

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CODED-SMOOTHING: CODING THEORY HELPS GENERALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce the coded-smoothing module, which can be seamlessly integrated into standard training pipelines, both supervised and unsupervised, to regularize learning and improve generalization with minimal computational overhead. In addition, it can be incorporated into the inference pipeline to randomize the model and enhance robustness against adversarial perturbations. The design of coded-smoothing is inspired by *general coded computing*, a paradigm originally developed to mitigate straggler and adversarial failures in distributed computing by processing linear combinations of the data rather than the raw inputs. Building on this principle, we adapt coded computing to machine learning by designing an efficient and effective regularization mechanism that encourages smoother representations and more generalizable solutions. Extensive experiments on both supervised and unsupervised tasks demonstrate that coded-smoothing consistently improves generalization and achieves state-of-the-art robustness against gradient-based adversarial attacks.

1 INTRODUCTION

Reliable prediction remains a central challenge in modern machine learning. Although deep neural networks have achieved remarkable success across computer vision, natural language processing, and reinforcement learning, their generalization beyond training data remains imperfect, and their reliability under adversarial perturbations is still limited (Szegedy et al., 2013; Goodfellow et al., 2014; Wen et al., 2020; Liu et al., 2020). This vulnerability is largely a consequence of overparameterization combined with limited training data, which makes models prone to overfitting, memorization, and brittle behavior when faced with unseen or corrupted inputs. Regularization techniques therefore play a key role in improving reliability: by guiding models toward simpler and smoother solutions, they reduce generalization error while simultaneously enhancing robustness to adversarial attacks.

Classical regularization strategies such as weight decay (Krogh & Hertz, 1991), dropout (Srivastava et al., 2014), and batch normalization (Ioffe & Szegedy, 2015) have long been established. More recently, data-centric approaches such as label smoothing (Szegedy et al., 2016), mixup and its variations (Zhang et al., 2017; Verma et al., 2019; Berthelot et al., 2019; Yun et al., 2019; Yao et al., 2022; Pinto et al., 2022; Bouniot et al., 2023) have become widely adopted for supervised learning. Nonetheless, data-centric approaches that are broadly applicable to both supervised and unsupervised models, and that simultaneously enhance generalization and adversarial robustness, remain insufficiently investigated.

In this paper, we take a step toward closing this gap, and introduce a new powerful regularization method, using *coded-smoothing module*, which applies seamlessly in both supervised and unsupervised settings. Our approach draws inspiration from an unexpected source: *coded computing*. Originally developed for distributed computing systems to mitigate the effects of straggler servers (Yu et al., 2017; 2020; Dutta et al., 2020; Jahani-Nezhad & Maddah-Ali, 2022; Moradi et al., 2024; Moradi & Maddah-Ali, 2025) and adversarial servers (Yu et al., 2019; Soleymani et al., 2022; Moradi et al., 2025), coded computing injects redundancy into the computational process. In this approach, instead of directly processing raw data and computing the designated results, the servers operate on carefully designed weighted linear combinations of the data, referred to as coded inputs. The number of coded inputs exceeds that of the original raw inputs. This coded redundancy enables the recovery of the original computation through a decoding procedure, even in the presence of missing results from stragglers or corrupted results from adversarial servers. In particular, in *general coded*

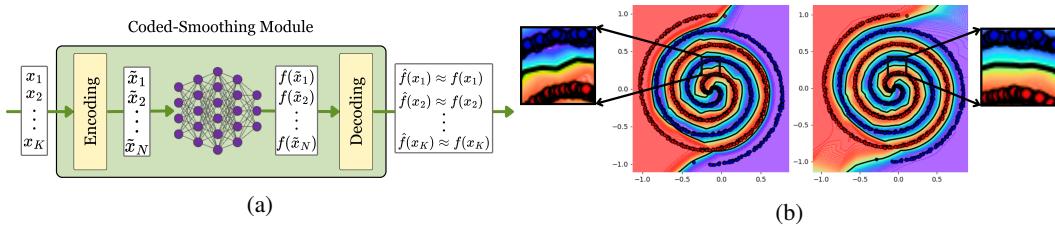


Figure 1: (a) In a coded computing module, instead of directly computing $f(x_1), \dots, f(x_K)$, the system computes $f(\tilde{x}_1), \dots, f(\tilde{x}_N)$, where $N > K$ and each coded input \tilde{x}_i is a unique weighted linear combination of the originals. The desired outputs are then reconstructed via a decoding procedure, yielding approximations $\hat{f}(x_1) \approx f(x_1), \dots, \hat{f}(x_K) \approx f(x_K)$. (b) Classification boundaries on the 2D spiral dataset, trained with Mixup (left) versus with the coded-smoothing module. The decision boundaries produced by the coded-smoothing model are noticeably smoother and less sensitive to individual data points, maintaining a more stable margin around the data.

computing (Moradi et al., 2024), the smoother the function representing the computation task, the more accurate the approximated result.

The coded-smoothing module has impactful structure. Given a batch of K input samples, it first generates a new batch of N *coded samples* through an encoding process, where each coded sample is formed as a combination of all inputs in the batch. The network is then evaluated on these coded samples, and a subsequent decoding step reconstructs estimates of the network outputs on the original inputs (see Figure 1a). Importantly, enforcing closeness between these decoded estimates and the true outputs induces local smoothness in the learned network and effectively reduces its complexity. To achieve this, during training we augment the objective with an auxiliary penalty term that encourages the decoded outputs to remain close to their true counterparts (see Fig. 2), thereby guiding the model toward smoother and more generalizable solutions (see Fig. 1b).

Beyond training, using coded-smoothing module offers a striking additional benefit at inference time. Since the coded-smoothing module works independently from the order of data in the input batch, we can inject randomness by applying a random shuffle before encoding and restoring the order after decoding. This simple yet powerful mechanism disrupts gradient-based adversarial attacks such as FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017), which rely on precise gradient information to craft adversarial examples. As a result, the model attains substantially improved robustness against adversarial perturbations. Notably, this method imposes negligible computational overhead, making it both effective and practical for real-world deployment.

Our experiments show that the coded-smoothing module consistently improves generalization across a wide range of architectures and benchmarks in both supervised and unsupervised settings. Moreover, coded-smoothing provides substantial gains in adversarial robustness. Compared to mixup (Zhang et al., 2017), it achieves an 8.8% higher accuracy under the FGSM attack ($\epsilon = 8/255$) (Goodfellow et al., 2014), a 31.8% improvement under PGD with 10 steps, and a 37% improvement under PGD with 100 steps (Madry et al., 2017).

Contributions. In summary, this work makes the following key contributions:

- We introduce the *coded-smoothing* module, a novel and computationally efficient regularization mechanism for neural networks inspired by principles of coded computing (Section 3 and Appendix D).
- We provide a theoretical characterization showing that coded-smoothing enforces higher-order local smoothness, thereby acting as a powerful regularizer (Section 4.1).
- We propose a randomized coded inference procedure based on the coded-smoothing module that substantially improves adversarial robustness without requiring adversarial training (Section 5).
- We conduct extensive experiments demonstrating that coded-smoothing consistently enhances both generalization and robustness across datasets and architectures, while incurring minimal computational overhead (Section 6).

108

Algorithm 1: Pseudo-code for coded-smoothing module

109

Input: Input tensor X of shape (K, \cdot) , where K is the batch size; Computation function f (e.g., a neural network model).

110

Output: Estimated output tensor $\hat{f}(X)$ of shape (K, \cdot) .

