
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALGORITHMIC PRIMITIVES AND COMPOSITIONAL
GEOMETRY OF REASONING IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

How do latent and inference time computations enable large language models
(LLMs) to solve multi-step reasoning? We introduce a framework for tracing and
steering algorithmic primitives that underlie model reasoning. Our approach links
reasoning traces to internal activation patterns and evaluates algorithmic primi-
tives by injecting them into residual streams and measuring their effect on reason-
ing steps and task performance. We consider four benchmarks: Traveling Sales-
person Problem (TSP), 3SAT, AIME, and graph navigation. We operationalize
primitives by clustering neural activations and labeling their matched reasoning
traces. We then apply function vector methods to derive primitive vectors as
reusable compositional building blocks of reasoning. Primitive vectors can be
combined through addition, subtraction, and scalar operations, revealing a geo-
metric logic in activation space. Cross-task and cross-model evaluations (Phi-
4, Phi-4-Reasoning, Llama-3-8B) show both shared and task-specific primitives.
Notably, comparing Phi-4 with its reasoning-finetuned variant highlights compo-
sitional generalization after finetuning: Phi-4-Reasoning exhibits more systematic
use of verification and path-generation primitives. Injecting the associated prim-
itive vectors in Phi-4-Base induces behavioral hallmarks associated with Phi-4-
Reasoning. Together, these findings demonstrate that reasoning in LLMs may be
supported by a compositional geometry of algorithmic primitives, that primitives
transfer cross-task and cross-model, and that reasoning finetuning strengthens al-
gorithmic generalization across domains.

1 INTRODUCTION

Inference time compute has remarkably improved reasoning in large language models (LLMs), and
reasoning-finetuned models like Phi-4-Reasoning substantially outperform their base counterparts
on reasoning tasks they were not directly trained on (Abdin et al., 2025). However, the extent to
which LLMs, especially reasoning-finetuned models, can learn generalized algorithmic capacities
remains poorly understood (Eberle et al., 2025). While recent advances in mechanistic interpretabil-
ity (Todd et al., 2024) point in this direction, it’s unclear whether LLMs acquire universal repre-
sentations of algorithmic primitives (Huh et al., 2024), whether these primitives are geometrically
organized in representation space, similar to brains (Fascianelli et al., 2024), and whether LLMs
solve reasoning tasks by composition of generalized algorithmic primitives, and through component
reuse across tasks and models (Merullo et al., 2024). This presents a unique opportunity to under-
stand the algorithmic basis of LLM reasoning, improvements in compositional generalization after
finetuning, and the impact of finetuning on chain-of-thought reasoning (Lobo et al., 2025).

This work aims to understand how fundamental algorithmic primitives are generalized and com-
posed to enable complex reasoning capabilities in LLMs. The work addresses three fundamental
questions: (1) What are the basic algorithmic primitives that language models use in specific tasks,
and across reasoning domains? (2) Do these primitives compose geometrically in neural activation
space? (3) How do reasoning-enhanced models differ from base models in their primitive usage
and composition? We introduce a framework for a multi-level algorithmic understanding. We first
extract algorithmic primitives by clustering internal representations and interpreting the correspond-
ing reasoning traces. We then apply function vector methods to extract primitive vectors from the
models’ internal representations. We induce and steer algorithmic primitives by injecting primitive
vectors across the layers. To identify both task-specific and universal algorithmic primitives, we
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apply the approach across domains: Traveling Salesperson Problem, 3-SAT, AIME, and graph nav-
igation. Finally, to investigate compositional generalization as a result of finetuning, we compare
algorithmic performance of base models and reasoning-finetuned counterpart, like Phi-4 and Phi4-
reasoning (Abdin et al., 2025). This multi-level framework allows us to understand the geometry
and compositionality of algorithmic primitives in LLM reasoning.

Our contributions include: (1) the systematic identification of cross-domain algorithmic primitives
in LLMs, (2) a geometric framework for understanding primitive composition through vector arith-
metic, (3) novel methodology linking explicit reasoning behaviors to internal mechanisms, (4) mech-
anistic evidence for compositional generalization following finetuning LLMs for reasoning, and (5)
evaluation of cross-task primitive transfer and generalization.

2 RELATED WORK

Interpretability for Transformers. With increasing scale and complexity of LLMs, the challenge
of understanding their predictions has become an important research direction in explainable AI
and interpretability research. This has specifically targeted the analysis of internal model structure
and feature relationships (Geiger et al., 2022; Eberle et al., 2022; Schnake et al., 2022), as well as
representations and manifolds (Kornblith et al., 2019) including concepts (Chormai et al., 2024).
Mechanistic interpretability (Sharkey et al., 2025) has focused on the extraction of circuits (Olah
et al., 2020; Wang et al., 2023), feature descriptions (Hernandez et al., 2022), and causally effective
representations such as function vectors (Todd et al., 2024). Combined analysis of individual neu-
rons (Gurnee & Tegmark, 2024; Templeton et al., 2024), attention scores (Voita et al., 2019; Clark
et al., 2019), and task-specific attention heads (Vig & Belinkov, 2019; McDougall et al., 2024) have
further deepened our understanding of internal model processing. In parallel, free-text and chain-
of-thought explanations (Turpin et al., 2023; Camburu et al., 2018; Huang et al., 2023; Madsen
et al., 2024) consider the model’s own natural language explanation of what it is doing and why.
Gradient-based feature attributions have further enabled to scale the localization and analysis of
relevant features in LLMs (Ali et al., 2022; Jafari et al., 2024).

Function Vectors and Behavioral Interventions. LLMs’ contextualized representations such as
function vectors (Todd et al., 2024) and in-context task vectors (Hendel et al., 2023; Yang et al.,
2025) are shown to trigger execution of associated tasks. A broader application of such steering
vectors include persona vectors (Chen et al., 2025) and representations of truthfulness (Marks &
Tegmark, 2024; Bürger et al., 2024). Probing has identified associations between internal repre-
sentations and features of interest (Conneau et al., 2018; Hewitt & Manning, 2019). This has also
been extended to the analysis of reasoning strategies, e.g., by identifying probes involved in solving
grade-school math problems (Ye et al., 2025). These analyses provide some first methods to under-
stand how complex representational geometries and manifolds drive predictions in modern models.
Related work from neuroscience shows that task-related variables are encoded in neural geometries
in a format that supports generalization to novel situations (Bernardi et al., 2020). Monkey neuro-
science research has linked compositional generalization in neural representational geometry with
behavioral performance (Fascianelli et al., 2024). These findings suggest that function vector meth-
ods can be used to study how compositional generalization may guide algorithmic steering of LLMs,
providing a conceptual starting point for our work.

