
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALGORITHMIC PRIMITIVES AND COMPOSITIONAL
GEOMETRY OF REASONING IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

How do latent and inference time computations enable large language models
(LLMs) to solve multi-step reasoning? We introduce a framework for tracing and
steering algorithmic primitives that underlie model reasoning. Our approach links
reasoning traces to internal activation patterns and evaluates algorithmic primi-
tives by injecting them into residual streams and measuring their effect on reason-
ing steps and task performance. We consider four benchmarks: Traveling Sales-
person Problem (TSP), 3SAT, AIME, and graph navigation. We operationalize
primitives by clustering neural activations and labeling their matched reasoning
traces. We then apply function vector methods to derive primitive vectors as
reusable compositional building blocks of reasoning. Primitive vectors can be
combined through addition, subtraction, and scalar operations, revealing a geo-
metric logic in activation space. Cross-task and cross-model evaluations (Phi-
4, Phi-4-Reasoning, Llama-3-8B) show both shared and task-specific primitives.
Notably, comparing Phi-4 with its reasoning-finetuned variant highlights compo-
sitional generalization after finetuning: Phi-4-Reasoning exhibits more systematic
use of verification and path-generation primitives. Injecting the associated prim-
itive vectors in Phi-4-Base induces behavioral hallmarks associated with Phi-4-
Reasoning. Together, these findings demonstrate that reasoning in LLMs may be
supported by a compositional geometry of algorithmic primitives, that primitives
transfer cross-task and cross-model, and that reasoning finetuning strengthens al-
gorithmic generalization across domains.

1 INTRODUCTION

Inference time compute has remarkably improved reasoning in large language models (LLMs), and
reasoning-finetuned models like Phi-4-Reasoning substantially outperform their base counterparts
on reasoning tasks they were not directly trained on (Abdin et al., 2025). However, the extent to
which LLMs, especially reasoning-finetuned models, can learn generalized algorithmic capacities
remains poorly understood (Eberle et al., 2025). While recent advances in mechanistic interpretabil-
ity (Todd et al., 2024) point in this direction, it’s unclear whether LLMs acquire universal repre-
sentations of algorithmic primitives (Huh et al., 2024), whether these primitives are geometrically
organized in representation space, similar to brains (Fascianelli et al., 2024), and whether LLMs
solve reasoning tasks by composition of generalized algorithmic primitives, and through component
reuse across tasks and models (Merullo et al., 2024). This presents a unique opportunity to under-
stand the algorithmic basis of LLM reasoning, improvements in compositional generalization after
finetuning, and the impact of finetuning on chain-of-thought reasoning (Lobo et al., 2025).

This work aims to understand how fundamental algorithmic primitives are generalized and com-
posed to enable complex reasoning capabilities in LLMs. The work addresses three fundamental
questions: (1) What are the basic algorithmic primitives that language models use in specific tasks,
and across reasoning domains? (2) Do these primitives compose geometrically in neural activation
space? (3) How do reasoning-enhanced models differ from base models in their primitive usage
and composition? We introduce a framework for a multi-level algorithmic understanding. We first
extract algorithmic primitives by clustering internal representations and interpreting the correspond-
ing reasoning traces. We then apply function vector methods to extract primitive vectors from the
models’ internal representations. We induce and steer algorithmic primitives by injecting primitive
vectors across the layers. To identify both task-specific and universal algorithmic primitives, we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

apply the approach across domains: Traveling Salesperson Problem, 3-SAT, AIME, and graph nav-
igation. Finally, to investigate compositional generalization as a result of finetuning, we compare
algorithmic performance of base models and reasoning-finetuned counterpart, like Phi-4 and Phi4-
reasoning (Abdin et al., 2025). This multi-level framework allows us to understand the geometry
and compositionality of algorithmic primitives in LLM reasoning.

Our contributions include: (1) the systematic identification of cross-domain algorithmic primitives
in LLMs, (2) a geometric framework for understanding primitive composition through vector arith-
metic, (3) novel methodology linking explicit reasoning behaviors to internal mechanisms, (4) mech-
anistic evidence for compositional generalization following finetuning LLMs for reasoning, and (5)
evaluation of cross-task primitive transfer and generalization.

2 RELATED WORK

Interpretability for Transformers. With increasing scale and complexity of LLMs, the challenge
of understanding their predictions has become an important research direction in explainable AI
and interpretability research. This has specifically targeted the analysis of internal model structure
and feature relationships (Geiger et al., 2022; Eberle et al., 2022; Schnake et al., 2022), as well as
representations and manifolds (Kornblith et al., 2019) including concepts (Chormai et al., 2024).
Mechanistic interpretability (Sharkey et al., 2025) has focused on the extraction of circuits (Olah
et al., 2020; Wang et al., 2023), feature descriptions (Hernandez et al., 2022), and causally effective
representations such as function vectors (Todd et al., 2024). Combined analysis of individual neu-
rons (Gurnee & Tegmark, 2024; Templeton et al., 2024), attention scores (Voita et al., 2019; Clark
et al., 2019), and task-specific attention heads (Vig & Belinkov, 2019; McDougall et al., 2024) have
further deepened our understanding of internal model processing. In parallel, free-text and chain-
of-thought explanations (Turpin et al., 2023; Camburu et al., 2018; Huang et al., 2023; Madsen
et al., 2024) consider the model’s own natural language explanation of what it is doing and why.
Gradient-based feature attributions have further enabled to scale the localization and analysis of
relevant features in LLMs (Ali et al., 2022; Jafari et al., 2024).

Function Vectors and Behavioral Interventions. LLMs’ contextualized representations such as
function vectors (Todd et al., 2024) and in-context task vectors (Hendel et al., 2023; Yang et al.,
2025) are shown to trigger execution of associated tasks. A broader application of such steering
vectors include persona vectors (Chen et al., 2025) and representations of truthfulness (Marks &
Tegmark, 2024; Bürger et al., 2024). Probing has identified associations between internal repre-
sentations and features of interest (Conneau et al., 2018; Hewitt & Manning, 2019). This has also
been extended to the analysis of reasoning strategies, e.g., by identifying probes involved in solving
grade-school math problems (Ye et al., 2025). These analyses provide some first methods to under-
stand how complex representational geometries and manifolds drive predictions in modern models.
Related work from neuroscience shows that task-related variables are encoded in neural geometries
in a format that supports generalization to novel situations (Bernardi et al., 2020). Monkey neuro-
science research has linked compositional generalization in neural representational geometry with
behavioral performance (Fascianelli et al., 2024). These findings suggest that function vector meth-
ods can be used to study how compositional generalization may guide algorithmic steering of LLMs,
providing a conceptual starting point for our work.

Algorithmic Evaluation and Steering of Language Models. Multi-step planning and graph nav-
igation are standard benchmarks for structured reasoning (Fatemi et al., 2023), yet most LLMs
perform poorly and fail to generalize with growing graph complexity (Momennejad et al., 2023).
Although efficient algorithms exist, recent evaluations suggest that LLMs rely on policy-dependent
heuristics rather than explicit search strategies (Eberle et al., 2025). Complementary works have
aimed to map a high-level causal model to an internal realization by an LLMs (Geiger et al., 2024),
and prompt models to generate sets of abstract hypotheses about the tasks to improve inductive
reasoning performance (Wang et al., 2024). Recent analysis of chain-of-thought outputs has uncov-
ered sentence-level relationships, offering the localization of salient reasoning steps (Bogdan et al.,
2025). Existing work either targets high-level behaviors such as politeness, creativity, or honesty
using relatively coarse vector representations to steer behavior (Chen et al., 2025), or focuses on
very simple input-output mapping (Todd et al., 2024). Our work focuses on algorithmic steering,
targeting computational primitives and their compositions, aiming at a deep understanding of the
model’s internal algorithmic phenotypes and applications in future algorithmic finetuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Algorithmic Tracing & Steering: Primitive Extraction & Evaluation. We trace algorithmic
primitives by a clustering latent representations, b identifying corresponding reasoning traces, c
meta-clustering primitives, identifying sequential transition trends among clusters, and comparing
cluster similarity across models and tasks. Once we identify primitives, d we extract associated
primitive vectors from top heads, and e use causal patching to validate, explore the compositional
geometry and cross-task transfer of primitives.

3 EXPERIMENTAL SETUP: MODELS AND TASKS
Models. We evaluated decoder-only transformer models on multi-step reasoning tasks. Our analyses
primarily focused on Phi-4-Base (Abdin et al., 2024) and the reasoning-specialized variant Phi-4-
Reasoning (Abdin et al., 2025), with additional validation from Llama-3-8B (Dubey et al., 2024).

Tasks and Data Collection. Four multi-step reasoning setups were tested. We primarily focused on
the Traveling Salesperson Problem (TSP), an NP-hard benchmark. Notably, Phi-4-Reasoning ex-
hibited improved performance on TSP despite not being finetuned for this task (Abdin et al., 2025).
We also investigated the 3-SAT and AIME Mathematical Olympiad benchmarks for the same rea-
sons. Finally, we investigated Graph Navigation tasks used in previous LLM reasoning research
(Momennejad et al., 2023; Eberle et al., 2025) (see Appendix B for task prompts). Our setups de-
mand planning, search, and verification. TSP and Graph navigation require graph optimization via
planning, path generation, search, comparison, and verification. 3SAT presents another NP-hard
problem that tests flexible algorithmic problem solving. Finally, AIME requires complex mathemat-
ical reasoning and multi-step computation. Together, these setups enable us to examine algorithmic
primitives that are task-specific and those that generalize across tasks. We collected reasoning traces
and associated residual stream vectors across 100+ examples per task, with systematic variation in
problem complexity.

4 METHODOLOGY

4.1 DEFINITIONS AND NOTATION

Definition: Algorithmic Primitive. We define algorithmic primitive as a minimal computational
operation observed in a reasoning process (Eberle et al., 2025) (e.g. TSP), such as retrieving the
nearest neighbor, computing a distance, generating a new candidate path, or verifying a solution.
Primitives can be identified both in explicit reasoning traces (e.g. reasoning steps the model produces
in the output) and in internal activations (e.g. clusters of token representations, or attention patterns).

Definition: Algorithmic Tracing. We define algorithmic tracing as the process of identifying all
relevant primitives for implementing a particular reasoning process. By targeting the computational
building blocks rather than just behavioral outcomes, algorithmic tracing helps us better understand
how and why a model solves a particular task and what other tasks it might be able to solve.

Definition: Primitive Vector. We define primitive vectors (following the function and steering
vector literature (Todd et al., 2024)) as vectors that can be injected into the residual stream to reliably
induce a particular primitive. For a given model input x, which here refers to the input prompt and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of Key Terms and Definitions

Term Definition Example
Algorithmic Primitive A minimal computational operation

observed in a reasoning process
Retrieving the nearest neighbor
in TSP

Algorithmic Tracing The process of identifying all rele-
vant primitives for implementing a
particular reasoning process

Solving TSP requires distance
calculation, nearest-neighbor
selection, path comparison, ...