111

class CodedSmoothing(nn.Module):

112

```

def __init__(self, K, N):
    super().__init__()
    self.alpha = generate_encoding_points(K)
    self.beta = generate_decoding_points(N)
    self.enc = Spline(knots=alpha)
    self.dec = Spline(knots=beta)
def forward(self, X, f):
    self.enc.fit(self.alpha, X)
    x_coded = self.enc.predict(self.beta)
    f_coded = f(x_coded)
    self.dec.fit(self.beta, f_coded)
    f_hat = self.dec.predict(self.alpha)
    return f_hat

```

126

127

2 EMPIRICAL RISK MINIMIZATION (ERM)

128

In the supervised learning setting, let $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^n$ denote a training dataset of size n , sampled from a distribution \mathbb{P} , where $x_i \in \mathcal{X}$ is the input and $y_i \in \mathcal{Y}$ is the corresponding label. Here, \mathcal{X} and \mathcal{Y} represent the input and output spaces, respectively, and $\theta \in \Theta$ denotes the parameter space. Given a loss function $\ell(\cdot, \cdot)$, ERM aims to learn a mapping $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$ by minimizing the expected loss with respect to the empirical distribution $\mathbb{P}_e(x, y) := \frac{1}{n} \sum_{i=1}^n \delta(x = x_i, y = y_i)$.

129

130

131

132

133

134

135

$$\theta^* = \arg \min_{\theta} \mathbb{E}_{\mathbb{P}_e(x, y)} [\ell(f_\theta(x), y)] = \int \ell(f_\theta(x), y) \, d\mathbb{P}_e(x, y) = \frac{1}{n} \sum_{i=1}^n \ell(f_\theta(x_i), y_i). \quad (1)$$

136

The goal is for the learned model to generalize well to unseen samples drawn from a test distribution \mathbb{P}_t , in both in-distribution ($\mathbb{P}_t = \mathbb{P}$) and out-of-distribution ($\mathbb{P}_t \neq \mathbb{P}$) settings.

137

138

3 CODED-SMOOTHING MODULE

139

140

141

Building on the general coded computing Moradi et al. (2024), we propose the *coded-smoothing* module as a regularization technique to model smoothness. We first describe the architecture of the proposed module, and then explain how coded-smoothing integrates into both the training and inference pipelines. This integration leads to improved generalization as well as enhanced adversarial robustness of the model.

142

143

3.1 ARCHITECTURE

144

145

146

147

148

The coded-smoothing module consists of three components: an encoder function $u_{\text{enc}} : \mathbb{R} \rightarrow \mathcal{U}$, a computation function $f : \mathcal{U} \rightarrow \mathcal{V}$, and a decoder function $u_{\text{dec}} : \mathbb{R} \rightarrow \mathcal{V}$. Here, \mathcal{U} and \mathcal{V} are the input and output domains of the function $f(\cdot)$, and f may represent a machine learning model or a set of consecutive layers in a deep neural network. Given a batch of input data $\{x_1, \dots, x_K\}$, the module produces an estimate of the computation function on these inputs, denoted by $\{\hat{f}(x_i)\}_{i=1}^K$.

149

The end-to-end process proceeds as follows:

150

151

152

153

154

155

156

157

158

159

160

161

(1) **Encoding:** the encoder function u_{enc} is fitted to the set of points $\{(\alpha_i, x_i)\}_{i=1}^K$, where $\alpha_1 < \alpha_2 < \dots < \alpha_K \in [-1, 1]$ are referred to as *encoding points*. Therefore,

$$u_{\text{enc}}(\alpha_i) = x_i, \quad \forall i \in [K]. \quad (2)$$

162 Then, N *coded samples* are generated by evaluating the encoder at another fixed set $\{\beta_j\}_{j=1}^N$
 163 with $\beta_1 < \beta_2 < \dots < \beta_N \in [-1, 1]$, called *decoding points* $\tilde{x}_j = u_{\text{enc}}(\beta_j)$, for $j \in [N]$.
 164 We note that each coded sample \tilde{x}_j is a combination of the original input dataset $\{x_i\}_{i=1}^K$.

165 (2) **Computation:** In this step, $f(\tilde{x}_j)$, for $j = 1, \dots, N$, are computed.
 166 (3) **Decoding:** In this stage, first, decoder function u_{dec} is fitted to the set of points
 167 $\{(\beta_j, f(\tilde{x}_j))\}_{j=1}^N$, therefore,

$$168 \quad u_{\text{dec}}(\beta_j) = f(\tilde{x}_j) = f(u_{\text{enc}}(\beta_j)), \quad \forall j \in [N], \quad (3)$$

171 where the second equation follows from (2). If the decoder $u_{\text{dec}}(\cdot)$ generalizes well, then
 172 $u_{\text{dec}}(z) \approx f(u_{\text{enc}}(z))$, for all $z \in [-1, 1]$. In particular, at the encoding points, we have,

$$173 \quad u_{\text{dec}}(\alpha_i) \approx f(u_{\text{enc}}(\alpha_i)) = f(x_i), \quad (4)$$

175 where the first approximation relies on the generalization ability of u_{dec} , and the second
 176 equation follows from (2). Thus, $u_{\text{dec}}(\alpha_i)$ approximates $f(x_i)$. We define $\hat{f}(x_i) \triangleq u_{\text{dec}}(\alpha_i)$,
 177 for $i \in [K]$.

178 Algorithm 1 presents PyTorch-style pseudo-code for the coded-smoothing module. As suggested
 179 by (Moradi et al., 2024), we use *natural cubic splines* (cubic smoothing splines with smoothing
 180 parameter of zero) for both the encoder and decoder.

182 With a careful choice of encoding and decoding points, the following lemma provides a bound on the
 183 approximation error of the coded-smoothing module.

184 **Lemma 1.** *For a coded-smoothing module with N coded samples, we have:*

$$186 \quad \frac{1}{K} \sum_{i=1}^K \left| \hat{f}(x_i) - f(x_i) \right|^2 \leq \frac{2C}{N^3} \left(\|u''_{\text{enc}} \cdot f' \circ u_{\text{enc}}\|_{L^2(\Omega)}^2 + \|u''_{\text{enc}} \cdot f' \circ u_{\text{enc}}\|_{L^2(\Omega)}^2 \right), \quad (5)$$

189 for some constant C .

191 For proof, see Appendix B. Lemma 1 highlights an important property of coded-smoothing module:
 192 The larger the number of coded samples N or the smoother the function f , the smaller the mean
 193 squared estimation error.

194 **Spline representation.** Let $S_{\vec{t}, \vec{y}}(\cdot)$ denote the smoothing spline fitted on $\{(t_i, y_i)\}_{i=1}^n$, where
 195 $t_i \in \mathbb{R}$, $y_i \in \mathbb{R}^d$, $\vec{y} := [y_1, \dots, y_n]^T$, and $\vec{t} := [t_1, \dots, t_n]^T$. It is well-known that $S_{\vec{t}, \vec{y}}(z) =$
 196 $\sum_{i=1}^n y_i \phi(z, t_i)$, where $\phi(\cdot, \cdot)$ is the kernel of the second-order Sobolev space (i.e. functions with
 197 square-integrable derivatives up to order two). Thus, $S_{\vec{t}, \vec{y}}(\cdot)$ is a linear function of \vec{y} (Wahba, 1975).
 198 Therefore, for any evaluation set $\vec{v} := [v_1, \dots, v_m]^T$, there exists a matrix $A_{\vec{t}, \vec{v}} \in \mathbb{R}^{n \times m}$, which
 199 depends only on the knot set \vec{t} , the evaluation points \vec{v} , and the smoothing parameter λ (but not on \vec{y}),
 200 such that $[S_{\vec{t}, \vec{y}}(v_1), \dots, S_{\vec{t}, \vec{y}}(v_m)]^T = A_{\vec{t}, \vec{v}}^T \vec{y}$. Recall that in the coded-smoothing module, both the
 201 encoder and decoder are implemented using smoothing splines. Therefore, we have:

$$204 \quad u_{\text{enc}}(z) = \sum_{i=1}^K x_i \phi(z, \alpha_i), \quad u_{\text{dec}}(z) = \sum_{j=1}^N f(\tilde{x}_j) \phi(z, \beta_j). \quad (6)$$

207 For detailed expression of matrix form of encoder and decoder functions, see Appendix C.

209 4 TRAINING REGULARIZATION USING THE CODED-SMOOTHING MODULE

211 We now describe how the coded-smoothing module can be integrated into the training pipeline of
 212 machine learning models to improve generalization. Since coded-smoothing does not require label
 213 information, it can be applied in both supervised (Section 6.1) and unsupervised (Section 6.2) settings.