Algorithmic Evaluation and Steering of Language Models. Multi-step planning and graph nav-
igation are standard benchmarks for structured reasoning (Fatemi et al., 2023), yet most LLMs
perform poorly and fail to generalize with growing graph complexity (Momennejad et al., 2023).
Although efficient algorithms exist, recent evaluations suggest that LLMs rely on policy-dependent
heuristics rather than explicit search strategies (Eberle et al., 2025). Complementary works have
aimed to map a high-level causal model to an internal realization by an LLMs (Geiger et al., 2024),
and prompt models to generate sets of abstract hypotheses about the tasks to improve inductive
reasoning performance (Wang et al., 2024). Recent analysis of chain-of-thought outputs has uncov-
ered sentence-level relationships, offering the localization of salient reasoning steps (Bogdan et al.,
2025). Existing work either targets high-level behaviors such as politeness, creativity, or honesty
using relatively coarse vector representations to steer behavior (Chen et al., 2025), or focuses on
very simple input-output mapping (Todd et al., 2024). Our work focuses on algorithmic steering,
targeting computational primitives and their compositions, aiming at a deep understanding of the
model’s internal algorithmic phenotypes and applications in future algorithmic finetuning.
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Figure 1: Algorithmic Tracing & Steering: Primitive Extraction & Evaluation. We trace algorithmic
primitives by a clustering latent representations, b identifying corresponding reasoning traces, c
meta-clustering primitives, identifying sequential transition trends among clusters, and comparing
cluster similarity across models and tasks. Once we identify primitives, d we extract associated
primitive vectors from top heads, and e use causal patching to validate, explore the compositional
geometry and cross-task transfer of primitives.

3 EXPERIMENTAL SETUP: MODELS AND TASKS
Models. We evaluated decoder-only transformer models on multi-step reasoning tasks. Our analyses
primarily focused on Phi-4-Base (Abdin et al., 2024) and the reasoning-specialized variant Phi-4-
Reasoning (Abdin et al., 2025), with additional validation from Llama-3-8B (Dubey et al., 2024).

Tasks and Data Collection. Four multi-step reasoning setups were tested. We primarily focused on
the Traveling Salesperson Problem (TSP), an NP-hard benchmark. Notably, Phi-4-Reasoning ex-
hibited improved performance on TSP despite not being finetuned for this task (Abdin et al., 2025).
We also investigated the 3-SAT and AIME Mathematical Olympiad benchmarks for the same rea-
sons. Finally, we investigated Graph Navigation tasks used in previous LLM reasoning research
(Momennejad et al., 2023; Eberle et al., 2025) (see Appendix B for task prompts). Our setups de-
mand planning, search, and verification. TSP and Graph navigation require graph optimization via
planning, path generation, search, comparison, and verification. 3SAT presents another NP-hard
problem that tests flexible algorithmic problem solving. Finally, AIME requires complex mathemat-
ical reasoning and multi-step computation. Together, these setups enable us to examine algorithmic
primitives that are task-specific and those that generalize across tasks. We collected reasoning traces
and associated residual stream vectors across 100+ examples per task, with systematic variation in
problem complexity.

4 METHODOLOGY

4.1 DEFINITIONS AND NOTATION

Definition: Algorithmic Primitive. We define algorithmic primitive as a minimal computational
operation observed in a reasoning process (Eberle et al., 2025) (e.g. TSP), such as retrieving the
nearest neighbor, computing a distance, generating a new candidate path, or verifying a solution.
Primitives can be identified both in explicit reasoning traces (e.g. reasoning steps the model produces
in the output) and in internal activations (e.g. clusters of token representations, or attention patterns).

Definition: Algorithmic Tracing. We define algorithmic tracing as the process of identifying all
relevant primitives for implementing a particular reasoning process. By targeting the computational
building blocks rather than just behavioral outcomes, algorithmic tracing helps us better understand
how and why a model solves a particular task and what other tasks it might be able to solve.

Definition: Primitive Vector. We define primitive vectors (following the function and steering
vector literature (Todd et al., 2024)) as vectors that can be injected into the residual stream to reliably
induce a particular primitive. For a given primitive p and transformer layer ℓ, let the residual stream
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generate_path →

The cities involved are 0, 1, 2, 3, 4, 5. We need to find the shortest 

path using brute force or heuristic methods.

Let's explore a few potential paths:

- Start at City 0:

  - Path: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 0 (...)

generate_path

nearest_neighbor →

(...) 3. To minimize the overall distance, the best heuristic is to 

start with the shortest direct distance from City 0 which is to 

City 5 with a distance of 5.

4. From City 5, the shortest distance to another city is to City 4 

with a distance of 10. (...)
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Figure 2: Primitive vector injection induces associated algorithmic behavior. Injecting the
nearest neighbor or generate path primitive vectors directly after the prompt a increases
expression in output (see examples). b Varying the injection layer and the magnitude modifies the
number of unique paths generated (top row) and the proportion of nearest-neighbor paths (bottom
row). c Injecting primitive vectors for compute distance in the middle of the reasoning trace
increases relevant behavioral hallmarks in the output. d Primitive vectors from AIME were injected
to different layers while solving Traveling Salesperson (TSP), showing cross-task primitive transfer
and algorithmic induction.

activation at token t be hℓ(x, t) ∈ Rdℓ . A primitive vector v
(p)
ℓ ∈ Rdℓ is a direction in activation

space that increases the expression of the primitive function p. Here we extract primitive vectors
using the function vector approach (Todd et al., 2024) (see Section 4.2 for details).

Definition: Primitive Induction for Algorithmic Steering. Given a primitive vector injection
strength α ∈ R, we can intervene on a representation by adding (or patching) a primitive vector:

h̃ℓ(x, t) = hℓ(x, t) + α v
(p)
ℓ ,

which increases the probability of expressing p when α > 0, and decreases it when α < 0. We refer
to this procedure as algorithmic steering or induction.

