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Abstract
Recent results show that modern Large Language
Models (LLM) are indeed capable of understand-
ing and answering questions about structured data
such as graphs. Existing proposals often use some
description of the graph to create an “augmented”
prompt fed to the LLM. For a chosen class of
graphs, if a well-tailored graph encoder is de-
ployed to play together with a pre-trained LLM,
the model can answer graph-related questions
well. Existing solutions to graph-based prompts
range from graph serialization to graph transform-
ers. In this work, we show that the use of a
parameter-free graph encoder based on Algebraic
representations, a concept borrowed from math-
ematical physics, is remarkably versatile in this
problem setting. The simple construction, inher-
ited directly from the theory with a few small
adjustments, can provide rich and informative
graph encodings, for a wide range of different
graphs. We investigate the use of this idea for
prefix-tuned prompts leveraging the capabilities
of a pre-trained, frozen LLM. The modifications
lead to a model that can answer graph-related
questions – from simple graphs to proteins to
hypergraphs – effectively and with minimal, if
any, adjustments to the architecture. Our work
significantly simplifies existing solutions and gen-
eralizes well to multiple different graph-based
structures effortlessly.

1. Introduction
Large Language Models (LLMs) excel at tasks like question
answering, sentence completion, translation, and even solv-
ing undergraduate-level math problems (Liu et al., 2024; Jo-
hansson, 2024). However, they sometimes need additional
data unavailable during training. For instance, a model
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trained on data up to a specific date may struggle with the
ever-changing news cycle (Vu et al., 2023; Mousavi et al.,
2024). To prevent responses from becoming outdated, or to
integrate non-public/proprietary data and domain-specific
terminology, models need extra context. This need has led
to strategies like Retrieval Augmented Generation (RAG)
(Guu et al., 2020; Ding et al., 2024; Dong et al., 2022; Zoph
et al., 2022; Min et al., 2022). RAG allows additional in-
formation to be included with a prompt, guiding the model
to generate responses aligned with the extra context. This
method is beneficial as it does not require retraining the
LLM and can be applied to proprietary models like GPT
(Brown et al., 2020) by adding a text description of the extra
information.

RAG-type ideas are also being studied for utilizing not just
additional/new data but also novel input formats/modalities,
such as tables and graphs (Sui et al., 2024; Lu et al., 2024;
Wang et al., 2023; Guo et al., 2023). Several recent results
have reported success at “serializing” such structured data-
types into a text-form description that can be easily used
within RAG. For tables, the serialization is not too compli-
cated (Sui et al., 2024; Lu et al., 2024), but more care is
needed for graphs. While different types of graphs can all
be handled by the same pipeline, the efficacy of the overall
model varies from one setting to the other (Fatemi et al.,
2024; Wang et al., 2023; Guo et al., 2023). Further, it has
been observed that specific design choices to “textify” the
graph can influence performance and additionally, prompt-
ing techniques can have more than a small impact on the
results (Fatemi et al., 2024). What will work well in a spe-
cific setting depends on both the question at hand as well
as the characteristics of the data (Perozzi et al., 2024; Chai
et al., 2023).

Prefix-tuning. One emerging option to address the men-
tioned issues is “prefix-tuning” (Li & Liang, 2021). A spe-
cialized graph encoder translates the underlying graph into
embeddings that can be fed directly to an LLM, eliminating
the need for a textual description. Though not training-free,
the LLM remains frozen, and only the relatively smaller
graph encoder is trained. This approach has shown impres-
sive performance, often surpassing RAG-based methods.
However, using a specialized graph encoder can be chal-
lenging due to the variety of graph types. For example,
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GraphToken (Perozzi et al., 2024) can encode only simple
graphs, while GNP (Tian et al., 2024) constructs a com-
plex pipeline to handle large graphs and extract subgraphs
out of them. GraphLLM (Chai et al., 2023) combines a
transformer and a GNN (about 100M parameters). Despite
sophisticated designs, adapting these models to different
graph types (e.g., protein-derived graphs or hypergraphs) is
difficult, and even familiar graph types need adjustments for
new tasks.

Context of this paper. RAG-based approaches for graphs
primarily involve converting graphs to text, while prefix-
tuning with graphs uses modules to extract richer, task-
relevant structures, requiring larger sample sizes and higher
compute power. A key question is whether we can achieve
powerful, task-agnostic graph representations that are as
easy to obtain as RAG-based methods. Could a lightweight
adapter map these rich (but task-independent) representa-
tions into the LLM embedding space, making prefix-tuning
effective for various tasks? Recent results hint that this may
be viable (Moayeri et al., 2023). For instance, a single linear
layer can transform an arbitrary image encoder’s outputs
to align with CLIP’s (Radford et al., 2021) text encoder
embeddings. If our graph encoding captures the graph’s in-
formation and structure well enough, a similar adapter could
work with a pre-trained LLM to offer good performance.
We ensure this by invoking a mature concept from mathe-
matical physics, called Fock Spaces. Our findings show that
a linear adapter with these representations yields compet-
itive performance, handling complex graph questions and
diverse structures like hypergraphs and proteins.

