample by perturbing the
input in the direction of the gradient of the loss with respect to that input. However, since π is chosen
uniformly at random from all permutations, with high probability the permutation used by the network
at inference differs from the one assumed by the adversary when generating the perturbations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: The proposed RANDOMIZED CODED INFERENCE: π represents a random permutation.

As a result, the network’s robustness is significantly improved. Note that although coded-smoothing
operates in batch mode at inference, the batch size need not match that used during training. In
practice, the method is effective for batch sizes as small as K ′ ≥ 4, since spline fitting requires at
least three points, thereby offering flexibility for deployment (see Table 10 in Appendix H).

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed coded-smoothing training method (using
the coded-smoothing module) as well as the randomized coded inference approach, under various
settings and across multiple evaluation metrics. We begin with the supervised scenario (Section 6.1),
followed by the unsupervised setting (Section 6.2). We then demonstrate how coded-smoothing
substantially enhances adversarial robustness during inference (Section 6.3). Finally, we assess its
effectiveness under distribution shift, where the test distribution differs from the training distribution
(Section 6.4). All experiments are conducted in PyTorch (Paszke et al., 2019) on a single machine
equipped with an NVIDIA RTX 5090 GPU.

In all experiments, following Jahani-Nezhad & Maddah-Ali (2022); Moradi et al. (2024), we adopt
the first-order Chebyshev points for encoding and the second-order Chebyshev points for decoding,
i.e., αi = cos((2i−1)π

2K) and βj = cos((j−1)π
N−1) for i ∈ [K], j ∈ [N]. This choice is motivated by

their superior empirical performance (Jahani-Nezhad & Maddah-Ali, 2022) and desirable theoretical
properties in approximation theory (Phillips, 2003; Trefethen, 2019).

6.1 SUPERVISED

We begin by evaluating the effectiveness of the coded-smoothing module in the supervised learning
setting. In particular, we compare its generalization performance against standard empirical risk
minimization (ERM) as well as two widely used mixup-based regularization methods, mixup (Zhang
et al., 2017) and manifold mixup (Verma et al., 2019).

Datasets and architectures. To ensure a comprehensive evaluation across model families and
dataset complexities, we conduct experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
TinyImageNet (Le & Yang, 2015), and Imagenet-1k (Russakovsky et al., 2015). For CIFAR-10, we
use PreActResNet18 (He et al., 2016); for CIFAR-100, we employ WideResNet28-10 (Zagoruyko &
Komodakis, 2016); and for TinyImageNet and Imagenet, we adopt ResNet50 (Goyal et al., 2017).
These architectures are chosen to capture a range of model complexities while aligning with prior
work.

In all supervised experiments, we empirically find that the best performance is achieved when the
coded-smoothing module is applied to the full network. Table 1 reports the test performance across
datasets and architectures. Each experiment is repeated over 5 independent train-validation splits
with different random seeds. We report both the mean and standard deviation. As shown in Table 1,
training with coded-smoothing consistently outperforms both mixup and ERM baselines across all
benchmarks. Additional experiments and hyperparameter selection are provided in Appendix E.1.

6.2 UNSUPERVISED

Next, we take one step further and evaluate the effectiveness of the CODED-SMOOTHING training
in an unsupervised setting. Specifically, we incorporate coded-smoothing into the training of a
WGAN-GP(Gulrajani et al., 2017) which is a variant of WGAN (Arjovsky et al., 2017).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparisons of accuracies (%) on in-distribution test data.

CIFAR-10 CIFAR-100 TinyImageNet ImageNet
PARN18 WRN28-10 RN50 RN50

ERM 93.8± 0.2 76.7± 0.3 62.9± 0.9 69.5

Mixup 95.6± 0.2 80.2± 0.3 65.4± 1.0 69.1

Manifold Mixup 95.43± 0.12 81.1± 0.4 67.4± 0.3 67.6

CODED-SMOOTHING (ours) 95.8± 0.1 79.9± 0.4 67.1± 0.5 70.1

Table 2: Comparison of FID and IS for generated images for CIFAR-10 and CelebA.