215 Figure 2 illustrates the role of coded-smoothing during training. The computation function f may
 216 represent the entire network or a part of the network, which we refer to as the *target block*. The

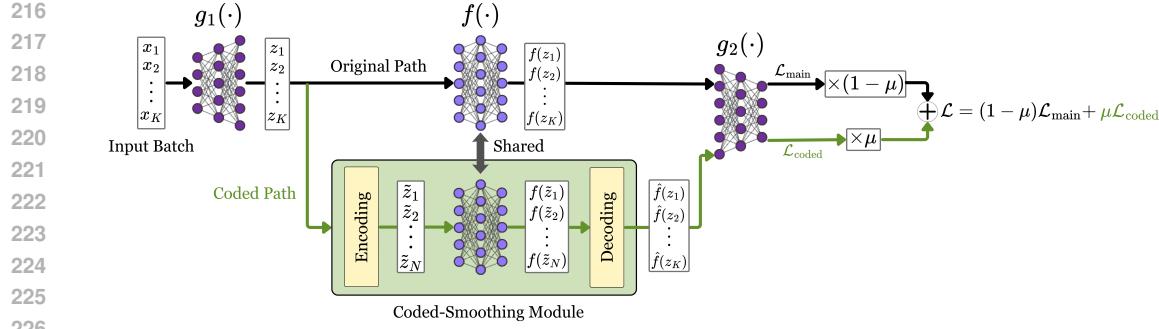


Figure 2: The proposed CODED-SMOOTHING as a regularization in training: the coded path includes a coded-smoothing module and runs in parallel to the original forward pass and contributes to the training objective.

integration of coded-smoothing introduces an additional *coded path* that runs in parallel to the original forward path.

Formally, consider training a deep neural network of the form $\text{net}(x) = g_1(f(g_2(x)))$, where $f(\cdot)$ is an intermediate target block. Suppose we apply coded-smoothing to $f(\cdot)$. After the input is passed through $g_1(\cdot)$, we branch it and follow two parallel paths: *the original path* and *the coded path* (see Fig. 2). In the coded path, there is a coded-smoothing module. The encoder generates a set of coded samples $\{\tilde{z}_j\}_{j=1}^N$, which form a new batch and are processed by the target block. The outputs of the target block on the coded samples are then passed through the decoder, producing estimated outputs $\{\hat{f}(z_i)\}_{i=1}^K$, which are approximately equal to $\{f(z_i)\}_{i=1}^K$. These estimated outputs are forwarded to the remainder of the network, denoted by $g_2(\cdot)$. During training, both paths contribute to the loss. Let $\mathcal{L}_{\text{main}}$ denote the loss from the original forward path, i.e., the standard training loss. Similarly, let $\mathcal{L}_{\text{coded}}$ denote the loss from the coded path, which has the same form as $\mathcal{L}_{\text{main}}$ but with the outputs of the original network replaced by those of the auxiliary coded path. The overall objective is then defined as

$$\mathcal{L} = (1 - \mu)\mathcal{L}_{\text{main}} + \mu\mathcal{L}_{\text{coded}}, \quad (7)$$

where $\mu \in [0, 1]$ is a weighting hyperparameter controlling the contribution of two paths. The parameters of the target block are shared between the original and coded paths, and the entire network is optimized with respect to the combined objective.

The second term in the loss function (7) acts as a regularizer, encouraging the coded path to match the predictive performance of the original path. In particular, it drives the coded-smoothing estimations of the target block toward their true outputs $\{f(z_i)\}_{i=1}^K$. Consequently, and in line with Lemma 1, the module implicitly enforces smoothness on the target block $f(\cdot)$. The effect of this regularization depends on the weighting coefficient μ : when $\mu \approx 1$, training is dominated by the coded path, whereas when $\mu \approx 0$, the process reduces to training only with the original loss.

4.1 CODED-SMOOTHING IS A LOCAL HIGHER-ORDER SMOOTHER

In this subsection, we provide intuition for how the proposed approach encourages smoothness of the function. Recall from (4) that the accuracy of the approximation $\hat{f}(x_i) := u_{\text{dec}}(\alpha_i) \approx f(x_i)$ depends on the quality of the approximation $f(u_{\text{enc}}(z)) \approx u_{\text{dec}}(z)$. Moreover, from (6) we have $u_{\text{dec}}(z) = \sum_{j=1}^N f(\hat{x}_j) \phi(z, \beta_j)$. Hence, enhancing the approximation $\hat{f}(x_i) \approx f(x_i)$ is equivalent of improving the approximation

$$f(u_{\text{enc}}(z)) \approx \sum_{j \in [N]} f(\hat{x}_j) \phi(z, \beta_j). \quad (8)$$

The right-hand side is a weighted sum of some smooth functions, which implies that during training the regularized loss in (7) promotes smoothness of $f(u_{\text{enc}}(z))$, and consequently enforces smoothness in $f(\cdot)$ itself (see Fig. 3b).

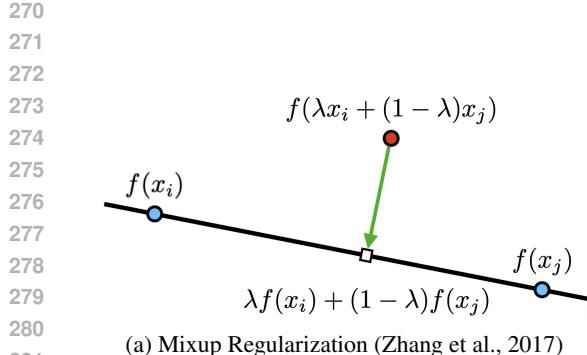
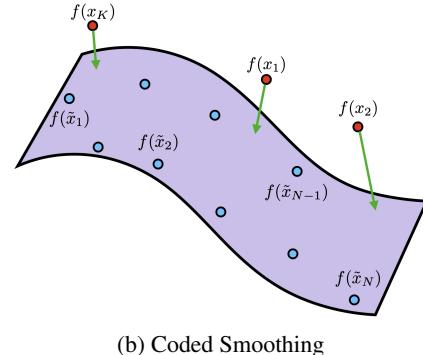


Figure 3: Coded Smoothing versus Mixup

282
283
284
285 To further clarify the concept, we next discuss the well-known Mixup method (Zhang et al., 2017) and
286 highlight its connection to the proposed approach. In mixup, instead of empirical risk minimization,
287 the model is trained by minimizing the expected loss with respect to a vicinal distribution $\mathbb{P}_v(x, y) :=$
288 $\frac{1}{n} \sum_{i=1}^n \delta(x = \bar{x}_i, y = \bar{y}_i)$, where $\bar{x}_i = \lambda x_i + (1 - \lambda)x_j$ and $\bar{y}_i = \lambda y_i + (1 - \lambda)y_j$ for $\lambda \sim$
289 $\text{Beta}(\alpha, \alpha)$. As a result, the model is encouraged to align the prediction $f(\lambda x_i + (1 - \lambda)x_j)$ with
290 the target $\lambda y_i + (1 - \lambda)y_j$ for $\lambda \in [0, 1]$. At the endpoints ($\lambda = 0, 1$), this also recovers the original
291 labels, i.e. $f(x_i) \approx y_i$ and $f(x_j) \approx y_j$. Consequently, training implicitly enforces local linearity on
292 the model which regularizes f to vary smoothly along the line segment connecting $f(x_i)$ and $f(x_j)$
293 (see Figure 3a):
294

$$f(\lambda x_i + (1 - \lambda)x_j) \approx \lambda f(x_i) + (1 - \lambda)f(x_j), \quad \lambda \in [0, 1]. \quad (9)$$