2. Deriving Fock space based Graph
Representation

Setup/rationale. Assume we are given a graph G =
(V,E) with a vertex set V and an edge set E. To obtain
a complete representation for G, we start with the Dirac
operator, leveraging the structure of G (Hatcher, 2002). A
significant body of work focuses on representing graphs
through various techniques, such as graph spectra derived
from the Laplacian’s eigenvalues (which we will also calcu-
late below). Spectral graph theory provides powerful tools
for studying global properties of graphs like connectivity
and symmetries (e.g., Courant Fischer theorem, Fiedler’s
theorem (Fiedler, 1973; 1989)). However, it is less effec-
tive for capturing relationships between individual elements
(nodes and edges) within the graph, as the eigenvalues are
scalar quantities. Our approach below will seek to exploit
the richness of an algebraic structure that will allow more
sophisticated manipulations, explore the interplay between
different parts of the graph if needed and thereby, offer more
flexibility.

By borrowing ideas from quantum mechanics (Weyl, 1950;

Prugovecki, 2006) and Algebraic representations from Clif-
ford algebra, we represent G equipped with the Dirac oper-
ator with a representation in the Fock space.

Representing nodes, sums, and products. Our default
approach assigns a vector to each concept (node, edge, etc.)
by generating random, orthogonal vectors in high dimen-
sions. When the number of vectors exceeds the dimensional-
ity, preserving linear independence is not possible. Although
there are workarounds (e.g., space-filling frames (Sustik
et al., 2007; Casazza et al., 2008)), we address this simply
by sampling vectors from a normal distribution N (0, 1/d),
resulting in nearly orthogonal vectors. Practically, the max-
imum absolute cosine similarity between any two vectors
remains below 0.1, consistent with known results (Blum
et al., 2020). For Fock space calculations like sums and
products, we prefer operations that preserve dimensional-
ity rather than tensor products, which significantly increase
dimensionality (Wolff et al., 2018). This simplifies imple-
mentation, as all resultant embeddings maintain the same
dimensionality regardless of the encoding method. We de-
fine the sum (⊕) as element-wise addition, and the product
(⊗) as circular convolution. This can be seen as element-
wise multiplication of the vectors’ Fourier representations
followed by an inverse Fourier transformation. For vectors
∈ Rd, the complexity is O(d log d). This also allows us to
define the inverse vector, i.e., for any vector b, we have a
vector a such that a’s Fourier representation is the inverse of
b’s. So, the identity a⊗ b = 1 holds. But our experiments
are not tied to this specific implementation, and improved
choices can be dropped in.

2.1. Systematic Encoding recipes for Graphs

Notice that, we use a parameter-free scheme to obtain rich
graph embeddings. Our approach is general and can handle
a large spectrum of different graph types, and its extension
to novel graph-types is straightforward. Diverse graph types
such as hypergraphs, attributed graphs, as well as proteins
can all be modeled easily providing an alternative or a good
initialization for more intensive trainable models.

For a graph G = (V,E) we have a vector pi, using i to
index the nodes. We also use an extra vector s for the graph’s
size, a practical design choice we will explain shortly. Then,
with these n + 1 vectors, we obtain a lossless Fock-space
based representation g as:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
(1)

Each edge’s endpoints are fused together using ⊗ and then
we aggregate all edges together using ⊕. Finally, the graph’s
size is also added using the special vector s.
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Lossless representation. The above representation is loss-
less. Assuming we use (1) to get a graph’s embedding g.
Then, simply by evaluating the expression pT

j (p
−1
i ⊗ g),

we can determine whether the edge (i, j) exists in the edge
set of that particular graph. In this way, we can recover, one
by one, all edges of the graph and correctly reconstruct it,
if desired. It is instructive to check the importance of s. By
evaluating the expression pT

i (s
−1 ⊗ g), ∀i, we can first ob-

tain the size of the graph. This can inform the edge retrieval
above because an expression of the form pT

n+x(p
−1
i ⊗ g)

could, in practice, produce a number close to 1, although
there is no such edge. By first obtaining the size of the
graph, we have a “safeguard” against such phantom edges
beyond the real vertex-set.