Method
CIFAR-10 CelebA

IS FID FID
WGAN-GP 7.08± 0.07 26.93± 0.61 28.22± 0.17

WGAN-GP + CODED-SMOOTHING 7.38± 0.06 26.94± 0.89 24.58± 0.62

Prior work has shown that regularizing the discriminator can improve GAN training stability and
performance (Zhang et al., 2017; Verma et al., 2019). However, because mixup and its variants rely on
label information, they cannot be directly applied to the generator. Here we use CODED-SMOOTHING
training method to regularize the generator of a WGAN. Specifically, we use coded-smoothing
module with N = K with batchsize K = 64 and µ = 0.5. Further experimental details are provided
in Appendix E.2. Table 2 reports the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
Inception Score (IS) (Salimans et al., 2016) on the CIFAR-10 and CelebA (Liu et al., 2018) datasets,
which serve as standard metrics for evaluating generative quality and generalization. As shown in the
results, regularizing generator with improves FID and IS, indicating enhanced generalization and
higher-quality image generation.

6.3 ADVERSARIAL ROBUSTNESS

We next evaluate the effectiveness of randomized coded inference (RCI) against adversarial attacks on
CIFAR-10, focusing on FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017) attacks. Since
the coded-smoothing module is non-parametric, RCI can be applied to the inference stage of any
trained model, with the number of coded samples N adjusted independently of training. Importantly,
N can be set relative to the batch size without incurring significant performance degradation (see
Table 10 in Appendix H.5 for a sensitivity analysis with respect to batch size).

As shown in Table 3, RCI substantially improves adversarial robustness across all methods, including
models already trained with CODED-SMOOTHING, while incurring only a marginal drop in clean
(no-attack) accuracy. The strongest results are achieved when models are trained with CODED-
SMOOTHING and evaluated with RCI using N = 1.5K, where K = 128 is the batch size. In
this setting, the generalization error increases by only 1%, but robustness gains are significant:
improvements of +8.8% under FGSM (ϵ = 8/255), +33% under PGD with 10 steps, and +5.4%
under PGD with 100 steps compared to mixup. These results highlight the effectiveness of using RCI
in inference for adversarial robustness.

6.4 COVARIATE SHIFT ROBUSTNESS

Finally, we evaluate the performance of the proposed method under distribution shift, where the test
distribution differs from the training distribution. For this evaluation, we use CIFAR-10.1 (Recht
et al., 2018) and CIFAR-10.2 (Lu et al., 2020), which represent natural covariate shifts of CIFAR-10,
CIFAR-10C (Hendrycks & Dietterich, 2019), which introduces 19 types of synthetic corruptions
applied at 5 levels of severity to the CIFAR-10 test set, and ImageNet-R (Hendrycks et al., 2021),
which contains multiple renditions of ImageNet classes. Table 5 in Appendix F compares the
performance of our method against ERM and mixup. The coded-smoothing module consistently
outperforms both baselines on CIFAR-10.1, CIFAR-10.2, and ImageNet-R, and achieves comparable
performance on CIFAR-10C. For CIFAR-10C, accuracy is reported as the average of all corruption.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of CIFAR-10 test accuracies under adversarial attacks, contrasting randomized
coded inference (RCI) with standard inference. Manifold mixup results are reported from (Verma
et al., 2019).

No Attack FGSM PGD PGD
Inference method Training Method - ϵ = 8

255 10 steps 100 steps

Standard inference

ERM 93.7 36.5 5.5 0.0
Mixup 95.5 71.7 39.9 0.4

Manifold Mixup 95.2 61.7 30.9 0.0
CODED-SMOOTHING (ours) 95.8 47.7 8.6 0.0

RCI (N = 128)
ERM 55.3 49.1 46.8 19.4

Mixup 72.4 66.1 64.1 37.4
CODED-SMOOTHING(ours) 72.4 66.2 63.5 27.7

RCI (N = 190)
ERM 90.2 75.8 65.7 6.3
Mixup 93.5 78.2 65.1 9.9

CODED-SMOOTHING(ours) 94.8 80.5 72.0 5.8

7 RELATED WORK

Improving generalization has long been a central challenge in machine learning research. A first class
of methods enhances generalization by perturbing hidden representations during training. Classical
examples include dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy, 2015),
both of which reduce overfitting by encouraging more robust internal representations.