295 Comparing (8) and (9) reveals an intriguing connection between the two schemes. While the coded-
296 smoothing module encourages $f(u_{\text{enc}}(z))$ to approximate a linear combination of smooth functions,
297 mixup explicitly encourages $f(\cdot)$ to behave like a linear function. In other word, coded-smoothing
298 module imposes a higher-order smoothness constraint on f , regularizing it beyond pairwise linearity.
299 Although both approaches promote smoothness in $f(\cdot)$, coded smoothness admits a richer structure
300 and may potentially lead to improved generalization (See Section 6 on experiment results).
301

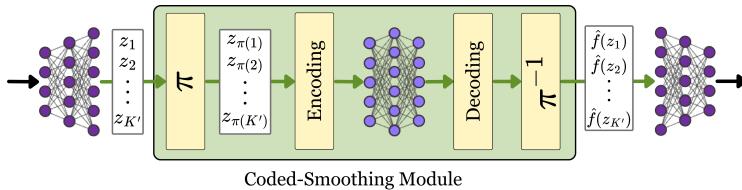
302 5 ROBUST INFERENCE USING A RANDOMIZED CODED-SMOOTHING MODULE

303 After training a model with the coded-smoothing module, both the coded path and the original path
304 can be used during inference. Since the coded path generates a smooth approximation of the original
305 outputs, its standalone generalization performance is dominated by that of the original path. However,
306 the coded path possesses a useful property that can be exploited to substantially enhance adversarial
307 robustness.
308

309 The key observation is that the proposed module performance does not depend on the order of input
310 samples within a batch: the coded-smoothing module generates a good estimate for each input
311 regardless of its position in the batch. During training, due to random shuffling across epochs, each
312 sample x_i appears at different indices and the network aligns the estimation $\hat{f}(x_i)$ with its true output
313 $f(x_i)$ independently of the sample’s index.
314

315 Consequently, at inference time, one can introduce additional randomness by applying a random
316 permutation π to the batch before feeding it into the encoder, and subsequently restoring the original
317 order using π^{-1} before passing the outputs to the remainder of the network. We refer to this approach
318 as *Randomized Coded Inference (RCI)*. Figure 4 illustrates this inference approach.
319

320 This strategy disrupts adversarial attacks, particularly gradient-based methods such as FGSM (Good-
321 fellow et al., 2014) and PGD (Madry et al., 2017), which rely on precise gradients to craft adversarial
322 examples. The core idea in these methods is to generate an adversarial sample by perturbing the
323 input in the direction of the gradient of the loss with respect to that input. However, since π is chosen
324 uniformly at random from all permutations, with high probability the permutation used by the network
325 at inference differs from the one assumed by the adversary when generating the perturbations.
326

Figure 4: The proposed RANDOMIZED CODED INFERENCE: π represents a random permutation.

As a result, the network’s robustness is significantly improved. Note that although coded-smoothing operates in batch mode at inference, the batch size need not match that used during training. In practice, the method is effective for batch sizes as small as $K' \geq 4$, since spline fitting requires at least three points, thereby offering flexibility for deployment (see Table 10 in Appendix H).

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed coded-smoothing training method (using the coded-smoothing module) as well as the randomized coded inference approach, under various settings and across multiple evaluation metrics. We begin with the supervised scenario (Section 6.1), followed by the unsupervised setting (Section 6.2). We then demonstrate how coded-smoothing substantially enhances adversarial robustness during inference (Section 6.3). Finally, we assess its effectiveness under distribution shift, where the test distribution differs from the training distribution (Section 6.4). All experiments are conducted in PyTorch (Paszke et al., 2019) on a single machine equipped with an NVIDIA RTX 5090 GPU.

In all experiments, following Jahani-Nezhad & Maddah-Ali (2022); Moradi et al. (2024), we adopt the first-order Chebyshev points for encoding and the second-order Chebyshev points for decoding, i.e., $\alpha_i = \cos(\frac{(2i-1)\pi}{2K})$ and $\beta_j = \cos(\frac{(j-1)\pi}{N-1})$ for $i \in [K]$, $j \in [N]$. This choice is motivated by their superior empirical performance (Jahani-Nezhad & Maddah-Ali, 2022) and desirable theoretical properties in approximation theory (Phillips, 2003; Trefethen, 2019).

6.1 SUPERVISED

We begin by evaluating the effectiveness of the coded-smoothing module in the supervised learning setting. In particular, we compare its generalization performance against standard empirical risk minimization (ERM) as well as two widely used mixup-based regularization methods, mixup (Zhang et al., 2017) and manifold mixup (Verma et al., 2019).

Datasets and architectures. To ensure a comprehensive evaluation across model families and dataset complexities, we conduct experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015), and Imagenet-1k (Russakovsky et al., 2015). For CIFAR-10, we use PreActResNet18 (He et al., 2016); for CIFAR-100, we employ WideResNet28-10 (Zagoruyko & Komodakis, 2016); and for TinyImageNet and Imagenet, we adopt ResNet50 (Goyal et al., 2017). These architectures are chosen to capture a range of model complexities while aligning with prior work.

In all supervised experiments, we empirically find that the best performance is achieved when the coded-smoothing module is applied to the full network. Table 1 reports the test performance across datasets and architectures. Each experiment is repeated over 5 independent train-validation splits with different random seeds. We report both the mean and standard deviation. As shown in Table 1, training with coded-smoothing consistently outperforms both mixup and ERM baselines across all benchmarks. Additional experiments and hyperparameter selection are provided in Appendix E.1.

6.2 UNSUPERVISED

Next, we take one step further and evaluate the effectiveness of the CODED-SMOOTHING training in an unsupervised setting. Specifically, we incorporate coded-smoothing into the training of a WGAN-GP (Gulrajani et al., 2017) which is a variant of WGAN (Arjovsky et al., 2017).

378 Table 1: Comparisons of accuracies (%) on in-distribution test data.
379

	CIFAR-10 PARN18	CIFAR-100 WRN28-10	TinyImageNet RN50	ImageNet RN50
ERM	93.8 \pm 0.2	76.7 \pm 0.3	62.9 \pm 0.9	69.5
Mixup	95.6 \pm 0.2	80.2 \pm 0.3	65.4 \pm 1.0	69.1
Manifold Mixup	95.43 \pm 0.12	81.1 \pm 0.4	67.4 \pm 0.3	67.6
CODED-SMOOTHING (ours)	95.8 \pm 0.1	79.9 \pm 0.4	67.1 \pm 0.5	70.1

387 Table 2: Comparison of FID and IS for generated images for CIFAR-10 and CelebA.
388

Method	CIFAR-10		CelebA
	IS	FID	FID
WGAN-GP	7.08 \pm 0.07	26.93 \pm 0.61	28.22 \pm 0.17
WGAN-GP + CODED-SMOOTHING	7.38 \pm 0.06	26.94 \pm 0.89	24.58 \pm 0.62

396 Prior work has shown that regularizing the discriminator can improve GAN training stability and
397 performance (Zhang et al., 2017; Verma et al., 2019). However, because mixup and its variants rely on
398 label information, they cannot be directly applied to the generator. Here we use CODED-SMOOTHING
399 training method to regularize the *generator* of a WGAN. Specifically, we use coded-smoothing
400 module with $N = K$ with batchsize $K = 64$ and $\mu = 0.5$. Further experimental details are provided
401 in Appendix E.2. Table 2 reports the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
402 Inception Score (IS) (Salimans et al., 2016) on the CIFAR-10 and CelebA (Liu et al., 2018) datasets,
403 which serve as standard metrics for evaluating generative quality and generalization. As shown in the
404 results, regularizing generator with improves FID and IS, indicating enhanced generalization and
405 higher-quality image generation.