Algebraic Operations on Primitive Vectors. Assuming compositional geometry, primitive vectors
can be combined through simple algebraic operations in activation space. For primitives p and q at
layer ℓ, additive and subtractive composition within a layer (+ and –) can be defined as:

v
(p⊕q)
ℓ ≈ wp v

(p)
ℓ ± wq v

(q)
ℓ .

Scalar modulation (with varying strength) can be defined as:

v
(αp)
ℓ = α v

(p)
ℓ .

Primitive Transfer: Cross-Task Generalization. We test primitive generalizability by examining
whether primitives identified in one domain transfer to others; specifically by examining whether
injecting primitives extracted from task 1 has a predictable effect on model performance in task 2.
We formalize cross-task transfer as follows. Let p ∈ PT1

denote a primitive extracted from source
task T1, with vector v(p)ℓ,T1

∈ Rdℓ . When evaluating target task T2, we inject this vector into the
residual stream:

h̃ℓ(xT2 , t) = hℓ(xT2 , t) + α v
(p)
ℓ,T1

.

If this intervention increases the activation
a
(p)
ℓ,T2

(xT2
, t) = ⟨v(p)ℓ,T1

, hℓ(xT2
, t)⟩

and increases the associated behavioral hallmark in task T2, we denote successful transfer as:
p ∈ PT1

⇝ p ∈ PT2
.
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4.2 ALGORITHMIC TRACING & STEERING: PRIMITIVE EXTRACTION & EVALUATION

Step 1. Primitive Identification: Geometric Clustering of Latent Representations. We hypothe-
size that distinct algorithmic primitives are reflected in higher dissimilarities in the model’s internal
representations, and therefore apply k-means clustering (Lloyd, 1982) to the model’s internal rep-
resentations while processing complex self-generated reasoning traces. For all clustering analyses,
we extracted representations from layer 17 of Phi-4-base and used k = 50 clusters. We fit separate
models to TSP, 3-SAT, AIME, and GraphNav and also fit a joint model to TSP+AIME.

Step 2. Primitive Identification: Mapping Clusters to Associated Reasoning Traces. We ana-
lyze the primitives associated with the different clusters revealed in step 1 by analyzing the tokens
associated with a particular cluster and the context surrounding them. This lets us categorize algo-
rithmic strategies, verification behaviors, and metacognitive patterns and provides direct insight into
the reasoning processes models employ.

Step 3. Primitive Composition: Hierarchical Meta-Clustering and Temporal Clustering.
To identify prevalent temporal compositions of these clusters, we then apply spectral clustering
(Von Luxburg, 2007) to the matrix of transition probabilities between clusters. This gives rise to a
smaller set of meta-cluster which highlight hierarchically structured reasoning steps. To infer the
number of meta-clusters, we identify the largest spectral gap, using a minimum of four meta-clusters.

Step 4. Primitive Validation: Primitive Vector Extraction. Finally, we extract primitive vectors
associated with particular clusters by adapting the methodology put forward in Todd et al. (2024).
We compute the average attention head activations over all tokens that are a part of a particular clus-
ter (using 100 responses) and then average the outputs of the top attention heads that reliably carry
out a function (k = 35; see appendix). This yields a candidate primitive vector for each extracted
cluster. We validate candidate primitives by defining behavioral hallmarks associated with their pro-
posed computational role and testing whether injecting the extracted primitive vectors results in an
increase in those behavioral hallmarks. Beyond primitive validation, we also examine their com-
positional generalization by testing their arithmetic composition and cross-task transfer, injecting
primitive vectors extracted from AIME into the model while it performs TSP.

Algorithmic Fingerprinting. For a given set of clusters 1, . . . , k and a response i, we extract the
relative frequency of tokens assigned to each cluster, fi ∈ Rk,

∑
i fi = 1. We consider fi as a

simple “algorithmic fingerprint” of a particular reasoning trace, highlighting differences between
the primitives involved in different responses. In particular, we analyze the algorithmic dissimilarity
between two responses by computing the symmetric χ-squared distance between their frequencies,

χ(f, g) :=

k∑
i=1

(fi − gi)
2

fi + gi
. (1)

We also consider sets of responses (f (j))nj=1, (g(j))mj=1. We analyze differences in the involved
algorithmic primitives by computing the average frequencies f = 1

n

∑n
j=1 f

(j), g = 1
n

∑n
j=1 g

(j)

and then computing the signed χ-squared distance

χs(fi, gi) := sgn(fi − gi) ◦
(fi − gi)

2

fi + gi
∈ Rk, (2)

for each cluster i. A large positive difference indicates that the corresponding primitive is much more
prominent in the responses (f (j))mj=1, a large negative difference indicates that the corresponding
primitive is much more prominent in the responses (g(j))mj=1. In particular, we compare Phi-4
responses to Phi-4-Reasoning responses and TSP responses to AIME responses.

5 RESULTS

Primitive Tracing and Steering. We first traced primitives by clustering latent representations over
entire reasoning traces, interpreting these clusters by identifying the corresponding tokens in the
model output. Perhaps surprisingly, we found that despite the simplicity of our approach, many of
these clusters were highly interpretable; for example, we discovered a cluster specifically associ-
ated with the implementation of a nearest-neighbor heuristic, and another cluster associated with
validations, checks, and corrections.
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Figure 3: Clusters are organized in a hierarchical manner and meta-clusters are repeatedly traversed
throughout the response. a Cluster-cluster transition matrix on TSP, organized by meta-cluster (MC).
Most transitions occur within each meta-cluster. b Average t-SNE trajectories across different high-
lighted primitives. c Transition between different clusters for an example output. Different meta-
clusters are highlighted by colors. The latter half of the response undergoes a cyclical transition. d
Most common transitions between different meta-clusters reveals frequently occurring cycles. e-g
Cluster-to-cluster transition matrices structured in terms of the inferred meta-clusters on e 3-SAT, f
AIME, and g GraphNav.