Primitive Vector A direction in activation space that
can be injected into the residual
stream to reliably induce a particu-
lar primitive

A vector that causes the model
to use more nearest-neighbor
heuristics when injected

Primitive Induction Modifying model behavior by in-
jecting a primitive vector

Injecting a nearest-neighbor
primitive vector

the model response, primitive p and transformer layer ℓ, let the residual stream activation at token t

be hℓ(x, t) ∈ Rdℓ . A primitive vector v(p)ℓ ∈ Rdℓ is a direction in activation space that increases the
expression of the primitive function p. Here we extract primitive vectors using the function vector
approach (Todd et al., 2024) (see Section 4.2 for details).

Definition: Primitive Induction for Algorithmic Steering. Given a primitive vector injection
strength α ∈ R, we can intervene on a representation by adding (or patching) a primitive vector:

h̃ℓ(x, t) = hℓ(x, t) + α v
(p)
ℓ ,

which increases the probability of expressing p when α > 0, and decreases it when α < 0. We refer
to this procedure as algorithmic steering or induction.

Algebraic Operations on Primitive Vectors. Assuming compositional geometry, primitive vectors
can be combined through simple algebraic operations in activation space. For primitives p and q at
layer ℓ, additive and subtractive composition within a layer (+ and –) can be defined as:

v
(p⊕q)
ℓ ≈ wp v

(p)
ℓ ± wq v

(q)
ℓ .

Scalar modulation (with varying strength) can be defined as:

v
(αp)
ℓ = α v

(p)
ℓ .

Primitive Transfer: Cross-Task Generalization. We test primitive generalizability by examining
whether primitives identified in one domain transfer to others; specifically by examining whether
injecting primitives extracted from task 1 has a predictable effect on model performance in task 2.
We formalize cross-task transfer as follows. Let p ∈ PT1

denote a primitive extracted from source
task T1, with vector v(p)ℓ,T1

∈ Rdℓ . When evaluating target task T2, we inject this vector into the
residual stream:

h̃ℓ(xT2
, t) = hℓ(xT2

, t) + α v
(p)
ℓ,T1

.

If this intervention increases the activation

a
(p)
ℓ,T2

(xT2 , t) = ⟨v(p)ℓ,T1
, hℓ(xT2 , t)⟩

and increases the associated behavioral hallmark in task T2, we denote successful transfer as:

p ∈ PT1
⇝ p ∈ PT2

.

4.2 ALGORITHMIC TRACING & STEERING: PRIMITIVE EXTRACTION & EVALUATION

Step 1. Primitive Identification: Geometric Clustering of Latent Representations. We hypoth-
esize that distinct algorithmic primitives are reflected in higher dissimilarities in the model’s inter-
nal representations, and therefore apply k-means clustering (Lloyd, 1982) to the model’s internal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

representations while processing complex self-generated reasoning traces. We chose the k-means
algorithm as it provided suitable results on discovering concepts in latent LLM representations in
recent investigations (Hawasly et al., 2024; Petukhova et al., 2025; Kopf et al., 2025). For all clus-
tering analyses, we extracted representations from layer 17 of Phi-4-base and used k = 50 clusters
(we justify these choices of hyperparameters in Appendix E). We fit separate models to TSP, 3-SAT,
AIME, and GraphNav and also fit a joint model to TSP+AIME.

Step 2. Primitive Identification: Mapping Clusters to Associated Reasoning Traces. We ana-
lyze the primitives associated with the different clusters revealed in step 1 by analyzing the tokens
associated with a particular cluster and the context surrounding them. This lets us categorize algo-
rithmic strategies, verification behaviors, and metacognitive patterns and provides direct insight into
the reasoning processes models employ.

Step 3. Primitive Composition: Hierarchical Meta-Clustering and Temporal Clustering.
To identify prevalent temporal compositions of these clusters, we then apply spectral clustering
(Von Luxburg, 2007) to the matrix of transition probabilities between clusters. This gives rise to a
smaller set of meta-cluster which highlight hierarchically structured reasoning steps. To infer the
number of meta-clusters, we identify the largest spectral gap, using a minimum of four meta-clusters.

Step 4. Primitive Validation: Primitive Vector Extraction. Finally, we extract primitive vectors
associated with particular clusters by adapting the methodology put forward in Todd et al. (2024).
Specifically, we extract attention head activations (projected back into the residual dimension) for
each response j, Z(j) ∈ RTj×H×L×D (where Tj is the number of tokens of response j, H is the
number of attention heads per layer, L is the number of layers, and D is the residual dimension).
Denoting the set of tokens that are in a particular cluster c by Tj [c] ⊆ {1, . . . , Tj}, we then compute
the average attention head activations

Z[c] :=
1∑n

j=1 |Tj [c]|
∑

j∈Tj [c]

Z(j) ∈ RL×H×D. (1)

We then average these attention head activations over the top k = 35 attention heads that reli-
ably carry out in-context learning functions (following the definition in Todd et al. (2024), see Ap-
pendix B.6 for further details).

This yields a candidate primitive vector for each extracted cluster. We validate candidate primi-
tives by defining behavioral hallmarks associated with their proposed computational role and testing
whether injecting the extracted primitive vectors results in an increase in those behavioral hallmarks.
Beyond primitive validation, we also examine their compositional generalization by testing their
arithmetic composition and cross-task transfer, injecting primitive vectors extracted from AIME
into the model while it performs TSP.

Algorithmic Fingerprinting. For a given set of clusters 1, . . . , k and a response i, we extract the
relative frequency of tokens assigned to each cluster, fi ∈ Rk,

∑
i fi = 1. We consider fi as a

simple “algorithmic fingerprint” of a particular reasoning trace, highlighting differences between
the primitives involved in different responses. In particular, we analyze the algorithmic dissimilarity
between two responses by computing the symmetric χ-squared distance between their frequencies,

χ(f, g) :=

k∑
i=1

(fi − gi)
2

fi + gi
. (2)

We also consider sets of responses (f (j))nj=1, (g(j))mj=1. We analyze differences in the involved
algorithmic primitives by computing the average frequencies f = 1

n

∑n
j=1 f

(j), g = 1
n

∑n
j=1 g

(j)

and then computing the signed χ-squared distance

χs(fi, gi) := sgn(fi − gi) ◦
(fi − gi)

2

fi + gi
∈ Rk, (3)

for each cluster i. A large positive difference indicates that the corresponding primitive is much more
prominent in the responses (f (j))mj=1, a large negative difference indicates that the corresponding
primitive is much more prominent in the responses (g(j))mj=1. In particular, we compare Phi-4
responses to Phi-4-Reasoning responses and TSP responses to AIME responses.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 RESULTS

Primitive Tracing and Steering. We first traced primitives by clustering latent representations over
entire reasoning traces, interpreting these clusters by identifying the corresponding tokens in the
model output. Perhaps surprisingly, we found that despite the simplicity of our approach, many of
these clusters were highly interpretable; for example, we discovered a cluster specifically associ-
ated with the implementation of a nearest-neighbor heuristic, and another cluster associated with
validations, checks, and corrections.

MC1

MC2

MC3

MC4

MC5

MC6

MC7

MC8

c

b

e f g

d

0 500 1000 1500 2000 2500

Token Index

0

20

40

C
lu

st
e
r

Meta-Clusters

MC1: <think> tokens

MC2: Path generation II

MC3: Path generation I

MC4: Comparison/Path generation III

MC5: Strategy determination

MC6: Edge relations/nearest neighbor

MC7: City distances

MC8: Computing totals

200 0 200 400 600

t-SNE dim. 1

50

0

50

100

150

200

t-
S

N
E
 d

im
.

2

Layer markers

first layer

layer 17

last layer

Clusters

nearest_neighbor

generate_new_path

compute_distance

produce_final_answer

compare_or_verify

compare_or_verify2

Tr
a
n
si

ti
o
n
 p

ro
b
a
b
ili

ty

Tr
a
n
si

ti
o
n
 p

ro
b
a
b
ili

ty

Tr
a
n
si

ti
o
n
 p

ro
b
a
b
ili

ty
Clusters Clusters Clusters

C
lu

st
e
rs

C
lu

st
e
rs

C
lu

st
e
rs

MC1
MC2

MC3

MC4

MC5
MC6

MC7

MC8
MC9

MC10
MC11 0.0

0.2

0.4

0.6

M
C

1
M

C
2

M
C

3

M
C

4

M
C

5
M

C
6

M
C

7

M
C

8
M

C
9

M
C

1
0

M
C

1
1

MC1

MC2

MC3
MC4
MC5

MC6

MC7 0.0

0.2

0.4

0.6

0.8

a
MC1
MC2

MC3

MC4

MC5

MC6

MC7

MC8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C

1
M

C
2

M
C

3

M
C

4

M
C

5

M
C

6

M
C

7

M
C

8

Tr
a
n
si

ti
o
n
 p

ro
b
a
b
ili

ty

C
lu

st
e
rs

TSP

3-SAT AIME GraphNav
M

C
1

M
C

2

M
C

3
M

C
4

M
C

5

M
C

6

M
C

7

MC1

MC2
MC3

MC4

MC5
MC6
MC7 0.0

0.2

0.4

M
C

1

M
C

2
M

C
3

M
C

4

M
C

5
M

C
6

M
C

7

Figure 2: Clusters are organized in a hierarchical manner and meta-clusters are repeatedly traversed
throughout the response. a Cluster-cluster transition matrix on TSP, organized by meta-cluster (MC)
(indicated by the white lines). Most transitions occur within each meta-cluster. b Average t-SNE
trajectories across different highlighted primitives. c Transition between different clusters for an
example output. Different meta-clusters are highlighted by colors. The latter half of the response
undergoes a cyclical transition. d Most common transitions between different meta-clusters reveals
frequently occurring cycles. e-g Cluster-to-cluster transition matrices structured in terms of the
inferred meta-clusters on e 3-SAT, f AIME, and g GraphNav.

We then determined the average transition probability between the different clusters. Spectral clus-
tering of this transition matrix revealed that, on TSP, clusters are sequentially composed in a hier-
archical and highly stereotyped manner, as most transitions between clusters occurred within the
same meta-cluster (Fig. 2a). Notably, these different meta-clusters were also responsible for highly
interpretable parts of the reasoning, e.g. path generation or computing distances (Fig. 2c).

We then validated the role of these primitives by extracting the corresponding primitive vectors
and injecting them into Phi-4 during a response generation to TSP. First, we injected two vec-
tors (nearest neighbor and generate path) into the model throughout the response gen-
eration, exploring different layers and magnitudes. We found that nearest neighbor se-
lectively increased the proportion of nearest-neighbor paths generated by the model, whereas
generate path increased the number of total generated paths (Fig. 3a,b). This demonstrates

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

that the extracted primitive vectors selectively induce a particular behavior and validates the candi-
date primitives generated by our clustering.