Vertex attributes. Consider a graph G = (V,E,Attr),
where the set Attr (with |Attr| = |V |) consists of attributes,
one for each vertex. There is no restriction on the type of
attributes: it can denote numerical values or text or any other
concept. Let ai be the vector associated with the attribute of
vertex i ∈ V (using an appropriate text-encoder if needed).
Then, we can augment (1) to absorb the extra information
in the following way:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
⊕

⊕
i∈V

(
pi ⊗ ai

)
(2)

The graph is again, fully reconstructable. We have also
encoded each vertex’s attribute (which can be recovered by
the expression aTj (p

−1
i ⊗g)). We should think of proteins as

a graph with vertex attributes where each vertex is a specific
amino acid (possibly with 3-D coordinates).

Hypergraphs (Theory versus Practice). Hypergraphs
are generalizations of graphs: each edge is connected to an
arbitrary number of vertices, instead of just 2. In theory, we
can easily augment (1) so that we can handle hypergraphs
as follows: g =

(
s ⊗ pn

)
⊕
⊕

(k1,···km)∈E

⊗m
i=1 pki

. In
practice, aggregating many multiple vectors together may
be unstable. This is true for our particular design choices
for calculations (e.g., circular convolution), so we use an
alternative approach. We can start by observing that each
edge can be interpreted as a unique cluster of vertices, so
we simply assign a unique vector ei, i ∈

[
|E|
]

to each
edge in the hypergraph. This modification allows us to
encode the hypergraph similar to how a graph is encoded
as a dictionary, in the following way g =

(
s ⊗ pn

)
⊕(⊕|E|

i=1

(
ei ⊗

⊕
j∈Ei

pj

))
.

Recent works showed that (a) textualizing a graph and pre-
appending it to a question results in better-than-random

Figure 1. FockLLM overview. Using a parameter-free graph en-
coder we get graph embeddings for a range of different graphs.
Then, we use linear adapters with a frozen LLM for prefix tuning.

responses from the LLM (although far from perfect), and
(b) using a specialized graph encoder such as a GNN or a
graph transformer and training along with a frozen LLM
results in a big improvement in performance, resulting essen-
tially in LLMs that can understand, to some extent, graphical
structures. One takeaway is that we can bypass the most
tedious stage of designing application-specific graph en-
coders. Instead, we can use a parameter-free method for a
wide range of graph types, as we described above. Thus,
the only trainable parts of the pipeline are simple linear
adapters that convert the raw graph encodings to a format
“understandable” by an LLM. Our FockLLM is shown in
Fig. 1. After getting the graph encodings, we train one/more
linear adapters and append the transformed encodings to the
question’s embeddings fed to the LLM.

Summary and Takeaway. We highlight some qualitative
advantages. First, our graph encoding is parameter-free and
efficient. The complexity of aggregation is O(d log d) (d is
vectors’ dimension). The number of aggregation operations
is linear (in graph size). Second, our encoder is not restricted
to specific graph types: works easily for simple graphs, for
proteins and for hypergraphs just via small modifications. In
contrast, GraphToken (Perozzi et al., 2024) uses a specific
GNN whose output size is dependent on the underlying task.
These properties simplify our training and eliminates any
tunable components. Third, our open-source code offers a
scalable way to train FockLLM even on consumer GPUs, by
using FSDP (Zhao et al., 2023). As a reference, GraphToken
(Perozzi et al., 2024) is trained on TPUs (code unavailable).

3. Experimental Results
We examine the performance in two real biomedical datasets
including (PPI (Hamilton et al., 2017), Table 1) and
(obnbbench (Liu & Krishnan, 2024), Table 2). We see that
our approach is among the best unsupervised approaches
(for PPI), and is also competitive (if not better) to the best su-
pervised approaches that leverage trainable, graph-specific
models such as GCN (Bruna et al., 2014) and GAT (Liu &
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Zhou, 2020). Obnbench is a collection of extensive open
biomedical repository containing different tasks, and our
model is competitive across across all tasks of the bench-
mark datasets, achieving results better than the best reported
performance so far in almost half of the tasks. These re-
sults provide encouraging evidence that (a) our approach
gives “rich” graph embeddings for a range of different graph
types and styles, and (b) our graph embeddings can be used
as an extra, grounding input to a powerful LLM without
the need to design/train a specialized model, e.g., GNN
(Scarselli et al., 2009; Wu et al., 2022) or a Graph Trans-
former (Dwivedi & Bresson, 2020).