We then determined the average transition probability between the different clusters. Spectral clus-
tering of this transition matrix revealed that, on TSP, clusters are sequentially composed in a hier-
archical and highly stereotyped manner, as most transitions between clusters occcurred within the
same meta-cluster (Fig. 3a). Notably, these different meta-clusters were also responsible for highly
interpretable parts of the reasoning, e.g. path generation or computing distances (Fig. 3c).

We then validated the role of these primitives by extracting the corresponding primitive vectors
and injecting them into Phi-4 during a response generation to TSP. First, we injected two vec-
tors (nearest neighbor and generate path) into the model throughout the response gen-
eration, exploring different layers and magnitudes. We found that nearest neighbor se-
lectively increased the proportion of nearest-neighbor paths generated by the model, whereas
generate path increased the number of total generated paths (Fig. 2a,b). This demonstrates
that the extracted primitive vectors selectively induce a particular behavior and validates the candi-
date primitives generated by our clustering.

To expand this investigation, we injected a broader range of candidate primitive vectors into
the model after providing example paths and distance computations. For example, injecting the
compute distance primitive causes the model to more quickly compute the distance of a candi-
date path. Interestingly, the reverse is also true: subtracting the compute distance vector makes
the model less likely to implement a distance computation (Fig. 2c). This suggests that subtracting
primitive vectors can prevent associated algorithmic primitives. More broadly, we evaluate six be-
havioral hallmarks across six possible function vectors and find that all behavioral hallmarks are
most strongly induced by a candidate primitive vector with a relevant computational role (Table 1).

Notably, the role of a particular cluster cannot always be inferred from the tokens on which
it is active alone; the surrounding context often also plays a role. For example, the cluster
compare and verify is largely active on the token corresponding to the final distance of a can-
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didate path. However, we noticed that tokens on which this cluster was active were often followed
by subsequent checks and comparisons. We therefore hypothesized that this cluster may not just rep-
resent the final distance, but also induce a verification primitive. Table 1 confirms this hypothesis.
Interestingly, we can observe this dual nature in representational space as well. In a t-SNE plot of
the average representational trajectory of these example primitives, we observe that in earlier layers,
compare or verify evolves along other path-related primitives like generate new path,
whereas it moves closer to compare or verify2 in later layers (Fig. 3b).

%NN paths ↑ #Paths ↑ Dist. comp. ↓ Final ans. ↓ #Verif. ↑ #Comp. ↑
nearest neighbor +56.1% +72.0% -73.6% -4.5% +104.3% +125.6%
generate path +4.8% +143.9% -76.0% +18.4% +25.0% +12.2%
compute distance +22.2% +36.5% -86.5% -47.4% +198.9% +79.3%
final answer +23.2% +34.8% -29.8% -81.5% +82.6% -37.8%
compare verify +37.9% +43.6% -62.8% -7.0% +655.4% +1103.7%
compare verify2 +29.5% +48.4% -64.9% -13.7% +706.5% +526.8%

Table 1: Effects of primitive vector injection on behavioral hallmarks (% above baseline). For each
cell, we identify the maximal effect across all positive magnitudes and all intervention layers (10,
13, 15, 17, 20, 30). Bold = strongest effect, underline = second strongest per column. (%NN paths:
proportion of nearest neighbor paths generated. Dist. comp.: Distance computation. Final ans.:
Final answer. #Verif.: number of Verifications in the output. #Comps: number of comparisons in the
output. See Appendix D for detailed definitions.)
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Figure 4: Primitive Cluster Patterns in Phi-4 and Phi-4-Reasoning. a-d top Normalized dissimi-
larity of primitive cluster frequencies between Phi-4 and Phi-4-Reasoning for a) TSP, b) 3-SAT, c)
AIME, and d) GraphNav. bottom Clusters sorted by whether they appear more frequently in Phi-4-
Reasoning responses (positive difference) or in Phi-4 responses (negative difference). The lineplot
specifies the differences whereas the rasterplot underneath specifies the relative frequencies of the
different clusters per response. e left Dissimilarity of primitive cluster frequencies between Phi-4-
Reasoning responses to AIME and TSP. right Clusters sorted by whether they occur more frequently
in AIME or TSP. The rasterplot underneath again specifies the relative frequencies of the different
clusters per response.

Comparing Algorithmic Primitives between Phi-4 and Phi-4-Reasoning. To identify shared and
distinct primitives between responses by Phi-4 and Phi-4-Reasoning, we computed the dissimilar-
ity between the primitive frequencies involved in different responses. We fond that responses by
Phi-4-Reasoning are highly stereotyped (Fig. 4a). In contrast, Phi-4 has two subgroups of distinct
responses. Notably, these groups map onto two distinct approaches towards solving TSP: a brute-
force search and a random guess without further refinement. This highlights that algorithmic fin-
gerprinting reveals both differences between different models, but even differences within responses
from the same model. Beyond TSP, we found that the responses from Phi-4 and Phi-4-Reasoning on
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3-SAT and GraphNav are highly stereotyped (Fig. 4b,d). On AIME, algorithmic primitives involved
in responses to the same question were very similar to each other, whereas primitives involved in
responses to different questions were substantially more different, reflecting the higher diversity of
questions on this benchmark (Fig. 4c).

Next, we analyzed which primitives are more common in Phi-4 or Phi-4-Reasoning by comput-
ing the signed χ-squared difference, and analyzing the clusters with the largest positive and neg-
ative values. This allows us to identify important differences in responses strategies across the
two model. For example, on TSP and 3-SAT, distinct heuristic approaches arise more commonly
in Phi-4-Reasoning than Phi-4 (nearest neighbor and if clause true, Appendix A). Be-
yond task-specific strategies, our comparative analysis also highlights broader differences between
the two models: in particular, clusters that are more common in Phi-4-Reasoning relate to general-
purpose reasoning steps such as verification, recalling instructions, or planning the final answer.