A second major line of research focuses on data augmentation. Among these, mixup (Zhang et al.,
2017) has become a widely adopted regularization strategy. Since its introduction, numerous variants
have been proposed to address different limitations of mixup, such as improving generalization
(Verma et al., 2019; Yun et al., 2019), adapting it to regression tasks (Yao et al., 2022), enhancing
robustness to distribution shift (Pinto et al., 2022), and improving calibration (Bouniot et al., 2023).
Despite these extensions, all mixup-style methods fundamentally rely on label information and are
thus not applicable in unsupervised settings. The only exception is in GANs (Goodfellow et al.,
2020), where mixup regularization has been applied to the supervised discriminator module (Zhang
et al., 2017; Verma et al., 2019).

To partially address this limitation, Verma et al. (2022) proposed an unsupervised mixup loss for
semi-supervised problems. Their method encourages local linearity by explicitly enforcing the mixup
interpolation constraint (see Figure 3). While effective, this approach enforces only pairwise linear
constraints, limiting its ability to capture higher-order structures.

In contrast, the proposed coded-smoothingmodule provides a unified regularization framework
applicable to both supervised and unsupervised settings with negligible computational overhead.
Beyond enforcing linearity, it imposes higher-order smoothness. Moreover, through randomized
coded inference, coded-smoothingachieves state-of-the-art robustness against adversarial attacks.

8 CONCLUSION

In this paper, we introduced the coded-smoothing module, a novel regularization framework inspired
by coded computing. By enforcing local higher-order smoothness during training, coded-smoothing
promotes more generalizable and reliable models. At inference, random shuffling within coded-
smoothing, randomized coded inference (RSI), significantly enhances adversarial robustness.

Our method is computationally efficient and applicable to both supervised and unsupervised learning.
Across benchmarks and architectures, coded-smoothing improves supervised generalization, out-
performing ERM and mixup, while achieving state-of-the-art robustness to adversarial attacks with
minimal overhead. In unsupervised settings, applying coded-smoothing to GAN generators boosts
generative quality, demonstrating its effectiveness as a label-free regularizer.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural information
processing systems, 32, 2019.

Quentin Bouniot, Pavlo Mozharovskyi, and Florence d’Alché Buc. Tailoring mixup to data for
calibration. arXiv preprint arXiv:2311.01434, 2023.

Carl De Boor. Calculation of the smoothing spline with weighted roughness measure. Mathematical
Models and Methods in Applied Sciences, 11(01):33–41, 2001.

Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong, Viveck Cadambe, and
Pulkit Grover. On the Optimal Recovery Threshold of Coded Matrix Multiplication. IEEE
Transactions on Information Theory, 66(1):278–301, 2020. ISSN 15579654. doi: 10.1109/TIT.
2019.2929328.

Paul HC Eilers and Brian D Marx. Flexible smoothing with b-splines and penalties. Statistical
science, 11(2):89–121, 1996.

Mohammad Fahim and Viveck R Cadambe. Numerically stable polynomially coded computing.
IEEE Transactions on Information Theory, 67(5):2758–2785, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. CodedSketch: A coding scheme for
distributed computation of approximated matrix multiplication. IEEE Transactions on Information
Theory, 67(6):4185–4196, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. Berrut approximated coded computing:
Straggler resistance beyond polynomial computing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):111–122, 2022.

Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Donggeon Lee, and Sang Woo Kim. How to use
dropout correctly on residual networks with batch normalization. In Uncertainty in Artificial
Intelligence, pp. 1058–1067. PMLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan.
Simple and principled uncertainty estimation with deterministic deep learning via distance aware-
ness. Advances in neural information processing systems, 33:7498–7512, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and
Ludwig Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction. In
ICML Workshop on Uncertainty and Robustness in Deep Learning, volume 5, pp. 15, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Parsa Moradi and Mohammad Ali Maddah-Ali. General coded computing in a probabilistic straggler
regime. arXiv preprint arXiv:2502.00645, 2025.

Parsa Moradi, Behrooz Tahmasebi, and Mohammad Maddah-Ali. Coded computing for resilient dis-
tributed computing: A learning-theoretic framework. Advances in Neural Information Processing
Systems, 37:111923–111964, 2024.