Table 1. Micro F1-score

Model F1

Random 39.2
Node2Vec (Yun et al., 2022) 40.9
Raw features (Yun et al., 2022) 42.2

U
ns

up
er

vi
se

d GraphSAGE-min (Hamilton et al., 2017) 46.5
GraphSAGE-max (Hamilton et al., 2017) 50.2
DGI (Veličković et al., 2019) 63.8
GRACE (Zhu et al., 2020) 66.2
Ours 99.2

Su
pe

rv
is

ed GraphSAGE-min (Hamilton et al., 2017) 50.0
GraphSAGE-max (Hamilton et al., 2017) 61.2
LGCN (Gao et al., 2018) 77.2
GAT (Liu & Zhou, 2020) 97.3
GCNII (Chen et al., 2020) 99.5

Setup and Results (graph understanding). In this setup,
we check whether we can use an LLM to answer questions
about graph’s structure: number of nodes, whether it has
a cycle, and so on. We consider GraphToken and we per-
form a suite of 6 different experiments. Using GraphQA,
although our encodings are not specific to each underlying
task, we perform competitively with specialized models.
The results are shown in Table 3. Even when GraphToken
uses a different embedding for each node or edge (node de-
gree and edge existence tests resp.), we are able to report a
performance quite close to GraphToken, even when using a
single embedding for the entire graph. Our model trails only
in predicting the node degree (GraphToken uses a different
embedding per node that better captures its degree).

4. Conclusions
We have described a novel strategy to encode a graph into
a vector form for direct downstream use or to augment
prompts fed to LLMs. Our approach, grounded in Clif-
ford algebra and Fock space operations, is rigorous and
offers numerous advantages in practice demonstrated via
experiments. We can obtain encodings of arbitrary graphs in-
stantly, with no trainable parameters that nicely encapsulates
the important information content in the underlying graph.
Our model, accompanied with a simple-to-train open-source
codebase, performs favorably relative to highly specialized
models while at the same time handling classes of graphs
where other alternatives fall short or need adjustments.

Table 2. APOP metric (Liu & Krishnan, 2024)
Network Model DISEASES DisGeNET GOBP

BioGRID

LabelProp 1.210 0.931 1.858
LogReg 1.556 1.026 2.571
GCN+BoT 1.511 1.014 2.442
SAGE+BoT 1.486 1.031 2.402
GIN+BoT 1.410 1.007 2.386
GAT+BoT 1.609 1.037 2.624
GatedGCN+BoT 1.547 1.038 2.517
Ours 1.599 1.062 2.433

HumanNet

LabelProp 3.728 3.098 3.806
LogReg 3.812 3.158 4.053
GCN+BoT 3.552 3.053 3.921
SAGE+BoT 3.401 3.052 3.816
GIN+BoT 3.513 3.054 3.861
GAT+BoT 3.761 3.100 3.809
GatedGCN+BoT 3.677 3.086 3.889
Ours 3.853 3.254 3.916

COMPPIHumanInt

LabelProp 1.352 1.106 2.076
LogReg 1.644 1.240 2.806
GCN+BoT 1.648 1.211 2.685
SAGE+BoT 1.694 1.210 2.629
GIN+BoT 1.608 1.219 2.611
GAT+BoT 1.665 1.230 2.755
GatedGCN+BoT 1.672 1.218 2.735
Ours 1.660 1.241 2.586

BioPlex

LabelProp 0.964 0.939 1.714
LogReg 1.358 0.939 2.587
GCN+BoT 1.324 0.911 2.553
SAGE+BoT 1.246 0.865 2.513
GIN+BoT 1.349 0.868 2.504
GAT+BoT 1.355 0.873 2.548
GatedGCN+BoT 1.301 0.859 2.590
Ours 1.273 0.879 2.599

HuRI

LabelProp 0.545 0.598 1.086
LogReg 0.650 0.656 1.084
GCN+BoT 0.634 0.693 1.129
SAGE+BoT 0.593 0.679 1.190
GIN+BoT 0.583 0.702 1.143
GAT+BoT 0.667 0.687 1.174
GatedGCN+BoT 0.596 0.695 1.195
Ours 0.684 0.729 1.070

OmniPath

LabelProp 1.358 0.897 1.593
LogReg 1.542 1.093 2.125
GCN+BoT 1.577 1.068 2.071
SAGE+BoT 1.478 1.062 1.986
GIN+BoT 1.452 1.073 1.993
GAT+BoT 1.552 1.048 2.068
GatedGCN+BoT 1.516 1.049 2.071
Ours 1.511 1.085 2.102

Table 3. GraphToken vs FockLLM on GraphQA. Column 1 stands
for a single embedding for the entire graph; O(n) stands for a
single embedding per node. In all 6 tasks, although we use a
parameter-free, predetermined graph encoding, we see a perfor-
mance similar/better relative to a trainable graph encoder linked
with a larger LLM (PaLM-2). For reference, we also include the
best performance with any RAG-based technique (Fatemi et al.,
2024; Perozzi et al., 2024).

RAG GraphToken FockLLM

Tokens O(n2) 1 O(n) 1

num of nodes 26.9% 99.6% - 97.2%
num of edges 12.8% 42.6% - 45.1%
cycle existence 83.2% 95.6% - 97.9%
num of triangles 16.2% 34.8% - 37.7%
node degree 28.0% - 96.2% 62.7%
edge existence 54.4% - 73.8% 74.3%
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