Compositional Primitive Induction. So far, we have considered sequential compositions of al-
gorithmic primitives. To investigate arithmetic compositions of primitives, we consider a set of
algorithmic in-context learning tasks that require identifying 1) the last node of a path (“Terminal
node recognition,” TNR), 2) the node with the higher reward (“Reward comparison,” RC); and 3) the
most highly rewarded node between two paths, a composition of TNR and RC (Appendix C.1). Re-
markably, we find that adding together the primitive vectors for TNR and RC induces this composite
behavior in Llama-3-8B, causing it to match few-shot performance in a zero-shot setting (Fig. 5a).
These effects were more attenuated in Phi-4 and Phi-4-Reasoning, highlighting that different models
may require different modes of composition (Fig. 8).
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Figure 5: Algorithmic primitives operating over graphs, compositional induction, and cross-task
transfer. a Injecting the sum of a terminal node recognition primitive vector (PV TNR) and a reward
comparison primitive vector (PV RC) in a zero-shot setting (ZS) improves model performance on a
task requiring a composition of both primitives and recovers few-shot performance (FS). See Fig. 8
for additional models. b Primitive vectors for extracting the first or last node of a presented graph
reliably improves performance across different injection layers and across a shuffled few-shot and
a zero shot-setting. c After injecting these primitive vectors into complex reasoning traces solving
TSP, the model becomes more likely to mention the corresponding node next.

Cross-task Transfer and Compositional Generalization. Generalized algorithmic primitives
which can be applied across different tasks, can help us understand why reasoning-finetuned models
like Phi-4-Reasoning show improvements on tasks they were not finetuned on. To better understand
the degree to which algorithmic primitives in Phi-4-Reasoning are shared between tasks, we apply
our algorithmic tracing framework to a set of responses from both TSP and AIME (Fig. 4e). This
analysis highlights that while there are different algorithmic primitives at play in either task, the two
tasks also have many algorithmic primitives in common.

Next, we tested whether cross-task injection of algorithmic primitives would induce behavioral
changes. First, we extracted primitive vectors from an algorithmic in-context learning task that
required extracting a path’s first or last node (Fig. 5b). We then injected these primitive vectors
into complex reasoning traces solving TSP immediately after the model had mentioned a particular
path. Despite the extremely different domain, injecting these vectors indeed had the expected effect:
injecting the first node (resp. last node) primitive vector caused the model to subsequently
mention the first node (resp. last node) of the path more often.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Finally, we considered relevant primitive vectors from AIME (e.g. spatial reasoning,
plan final answer) and injected them into Phi-4 generating a response to a TSP prompt. We
found that these primitive vectors caused the model to generate more paths and a higher proportion
of nearest-neighbor paths — a hallmark of Phi-4-Reasoning responses.

6 DISCUSSION

Algorithmic Tracing and Steering. We introduce a framework for tracing and steering algorithmic
primitives as building blocks of LLM reasoning with geometric compositionality. We adapted func-
tion vector techniques (Todd et al., 2024) to extract minimal, 1-step primitive vectors from carefully
designed simple tasks as well as benchmarks with more complex reasoning contexts. When “in-
jected” to LLM layers after the prompt or in the middle of reasoning traces, these primitive vectors
increase the behavioral expression of corresponding reasoning steps (Figs. 2 and 5). This extends
function vector research beyond simple relations between the input and output. A central contri-
bution of our work is the compositional exploration of primitive vector arithmetic. Our framework
bridges a principled path from laboratory-identified primitives to real-world reasoning behaviors.

Toward a Geometry of Compositional Abstraction in LLMs. We find that algorithmic primitives
exhibit geometric regularities through compositional operations like addition, subtraction, multipli-
cation, and scalar modulation. The layer and magnitude of injection shape the output expression of
the primitive (Fig. 2). We show cross-task transfer and generalizability of primitive vectors: spatial
reasoning and verification primitives extracted from AIME successfully transfer to TSP. This trans-
ferability hints at potentially universal algorithmic building blocks underlying diverse reasoning
capabilities.

Reasoning vs. Memorization. Our work contributes to recent discussions about the extent to
which LLMs exhibit abstract reasoning rather than relying on memorized procedures, failing to
generalize in counterfactual scenarios (Wu et al., 2024; Power et al., 2022; Zhang et al., 2024;
Wang et al., 2025). While models were not directly trained on our tasks (Abdin et al., 2025), it
is possible that it may be using amortized reasoning based on similar examples in the training.
LLMs exhibit better problem-solving in high probability than low probability settings (e.g., McCoy
et al. (2024a)), which relies on statistical regularities rather than abstract reasoning. Moreover, the
absence of metacognitive abilities in LLMs results in brittle problem-solving (Johnson et al., 2024;
Lewis & Mitchell, 2024). However, models finetuned for reasoning exhibit less sensitivity to task
probability than base models (McCoy et al. (2024b)) and improved metacognitive-like uncertainty
management strategies (e.g., verifying whether a candidate solution is correct) (Guo et al., 2025;
Gandhi et al., 2025) that in turn causally improve reasoning (Bogdan et al., 2025). In line with these
findings, our analysis identified algorithmic primitives for managing uncertainty (e.g., verification)
and in-context recall. Such behaviors may underlie advanced problem-solving in reasoning models
and suggest how LLMs could develop human-like abstract reasoning.

Limitations. One limitation is that the primitives, corresponding clusters, and meta-clusters we
identify do not always map to a known algorithm. Future work can extract primitive libraries and
algorithmic logic of a given model, identifying commonalities and differences across models. Here,
we focus on reasoning as multi-step problem-solving in limited tasks, which may not capture the
complexity and multimodal nature of natural reasoning, studied in cognitive sciences for decades
Tversky (2005); Shepard & Metzler (1971); MacGregor & Ormerod (1996). Finally, we have fo-
cused on linear compositions of primitive vectors, leaving more complex interactions and potentially
non-linear combinations of several vectors on manifolds for future work.

Future Directions. The algorithmic tracing and steering framework can be applied to any architec-
ture (e.g., vision, diffusion, and multi-modal models) and domain beyond reasoning. An immediate
extension is more detailed manifold analysis in order to capture the compositional geometry of
primitives beyond linear composition, and establish universal and task-specific primitive libraries.
Another key direction is the algorithmic training and finetuning of LLMs, with algorithmic ob-
jectives. Moreover, future self-improving models can be designed for algorithmic self-play: gener-
ating and evaluating compositional algorithmic solutions. Finally, collecting human reasoning data
on the same tasks enables us to compare and finetune model-human algorithmic alignment.