To expand this investigation, we injected a broader range of candidate primitive vectors into
the model after providing example paths and distance computations. For example, injecting the
compute distance primitive causes the model to more quickly compute the distance of a candi-
date path. Interestingly, the reverse is also true: subtracting the compute distance vector makes
the model less likely to implement a distance computation (Fig. 3c). This suggests that subtracting
primitive vectors can prevent associated algorithmic primitives. More broadly, we evaluate six be-
havioral hallmarks across six possible function vectors and find that all behavioral hallmarks are
most strongly induced by a candidate primitive vector with a relevant computational role (Table 2).

generate_path →

The cities involved are 0, 1, 2, 3, 4, 5. We need to find the shortest

path using brute force or heuristic methods.

Let's explore a few potential paths:

- Start at City 0:

 - Path: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 0 (...)

generate_path

generate_path nearest_neighbor

nearest_neighbor →

(...) 3. To minimize the overall distance, the best heuristic is to

start with the shortest direct distance from City 0 which is to

City 5 with a distance of 5.

4. From City 5, the shortest distance to another city is to City 4

with a distance of 10. (...)

nearest_neighbor

a

b c d
Primitive vector
injection (AIME)

Primitive vector injection (TSP)
compute_distance

final_answer

D
is

ta
n
ce

co
m

p
u
ta

ti
o
n
 ↓

Fi

n
a
l
a
n
sw

e
r
↓

U

ni
qu

e
P
at

hs
 ↑

N
N

 P
at

hs
 ↑

Magnitude

−1
0
1
2

Primitive vector

baseline
plan_final_answer
solve_equation
spatial_reasoning
verificationN

N
 P

at
hs

 ↑

N
N

 P
at

hs
 ↑

Layer

U

ni
qu

e
P
at

hs

U

ni
qu

e
P
at

hs

Layer Layer

Layer Layer Layer
10 20 30

0.0

2.5

10 20 30

0.0

0.3

0.6

10 20 30
0.0

2.5

10 20 30

0.0

0.3

0.6

10 20 30

1

2

3

10 20 30
0.00

0.05

0.10

Layer

Figure 3: Primitive vector injection induces associated algorithmic behavior. Injecting the
nearest neighbor or generate path primitive vectors directly after the prompt a increases
expression in output (see examples). b Varying the injection layer and the magnitude modifies the
number of unique paths generated (top row) and the proportion of nearest-neighbor paths (bottom
row). c Injecting primitive vectors for compute distance in the middle of the reasoning trace
increases relevant behavioral hallmarks in the output. d Primitive vectors from AIME were injected
to different layers while solving Traveling Salesperson (TSP), showing cross-task primitive transfer
and algorithmic induction.
Notably, the role of a particular cluster cannot always be inferred from the tokens on which
it is active alone; the surrounding context often also plays a role. For example, the cluster
compare and verify is largely active on the token corresponding to the final distance of a can-
didate path. However, we noticed that tokens on which this cluster was active were often followed
by subsequent checks and comparisons. We therefore hypothesized that this cluster may not just rep-
resent the final distance, but also induce a verification primitive. Table 2 confirms this hypothesis.
Interestingly, we can observe this dual nature in representational space as well. In a t-SNE plot of
the average representational trajectory of these example primitives, we observe that in earlier layers,
compare or verify evolves along other path-related primitives like generate new path,
whereas it moves closer to compare or verify2 in later layers (Fig. 2b).

Comparing Algorithmic Primitives between Phi-4 and Phi-4-Reasoning. To identify shared and
distinct primitives between responses by Phi-4 and Phi-4-Reasoning, we computed the dissimilar-
ity between the primitive frequencies involved in different responses. We fond that responses by
Phi-4-Reasoning are highly stereotyped (Fig. 4a). In contrast, Phi-4 has two subgroups of distinct
responses. Notably, these groups map onto two distinct approaches towards solving TSP: a brute-
force search and a random guess without further refinement. This highlights that algorithmic fin-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

%NN paths ↑ #Paths ↑ Dist. comp. ↓ Final ans. ↓ #Verif. ↑ #Comp. ↑
nearest neighbor +56.1% +72.0% -73.6% -4.5% +104.3% +125.6%
generate path +4.8% +143.9% -76.0% +18.4% +25.0% +12.2%
compute distance +22.2% +36.5% -86.5% -47.4% +198.9% +79.3%
final answer +23.2% +34.8% -29.8% -81.5% +82.6% -37.8%
compare verify +37.9% +43.6% -62.8% -7.0% +655.4% +1103.7%
compare verify2 +29.5% +48.4% -64.9% -13.7% +706.5% +526.8%

Table 2: Effects of primitive vector injection on behavioral hallmarks (% above baseline). For each
cell, we identify the maximal effect across all positive magnitudes and all intervention layers (10,
13, 15, 17, 20, 30). Bold = strongest effect, underline = second strongest per column. (%NN paths:
proportion of nearest neighbor paths generated. Dist. comp.: Distance computation. Final ans.:
Final answer. #Verif.: number of Verifications in the output. #Comps: number of comparisons in the
output. See Appendix D for detailed definitions.)

a b c d

e

P
h
i-

4

Phi-4

Phi-4

P
h
i-

4
-R

Phi-4-R

Phi-4-R

TSP 3-SAT AIME

AIME + TSP

GraphNav

more common

in Phi-4-R

more common

in Phi-4

0.0 0.2

Cluster frequency
in response

0.0 0.2

Cluster frequency
in response

0.1

0.0

0.1

0.0

Sorted clusters
1 50

Sorted clusters
1 50

2
-d

if
fe

re
n
ce

R
e
sp

o
n
se

s

P
h
i-

4
-R

P
h
i-

4

R
e
sp

o
n
se

s

P
h
i-

4
-R

P
h
i-

4

0.00

0.25

0.50

0.75

1.00

D
is

si
m

ila
ri

ty

0.0

0.1

0.2

0.3

C
lu

st
e
r

fr
e
q
u
e
n
cy

in
 r

e
sp

o
n
se

Sorted clusters

0.025

0.000

0.025

1 50

2
-d

if
fe

re
n
ce

T
S
P

A
IM

E

Responses

R
e
sp

o
n
se

s

0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

1 50
Sorted clusters

R
e
sp

o
n
se

s

0.0 0.2

Cluster frequency
in response

0.05

0.00

0.05

2
-d

if
fe

re
n
ce

0.0 0.2

0.1

0.0

R
e
sp

o
n
se

s

P
h
i-

4
-R

P
h
i-

4

Cluster frequency
in response

Sorted clusters
1 50

2
-d

if
fe

re
n
ce

2
-d

if
fe

re
n
ce

P
h
i-

4
-R

Phi-4-R

P
h
i-

4

P
h
i-

4
-R

P
h
i-

4

P
h
i-

4
-R

P
h
i-

4

Phi-4 Phi-4-R Phi-4Phi-4-R Phi-4
Responses

R
e
sp

o
n
se

s

0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

Responses

R
e
sp

o
n
se

s

0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

Responses

Responses

R
e
sp

o
n
se

s
R

e
sp

o
n
se

s

0.0

0.2

0.4

0.6

0.8

1.0

D
is

si
m

ila
ri

ty

T
S
P

A
IM

E

TSPAIME

R
e
sp

o
n
se

s

Figure 4: Primitive Cluster Patterns in Phi-4 and Phi-4-Reasoning. a-d top Normalized dissimi-
larity of primitive cluster frequencies between Phi-4 and Phi-4-Reasoning for a) TSP, b) 3-SAT, c)
AIME, and d) GraphNav. bottom Clusters sorted by whether they appear more frequently in Phi-4-
Reasoning responses (positive difference) or in Phi-4 responses (negative difference). The lineplot
specifies the differences whereas the rasterplot underneath specifies the relative frequencies of the
different clusters per response. e left Dissimilarity of primitive cluster frequencies between Phi-4-
Reasoning responses to AIME and TSP. right Clusters sorted by whether they occur more frequently
in AIME or TSP. The rasterplot underneath again specifies the relative frequencies of the different
clusters per response.

gerprinting reveals both differences between different models, but even differences within responses
from the same model. Beyond TSP, we found that the responses from Phi-4 and Phi-4-Reasoning on
3-SAT and GraphNav are highly stereotyped (Fig. 4b,d). On AIME, algorithmic primitives involved
in responses to the same question were very similar to each other, whereas primitives involved in
responses to different questions were substantially more different, reflecting the higher diversity of
questions on this benchmark (Fig. 4c).

Next, we analyzed which primitives are more common in Phi-4 or Phi-4-Reasoning by comput-
ing the signed χ-squared difference, and analyzing the clusters with the largest positive and neg-
ative values. This allows us to identify important differences in responses strategies across the
two model. For example, on TSP and 3-SAT, distinct heuristic approaches arise more commonly
in Phi-4-Reasoning than Phi-4 (nearest neighbor and if clause true, Appendix A). Be-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

yond task-specific strategies, our comparative analysis also highlights broader differences between
the two models: in particular, clusters that are more common in Phi-4-Reasoning relate to general-
purpose reasoning steps such as verification, recalling instructions, or planning the final answer.

Compositional Primitive Induction. So far, we have considered sequential compositions of al-
gorithmic primitives. To investigate arithmetic compositions of primitives, we consider a set of
algorithmic in-context learning tasks that require identifying 1) the last node of a path (“Terminal
node recognition,” TNR), 2) the node with the higher reward (“Reward comparison,” RC; reward
was defined by a number between 1 and 100); and 3) the most highly rewarded node between two
paths, a composition of TNR and RC (see example prompt in Appendix C.1). Remarkably, we
find that adding together the primitive vectors for TNR and RC induces this composite behavior in
Llama-3-8B, causing it to match few-shot performance in a zero-shot setting (Fig. 5a). These effects
were more attenuated in Phi-4 and Phi-4-Reasoning, highlighting that different models may require
different modes of composition (Fig. 8).

0.00

0.25

0.50

0.75

1.00

FS ZS ZS + PV_TNR

ZS + PV_RC

ZS + PV_both

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 to

ke
n

a

first_node
last_node

Shuffled Zero shot

10 30 10 30

25%
50%
75%

100%

25%
50%
75%

100%

Injection layer

A
cc

ur
ac

y

Model

Phi−4
Phi−4−R

Baseline
+ FV

b

0%

20%

40%

60%

Baseline

+ first_node

+ last_node
InterventionIntervention

%
 F

irs
t/l

as
t n

od
e

Node

first
last

c

Figure 5: Algorithmic primitives operating over graphs, compositional induction, and cross-task
transfer. a Injecting the sum of a terminal node recognition primitive vector (PV TNR) and a reward
comparison primitive vector (PV RC) in a zero-shot setting (ZS) improves model performance on a
task requiring a composition of both primitives and recovers few-shot performance (FS). See Fig. 8
for additional models. b Primitive vectors for extracting the first or last node of a presented graph
reliably improves performance across different injection layers and across a shuffled few-shot and
a zero shot-setting. c After injecting these primitive vectors into complex reasoning traces solving
TSP, the model becomes more likely to mention the corresponding node next.