406 6.3 ADVERSARIAL ROBUSTNESS

408 We next evaluate the effectiveness of randomized coded inference (RCI) against adversarial attacks on
409 CIFAR-10, focusing on FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017) attacks. Since
410 the coded-smoothing module is non-parametric, RCI can be applied to the inference stage of any
411 trained model, with the number of coded samples N adjusted independently of training. Importantly,
412 N can be set relative to the batch size without incurring significant performance degradation (see
413 Table 10 in Appendix H.5 for a sensitivity analysis with respect to batch size).

414 As shown in Table 3, RCI substantially improves adversarial robustness across all methods, including
415 models already trained with CODED-SMOOTHING, while incurring only a marginal drop in clean
416 (no-attack) accuracy. The strongest results are achieved when models are trained with CODED-
417 SMOOTHING and evaluated with RCI using $N = 1.5K$, where $K = 128$ is the batch size. In
418 this setting, the generalization error increases by only 1%, but robustness gains are significant:
419 improvements of +8.8% under FGSM ($\epsilon = 8/255$), +33% under PGD with 10 steps, and +5.4%
420 under PGD with 100 steps compared to mixup. These results highlight the effectiveness of using RCI
421 in inference for adversarial robustness.

422 6.4 COVARIATE SHIFT ROBUSTNESS

424 Finally, we evaluate the performance of the proposed method under distribution shift, where the test
425 distribution differs from the training distribution. For this evaluation, we use CIFAR-10.1 (Recht
426 et al., 2018) and CIFAR-10.2 (Lu et al., 2020), which represent natural covariate shifts of CIFAR-10,
427 CIFAR-10C (Hendrycks & Dietterich, 2019), which introduces 19 types of synthetic corruptions
428 applied at 5 levels of severity to the CIFAR-10 test set, and ImageNet-R (Hendrycks et al., 2021),
429 which contains multiple renditions of ImageNet classes. Table 5 in Appendix F compares the
430 performance of our method against ERM and mixup. The coded-smoothing module consistently
431 outperforms both baselines on CIFAR-10.1, CIFAR-10.2, and ImageNet-R, and achieves comparable
432 performance on CIFAR-10C. For CIFAR-10C, accuracy is reported as the average of all corruption.

432
 433 Table 3: Comparison of CIFAR-10 test accuracies under adversarial attacks, contrasting randomized
 434 coded inference (RCI) with standard inference. Manifold mixup results are reported from (Verma
 435 et al., 2019).

436 437 Inference method	438 Training Method	439 No Attack	440 FGSM $\epsilon = \frac{8}{255}$	441 PGD 10 steps	442 PGD 100 steps
439 Standard inference	440 ERM	441 93.7	442 36.5	443 5.5	444 0.0
	440 Mixup	441 95.5	442 71.7	443 39.9	444 0.4
	440 Manifold Mixup	441 95.2	442 61.7	443 30.9	444 0.0
	440 CODED-SMOOTHING (ours)	441 95.8	442 47.7	443 8.6	444 0.0
443 RCI ($N = 128$)	444 ERM	445 55.3	446 49.1	447 46.8	448 19.4
	444 Mixup	445 72.4	446 66.1	447 64.1	448 37.4
	444 CODED-SMOOTHING(ours)	445 72.4	446 66.2	447 63.5	448 27.7
446 RCI ($N = 190$)	447 ERM	448 90.2	449 75.8	450 65.7	451 6.3
	447 Mixup	448 93.5	449 78.2	450 65.1	451 9.9
	447 CODED-SMOOTHING(ours)	448 94.8	449 80.5	450 72.0	451 5.8

449 450 7 RELATED WORK

451 Improving generalization has long been a central challenge in machine learning research. A first class
 452 of methods enhances generalization by perturbing hidden representations during training. Classical
 453 examples include dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy, 2015),
 454 both of which reduce overfitting by encouraging more robust internal representations.

455 A second major line of research focuses on data augmentation. Among these, mixup (Zhang et al.,
 456 2017) has become a widely adopted regularization strategy. Since its introduction, numerous variants
 457 have been proposed to address different limitations of mixup, such as improving generalization
 458 (Verma et al., 2019; Yun et al., 2019), adapting it to regression tasks (Yao et al., 2022), enhancing
 459 robustness to distribution shift (Pinto et al., 2022), and improving calibration (Bouniot et al., 2023).
 460 Despite these extensions, all mixup-style methods fundamentally rely on label information and are
 461 thus not applicable in unsupervised settings. The only exception is in GANs (Goodfellow et al.,
 462 2020), where mixup regularization has been applied to the supervised discriminator module (Zhang
 463 et al., 2017; Verma et al., 2019).

464 To partially address this limitation, Verma et al. (2022) proposed an unsupervised mixup loss for
 465 semi-supervised problems. Their method encourages local linearity by explicitly enforcing the mixup
 466 interpolation constraint (see Figure 3). While effective, this approach enforces only pairwise linear
 467 constraints, limiting its ability to capture higher-order structures.

468 In contrast, the proposed coded-smoothingmodule provides a unified regularization framework
 469 applicable to both supervised and unsupervised settings with negligible computational overhead.
 470 Beyond enforcing linearity, it imposes higher-order smoothness. Moreover, through randomized
 471 coded inference, coded-smoothingachieves state-of-the-art robustness against adversarial attacks.

472 8 CONCLUSION

473 In this paper, we introduced the coded-smoothing module, a novel regularization framework inspired
 474 by coded computing. By enforcing local higher-order smoothness during training, coded-smoothing
 475 promotes more generalizable and reliable models. At inference, random shuffling within coded-
 476 smoothing, randomized coded inference (RCI), significantly enhances adversarial robustness.

477 Our method is computationally efficient and applicable to both supervised and unsupervised learning.
 478 Across benchmarks and architectures, coded-smoothing improves supervised generalization, out-
 479 performing ERM and mixup, while achieving state-of-the-art robustness to adversarial attacks with
 480 minimal overhead. In unsupervised settings, applying coded-smoothing to GAN generators boosts
 481 generative quality, demonstrating its effectiveness as a label-free regularizer.

486 REFERENCES
487

488 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
489 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

490 David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
491 Raffel. Mixmatch: A holistic approach to semi-supervised learning. *Advances in neural information*
492 *processing systems*, 32, 2019.

493 Quentin Bouliot, Pavlo Mozharovskyi, and Florence d’Alché Buc. Tailoring mixup to data for
494 calibration. *arXiv preprint arXiv:2311.01434*, 2023.

495 Carl De Boor. Calculation of the smoothing spline with weighted roughness measure. *Mathematical*
496 *Models and Methods in Applied Sciences*, 11(01):33–41, 2001.

497 Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong, Viveck Cadambe, and
498 Pulkit Grover. On the Optimal Recovery Threshold of Coded Matrix Multiplication. *IEEE*
499 *Transactions on Information Theory*, 66(1):278–301, 2020. ISSN 15579654. doi: 10.1109/TIT.
500 2019.2929328.

501 Paul HC Eilers and Brian D Marx. Flexible smoothing with b-splines and penalties. *Statistical*
502 *science*, 11(2):89–121, 1996.

503 Mohammad Fahim and Viveck R Cadambe. Numerically stable polynomially coded computing.
504 *IEEE Transactions on Information Theory*, 67(5):2758–2785, 2021.

505 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
506 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
507 *ACM*, 63(11):139–144, 2020.

508 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
509 examples. *arXiv preprint arXiv:1412.6572*, 2014.