Parsa Moradi, Hanzaleh Akbarinodehi, and Mohammad Ali Maddah-Ali. General coded computing:
Adversarial settings. arXiv preprint arXiv:2502.08058, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

George M Phillips. Interpolation and approximation by polynomials, volume 14. Springer Science &
Business Media, 2003.

Francesco Pinto, Harry Yang, Ser Nam Lim, Philip Torr, and Puneet Dokania. Using mixup as a
regularizer can surprisingly improve accuracy & out-of-distribution robustness. Advances in neural
information processing systems, 35:14608–14622, 2022.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mahdi Soleymani, Ramy E Ali, Hessam Mahdavifar, and A Salman Avestimehr. ApproxIFER: A
model-agnostic approach to resilient and robust prediction serving systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 8342–8350, 2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Lloyd N Trefethen. Approximation theory and approximation practice, extended edition. SIAM,
2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International conference on machine learning, pp. 6438–6447. PMLR, 2019.

Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua Bengio, and David
Lopez-Paz. Interpolation consistency training for semi-supervised learning. Neural Networks, 145:
90–106, 2022.

Grace Wahba. Smoothing noisy data with spline functions. Numerische mathematik, 24(5):383–393,
1975.

Grace Wahba. Spline models for observational data. SIAM, 1990.

Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper Snoek, Balaji Lak-
shminarayanan, and Dustin Tran. Combining ensembles and data augmentation can harm your
calibration. arXiv preprint arXiv:2010.09875, 2020.

Huaxiu Yao, Yiping Wang, Linjun Zhang, James Y Zou, and Chelsea Finn. C-mixup: Improving
generalization in regression. Advances in neural information processing systems, 35:3361–3376,
2022.

Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. Polynomial codes: an optimal design
for high-dimensional coded matrix multiplication. Advances in Neural Information Processing
Systems, 30, 2017.

Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi,
and Salman A Avestimehr. Lagrange coded computing: Optimal design for resiliency, security,
and privacy. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1215–1225. PMLR, 2019.

Qian Yu, Mohammad Ali Maddah-Ali, and Amir Salman Avestimehr. Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding. IEEE Transactions on
Information Theory, 66(3):1920–1933, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CODED COMPUTING

Inspired by the success of coding theory in communication over unreliable channels, coded computing
has emerged as an efficient framework for distributed computation. It addresses key challenges in
distributed systems, particularly the presence of straggling or adversarial servers (Yu et al., 2017).
Early work introduced coded computing for fundamental tasks such as polynomial evaluation (Yu
et al., 2019; Fahim & Cadambe, 2021) and matrix multiplication (Yu et al., 2017; Jahani-Nezhad
& Maddah-Ali, 2021). More recently, Moradi et al. (2024; 2025); Moradi & Maddah-Ali (2025)
proposed a framework grounded in learning theory that extends coded computing to a wide range of
functions, including deep neural networks, with provable resilience against stragglers and adversaries.

The central idea of coded computing is to assign each server a (linear) combination of the data,
referred to as coded data, instead of the raw inputs. The number of coded symbols exceeds that of the
original data, effectively over-representing the data. This redundancy is then leveraged to mitigate the
effects of stragglers and adversarial behavior. Formally, suppose a master node aims to approximately
compute a function f : X → Y on a dataset {x1, . . . , xK} using a cluster of N servers, some of
which may be stragglers. The coded computing framework proceeds in three steps:

(1) Encoding: The master node fits an encoder function uenc : R → X to the set of points
{(αi, xi)}Ki=1, where α1 < α2 < · · · < αK ∈ Ω ⊂ R are referred to as encoding points.
Thus,

∀i ∈ [K], uenc(αi) ≈ xi. (10)

The master node then generates N coded data by evaluating the encoder at another fixed set
{βj}Nj=1 with β1 < β2 < · · · < βN ∈ Ω ⊂ R, called decoding points:

x̃j = uenc(βj), j ∈ [N]. (11)

Each coded point x̃j is a combination of the original input dataset {xi}Ki=1, and is then
assigned to server j.