Cross-task Transfer and Compositional Generalization. Generalized algorithmic primitives
which can be applied across different tasks, can help us understand why reasoning-finetuned models
like Phi-4-Reasoning show improvements on tasks they were not finetuned on. To better understand
the degree to which algorithmic primitives in Phi-4-Reasoning are shared between tasks, we apply
our algorithmic tracing framework to a set of responses from both TSP and AIME (Fig. 4e). This
analysis highlights that while there are different algorithmic primitives at play in either task, the two
tasks also have many algorithmic primitives in common.

Next, we tested whether cross-task injection of algorithmic primitives would induce behavioral
changes. First, we extracted primitive vectors from an algorithmic in-context learning task that
required extracting a path’s first or last node (Fig. 5b). We then injected these primitive vectors
into complex reasoning traces solving TSP immediately after the model had mentioned a particular
path. Despite the extremely different domain, injecting these vectors indeed had the expected effect:
injecting the first node (resp. last node) primitive vector caused the model to subsequently
mention the first node (resp. last node) of the path more often.

Finally, we considered relevant primitive vectors from AIME (e.g. spatial reasoning,
plan final answer) and injected them into Phi-4 generating a response to a TSP prompt. We
found that these primitive vectors caused the model to generate more paths and a higher proportion
of nearest-neighbor paths — a hallmark of Phi-4-Reasoning responses.

6 DISCUSSION
Algorithmic Tracing and Steering. We introduce a framework for tracing and steering algorithmic
primitives as building blocks of LLM reasoning with geometric compositionality. We adapted func-
tion vector techniques (Todd et al., 2024) to extract minimal, 1-step primitive vectors from carefully
designed simple tasks as well as benchmarks with more complex reasoning contexts. When “in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

jected” to LLM layers after the prompt or in the middle of reasoning traces, these primitive vectors
increase the behavioral expression of corresponding reasoning steps (Figs. 3 and 5). This extends
function vector research beyond simple relations between the input and output. A central contri-
bution of our work is the compositional exploration of primitive vector arithmetic. Our framework
bridges a principled path from laboratory-identified primitives to real-world reasoning behaviors.

Toward a Geometry of Compositional Abstraction in LLMs. We find that algorithmic primitives
exhibit geometric regularities through compositional operations like addition, subtraction, multipli-
cation, and scalar modulation. The layer and magnitude of injection shape the output expression of
the primitive (Fig. 3). We show cross-task transfer and generalizability of primitive vectors: spatial
reasoning and verification primitives extracted from AIME successfully transfer to TSP. This trans-
ferability hints at potentially universal algorithmic building blocks underlying diverse reasoning
capabilities. If this is the case, an algorithm may be expressed by an LLM in terms of an algebraic
geometry of primitive vectors and their composition.

Reasoning vs. Memorization. Our work contributes to recent discussions about the extent to
which LLMs exhibit abstract reasoning rather than relying on memorized procedures, failing to
generalize in counterfactual scenarios (Wu et al., 2024; Power et al., 2022; Zhang et al., 2024;
Wang et al., 2025). While models were not directly trained on our tasks (Abdin et al., 2025), it
is possible that they may be using amortized reasoning based on similar examples in the training.
LLMs exhibit better problem-solving in high probability than low probability settings (e.g., McCoy
et al. (2024a)), which rely on statistical regularities rather than abstract reasoning. Moreover, the
absence of metacognitive abilities in LLMs results in brittle problem-solving (Johnson et al., 2024;
Lewis & Mitchell, 2024). However, models finetuned for reasoning exhibit less sensitivity to task
probability than base models (McCoy et al. (2024b)) and improved metacognitive-like uncertainty
management strategies (e.g., verifying whether a candidate solution is correct) (Guo et al., 2025;
Gandhi et al., 2025) that in turn causally improve reasoning (Bogdan et al., 2025). In line with these
findings, our analysis identified algorithmic primitives for managing uncertainty (e.g., verification)
and in-context recall. Such primitives and their associated behaviors may underlie a shift from
memorization toward compositional problem-solving in reasoning models.

Limitations. One limitation is that the primitives, corresponding clusters, and meta-clusters we
identify do not always map to a known algorithm. Future work can identify primitive ontology and
algorithmic logic of different models, identifying commonalities and differences across them. Here,
we focus on reasoning as multi-step problem-solving in limited tasks, which may not capture the
complexity and multi-modal nature of natural reasoning, studied in cognitive sciences for decades
Tversky (2005); Shepard & Metzler (1971); MacGregor & Ormerod (1996). Finally, we have fo-
cused on linear compositions of primitive vectors, leaving more complex interactions and potentially
non-linear combinations of several vectors on manifolds for future work.

Future Directions. The algorithmic tracing and steering framework can be applied to any archi-
tecture (e.g., vision, diffusion, and multi-modal models) and domain beyond reasoning. An imme-
diate extension is more detailed manifold analysis in order to capture the compositional geometry
of primitives beyond linear composition, and establish task-specific and universal primitive on-
tology. An important future direction will be to evaluate our framework across a wider range of
models. Another key direction is the algorithmic training and finetuning of LLMs, with algorith-
mic objectives. Moreover, future self-improving models can be designed for algorithmic self-play:
generating and evaluating compositional algorithmic solutions. Finally, collecting human reasoning
data on the same tasks enables us to compare and finetune model-human algorithmic alignment.

Conclusion. The identification of universal primitives and their compositional geometry opens new
avenues for interpretability research and suggests principled approaches for computational models
of human reasoning, model-human alignment, and enhancing LLM reasoning capabilities.

7 RECOMMENDED ADDITIONS COPIED FROM GUIDELINES

7.1 LLM USAGE DISCLOSURE

We used LLMs for generating code and for finding related work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7.2 REPRODUCIBILITY STATEMENT

We provide a detailed description of our methodological implementation and will share our codebase
upon acceptance.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/
2504.21318.

Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and Lior
Wolf. XAI for transformers: Better explanations through conservative propagation. In Inter-
national Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 435–451. PMLR, 2022.
URL https://proceedings.mlr.press/v162/ali22a.html.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, et al. Inference-time scaling for complex
tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

Silvia Bernardi, Marcus K Benna, Mattia Rigotti, Jérôme Munuera, Stefano Fusi, and C Daniel
Salzman. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell, 183(4):
954–967, 2020.

Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm rea-
soning steps matter?, 2025. URL https://arxiv.org/abs/2506.19143.

Lennart Bürger, Fred A. Hamprecht, and Boaz Nadler. Truth is universal: Robust detection of lies
in llms, 2024. URL https://arxiv.org/abs/2407.12831.

Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-
snli: Natural language inference with natural language explanations. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf.

Runjin Chen, Andy Arditi, Henry Sleight, Owain Evans, and Jack Lindsey. Persona vectors: Moni-
toring and controlling character traits in language models, 2025. URL https://arxiv.org/
abs/2507.21509.

Pattarawat Chormai, Jan Herrmann, Klaus-Robert Müller, and Grégoire Montavon. Disentangled
explanations of neural network predictions by finding relevant subspaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT‘s attention. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes (eds.), Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 276–286, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https://aclanthology.
org/W19-4828/.

11

https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://proceedings.mlr.press/v162/ali22a.html
https://arxiv.org/abs/2506.19143
https://arxiv.org/abs/2407.12831
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://arxiv.org/abs/2507.21509
https://arxiv.org/abs/2507.21509
https://aclanthology.org/W19-4828/
https://aclanthology.org/W19-4828/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexis Conneau, German Kruszewski, Guillaume Lample, Loı̈c Barrault, and Marco Baroni. What
you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties.
In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2126–2136, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1198.
URL https://aclanthology.org/P18-1198/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Oliver Eberle, Jochen Büttner, Florian Kräutli, Klaus-Robert Müller, Matteo Valleriani, and
Grégoire Montavon. Building and interpreting deep similarity models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(3):1149–1161, 2022. doi: 10.1109/TPAMI.2020.
3020738.

Oliver Eberle, Thomas Austin McGee, Hamza Giaffar, Taylor Whittington Webb, and Ida Mo-
mennejad. Position: We need an algorithmic understanding of generative AI. In Forty-second
International Conference on Machine Learning Position Paper Track, 2025. URL https:
//openreview.net/forum?id=eax2ixyeQL.

Valeria Fascianelli, Aldo Battista, Fabio Stefanini, Satoshi Tsujimoto, Aldo Genovesio, and Stefano
Fusi. Neural representational geometries reflect behavioral differences in monkeys and recurrent
neural networks. Nature Communications, 15(6479), 2024. doi: 10.1038/s41467-024-50503-w.
URL https://doi.org/10.1038/s41467-024-50503-w.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models, 2023. URL https://arxiv.org/abs/2310.04560.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal structure for interpretable neural networks. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 7324–7338. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/geiger22a.html.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Find-
ing alignments between interpretable causal variables and distributed neural representations. In
Causal Learning and Reasoning, pp. 160–187. PMLR, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Wes Gurnee and Max Tegmark. Language models represent space and time, 2024. URL https:
//arxiv.org/abs/2310.02207.

Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and. Techniques, Waltham:
Morgan Kaufmann Publishers, 2012.

Majd Hawasly, Fahim Dalvi, and Nadir Durrani. Scaling up discovery of latent concepts in deep nlp
models. In Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 793–806, 2024.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624/.

12

https://aclanthology.org/P18-1198/
https://openreview.net/forum?id=eax2ixyeQL
https://openreview.net/forum?id=eax2ixyeQL
https://doi.org/10.1038/s41467-024-50503-w
https://arxiv.org/abs/2310.04560
https://proceedings.mlr.press/v162/geiger22a.html
https://arxiv.org/abs/2310.02207
https://arxiv.org/abs/2310.02207
https://aclanthology.org/2023.findings-emnlp.624/
https://aclanthology.org/2023.findings-emnlp.624/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. Natural language descriptions of deep features. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=NudBMY-tzDr.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419/.

Shiyuan Huang, Siddarth Mamidanna, Shreedhar Jangam, Yilun Zhou, and Leilani H. Gilpin. Can
large language models explain themselves? a study of llm-generated self-explanations, 2023.
URL https://arxiv.org/abs/2310.11207.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: The platonic represen-
tation hypothesis. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 20617–20642. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/huh24a.html.