510 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
511 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
512 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

513 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
514 Improved training of wasserstein gans. *Advances in neural information processing systems*, 30,
515 2017.

516 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
517 networks. In *European conference on computer vision*, pp. 630–645. Springer, 2016.

518 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
519 corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

520 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
521 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
522 The many faces of robustness: A critical analysis of out-of-distribution generalization. *ICCV*,
523 2021.

524 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
525 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
526 *information processing systems*, 30, 2017.

527 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
528 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
529 pmlr, 2015.

530 Tayyebah Jahani-Nezhad and Mohammad Ali Maddah-Ali. CodedSketch: A coding scheme for
531 distributed computation of approximated matrix multiplication. *IEEE Transactions on Information*
532 *Theory*, 67(6):4185–4196, 2021.

540 Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. Berrut approximated coded computing:
 541 Straggler resistance beyond polynomial computing. *IEEE Transactions on Pattern Analysis and*
 542 *Machine Intelligence*, 45(1):111–122, 2022.

543

544 Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Dongeon Lee, and Sang Woo Kim. How to use
 545 dropout correctly on residual networks with batch normalization. In *Uncertainty in Artificial*
 546 *Intelligence*, pp. 1058–1067. PMLR, 2023.

547 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

548

549 Anders Krogh and John Hertz. A simple weight decay can improve generalization. *Advances in*
 550 *neural information processing systems*, 4, 1991.

551

552 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

553 Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan.
 554 Simple and principled uncertainty estimation with deterministic deep learning via distance aware-
 555 ness. *Advances in neural information processing systems*, 33:7498–7512, 2020.

556

557 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
 558 dataset. *Retrieved August*, 15(2018):11, 2018.

559

560 Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and
 561 Ludwig Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction. In
 562 *ICML Workshop on Uncertainty and Robustness in Deep Learning*, volume 5, pp. 15, 2020.

563

564 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 565 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 566 2017.

567

568 Parsa Moradi and Mohammad Ali Maddah-Ali. General coded computing in a probabilistic straggler
 569 regime. *arXiv preprint arXiv:2502.00645*, 2025.

570

571 Parsa Moradi, Behrooz Tahmasebi, and Mohammad Maddah-Ali. Coded computing for resilient dis-
 572 tributed computing: A learning-theoretic framework. *Advances in Neural Information Processing*
 573 *Systems*, 37:111923–111964, 2024.

574

575 Parsa Moradi, Hanzaleh Akbarinodehi, and Mohammad Ali Maddah-Ali. General coded computing:
 576 Adversarial settings. *arXiv preprint arXiv:2502.08058*, 2025.

577

578 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 579 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 580 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 581 2019.

582

583 George M Phillips. *Interpolation and approximation by polynomials*, volume 14. Springer Science &
 584 Business Media, 2003.

585

586 Francesco Pinto, Harry Yang, Ser Nam Lim, Philip Torr, and Puneet Dokania. Using mixup as a
 587 regularizer can surprisingly improve accuracy & out-of-distribution robustness. *Advances in neural*
 588 *information processing systems*, 35:14608–14622, 2022.

589

590 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
 591 generalize to cifar-10? *arXiv preprint arXiv:1806.00451*, 2018.

592

593 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 594 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
 595 Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115
 596 (3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

597

598 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 599 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 600 2016.

594 Mahdi Soleymani, Ramy E Ali, Hessam Mahdavifar, and A Salman Avestimehr. ApproxIFER: A
 595 model-agnostic approach to resilient and robust prediction serving systems. In *Proceedings of the*
 596 *AAAI Conference on Artificial Intelligence*, volume 36, pp. 8342–8350, 2022.

597

598 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 599 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 600 *learning research*, 15(1):1929–1958, 2014.

601 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 602 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

603

604 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
 605 the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer*
 606 *vision and pattern recognition*, pp. 2818–2826, 2016.

607 Lloyd N Trefethen. *Approximation theory and approximation practice, extended edition*. SIAM,
 608 2019.

609

610 Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
 611 and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
 612 *International conference on machine learning*, pp. 6438–6447. PMLR, 2019.

613

614 Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua Bengio, and David
 615 Lopez-Paz. Interpolation consistency training for semi-supervised learning. *Neural Networks*, 145:
 90–106, 2022.

616

617 Grace Wahba. Smoothing noisy data with spline functions. *Numerische mathematik*, 24(5):383–393,
 1975.

618

619 Grace Wahba. *Spline models for observational data*. SIAM, 1990.

620

621 Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper Snoek, Balaji Lak-
 622 shminarayanan, and Dustin Tran. Combining ensembles and data augmentation can harm your
 623 calibration. *arXiv preprint arXiv:2010.09875*, 2020.

624

625 Huaxiu Yao, Yiping Wang, Linjun Zhang, James Y Zou, and Chelsea Finn. C-mixup: Improving
 626 generalization in regression. *Advances in neural information processing systems*, 35:3361–3376,
 2022.

627

628 Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. Polynomial codes: an optimal design
 629 for high-dimensional coded matrix multiplication. *Advances in Neural Information Processing*
 630 *Systems*, 30, 2017.

631

632 Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi,
 633 and Salman A Avestimehr. Lagrange coded computing: Optimal design for resiliency, security,
 634 and privacy. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp.
 1215–1225. PMLR, 2019.

635

636 Qian Yu, Mohammad Ali Maddah-Ali, and Amir Salman Avestimehr. Straggler mitigation in
 637 distributed matrix multiplication: Fundamental limits and optimal coding. *IEEE Transactions on*
Information Theory, 66(3):1920–1933, 2020.

638

639 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 640 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings*
 641 *of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

642

643 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*,
 2016.

644

645 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 646 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

647

648 **A APPENDIX**649 **A.1 CODED COMPUTING**

650 Inspired by the success of coding theory in communication over unreliable channels, *coded computing*
 651 has emerged as an efficient framework for distributed computation. It addresses key challenges in
 652 distributed systems, particularly the presence of stragglers or adversarial servers (Yu et al., 2017).
 653 Early work introduced coded computing for fundamental tasks such as polynomial evaluation (Yu
 654 et al., 2019; Fahim & Cadambe, 2021) and matrix multiplication (Yu et al., 2017; Jahani-Nezhad
 655 & Maddah-Ali, 2021). More recently, Moradi et al. (2024; 2025); Moradi & Maddah-Ali (2025)
 656 proposed a framework grounded in learning theory that extends coded computing to a wide range of
 657 functions, including deep neural networks, with provable resilience against stragglers and adversaries.
 658

659 The central idea of coded computing is to assign each server a (linear) combination of the data,
 660 referred to as coded data, instead of the raw inputs. The number of coded symbols exceeds that of the
 661 original data, effectively over-representing the data. This redundancy is then leveraged to mitigate the
 662 effects of stragglers and adversarial behavior. Formally, suppose a master node aims to approximately
 663 compute a function $f : \mathcal{X} \rightarrow \mathcal{Y}$ on a dataset $\{x_1, \dots, x_K\}$ using a cluster of N servers, some of
 664 which may be stragglers. The coded computing framework proceeds in three steps:
 665

666 (1) **Encoding:** The master node fits an encoder function $u_{\text{enc}} : \mathbb{R} \rightarrow \mathcal{X}$ to the set of points
 667 $\{(\alpha_i, x_i)\}_{i=1}^K$, where $\alpha_1 < \alpha_2 < \dots < \alpha_K \in \Omega \subset \mathbb{R}$ are referred to as *encoding points*.
 668 Thus,

$$669 \quad \forall i \in [K], \quad u_{\text{enc}}(\alpha_i) \approx x_i. \quad (10)$$

670 The master node then generates N *coded data* by evaluating the encoder at another fixed set
 671 $\{\beta_j\}_{j=1}^N$ with $\beta_1 < \beta_2 < \dots < \beta_N \in \Omega \subset \mathbb{R}$, called *decoding points*:

$$672 \quad \tilde{x}_j = u_{\text{enc}}(\beta_j), \quad j \in [N]. \quad (11)$$

673 Each coded point \tilde{x}_j is a combination of the original input dataset $\{x_i\}_{i=1}^K$, and is then
 674 assigned to server j .