Conclusion. The identification of universal primitives and their compositional geometry opens new
avenues for interpretability research and suggests principled approaches for computational models
of human reasoning, model-human alignment, and enhancing LLM reasoning capabilities.
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7 RECOMMENDED ADDITIONS COPIED FROM GUIDELINES

7.1 LLM USAGE DISCLOSURE

We used LLMs for generating code and for finding related work.

7.2 REPRODUCIBILITY STATEMENT

We provide a detailed description of our methodological implementation and will share our codebase
upon acceptance.
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Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-
snli: Natural language inference with natural language explanations. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf.

Runjin Chen, Andy Arditi, Henry Sleight, Owain Evans, and Jack Lindsey. Persona vectors: Moni-
toring and controlling character traits in language models, 2025. URL https://arxiv.org/
abs/2507.21509.

Pattarawat Chormai, Jan Herrmann, Klaus-Robert Müller, and Grégoire Montavon. Disentangled
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A IDENTIFICATION OF ALGORITHMIC PRIMITIVES

A.1 DETAILED METHODS

We implemented and analyzed five clustering models, using the following datasets:

1. five responses on TSP from Phi-4-Reasoning

2. five TSP responses from Phi-4 and five TSP responses from Phi-4-reasoning

3. five AIME responses from Phi-4 and Phi-4-Reasoning

4. five 3-SAT responses from Phi-4 and Phi-4-Reasoning

5. five GraphNav responses from Phi-4 and Phi-4-Reasoning

In all cases, we used extracted the token-by-token representation from layer 17 of Phi-4-base. We
used k-means clustering with k = 50 clusters and designed a html interface to visually inspect the
different clusters (we will make this tool available on the project website).

Below we highlight selected clusters from the different clustering models.

A.2 PHI-4-REASONING RESPONSES ON TSP

By manually inspecting the responses, we find that many clusters correspond to specific reasoning
motifs and candidate algorithmic primitives.

Cluster 37: nearest neighbor. This cluster is active specifically during the tokens where the
model identifies the nearest-neighbor path or the closest city within a particular candidate path. As
Phi-4-Reasoning’s responses, in contrast to those by Phi-4, often started out by an initial guess using
the nearest-neighbor heuristic (see Appendix ??), we hypothesized that this would be a particularly
relevant primitive.

Cluster 26: generate new path. This cluster usually preceded a new candidate path. We there-
fore hypothesized that representations in these tokens may encode relevant primitives for generating
new paths.

Cluster 15: compute distance. This cluster seems to precede the computation of the total
distance of a candidate path.

Cluster 41: compare or verify 2. This cluster corresponds to a range of statements involved
in comparisons (in particular comparing the distance of different paths), verification (e.g. verifying
whether a generated path is valid), or recall (e.g. recalling the best path so far, a closely related step
to comparisons).

Cluster 35: compare or verify. Interestingly, this cluster is usually active on the final pre-
sentation of the total distance. However, we noticed that not every token corresponding to a total
distance belonged to this cluster. Rather, this cluster reliably predicted whether the next sentence
involved a comparison or verification step — in particular, cluster 35 often preceded cluster 41.
We therefore hypothesized that this cluster could be involved in promoting these comparisons and
verifications.

Cluster 30: produce final answer. This cluster was active during the production of the final
answer and we hypothesized that it would be relevant for that step.

A.3 RESPONSES BY PHI-4 AND PHI-4-REASONING ON TSP

By selectively analyzing the clusters associated with the largest-magnitude differences between their
involvement in Phi-4 and Phi-4-Reasoning, we identify a set of clusters that are more common in
Phi-4 or Phi-4-Reasoning:
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A.3.1 CLUSTERS MORE COMMON IN PHI-4-REASONING

Cluster 19: compare or verify. This cluster again implements comparisons and verifications.
It arises almost exclusively in Phi-4-Reasoning responses, highlighting the reasoning-finetuned
model’s tendency to implement more comparisons and verifications.

Clusters 13 and 10: path generation Cluster 13 represents early cities during the path gen-
eration while cluster 10 represents the connections between cities. Notably, it only represents paths
that are not generated as a part of the brute-force strategy, indicating that the computations involved
in the brute-force strategy are different. For responses by Phi-4 that do not implement a brute-force
strategy, these clusters are also more frequently active.

Cluster 22: generate path guided. This cluster precedes a path generation, but only in Phi-
4-Reasoning. We therefore hypothesize that clusters 6 and 22 might induce different structures in
their generated paths.

A.3.2 CLUSTERS MORE COMMON IN PHI-4.

Cluster 11: brute force. While this cluster sometimes arises in Phi-4-Reasoning, it is more
strongly associated with Phi-4 and arises, in particular, when Phi-4 states its approach to implement
a brute-force search.

Cluster 41: generate path brute force This cluster is specifically active during the gener-
ation of paths involved in brute-force searches.

Cluster 0: compound distance lookup This cluster is active specifically before a dis-
tance lookup requires a multi-step computation. For example, consider the following segment:
**Permutation: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 0** - Distance = 44
(0 to 1) + 36 (1 to 2) + 32 (2 to 3) + 46 (3 to 4) + 26 (4 to 5) +
37 (5 to 0) = 221. Here, predicting the distance requires first identifying the relevant edge in
the path before looking up the corresponding entry in the weight matrix. In contrast, consider the fol-
lowing segment: Alternatively: 0->5->3->2->1->4->0. Then: 0->5=37,
5->3=31, 3->2=32, 2->1=36, 1->4=28, 4->0=42. Total: 37+31=68,
+32=100, +36=136, +28=164, +42=206. Here, adding the new distances only requires
moving forward in the previously generated sequence and therefore does not require a multi-step
computation. Importantly, cluster 0 is not active in this sentence.

A.3.3 CLUSTERS COMMON TO BOTH MODELS.

Cluster 27: edge retrieval. This cluster indicates the retrieval of the distance between two
edges. It is a shared primitive between Phi-4 and Phi-4-Reasoning.

Cluster 6: generate path 1. This cluster precedes a path generation and arises in both Phi-4
and Phi-4-Reasoning.

A.4 RESPONSES BY PHI-4 AND PHI-4-REASONING ON 3SAT

Clusters more common in Phi-4-Reasoning. Cluster 30: reasoning scaffold. This clus-
ter appears to involve a lot of strategizing and reasoning.