Farnoush Rezaei Jafari, Grégoire Montavon, Klaus-Robert Müller, and Oliver Eberle. Mambalrp:
Explaining selective state space sequence models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Samuel GB Johnson, Amir-Hossein Karimi, Yoshua Bengio, Nick Chater, Tobias Gerstenberg, Kate
Larson, Sydney Levine, Melanie Mitchell, Iyad Rahwan, Bernhard Schölkopf, et al. Imagining
and building wise machines: The centrality of ai metacognition. arXiv preprint arXiv:2411.02478,
2024.

Laura Kopf, Nils Feldhus, Kirill Bykov, Philine Lou Bommer, Anna Hedström, Marina MC Höhne,
and Oliver Eberle. Capturing polysemanticity with PRISM: A multi-concept feature description
framework. In The Thirty-ninth Annual Conference on Neural Information Processing Systems,
2025. URL https://openreview.net/forum?id=btJUnAPQ7j.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Martha Lewis and Melanie Mitchell. Evaluating the robustness of analogical reasoning in large
language models. arXiv preprint arXiv:2411.14215, 2024.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

Elita Lobo, Chirag Agarwal, and Himabindu Lakkaraju. On the impact of fine-tuning on chain-of-
thought reasoning. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 11679–11698, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.584. URL https://aclanthology.org/2025.
naacl-long.584/.

James N MacGregor and Tom Ormerod. Human performance on the traveling salesman problem.
Perception & psychophysics, 58(4):527–539, 1996.

Andreas Madsen, Sarath Chandar, and Siva Reddy. Are self-explanations from large language mod-
els faithful?, 2024. URL https://arxiv.org/abs/2401.07927.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=aajyHYjjsk.

13

https://openreview.net/forum?id=NudBMY-tzDr
https://aclanthology.org/N19-1419/
https://arxiv.org/abs/2310.11207
https://proceedings.mlr.press/v235/huh24a.html
https://proceedings.mlr.press/v235/huh24a.html
https://openreview.net/forum?id=btJUnAPQ7j
https://aclanthology.org/2025.naacl-long.584/
https://aclanthology.org/2025.naacl-long.584/
https://arxiv.org/abs/2401.07927
https://openreview.net/forum?id=aajyHYjjsk

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
of autoregression show how large language models are shaped by the problem they are trained to
solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, 2024a.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. When
a language model is optimized for reasoning, does it still show embers of autoregression? an
analysis of openai o1. arXiv preprint arXiv:2410.01792, 2024b.

Callum Stuart McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda.
Copy suppression: Comprehensively understanding a motif in language model attention heads.
In Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Hosein Mohebbi, Aaron Mueller, and Han-
jie Chen (eds.), Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpret-
ing Neural Networks for NLP, pp. 337–363, Miami, Florida, US, November 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.blackboxnlp-1.22. URL https:
//aclanthology.org/2024.blackboxnlp-1.22/.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in trans-
former language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=fpoAYV6Wsk.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, Hiteshi Sharma, Robert Osazuwa Ness, Nebojsa
Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval, 2023. URL https://arxiv.org/abs/2309.15129.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Alina Petukhova, Joao P Matos-Carvalho, and Nuno Fachada. Text clustering with large language
model embeddings. International Journal of Cognitive Computing in Engineering, 6:100–108,
2025.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert
Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant
walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7581–7596,
2022. doi: 10.1109/TPAMI.2021.3115452.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders,
David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom Mc-
Grath. Open problems in mechanistic interpretability, 2025. URL https://arxiv.org/
abs/2501.16496.

Roger N Shepard and Jacqueline Metzler. Mental rotation of three-dimensional objects. Science,
171(3972):701–703, 1971.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

14

https://aclanthology.org/2024.blackboxnlp-1.22/
https://aclanthology.org/2024.blackboxnlp-1.22/
https://openreview.net/forum?id=fpoAYV6Wsk
https://arxiv.org/abs/2309.15129
https://arxiv.org/abs/2501.16496
https://arxiv.org/abs/2501.16496
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=AwyxtyMwaG

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=bzs4uPLXvi.

Barbara Tversky. Visuospatial reasoning. The Cambridge handbook of thinking and reasoning, pp.
209–240, 2005.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model, 2019. URL https://arxiv.org/abs/1906.04284.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.
org/P19-1580/.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7UtIGQmjm.

Xinyi Wang, Antonis Antoniades, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
and William Yang Wang. Generalization v.s. memorization: Tracing language models’ capabili-
ties back to pretraining data. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=IQxBDLmVpT.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. Association for Computational Linguistics,
2024.

Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert D Nowak. Task vectors
in in-context learning: Emergence, formation, and benefits. In Second Conference on Language
Modeling, 2025. URL https://openreview.net/forum?id=lODGn1Rp5t.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models: Part 2.1,
Grade-School Math and the Hidden Reasoning Process. In Proceedings of the 13th International
Conference on Learning Representations, ICLR ’25, April 2025. Full version available at http:
//arxiv.org/abs/2407.20311.

Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han, Tianxing He, and
Yulia Tsvetkov. Can LLM graph reasoning generalize beyond pattern memorization? In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 2289–2305, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.127. URL
https://aclanthology.org/2024.findings-emnlp.127/.

15

https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://arxiv.org/abs/1906.04284
https://aclanthology.org/P19-1580/
https://aclanthology.org/P19-1580/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=lODGn1Rp5t
http://arxiv.org/abs/2407.20311
http://arxiv.org/abs/2407.20311
https://aclanthology.org/2024.findings-emnlp.127/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IDENTIFICATION OF ALGORITHMIC PRIMITIVES

A.1 DETAILED METHODS

We implemented and analyzed five clustering models, using the following datasets:

1. five responses on TSP from Phi-4-Reasoning

2. five TSP responses from Phi-4 and five TSP responses from Phi-4-reasoning

3. five AIME responses from Phi-4 and Phi-4-Reasoning

4. five 3-SAT responses from Phi-4 and Phi-4-Reasoning

5. five GraphNav responses from Phi-4 and Phi-4-Reasoning

In all cases, we extracted the token-by-token representation from layer 17 of Phi-4-base. We used
k-means clustering with k = 50 clusters and designed an HTML interface to visually inspect the
different clusters (we will make this tool available on the project website).

Below we highlight selected clusters from the different clustering models.

A.2 PHI-4-REASONING RESPONSES ON TSP

By manually inspecting the responses, we find that many clusters correspond to specific reasoning
motifs and candidate algorithmic primitives.

Cluster 37: nearest neighbor. This cluster is active specifically during the tokens where the
model identifies the nearest-neighbor path or the closest city within a particular candidate path. As
Phi-4-Reasoning’s responses, in contrast to those by Phi-4, often started out by an initial guess using
the nearest-neighbor heuristic (see Appendix G), we hypothesized that this would be a particularly
relevant primitive.

Cluster 26: generate new path. This cluster usually preceded a new candidate path. We there-
fore hypothesized that representations in these tokens may encode relevant primitives for generating
new paths.

Cluster 15: compute distance. This cluster seems to precede the computation of the total
distance of a candidate path.

Cluster 41: compare or verify 2. This cluster corresponds to a range of statements involved
in comparisons (in particular comparing the distance of different paths), verification (e.g. verifying
whether a generated path is valid), or recall (e.g. recalling the best path so far, a closely related step
to comparisons).

Cluster 35: compare or verify. Interestingly, this cluster is usually active on the final pre-
sentation of the total distance. However, we noticed that not every token corresponding to a total
distance belonged to this cluster. Rather, this cluster reliably predicted whether the next sentence
involved a comparison or verification step — in particular, cluster 35 often preceded cluster 41.
We therefore hypothesized that this cluster could be involved in promoting these comparisons and
verifications.

Cluster 30: produce final answer. This cluster was active during the production of the final
answer and we hypothesized that it would be relevant for that step.

A.3 RESPONSES BY PHI-4 AND PHI-4-REASONING ON TSP

By selectively analyzing the clusters associated with the largest-magnitude differences between their
involvement in Phi-4 and Phi-4-Reasoning, we identify a set of clusters that are more common in
Phi-4 or Phi-4-Reasoning:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3.1 CLUSTERS MORE COMMON IN PHI-4-REASONING

Cluster 19: compare or verify. This cluster again implements comparisons and verifications.
It arises almost exclusively in Phi-4-Reasoning responses, highlighting the reasoning-finetuned
model’s tendency to implement more comparisons and verifications.

Clusters 13 and 10: path generation Cluster 13 represents early cities during the path gen-
eration while cluster 10 represents the connections between cities. Notably, it only represents paths
that are not generated as a part of the brute-force strategy, indicating that the computations involved
in the brute-force strategy are different. For responses by Phi-4 that do not implement a brute-force
strategy, these clusters are also more frequently active.

Cluster 22: generate path guided. This cluster precedes a path generation, but only in Phi-
4-Reasoning. We therefore hypothesize that clusters 6 and 22 might induce different structures in
their generated paths.

A.3.2 CLUSTERS MORE COMMON IN PHI-4.

Cluster 11: brute force. While this cluster sometimes arises in Phi-4-Reasoning, it is more
strongly associated with Phi-4 and arises, in particular, when Phi-4 states its approach to implement
a brute-force search.

Cluster 41: generate path brute force This cluster is specifically active during the gener-
ation of paths involved in brute-force searches.

Cluster 0: compound distance lookup This cluster is active specifically before a dis-
tance lookup requires a multi-step computation. For example, consider the following segment:
Permutation: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 0 - Distance = 44
(0 to 1) + 36 (1 to 2) + 32 (2 to 3) + 46 (3 to 4) + 26 (4 to 5) +
37 (5 to 0) = 221. Here, predicting the distance requires first identifying the relevant edge in
the path before looking up the corresponding entry in the weight matrix. In contrast, consider the fol-
lowing segment: Alternatively: 0->5->3->2->1->4->0. Then: 0->5=37,
5->3=31, 3->2=32, 2->1=36, 1->4=28, 4->0=42. Total: 37+31=68,
+32=100, +36=136, +28=164, +42=206. Here, adding the new distances only requires
moving forward in the previously generated sequence and therefore does not require a multi-step
computation. Importantly, cluster 0 is not active in this sentence.

A.3.3 CLUSTERS COMMON TO BOTH MODELS.

Cluster 27: edge retrieval. This cluster indicates the retrieval of the distance between two
edges. It is a shared primitive between Phi-4 and Phi-4-Reasoning.

Cluster 6: generate path 1. This cluster precedes a path generation and arises in both Phi-4
and Phi-4-Reasoning.

A.4 RESPONSES BY PHI-4 AND PHI-4-REASONING ON 3SAT

Clusters more common in Phi-4-Reasoning. Cluster 30: reasoning scaffold. This clus-
ter appears to involve a lot of strategizing and reasoning.