675 (2) **Computation:** Each server j computes $f(\tilde{x}_j)$ and returns the result to the master. Due to
 676 the presence of stragglers, some results may be missing. Let \mathcal{F} denote the set of indices
 677 corresponding to successfully returned results.

678 (3) **Decoding:** Given the received outputs $\{f(\tilde{x}_v)\}_{v \in \mathcal{F}}$ from the non-straggler servers, the
 679 master node fits a decoder function $u_{\text{dec}} : \mathbb{R} \rightarrow \mathcal{Y}$ at the points $\{(\beta_v, f(\tilde{x}_v))\}_{v \in \mathcal{F}}$. Conse-
 680 quently,

$$681 \quad \forall j \in [N], \quad u_{\text{dec}}(\beta_j) \approx f(u_{\text{enc}}(\beta_j)). \quad (12)$$

682 If the decoder $u_{\text{dec}}(\cdot)$ generalizes well, it can approximate $f(\cdot)$ on the original dataset
 683 $\{x_i\}_{i=1}^K$:

$$684 \quad \hat{f}(x_i) \triangleq u_{\text{dec}}(\alpha_i) \approx f(u_{\text{enc}}(\alpha_i)) \approx f(x_i), \quad (13)$$

685 where the first approximation relies on the generalization ability of u_{dec} , and the second
 686 follows from (10).

687 The goal is to obtain an accurate estimate of the function $f(\cdot)$ on the input dataset. The key design
 688 choice in the coded computing scheme is selecting encoder and decoder functions that yield low
 689 estimation error.

690 Moradi et al. (2024) propose using smoothing splines (Wahba, 1975; 1990) as both encoder and
 691 decoder functions, fitted on $\{x_i\}_{i=1}^K$ and $\{f(\tilde{x}_v)\}_{v \in \mathcal{F}}$ with smoothing parameters λ_e and λ_d , respec-
 692 tively. More specifically, the decoder is obtained by solving the following optimization problem:

$$693 \quad u_{\text{dec}}^* = \arg \min_{u \in \mathcal{H}^2(\Omega)} \frac{1}{|\mathcal{F}|} \sum_{v \in \mathcal{F}} \|u(\beta_v) - f(u_{\text{enc}}(\beta_v))\|^2 + \lambda_d \cdot \|u''\|_{L^2(\Omega)}^2, \quad (14)$$

694 where $\mathcal{H}^2(\Omega)$ denotes the second-order Sobolev space over Ω (i.e., functions with square-integrable
 695 derivatives up to order two), and $\|\cdot\|_{L^2(\Omega)}$ denotes the L^2 -norm on Ω .

Using the decoder function in (14), together with a careful choice of encoding points, decoding points, and smoothing parameter, Moradi et al. (2024) show that the mean squared estimation error of the coded computing scheme can be upper bounded as follows:

Theorem 1 (Moradi et al. (2024)). *Consider the coded computing framework with N servers and at most S stragglers. Suppose $\Omega = (-1, 1)$ and $f(\cdot)$ is μ -Lipschitz continuous. Then,*

$$\frac{1}{K} \sum_{i=1}^K \left\| \hat{f}(x_i) - f(x_i) \right\|^2 \leq C \left(\frac{S+1}{N} \right)^3 \left\| (f \circ u_{\text{enc}})'' \right\|_{L^2(\Omega)}^2 + \frac{2\mu^2}{K} \sum_{k=1}^K \|u_{\text{enc}}(\alpha_k) - x_k\|^2, \quad (15)$$

where $C > 0$ is a constant.

B PROOF OF LEMMA 1

Since in the coded-smoothing module $u_{\text{enc}}(\alpha_i) = x_i$, the second term in Theorem 1 vanishes. Setting $S = 0$ and applying the chain rule to $(f \circ u_{\text{enc}})''$ completes the proof of the lemma.

C ENCODER AND DECODER MATRIX REPRESENTATION

Here also, we can present a matrix representation of the encoding and decoding processes. We define $A^{\text{enc}} := A_{\vec{\alpha}, \vec{\beta}} \in \mathbb{R}^{K \times N}$ and $A^{\text{dec}} := A_{\vec{\beta}, \vec{\alpha}} \in \mathbb{R}^{N \times K}$ as the encoder and decoder matrices, respectively, where $\vec{\alpha} := [\alpha_1, \dots, \alpha_K]^T$ and $\vec{\beta} := [\beta_1, \dots, \beta_N]^T$ denote the encoding and decoding points, respectively. The coded samples are then obtained as

$$\forall j \in [N], \quad \tilde{x}_j = \langle A_j^{\text{enc}}, \vec{x} \rangle \quad (16)$$

where A_j^{enc} denotes the j th column of the matrix A^{enc} and $\vec{x} = [x_1, \dots, x_K]^T$. Finally, letting $\vec{f}(A^{\text{enc}}, \vec{x}) := [f(\langle A_1^{\text{enc}}, \vec{x} \rangle), \dots, f(\langle A_N^{\text{enc}}, \vec{x} \rangle)]^T$, the decoded estimates are given by

$$\forall i \in [K], \quad \hat{f}(x_i) = \langle A_i^{\text{dec}}, \vec{f}(A^{\text{enc}}, \vec{x}) \rangle. \quad (17)$$

D COMPUTATIONAL COMPLEXITY OF CODED-SMOOTHING MODULE

Since both the encoder and decoder functions are non-parametric, the coded-smoothing module does not introduce any additional learnable parameters to the model.

Additionally, when $N = K$, the coded path has approximately the same computational cost as the original path. The only extra overhead comes from the encoding and decoding operations (i.e., evaluating and fitting the splines), which contribute only a negligible cost compared to the main computation. This efficiency arises because fitting and evaluating smoothing splines can be performed in linear time using the B-spline basis representation (De Boor, 2001; Eilers & Marx, 1996). More specifically, if the input and output dimensions are d and m (for example, when applying coded smoothing to the entire network on CIFAR-10, the input dimension is 32×32 and the output dimension is 10), the computational complexities of the encoding and decoding steps are $\mathcal{O}((N+K) \cdot d)$ and $\mathcal{O}((N+K) \cdot m)$, respectively. Assuming $N \approx K$, both terms scale linearly in the dimension and batch size and are negligible relative to the main computation.

To illustrate this in practice, we conduct a runtime analysis to compare the computational cost of the coded path and the original path. Table 4 reports the runtime for processing a batch of 128 CIFAR-10 images using PreActResNet18 on a single NVIDIA RTX 5090 GPU.

These results show that the coded-smoothing module introduces only minimal computational overhead in practice.