(2) Computation: Each server j computes f(x̃j) and returns the result to the master. Due to
the presence of stragglers, some results may be missing. Let F denote the set of indices
corresponding to successfully returned results.

(3) Decoding: Given the received outputs {f(x̃v)}v∈F from the non-straggler servers, the
master node fits a decoder function udec : R → Y at the points {(βv, f(x̃v))}v∈F . Conse-
quently,

∀j ∈ [N], udec(βj) ≈ f(uenc(βj)). (12)

If the decoder udec(·) generalizes well, it can approximate f(·) on the original dataset
{xi}Ki=1:

f̂(xi) ≜ udec(αi) ≈ f(uenc(αi)) ≈ f(xi), (13)

where the first approximation relies on the generalization ability of udec, and the second
follows from (10).

The goal is to obtain an accurate estimate of the function f(·) on the input dataset. The key design
choice in the coded computing scheme is selecting encoder and decoder functions that yield low
estimation error.

Moradi et al. (2024) propose using smoothing splines (Wahba, 1975; 1990) as both encoder and
decoder functions, fitted on {xi}Ki=1 and {f(x̃v)}v∈F with smoothing parameters λe and λd, respec-
tively. More specifically, the decoder is obtained by solving the following optimization problem:

u⋆
dec = argmin

u∈H2(Ω)

1

|F|
∑
v∈F

∥u(βv)− f(uenc (βv))∥2 + λd · ∥u′′∥2L2(Ω), (14)

where H2(Ω) denotes the second-order Sobolev space over Ω (i.e., functions with square-integrable
derivatives up to order two), and ∥ · ∥L2(Ω) denotes the L2-norm on Ω.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Using the decoder function in (14), together with a careful choice of encoding points, decoding points,
and smoothing parameter, Moradi et al. (2024) show that the mean squared estimation error of the
coded computing scheme can be upper bounded as follows:

Theorem 1 (Moradi et al. (2024)). Consider the coded computing framework with N servers and at
most S stragglers. Suppose Ω = (−1, 1) and f(·) is µ-Lipschitz continuous. Then,

1

K

K∑
i=1

∥∥∥f̂(xi)− f(xi)
∥∥∥2 ≤ C

(
S + 1

N

)3

∥(f ◦ uenc)
′′∥2L2(Ω) +

2µ2

K

K∑
k=1

∥uenc(αk)− xk∥2 ,

(15)

where C > 0 is a constant.

B PROOF OF LEMMA 1

Since in the coded-smoothingmodule uenc(αi) = xi, the second term in Theorem 1 vanishes. Setting
S = 0 and applying the chain rule to (f ◦ uenc)

′′ completes the proof of the lemma.

C ENCODER AND DECODER MATRIX REPRESENTATION

Here also, we can present a matrix representation of the encoding and decoding processes. We
define Aenc := Aα⃗,β⃗ ∈ RK×N and Adec := Aβ⃗,α⃗ ∈ RN×K as the encoder and decoder matrices,

respectively, where α⃗ := [α1, . . . , αK]T and β⃗ := [β1, . . . , βN]T denote the encoding and decoding
points, respectively. The coded samples are then obtained as

∀j ∈ [N], x̃j = ⟨Aenc
j , x⃗⟩ (16)

where Aenc
j denotes the jth column of the matrix Aenc and x⃗ = [x1, . . . , xK]T . Finally, letting

f⃗(Aenc, x⃗) := [f(⟨Aenc
1 , x⃗⟩), . . . , f(⟨Aenc

N , x⃗⟩)]T , the decoded estimates are given by

∀i ∈ [K], f̂(xi) = ⟨Adec
i , f⃗(Aenc, x⃗)⟩. (17)

D COMPUTATIONAL COMPLEXITY OF CODED-SMOOTHING MODULE

Since both the encoder and decoder functions are non-parametric, the coded-smoothing module does
not introduce any additional learnable parameters to the model.