Cluster 37: if clause true. This cluster corresponds to a particular strategy implemented
by Phi-4-Reasoning in solving 3-SAT problems: investigating the consequences of one particular
clause being true or false. Notably, this is a cluster rarely occurring in Phi-4, which may therefore
illustrate an algorithmic primitive largely occurring in Phi-4-Reasoning. Indeed, we discovered these
differences in strategy from our clustering analysis, illustrating how our approach could potentially
support better understand differences in algorithmic strategies.

A.4.1 CLUSTERS MORE COMMON IN PHI-4.

Cluster 34: logical expressions latex. This cluster is largely active on Latex based logi-
cal expressions. This is consistent with more general observations that Latex formats are much more
common in Phi-4 than Phi-4-Reasoning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4.2 CLUSTERS COMMON TO BOTH MODELS.

Cluster 11: if variable true. In contrast, this cluster mostly arises in Phi-4. Interestingly,
besides being involved in general reasoning, it appears to promote an alternative strategy to the
strategy above: setting particular variables to true or false. This results in a more brute-force oriented
approach, mirroring the differences between Phi-4 and Phi-4-Reasoning on TSP.

Cluster 38: recall clause. This cluster precedes the recall of particular clauses from the
problem.

A.5 RESPONSES BY PHI-4 AND PHI-4-REASONING ON AIME

A.5.1 CLUSTERS MORE COMMON IN PHI-4-REASONING

Cluster 3: solve equation. This cluster is mostly active on two tasks which require solving an
equation/inequation. While it is also partially active in Phi-4 for one of those tasks, it is much more
common in Phi-4-Reasoning.

Cluster 31: verification alternate approach. This cluster corresponds to verifying
specific statements or registering potential concerns with an approach and considering an alternative
approach. It arises almost exclusively in Phi-4-Reasoning.

A.5.2 CLUSTERS MORE COMMON IN PHI-4

Cluster 49: solve equation. This cluster is mostly active when Phi-4 solves equations,
whereas it is much less active on Phi-4-Reasoning.

A.6 RESPONSES BY PHI-4 AND PHI-4-REASONING ON GRAPHNAV

A.6.1 CLUSTERS MORE COMMON IN PHI-4-REASONING.

Cluster 2: reasoning scaffold. This cluster is involved in structuring the overall reasoning
in Phi-4-Reasoning.

Cluster 22: plan final answer. Phi-4-Reasoning commonly plans its final answer during the
thinking section. This cluster is active in that section.

Cluster 9: recall instructions. This cluster is involved in Phi-4-Reasoning recalling its
instructions.

A.6.2 CLUSTERS MORE COMMON IN PHI-4.

Cluster 23: breadth first search. This cluster is specifically active when the model plans
and implements a breadth-first search algorithm. This indicates that Phi-4 is more likely to do this.

Cluster 48: reasoning scaffold. This cluster is involved in structuring the overall reasoning
in Phi-4, but not Phi-4-Reasoning.

A.7 CLUSTER EXPRESSIVITY

To ease the automated evaluation of identified clusters, we introduce a novel metric to quantify the
expressivity of each cluster. “Cluster expressivity” measures the number of unique tokens expressed
by a cluster, divided by the radius of that cluster in latent space. More formally, consider a response
with tokens T ∈ T n where T is the set of tokens. Let x ∈ Rn×d be its latent representation and
C ∈ Cn be its associated cluster identities. For each c ∈ C, let cent[c] ∈ Rd be the associated
centroid. We then define the radius

radius[c] := max
n:Cn=c

∥xn − cent[c]∥2 (4)

as the maximal ℓ2-distance of a data point within this cluster. We define the number of unique tokens
expressed by the cluster as

m[c] := |{t ∈ T : ∃nCn = c, Tn = t}|. (5)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We then compute “cluster expressivity” as

radius[c]
m[c]

. (6)

To summarize this metric, we compute its median value across all responses. We reason that high
expressivity indicates better-defined operations with rich vocabulary, i.e. multiple valid ways to
express the same operation. We therefore take them as more likely to be accurate primitives with
clear algorithmic meaning. Table 5 shows metrics of expressivity for all clusters extracted from
the responses by Phi-4-Reasoning on TSP. Notably, our selected primitives consistantly have high
cluster expressivity.

B EXPERIMENTAL SETUP DETAILS

B.1 TRAVELING SALESPERSON PROBLEM

Prompt: The traveling salesman problem (TSP) is a classic optimization problem that aims to find
the shortest possible route that visits a set of cities, with each city being visited exactly once and the
route returning to the original city.

You must find the shortest path that visits all cities. The distances between each pair of cities
are provided. Please list each city in the order they are visited. Provide the total distance of
the trip. The final output of the result path and total distance wrapped by the final answer tag,
like {<final_answer>{’Path’: ’0->1->2->...->N->0’, ’TotalDistance’:
’INT_TOTAL_DISTANCE’}</final_answer>}

The distances between cities are below: The path between City 0 and City 1 is with distance 44.
The path between City 0 and City 2 is with distance 45. The path between City 0 and City 3 is
with distance 45. The path between City 0 and City 4 is with distance 42. The path between City
0 and City 5 is with distance 37. The path between City 1 and City 2 is with distance 36. The path
between City 1 and City 3 is with distance 27. The path between City 1 and City 4 is with distance
28. The path between City 1 and City 5 is with distance 29. The path between City 2 and City 3 is
with distance 32. The path between City 2 and City 4 is with distance 38. The path between City
2 and City 5 is with distance 42. The path between City 3 and City 4 is with distance 46. The path
between City 3 and City 5 is with distance 31. The path between City 4 and City 5 is with distance
26.

B.2 AMERICAN INVITATIONAL MATHEMATICS EXAMINATION (AIME)

LLMs were presented with problems from the AIME benchmark, which tests various domains of
mathematical reasoning such as algebra, geometry, number theory, and combinatorics. The correct
answer for all AIME questions is an integer from 0-999.

Example prompts (from 2025 AIME I):

• Problem 1: Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

• Problem 2: On △ABC points A, D, E, and B lie in that order on side AB with AD = 4,
DE = 16, and EB = 8. Points A, F , G, and C lie in that order on side AC with
AF = 13, FG = 52, and GC = 26. Let M be the reflection of D through F , and let
N be the reflection of G through E. Quadrilateral DEGF has area 288. Find the area of
heptagon AFNBCEM .

B.3 3-LITERAL SATISFIABILITY PROBLEM (3SAT)

Models were tasked with determining the satisfiability of various 3SAT problems, a class of NP-hard
problems requiring combinatorial reasoning. If a model responded that a problem was satisfiable,
they were required to provide the specific literals that would achieve satisfiability.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 GRAPH NAVIGATION (GRAPHNAV)

Models were tasked with identifying the shortest path between two nodes in binary trees of varying
depth (2-6, corresponding to 7-127 nodes). Each node was a randomly generated integer from 1-
200, and edge lists were presented in randomized order. We included a ‘forward’ condition, where
the initial node was the root and the goal was a randomly selected leaf, and a ‘reverse’ condition
where the initial node was a randomly selected leaf and the goal was the root.

Forward Direction Prompt Example: Given the following list of connected rooms, someone wants
to get to 91 from 114. The initial room and other rooms are denoted by numbers. 114->45,
114->90, 45->167, 45->91, 90->49, 90->9. Starting at 114, what is the shortest path
of rooms to visit if someone wants to arrive at 91? Include the final response in parentheses as the
list of rooms separated by commas.

Reverse Direction Prompt Example: Given the following list of connected rooms, someone wants
to get to 63 from 119. All of the rooms are denoted by numbers. 164->63, 119->147,
52->147, 54->164, 147->63, 62->164. Starting at 119, what is the shortest path of
rooms to visit if someone wants to arrive at 63? Include the final response in parentheses as the list
of rooms separated by commas.

B.5 GENERATED MODEL RESPONSES

For TSP, AIME, and 3SAT we used previously generated model responses (Balachandran et al.,
2025); for GraphNav, we generated responses from Phi-4 and Phi-4-Reasoning ourselves, using
default generation parameters (temperature: 0.8, top k: 50, top p: 0.95).

B.6 PRIMITIVE VECTOR EXTRACTION

To extract primitive vectors we first compute the average indirect effect (AIE), as described in Sec-
tion 2.3 of Todd et al. (2024), averaging over the same set of six in-context learning tasks (antonym,
capitalize, country-capital, english-french, present-past, singular-plural). We then pick the 35 at-
tention heads with the largest AIE, denoting them by A ⊆ {(l, h)|l = 1, . . . , 40, h = 1, . . . , 40},
where l denotes the layer of the corresponding attention head and h denotes its particular index. We
consider a set of n = 200 responses in total (100 responses from Phi-4 and 100 responses from
Phi-4-Reasoning). For each response j = 1, . . . , n, we extract the activities in every attention head
on this response, Z(j) ∈ RTj×L×H×D, where L = 40 is the number of layers, H = 40 is the
number of attention heads, Tj is the number of tokens in response j, and D is the residual dimen-
sion (D = 5420). Importantly, to compute Z(j), we project the attention head activations back into
the residual dimension using the projection weights following that attention heads (this is the same
method implemented by Todd et al. (2024)). Like Todd et al. (2024), we do not apply any further
scaling or normalization. For a given cluster c, we denote all tokens that are a part of this cluster
by Tj [c] ⊆ {1, . . . , Tj}. We then compute the average activity in each attention head over all those
tokens:

Z[c] :=
1∑n

j=1 |Tj [c]|
∑

j∈Tj [c]

Z(j) ∈ RL×H×D. (7)

Finally, we compute the primitive vector v(p)[c] corresponding to this cluster as the average across
the 35 attention heads with the largest AIE:

v(p)[c] =
1

|A|
∑
l,h∈A

Zlh ∈ RD. (8)

B.7 TIME COMPLEXITY

Our time complexity is determined by two main processes:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1. CoT Generation + Activation Collection: O(L2), where L is the sequence length (num-
ber of tokens in the reasoning trace). Complexity is quadratic because Transformer self-
attention computes all token-to-token interactions. This happens once per response to gen-
erate the trace and extract internal activations. Typical responses contain between 500
and 6000 tokens; at that scale, the activation collection is the most expensive step for our
method, taking between 5–10 minutes on 4 A40 GPUs (we note that multiple GPUs are
required to analyze long responses).

2. Clustering: O(K × N × I), with K the number of clusters (K = 50 usually), N the
number of datapoints (activations collected), and I the number of iterations until conver-
gence. Scaling is linear with each factor. This is much faster than activation collection: we
measured 61 seconds for 10 responses with 50 clusters (linear, 1̃ min with a CPU).