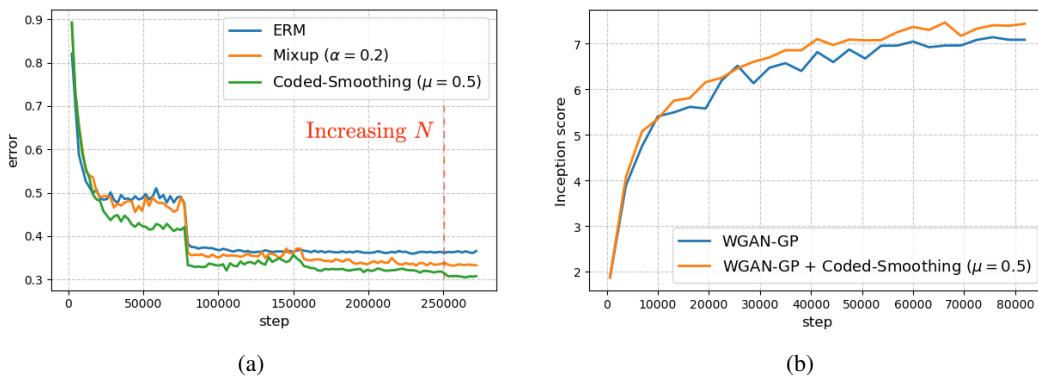
756 Table 4: Inference time comparison between the original and coded paths.
757

Method	Time
Original Path	1.5 ms \pm 0.5
Coded Path	2 ms \pm 0.4

762
763 E EXPERIMENTAL DETAILS
764765 E.1 SUPERVISED
766768 For all supervised learning experiments, we train models on the CIFAR-10, CIFAR-100, Tiny
769 ImageNet, and ImageNet-1k datasets under consistent optimization settings.
770771 In the CIFAR-10 and CIFAR-100 experiments, we train for 350 epochs with an initial learning rate of
0.1. The learning rate is decayed by a factor of 10 at epochs 100 and 250 for both datasets.
772773 For Tiny ImageNet, we also use an initial learning rate of 0.1. The learning rate is decayed by a factor
774 of 10 at epochs 100, 200, and 300.
775776 For ImageNet-1k, we follow the training schedule reported in Zhang et al. (2017). We use an initial
learning rate of 0.2, and decay it by a factor of 10 at epochs 30, 60, and 90.
777778 In all experiments, we use stochastic gradient descent (SGD) with momentum 0.9 as the optimizer,
and set the batch size to 128.
779780 E.1.1 HYPERPARAMETER SELECTION
781782 For mixup and manifold mixup, the mixing coefficient λ is sampled from a Beta distribution
783 Beta(α, α), where α is chosen according to the best-performing settings reported in prior work
784 (Zhang et al., 2017; Verma et al., 2019). Specifically, for mixup we use $\alpha = 1.0$ on CIFAR-10 and
785 CIFAR-100, and $\alpha = 0.2$ on TinyImageNet and ImageNet-1k. For manifold mixup, we select the set
786 of intermediate layers following the best-performing configuration reported in Verma et al. (2019),
787 and set $\alpha = 2.0$ for CIFAR-10 and CIFAR-100, and $\alpha = 0.2$ for TinyImageNet and ImageNet-1k.
788789 Training with the CODED-SMOOTHING method introduces two hyperparameters: μ and N . The
790 parameter μ in (7) balances the contribution of the coded path in the overall loss, while N controls
791 the accuracy of the estimation. From Lemma (1), the discrepancy between the original and coded
792 path outputs decreases either as N increases or as $f(\cdot)$ becomes smoother. However, setting N too
793 large makes the coded and original paths nearly identical, effectively collapsing the method to ERM.
794 Empirically, we find that initializing with $N = K$ (the batch size, see Figure 2) and $\mu = 0.5$ yields
795 the best trade-off between regularization strength and predictive accuracy. A detailed sensitivity
analysis of N and μ is presented in Tables 6 and 7 in Appendix H.
796797 **Scheduling N .** Fixing N during training causes saturation, as the gap between f and \hat{f} stops
798 shrinking once a certain smoothness is reached. To address this, we gradually increase N from the
799 batch size K to γK with $\gamma > 1$. We find $\gamma = 1.5$ works best, yielding two benefits: improved
800 coded-path accuracy (making it reliable for inference) and escaping training plateaus for further gains
(see Figure 5a).
801802 E.2 UNSUPERVISED
803804 For the unsupervised experiments with WGAN, we used the following configuration: the training was
805 performed for 100,000 iterations with a batch size of 64. The number of coded points (N) was set to
806 96. Moreover $\mu = 0.5$. The initial learning rate was 2×10^{-4} , and the critic was updated 5 times
807 per generator step. We employed a gradient penalty coefficient $\lambda_{gp} = 10$, and the optimizer was
808 Adam with betas (0.0, 0.9). For Inception Score (IS) computation, 50,000 samples were used. For
809 FID computation, we followed the standard protocol by comparing the statistics of 50,000 generated
images with the real dataset.
810

810 F COVARIATE SHIFT ROBUSTNESS
811812 Table 5: Comparisons of accuracies (%) on out-of-distribution test data.
813

	CIFAR-10.1	CIFAR-10.2	CIFAR-10.C	ImageNet-R
ERM	86.5 ± 0.4	82.8 ± 0.1	72.7 ± 0.3	21.3
Mixup	88.9 ± 0.4	85.7 ± 0.2	78.2 ± 0.3	19.8
CODED-SMOOTHING (ours)	89.6 ± 0.5	86.4 ± 0.1	77.6 ± 0.2	22.8

814 G PERFORMANCE DURING TRAINING
815
816817 Figure 5: (a) TinyImageNet validation loss for different methods during training. (b) Comparison of
818 Inception Score (IS) during training on the CIFAR-10 dataset. In WGAN-GP + CODED-SMOOTHING,
819 the coded-smoothing module is applied to the generator of the GAN architecture.
820830 H ABLATION STUDY
831832 H.1 EFFECT OF NUMBER OF CODED SAMPLES (N)
833834 Table 6: Test accuracy (%) of training with coded-smoothing module for different number of coded
835 samples (N) on CIFAR-10 with batch size 128.
836

N	Acc
110	95.6
130	95.0
150	94.8
170	94.5
190	94.2

837 H.2 EFFECT OF μ
838839 Table 7: Test accuracy (%) of training with coded-smoothing module for different μ on CIFAR-10.
840

μ	Acc
0.1	95.1
0.2	95.4
0.4	95.7
0.5	95.9
0.6	95.8
0.8	95.4
1.0	95.0

864 H.3 EFFECT OF THE LAYER SET
865

866 We conducted additional experiments in which coded-smoothing was selectively applied to different
867 layers or blocks within the ResNet architecture. Specifically, we applied the coded-smoothing module
868 to various subsets of blocks in the PreActResNet-18 model for the CIFAR-10 task. The results are
869 shown in Table 8.

870 Table 8: Effect of coded-path block selection on test accuracy and loss.
871

Set of blocks in the coded path	Test Acc	Test Loss
0	94.6	0.25
3	94.6	0.26
0,1	94.8	0.23
0,2	94.8	0.23
1,3	94.8	0.235
0,1,2	94.5	0.24
0,1,2,3	95.1	0.19
0,1,2,3,4	95.9	0.19

883 H.4 INTEGRATING WITH DROPOUT
884

885 We evaluate the coded-smoothing module both with and without dropout. Following the recom-
886 mendation in (Kim et al., 2023), for best performance, dropout should be inserted after the second
887 batch-normalization layer in each ResNet block. The results demonstrate that dropout integrates
888 smoothly with the proposed module and yields a modest improvement in generalization performance.

889 Table 9: Effect of integrating dropout on test accuracy and loss for the CIFAR-10 dataset using ERM
890 and coded-smoothing.
891

Method (CIFAR-10, PARN18)	Test Acc	Test Loss
Raw	93.780	0.308
Raw + Dropout	93.840	0.325
Coded Smoothing	95.120	0.240
Coded Smoothing + Dropout	95.200	0.217

898 H.5 EFFECT OF BATCH SIZE AND NUMBER OF CODED SAMPLES IN RCI
899900 Table 10: Comparison of accuracies of inference with coded path for the mode methods under
901 Adversarial attack on CIFAR-10 dataset.
902

Batch Size	# Coded Samples (N)	No Attack	FGSM ($\epsilon = \frac{8}{255}$)	PGD (10 steps)
8	12	94.9	78.1	69.8
16	24	94.8	79.0	70.3
32	48	94.9	79.3	70.6
64	96	94.9	80.1	71.5
128	190	94.9	80.5	72.0