Additionally, when N = K, the coded path has approximately the same computational cost as
the original path. The only extra overhead comes from the encoding and decoding operations
(i.e., evaluating and fitting the splines), which contribute only a negligible cost compared to the
main computation. This efficiency arises because fitting and evaluating smoothing splines can be
performed in linear time using the B-spline basis representation (De Boor, 2001; Eilers & Marx,
1996). More specifically, if the input and output dimensions are d and m (for example, when
applying coded smoothing to the entire network on CIFAR-10, the input dimension is 32× 32 and
the output dimension is 10), the computational complexities of the encoding and decoding steps are
O((N +K) · d) and O((N +K) ·m), respectively. Assuming N ≈ K, both terms scale linearly in
the dimension and batch size and are negligible relative to the main computation.

To illustrate this in practice, we conduct a runtime analysis to compare the computational cost of the
coded path and the original path. Table 4 reports the runtime for processing a batch of 128 CIFAR-10
images using PreActResNet18 on a single NVIDIA RTX 5090 GPU.

These results show that the coded-smoothing module introduces only minimal computational overhead
in practice.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Inference time comparison between the original and coded paths.

Method Time
Original Path 1.5ms ± 0.5
Coded Path 2ms ± 0.4

E EXPERIMENTAL DETAILS

E.1 SUPERVISED

For all supervised learning experiments, we train models on the CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet-1k datasets under consistent optimization settings.

In the CIFAR-10 and CIFAR-100 experiments, we train for 350 epochs with an initial learning rate of
0.1. The learning rate is decayed by a factor of 10 at epochs 100 and 250 for both datasets.

For Tiny ImageNet, we also use an initial learning rate of 0.1. The learning rate is decayed by a factor
of 10 at epochs 100, 200, and 300.

For ImageNet-1k, we follow the training schedule reported in Zhang et al. (2017). We use an initial
learning rate of 0.2, and decay it by a factor of 10 at epochs 30, 60, and 90.

In all experiments, we use stochastic gradient descent (SGD) with momentum 0.9 as the optimizer,
and set the batch size to 128.

E.1.1 HYPERPARAMETER SELECTION

For mixup and manifold mixup, the mixing coefficient λ is sampled from a Beta distribution
Beta(α, α), where α is chosen according to the best-performing settings reported in prior work
(Zhang et al., 2017; Verma et al., 2019). Specifically, for mixup we use α = 1.0 on CIFAR-10 and
CIFAR-100, and α = 0.2 on TinyImageNet and ImageNet-1k. For manifold mixup, we select the set
of intermediate layers following the best-performing configuration reported in Verma et al. (2019),
and set α = 2.0 for CIFAR-10 and CIFAR-100, and α = 0.2 for TinyImageNet and ImageNet-1k.

Training with the CODED-SMOOTHING method introduces two hyperparameters: µ and N . The
parameter µ in (7) balances the contribution of the coded path in the overall loss, while N controls
the accuracy of the estimation. From Lemma (1), the discrepancy between the original and coded
path outputs decreases either as N increases or as f(·) becomes smoother. However, setting N too
large makes the coded and original paths nearly identical, effectively collapsing the method to ERM.
Empirically, we find that initializing with N = K (the batch size, see Figure 2) and µ = 0.5 yields
the best trade-off between regularization strength and predictive accuracy. A detailed sensitivity
analysis of N and µ is presented in Tables 6 and 7 in Appendix H.

Scheduling N . Fixing N during training causes saturation, as the gap between f and f̂ stops
shrinking once a certain smoothness is reached. To address this, we gradually increase N from the
batch size K to γK with γ > 1. We find γ = 1.5 works best, yielding two benefits: improved
coded-path accuracy (making it reliable for inference) and escaping training plateaus for further gains
(see Figure 5a).

E.2 UNSUPERVISED

For the unsupervised experiments with WGAN, we used the following configuration: the training was
performed for 100,000 iterations with a batch size of 64. The number of coded points (N) was set to
96. Moreover µ = 0.5. The initial learning rate was 2× 10−4, and the critic was updated 5 times
per generator step. We employed a gradient penalty coefficient λgp = 10, and the optimizer was
Adam with betas (0.0, 0.9). For Inception Score (IS) computation, 50,000 samples were used. For
FID computation, we followed the standard protocol by comparing the statistics of 50,000 generated
images with the real dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F COVARIATE SHIFT ROBUSTNESS

Table 5: Comparisons of accuracies (%) on out-of-distribution test data.