Figure 6: Examples of binary trees used in the two conditions. a Forward condition: models were
tasked with finding the shortest path from the root node to a randomly selected leaf node, as in the
forward prompt above. b Reverse condition: models were tasked with finding the shortest path from
a randomly selected leaf node back to the root node.

C IDENTIFYING AND COMPOSING FUNCTION VECTORS

C.1 TASKS

We generated a set of algorithmic in-context learning tasks that require specific operations over
graphs.

Terminal node recognition (TNR), identifies the final node in a path (e.g., given the input “path:
T-P-Q-V”, the model is tasked with outputting the token ’V’). Reward comparison (RC) compares
rewards (represented by numbers between 1 and 100) across candidate nodes (e.g., given the input
“rewards=[M:100 vs S:44]”, the model is tasked with outputting ’M’). The evaluation task in Fig. 5a
required combining both primitives: given two paths, the model was prompted to return the node
that contains the highest reward.

Example Prompt (Correct Answer: A)

path1: B-O-Q-D-A.
path1-rewards=[A:65 vs Y:75].
path2: C-W-V.
path2-rewards [V:15 vs Y:45]

Relatedly, get first node and get last node requires responding with the first or last node
of a presented path (each node consists of numbers or capital letters and has between three and six
elements). get predecessor and get successor receive a path and a node has input and
need to return the predecessor or successor node respectively.

Example (get successor)
Input: Graph: D-C-N-J, Node: C
Output: N

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2 DETAILED METHODS AND RESULTS

We extracted function vectors corresponding to each of these tasks using the same approach as
Todd et al. (2024). We identified the 35 attention heads with the highest average indirect effect (see
definition in Todd et al. (2024)) for Phi-4 and Phi-4-Reasoning and 20 attention heads the highest
average indirect effect for Llama-3-8B. We injected these function vectors across all layers and
analyzed the layer with the largest effect.

Shuffled Zero shot

get_first_node
get_last_node

get_predecessor
get_successor

10 30 10 30

25%

50%

75%

100%

25%

50%

75%

100%

25%

50%

75%

100%

25%

50%

75%

100%

Layer

A
cc

ur
ac

y

Model

Phi−4
Phi−4−R

Baseline
+ FV

Figure 7: Accuracy on different graph operations after injecting the corresponding function vector
into Phi-4 or Phi-4-Reasoning, either after shuffled in-context examples are in a zero-shot setting.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

phi−4−reasoning

phi−4

llama−3−8B

FS ZS ZS+ FV_TNR

ZS+ FV_RC

ZS+ FV_both

Shuffled

Shuffled+ FV_TNR

Shuffled+ FV_RC

Shuffled+ FV_both

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 to

ke
n

Figure 8: Average probability assigned to the correct tokens when injecting the Termi-
nal node recognition and Reward comparison FVs (FV TNR and FV RC) and the sum of both
(FV both). We compare the performance across Llama-3-8B, Phi-4, and Phi-4-Reasoning, and
across a corrupted ICL and zero-shot context.

D BEHAVIORAL HALLMARKS ON TSP

We consider three setups for injecting primitive vectors into TSP. In Figs. 3b,d, we only present the
model with the TSP prompt and inject the primitive vectors throughout generation. We maximally
generate 500 tokens. This is not sufficient to reliably generate a full answer, but is sufficient to test if
the behavior is expressed. In Fig. 3c and Table 2, we add a sequence of randomly generated paths to
the assistant response before injecting the function vectors. In both of these cases, we define several
measures of different behavioral hallmarks. For these measures we automatically extract the set of
paths generated in the model response using a regular expression. Below we specify our operational
definitions of the different behavioral hallmarks:

1. % NN paths: What proportion of generated paths corresponds to a nearest-neighbor heuris-
tic?

2. # Unique paths: How many valid TSP candidate paths are generated (after removing dupli-
cate paths)?

3. Distance computation: What is the earliest token at which a distance computation occurs
(operationalized as a sum of several numbers)? A lower number thus corresponds to a
stronger expression of this behavior. If no distance computation occurs in the entire re-
sponse, we set the value to 512.

4. Final answer: At what token does the model generate the <final_answer> token?

5. # Verifications: How many verification-related words are mentioned in the response?

6. # Comparison: How many comparison-related words are mentioned in the response?

Finally, when evaluating the impact of the get first node and get last node primitive vec-
tors (Fig. 5c), we automatically extract a generated path from the middle of the reasoning trace
(constraining our selection to only consider paths where the first and last node are not identical).
We then generate the model response starting immediately after the generated path and injecting the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

corresponding primitive vector throughout. We generate 20 tokens and assess whether the first node
that is mentioned corresponds to the first node of the path, the last node of the path or some other
node.

D.1 COMPARISON TO BAG-OF-TOKENS EXPLANATION

To control for the potential alternative explanation that the injected primitive vectors simply boost a
“bag of tokens,” increasing the probability of specific tokens, we also injected the primitive vector
at the end of the residual stream, directly before the unembedding. We reasoned that if the primitive
vector simply boosts a bag of tokens, the algorithmic expression should be evoked with similar
strength by this procedure. We computed the maximal effect of this intervention across a wide
range of magnitudes (α = 0.5, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0, 4.0, 10.0, 100.0, 1000.0) and subtracted
it from the effect obtained by injecting the primitive vector into intermediate layers. We found that
each primitive vector most strongly induced its corresponding behavioral hallmark even with this
control, indicating that this behavior is caused by a latent procedure (Table 3).

%NN paths ↑ #Paths ↑ Dist. comp. ↓ Final ans. ↓ #Verif. ↑ #Comp. ↑
nearest neighbor +33.2% +47.3% -42.2% -18.6% +9.8% +141.5%
generate new path +0.0% +73.9% -19.7% -0.3% -213.0% -7.3%
compute distance +10.1% +33.7% -44.8% -50.5% +128.3% +103.7%
produce final answer +12.8% +34.0% -21.2% -63.5% +47.8% -1.2%
compare or verify +7.9% +38.5% -38.0% -20.2% +559.8% +1059.8%
compare or verify 2 +5.9% +0.8% -24.3% -24.7% +516.3% +290.2%

Table 3: Effects of primitive vector injection on behavioral hallmarks (% above baseline), controlling
for the effect of boosting a “bag of tokens”. For each cell, we identify the maximal effect across
all positive magnitudes and all intervention layers (10, 13, 15, 17, 20, 30) and subtract the maximal
effect across all positive magnitudes of injecting the primitive vector at the end of the residual
stream. Bold = strongest effect, underline = second strongest per column. (%NN paths: proportion
of nearest neighbor paths generated. Dist. comp.: Distance computation. Final ans.: Final answer.
#Verif.: number of Verifications in the output. #Comps: number of comparisons in the output. See
Appendix D for detailed definitions.)

D.2 ANALYSIS OF INTERFERENCE BETWEEN PRIMITIVE VECTORS

In Table 2 each cell had its own optimized injection magnitude α and injection layer L (maximizing
expression for that specific primitive-task combination). To investigate the specificity of algorithmic
primitives, we additionally investigated the effect of injecting the algorithmic primitive at the specific
α and L that optimizes that primitive’s corresponding behavioral hallmark (Table 4).

Primitive vectors were substantially more disentangled in this analysis. The analysis reveals that
the entanglement of some primitives seems to follow the sequential order of their usual expression.
For instance, injecting nearest neighbor increases the expression of its algorithmic successor,
compute distance, but injecting the successor doesn’t increase the expression of its predecessor
(nearest neighbor). This suggests that the entanglement of two primitives may be, at least
partially, due to them being commonly expressed in specific sequential algorithmic motifs, with
specific ordering.

D.3 RECONSTRUCTING PRIMITIVE VECTORS BY THEIR TOKEN OUTPUTS

To investigate whether primitive vectors can be reconstructed by their token decodings, we follow
the approach in Todd et al. (2024): for a given primitive vector v, we apply the LLM’s unembedding
matrix to generate an output distribution, Qt := D(v), where D is the unembedding operation.
Qt ∈ RT where T is the number of tokens. We then truncate this distribution to the top 100 tokens
and apply the softmax to generate a probability distribution Pt100 over the top-100 tokens. We
then perform an optimization where v̂t100 is inferred as the vector approximating this probability
distribution:

v̂t100 = argmin
v

CE(v, Pt100), (9)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

%NN paths ↑ #Paths ↑ Dist. comp. ↓ Final ans. ↓ #Verif. ↑ #Comp. ↑
nearest neighbor +56.1% -4.2% -34.9% +6.3% +40.2% -22.0%
generate new path -41.4% +143.9% -76.0% +85.3% -93.5% -82.9%
compute distance -100.0% -100.0% -86.5% +37.9% +35.9% +79.3%
produce final answer -100.0% -95.2% +283.8% -81.5% -48.9% -84.1%
compare or verify -100.0% -95.5% +266.4% +85.5% +568.5% +1103.7%
compare or verify 2 -100.0% -97.7% +280.2% +76.5% +706.5% +325.6%

Table 4: Effects of primitive vector injection on behavioral hallmarks (% above baseline). For each
row, we identify the magnitude and layer maximizing the effect for that row’s primitive and then
evaluate the effect on all behavioral hallmarks in that row. Bold = strongest effect, underline =
effects that increase expression of the behavioral hallmark.

where CE is the crossentropy loss. v̂t100 thus reflects the information about the primitive vector that
is contained within its decoded vocabulary. We then used those inferred vectors to generate new
outputs, computing the associated effect on the different behavioral hallmarks. We found that in
almost all cases, their effect was smaller than that of the original primitive vector. This indicates that
knowledge of the top tokens associated with a given primitive vector are not sufficient to reconstruct
its effect and some additional information is needed. A notable exception is given by the impact
of compare or verify on the number of comparisons, for which the inferred vector has an
even stronger effect. This suggests that the effect induced by this primitive vector is captured by
its top-decoded tokens. Overall, our analysis suggests that primitive vectors usually contain some
information beyond what can be inferred from their top decoded tokens.

Metric PV v v̂t100

% NN paths ↑ nearest neighbor +56.1% +21.1%
Paths ↑ generate new path +143.9% +62.0%
Dist. comp. ↓ compute distance -86.5% -71.9%
Final ans. ↓ produce final answer -81.5% -16.2%
Verif. ↑ compare or verify 2 +706.5% +71.7%
Comp. ↑ compare or verify +1103.7% +2458.5%

Table: Performance of the primitive vector (PV) (column v) compared to the reconstruction v̂t100
that matches the top 100 tokens (both columns show % above baseline). For each primitive vector,
we considered the behavioral hallmark on which it had the strongest effect (see Table 2). In all cases
except for the number of comparisons, the original PV induces a stronger effect.

E HYPERPARAMETER COMPARISONS

To evaluate robustness to our chosen hyperparameters, we repeated the clustering analysis for dif-
ferent choices of layer, number of clusters, and number of responses.