Cluster 37: if clause true. This cluster corresponds to a particular strategy implemented
by Phi-4-Reasoning in solving 3-SAT problems: investigating the consequences of one particular
clause being true or false. Notably, this is a cluster rarely occurring in Phi-4, which may therefore
illustrate an algorithmic primitive largely occurring in Phi-4-Reasoning. Indeed, we discovered these
differences in strategy from our clustering analysis, illustrating how our approach could potentially
support better understand differences in algorithmic strategies.

A.4.1 CLUSTERS MORE COMMON IN PHI-4.

Cluster 34: logical expressions latex. This cluster is largely active on Latex based logi-
cal expressions. This is consistent with more general observations that Latex formats are much more
common in Phi-4 than Phi-4-Reasoning.
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A.4.2 CLUSTERS COMMON TO BOTH MODELS.

Cluster 11: if variable true. In contrast, this cluster mostly arises in Phi-4. Interestingly,
besides being involved in general reasoning, it appears to promote an alternative strategy to the
strategy above: setting particular variables to true or false. This results in a more brute-force oriented
approach, mirroring the differences between Phi-4 and Phi-4-Reasoning on TSP.

Cluster 38: recall clause. This cluster precedes the recall of particular clauses from the
problem.

A.5 RESPONSES BY PHI-4 AND PHI-4-REASONING ON AIME

A.5.1 CLUSTERS MORE COMMON IN PHI-4-REASONING

Cluster 3: solve equation. This cluster is mostly active on two tasks which require solving an
equation/inequation. While it is also partially active in Phi-4 for one of those tasks, it is much more
common in Phi-4-Reasoning.

Cluster 31: verification alternate approach. This cluster corresponds to verifying
specific statements or registering potential concerns with an approach and considering an alternative
approach. It arises almost exclusively in Phi-4-Reasoning.

A.5.2 CLUSTERS MORE COMMON IN PHI-4

Cluster 49: solve equation. This cluster is mostly active when Phi-4 solves equations,
whereas it is much less active on Phi-4-Reasoning.

A.6 RESPONSES BY PHI-4 AND PHI-4-REASONING ON GRAPHNAV

A.6.1 CLUSTERS MORE COMMON IN PHI-4-REASONING.

Cluster 2: reasoning scaffold. This cluster is involved in structuring the overall reasoning
in Phi-4-Reasoning.

Cluster 22: plan final answer. Phi-4-Reasoning commonly plans its final answer during the
thinking section. This cluster is active in that section.

Cluster 9: recall instructions. This cluster is involved in Phi-4-Reasoning recalling its
instructions.

A.6.2 CLUSTERS MORE COMMON IN PHI-4.

Cluster 23: breadth first search. This cluster is specifically active when the model plans
and implements a breadth-first search algorithm. This indicates that Phi-4 is more likely to do this.

Cluster 48: reasoning scaffold. This cluster is involved in structuring the overall reasoning
in Phi-4, but not Phi-4-Reasoning.

B EXPERIMENTAL SETUP DETAILS

B.1 TRAVELING SALESPERSON PROBLEM

Prompt: The traveling salesman problem (TSP) is a classic optimization problem that aims to find
the shortest possible route that visits a set of cities, with each city being visited exactly once and the
route returning to the original city.

You must find the shortest path that visits all cities. The distances between each pair of cities
are provided. Please list each city in the order they are visited. Provide the total distance of
the trip. The final output of the result path and total distance wrapped by the final answer tag,
like {<final_answer>{’Path’: ’0->1->2->...->N->0’, ’TotalDistance’:
’INT_TOTAL_DISTANCE’}</final_answer>}
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The distances between cities are below: The path between City 0 and City 1 is with distance 44.
The path between City 0 and City 2 is with distance 45. The path between City 0 and City 3 is
with distance 45. The path between City 0 and City 4 is with distance 42. The path between City
0 and City 5 is with distance 37. The path between City 1 and City 2 is with distance 36. The path
between City 1 and City 3 is with distance 27. The path between City 1 and City 4 is with distance
28. The path between City 1 and City 5 is with distance 29. The path between City 2 and City 3 is
with distance 32. The path between City 2 and City 4 is with distance 38. The path between City
2 and City 5 is with distance 42. The path between City 3 and City 4 is with distance 46. The path
between City 3 and City 5 is with distance 31. The path between City 4 and City 5 is with distance
26.

B.2 AMERICAN INVITATIONAL MATHEMATICS EXAMINATION (AIME)

LLMs were presented with problems from the AIME benchmark, which tests various domains of
mathematical reasoning such as algebra, geometry, number theory, and combinatorics. The correct
answer for all AIME questions is an integer from 0-999.

Example prompts (from 2025 AIME I):

• Problem 1: Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.
• Problem 2: On △ABC points A, D, E, and B lie in that order on side AB with AD = 4,
DE = 16, and EB = 8. Points A, F , G, and C lie in that order on side AC with
AF = 13, FG = 52, and GC = 26. Let M be the reflection of D through F , and let
N be the reflection of G through E. Quadrilateral DEGF has area 288. Find the area of
heptagon AFNBCEM .

B.3 3-LITERAL SATISFIABILITY PROBLEM (3SAT)

Models were tasked with determining the satisfiability of various 3SAT problems, a class of NP-hard
problems requiring combinatorial reasoning. If a model responded that a problem was satisfiable,
they were required to provide the speoicific literals that would achieve satisfiability.

B.4 GRAPH NAVIGATION (GRAPHNAV)

Models were tasked with identifying the shortest path between two nodes in binary trees of varying
depth (2-6, corresponding to 7-127 nodes). Each node was a randomly generated integer from 1-
200, and edge lists were presented in randomized order. We included a ‘forward’ condition, where
the initial node was the root and the goal was a randomly selected leaf, and a ‘reverse’ condition
where the initial node was a randomly selected leaf and the goal was the root.

Forward Direction Prompt Example: Given the following list of connected rooms, someone wants
to get to 91 from 114. The initial room and other rooms are denoted by numbers. 114->45,
114->90, 45->167, 45->91, 90->49, 90->9. Starting at 114, what is the shortest path
of rooms to visit if someone wants to arrive at 91? Include the final response in parentheses as the
list of rooms separated by commas.