CIFAR-10.1 CIFAR-10.2 CIFAR-10.C ImageNet-R
ERM 86.5± 0.4 82.8± 0.1 72.7± 0.3 21.3

Mixup 88.9± 0.4 85.7± 0.2 78.2± 0.3 19.8
CODED-SMOOTHING (ours) 89.6± 0.5 86.4± 0.1 77.6± 0.2 22.8

G PERFORMANCE DURING TRAINING

(a) (b)

Figure 5: (a) TinyImageNet validation loss for different methods during training. (b) Comparison of
Inception Score (IS) during training on the CIFAR-10 dataset. In WGAN-GP + CODED-SMOOTHING,
the coded-smoothing module is applied to the generator of the GAN architecture.

H ABLATION STUDY

H.1 EFFECT OF NUMBER OF CODED SAMPLES (N)

Table 6: Test accuracy (%) of training with coded-smoothing module for different number of coded
samples (N) on CIFAR-10 with batch size 128.

N Acc
110 95.6
130 95.0
150 94.8
170 94.5
190 94.2

H.2 EFFECT OF µ

Table 7: Test accuracy (%) of training with coded-smoothing module for different µ on CIFAR-10.

µ Acc
0.1 95.1
0.2 95.4
0.4 95.7
0.5 95.9
0.6 95.8
0.8 95.4
1.0 95.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H.3 EFFECT OF THE LAYER SET

We conducted additional experiments in which coded-smoothing was selectively applied to different
layers or blocks within the ResNet architecture. Specifically, we applied the coded-smoothing module
to various subsets of blocks in the PreActResNet-18 model for the CIFAR-10 task. The results are
shown in Table 8.

Table 8: Effect of coded-path block selection on test accuracy and loss.

Set of blocks in the coded path Test Acc Test Loss
0 94.6 0.25
3 94.6 0.26

0,1 94.8 0.23
0,2 94.8 0.23
1,3 94.8 0.235

0,1,2 94.5 0.24
0,1,2,3 95.1 0.19

0,1,2,3,4 95.9 0.19

H.4 INTEGRATING WITH DROPOUT

We evaluate the coded-smoothing module both with and without dropout. Following the recom-
mendation in (Kim et al., 2023), for best performance, dropout should be inserted after the second
batch-normalization layer in each ResNet block. The results demonstrate that dropout integrates
smoothly with the proposed module and yields a modest improvement in generalization performance.

Table 9: Effect of integrating dropout on test accuracy and loss for the CIFAR-10 dataset using ERM
and coded-smoothing.

Method (CIFAR-10, PARN18) Test Acc Test Loss
Raw 93.780 0.308
Raw + Dropout 93.840 0.325
Coded Smoothing 95.120 0.240
Coded Smoothing + Dropout 95.200 0.217

H.5 EFFECT OF BATCH SIZE AND NUMBER OF CODED SAMPLES IN RCI

Table 10: Comparison of accuracies of inference with coded path for the mode methods under
Adversarial attack on CIFAR-10 dataset.

Batch Size # Coded Samples (N) No Attack FGSM (ϵ = 8
255) PGD (10 steps)

8 12 94.9 78.1 69.8
16 24 94.8 79.0 70.3
32 48 94.9 79.3 70.6
64 96 94.9 80.1 71.5
128 190 94.9 80.5 72.0

17

	Introduction
	Empirical Risk Minimization (ERM)
	Coded-Smoothing Module
	Architecture

	Training Regularization using the coded-smoothing Module
	Coded-Smoothingis a local higher-order smoother

	Robust Inference using a Randomized coded-smoothing module
	Experiments
	Supervised
	Unsupervised
	Adversarial Robustness
	Covariate Shift Robustness

	Related Work
	Conclusion
	Appendix
	Coded Computing

	Proof of Lemma 1
	Encoder and Decoder Matrix Representation
	Computational Complexity of coded-smoothing module
	Experimental Details
	Supervised
	Hyperparameter Selection

	Unsupervised

	Covariate shift robustness
	Performance during training
	Ablation Study
	Effect of number of coded samples (N)
	Effect of
	Effect of the layer set
	Integrating with dropout
	Effect of batch size and number of coded samples in RCI