Reverse Direction Prompt Example: Given the following list of connected rooms, someone wants
to get to 63 from 119. All of the rooms are denoted by numbers. 164->63, 119->147,
52->147, 54->164, 147->63, 62->164. Starting at 119, what is the shortest path of
rooms to visit if someone wants to arrive at 63? Include the final response in parentheses as the list
of rooms separated by commas.

B.5 GENERATED MODEL RESPONSES

For TSP, AIME, and 3SAT we used previously generated model responses (Balachandran et al.,
2025); for GraphNav, we generated responses from Phi-4 and Phi-4-Reasoning ourselves, using
default generation parameters (temperature: 0.8, top k: 50, top p: 0.95).
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Figure 6: Examples of binary trees used in the two conditions. a Forward condition: models were
tasked with finding the shortest path from the root node to a randomly selected leaf node, as in the
forward prompt above. b Reverse condition: models were tasked with finding the shortest path from
a randomly selected leaf node back to the root node.

C IDENTIFYING AND COMPOSING FUNCTION VECTORS

C.1 TASKS

We generated a set of algorithmic in-context learning tasks that require specific operations over
graphs.

Terminal node recognition (TNR), identifies the final node in a path (e.g., given the input “path:
T-P-Q-V”, the model is tasked with outputting the token ’V’). Reward comparison (RC) compares
rewards across candidate nodes (e.g., given the input “rewards=[M:100 vs S:44]”, the model is
tasked with outputting ’M’). The evaluation task in Fig. 5a required combining both primitives:
given two paths, the model was prompted to return the node that contains the highest reward.

Example Prompt (Correct Answer: A)

path1: B-O-Q-D-A.
path1-rewards=[A:65 vs Y:75].
path2: C-W-V.
path2-rewards [V:15 vs Y:45]

Relatedly, get first node and get last node requires responding with the first or last node
of a presented path (each node consists of numbers or capital letters and has between three and six
elements). get predecessor and get successor receive a path and a node has input and
need to return the predecessor or successor node respectively.

Example (get successor)
Input: Graph: D-C-N-J, Node: C
Output: N

C.2 DETAILED METHODS AND RESULTS

We extracted function vectors corresponding to each of these tasks using the same approach as
Todd et al. (2024). We identified the 35 attention heads with the highest average indirect effect (see
definition in Todd et al. (2024)) for Phi-4 and Phi-4-Reasoning and 20 attention heads the highest
average indirect effect for Llama-3-8B. We injected these function vectors across all layers and
analyzed the layer with the largest effect.
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D BEHAVIORAL HALLMARKS ON TSP

We consider three setups for injecting primitive vectors into TSP. In Figs. 2b,d, we only present the
model with the TSP prompt and inject the primitive vectors throughout generation. We maximally
generate 500 tokens. This is not sufficient to reliably generate a full answer, but is sufficient to test if
the behavior is expressed. In Fig. 2c and Table 1, we add a sequence of randomly generated paths to
the assistant response before injecting the function vectors. In both of these cases, we define several
measures of different behavioral hallmarks. For these measures we automatically extract the set of
paths generated in the model response using a regular expression. Below we specify our operational
definitions of the different behavioral hallmarks:

1. % NN paths: What proportion of generated paths corresponds to a nearest-neighbor heuris-
tic?

2. # Unique paths: How many valid TSP candidate paths are generated (after removing dupli-
cate paths)?

3. Distance computation: What is the earliest token at which a distance computation occurs
(operationalized as a sum of several numbers)? A lower number thus corresponds to a
stronger expression of this behavior. If no distance computation occurs in the entire re-
sponse, we set the value to 500.

4. Final answer: At what token does the model generate the <final_answer> token?
5. # Verifications: How many verification-related words are mentioned in the response?
6. # Comparison: How many comparison-related words are mentioned in the response?

Finally, when evaluating the impact of the get first node and get last node primitive vec-
tors (Fig. 5c), we automatically extract a generated path from the middle of the reasoning trace
(constraining our selection to only consider paths where the first and last node are not identical).
We then generate the model response starting immediately after the generated path and injecting the
corresponding primitive vector throughout. We generate 20 tokens and assess whether the first node
that is mentioned corresponds to the first node of the path, the last node of the path or some other
node.

E NEAREST NEIGHBOR STRATEGY ANALYSIS

We compared the implementation of the nearest neighbor search heuristic on the Traveling Sales-
person Problem (TSP) in Phi-4-Reasoning and Phi-4-Base. First, we computed the minimum edit
distance between nearest neighbor solution and the optimal solution and analyzed how this distance
relates to accuracy. We computed these minimal NN-optimal edit distances using any city as the
starting point (Figure 9 a) and with city 0 as the starting point (Figure 9 b). The latter edit distance
was chosen, because in practice, we observed that the models frequently used city 0 as the initial
node.

Next, we tested whether one of the first five generated paths is a nearest-neighbor solution; we
sampled from the first five paths to account for idiosyncrasies in the model’s output (e.g., repeating
path segments from the prompt). Additionally, we examined the relationship between the number
of considered paths and the average distance from the NN solution.

Overall, these findings demonstrate that Phi-4-Reasoning has a strong tendency to implement the
nearest neighbor search heuristic. Specifically, the model tends to begin with the NN solution start-
ing at city 0 and iteratively edit the path to minimize its total distance. While Phi-4-Base does
not invoke the nearest neighbor heuristic as reliably as Phi-4-Reasoning, it does to some degree as
shown in Figures 9 b and 10 a.
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a

b

Figure 9: a The minimal NN-optimal edit distances with any city as the starting point. b The
minimal NN-optimal edit distance using city 0 as the starting point. We observed a strong trend
between edit distance and accuracy in b, even when controlling for the number of cities (and a
somewhat weaker trend in a). This trend was especially strong for Phi-4-Reasoning, suggesting this
model may effectively implement the nearest neighbor heuristic beginning at city 0.
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Figure 10: a We found that Phi-4 reasoning begins with the NN heuristic much more frequently than
Phi-4-Base, especially when >8 cities are present. b Paths generated by Phi-4-Reasoning tend to
have much lower distance on average from NN paths than those generated by Phi-4. Additionally,
in Phi-4-Reasoning edit distance is lowest among the initial paths and increases as more candidate
paths are selected.
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