E.1 NUMBER OF LAYERS

We first repeated the clustering analysis for all layers by increments of five in both Phi-4 and Phi-
4-Reasoning when solving Traveling Salesperson (TSP). We then compared the frequency of each
layer’s clusters showing up both across responses within a model, and across the responses of the two
models (the analysis presented in Fig. 4a) (see Fig. 9a). To evaluate uniquely informative patterns
across the layers, we computed the correlation across the layer-wise dissimilarity matrices (Fig. 9b).
Together, these analyses revealed broad patterns in the effect of layers: after the first layers, there
was a large highly correlated cohort in the intermediate layers, especially layers 10-25 (centered
on layer 17), and a smaller cohort of highly correlated layers, ranging from 30-40. We observed
that intermediate layers captured more aspects of the reasoning hierarchy, as they more strongly
reflected the differences between the brute-force and random guess strategies implemented by dif-
ferent responses from Phi-4 (see Appendix G). In contrast, later layers more strongly highlight the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

differences between Phi-4 and Phi-4-Reasoning. As we are interested in identifying the underlying
algorithmic primitives, these findings justify layer 17 as a suitable candidate for clustering.

E.2 NUMBER OF CLUSTERS

To evaluate robustness to our choice of K, we conducted a similar analysis, this time keeping the
layer fixed (17) and varying K by 5, 30, 50, and 100. As described above, we first computed dis-
similarity matrices for frequency of cluster occurrences in within-model and cross-model responses
per K (Fig. 10a), and then computed the correlation across these matrices (Fig. 10b). Applied to
100 responses to TSP per model (Phi-4 and Phi-4R), this analysis revealed high correlations among
K=30, 50, and 100, with the highest Pearson correlation of >0.98 between K=50 and 100.

Next, we computed normalized inertia, or the sum of squared distance between each data point and
its assigned cluster centroid for 4 tasks per K = 5, 10, ..., 100, with increments of 5 on the x axis
(Fig. 10c). We then used the elbow method (Han et al., 2012) to identify an approximate K at which
inertia dropped for each task. Together, these findings revealed K = 50 as the parsimonious and
functionally appropriate choice, offering a reasonable tradeoff between explaining variance in the
latent space and parsimony in the potential number of algorithmic primitives.

E.3 NUMBER OF SAMPLES

To evaluate robustness to sampling choice, we fixed the layer (L = 17) and K = 50, and evaluated
the robustness of clustering to different numbers of responses, between 1 and 50. First, we found
very high correlation between assigned clusters across varying number of responses with a minimum
Pearson’s correlation of 0.96 for using 1 response, and a correlation of 0.9945 between 5 and 25 or
50 responses (Fig. 11a,b). We then measured the consistency of assigned clusters across a varying
number of responses with 2 measures: adjusted mutual information (MI) score and adjusted Rand
score (Fig. 11c), revealing high consistency for clustering models fit to at least 5 responses. Taken
together these findings show robustness of assigned clusters to varying number of responses included
in the analysis.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 5 1015172025303539
Layers

1
5

10
15
17
20
25
30
35
39

#
 L

a
y
e
rs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
o
rr

e
la

ti
o
n

a b

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 1

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 5

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 10

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 15

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 17

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s
Layer 20

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 25

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 30

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 35

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Layer 39
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 d

is
si

m
ila

ri
ty

Figure 9: a Dissimilarity matrices between the frequency of clusters occurring in different responses,
plotted for cluster analyses fitted to different layers. b Similarity between these different dissimi-
larity matrices. c Average dissimilarity between responses from different groups: 1) responses by
Phi-4-Reasoning, which consistently employ a heuristic nearest-neighbor strategy (see Appendix G),
2) responses by Phi-4 that employ a brute-force strategy, 3) responses by Phi-4 that articulate a ran-
dom guess. Intermediate layers emphasize similarities between the heuristic strategy employed by
Phi-4-Reasoning and both strategies employed by Phi-4, whereas later layers mostly reflect dissim-
ilarities between different models.

5 30 50 100

5

30

50

100

#
 C

lu
st

e
rs

 (
k)

0.7

0.8

0.9

1.0

C
o
rr

e
la

ti
o
n

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Clusters: k=5

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Clusters: k=30

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Clusters: k=50

Phi-4-R Phi-4

Responses

Phi-4-R

Phi-4

R
e
sp

o
n
se

s

Clusters: k=100

0.0

0.5

1.0

N
o
rm

a
liz

e
d

d
is

si
m

ila
ri

ty

b c

50 100
Clusters (k)

0.6

0.7

0.8

0.9

1.0

In
e
rt

ia
 (

S
ca

le
d
)

TSP

AIME

3-SAT

GraphNav

a

Clusters (k)

Figure 10: a Dissimilarity matrices as in Fig. 4a for different numbers of clusters. b Similarity
between the dissimilarity matrices for different numbers of clusters, confirming a high degree of
similarity for sufficiently many clusters. c Inertia (normalized by the inertia for five clusters for each
task) plotted against the number of clusters across the five tasks.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Phi-4-R Phi-4

Phi-4-R

Phi-4

1 Responses

Phi-4-R Phi-4

Phi-4-R

Phi-4

5 Responses

Phi-4-R Phi-4

Phi-4-R

Phi-4

25 Responses

Phi-4-R Phi-4

Phi-4-R

Phi-4

50 Responses

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 d
is

si
m

ila
ri

ty

1 5 25 50
Responses

1

5

25

50

#
 R

e
sp

o
n
se

s

0.96

0.97

0.98

0.99

1.00

S
im

ila
ri

ty

15 25 50
Responses

0.6

0.7

A
d

j.
 R

a
n
d

 I
n
d

e
xa b c

15 25 50
Responses

0.80

0.85

A
d

j.
 M

I
S

co
re

Figure 11: a Dissimilarity matrices between the algorithmic fingerprints of different responses,
plotted for cluster analyses fitted to different numbers of responses. b Similarity between these
different dissimilarity matrices. c Adjusted Rand Index and Adjusted Mutual Information Score
(averaged across 100 responses) for clustering models fit to different numbers of responses.

F AUTOMATED LLM ANNOTATION

We developed an automated pipeline for labeling our clusters, which corroborates our manual an-
notations. Specifically, for each cluster we randomly sampled 50 tokens, included the 15 preceding
and following tokens as context, and formatted these into 50 examples for GPT-4o. Within each ex-
ample, we highlighted the critical token using the notation **[critical token]**. Examples
were ordered by response and then by token index within each response.

We include four examples below from Phi4-Reasoning’s Cluster 41, which illustrate a heterogeneous
set of tokens that are all used during the evaluation and comparison of reasoning steps.

Example 1: 0->5->4->1->3->2->0 is**[best]**.

Perhaps: 0->5->1->3->4->2

Example 2: =121, 121+30=151, so that’s 151**[,]** not better.

What if 0->2->5->1->4

Example 3: 90. Remaining: F, then F->A: 50. But**[wait]**, we
still have F: from D, F: D->F =

Example 4: +12+11+45+17+21=120, we already**[computed]** that.

Wait, check: 0->4->2->5->

We employed three prompting methods to extract labels for each cluster: Prompt 1 emphasized
the contextual usage of critical tokens, while Prompt 2 included each 31-token excerpt without
highlighting the critical tokens. Prompt 3 served as an alternative to Prompt 1, placing greater
emphasis on the critical tokens themselves, rather than their surrounding context. We found that
Prompts 1 and 2 yielded the most accurate labels, aligning closely with our manual annotations.
The full prompts are provided below:

Prompt 1 - Token-Centric: This text includes excerpts from a language model solving various trav-
eling salesperson problems. It includes tokens highlighted with double asterisks and brackets (e.g.,
[token]), with the surrounding tokens provided as context. Consider the context in which each
highlighted token appears, and provide a single phrase (10 words or fewer) that describes their al-
gorithmic role or roles across the whole set. The descriptive label should be specific, because it will
later be contrasted with labels for tokens from other excerpts. The label may relate to a specific
type of operation, reasoning strategy, heuristic, organizational principle, class of words, numbers
relevant to the problem, tokens that appear in a specific context, etc. Remember that the label should
be based on the context of the highlighted tokens.

Prompt 2- Context-Centric: This text includes excerpts from a language model solving various
traveling salesperson problems. Consider all of the provided examples, and provide a single phrase

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(10 words or fewer) that describes the algorithmic role or roles common across the examples. The
descriptive label should be specific, because it will later be contrasted with labels for other excerpts.
The label may relate to a specific type of operation, reasoning strategy, heuristic, organizational
principle, class of words, numbers relevant to the problem, tokens that appear in a specific context,
etc.

Prompt 3 - Token-Centric (Alternative to Prompt 1): This text includes excerpts from a language
model solving various traveling salesperson problems. It includes various critical tokens highlighted
with double asterisks and brackets (e.g., **[critical token]**), with the surrounding tokens provided
as context. Consider each highlighted token in the text, and provide a single phrase (10 words
or fewer) that describes the entire set of critical tokens or encapsulates their algorithmic role or
roles. The descriptive label should be specific, because it will later be contrasted with labels for
tokens from other excerpts. The label may relate to a specific type of operation, reasoning strategy,
heuristic, organizational principle, class of words, numbers relevant to the problem, tokens that
appear in a specific context, etc. Remember that the label should be based on the highlighted tokens.

F.1 LABELS OF ALL CLUSTERS FOR PHI-4-REASONING RESPONSES ON TSP

We used our automated pipeline to assign labels to all cluster on the clustering model fit to Phi-4-
Reasoning responses on TSP (see Table 5), sorting these labels by their associated expressivity. We
excluded all clusters that were expressed in fewer than two tokens on average, resulting in a total of
46 clusters. Our results highlight that our pipeline demonstrates a strong agreement with our manual
labels and, furthermore, that our selected clusters generally have high associated expressivity. To
better understand how many clusters correspond to distinct algorithmic primitives, we used an LLM-
based pipeline to further sort them into specific groups. This revealed eight clusters that were better
characterized by linguistic patterns than algorithmically distinct roles:

• Algorithmic Clusters:
– High-Level Strategies: 18, 37, 41, 35, 26, 6
– Arithmetic Operations: 15, 11, 34, 42, 4, 13, 16, 8
– Distance/Cost Calculation: 9, 0, 17, 19, 22, 23
– Path Construction/Evaluation: 3, 14, 1, 38, 25
– Edge/Path Operations: 5, 27, 33, 45, 47
– Route Optimization: 31, 39, 46, 44, 21, 10
– Organizational/Workflow: 30, 43

• Linguistic Clusters:
– Notation/Punctuation: 12, 29, 24
– Identifiers/Labels: 7, 40, 20
– Structural Markers: 32, 48

Table 5: Annotated labels for the clustering model fit to TSP, showing both manual labels and the
two distinct automated labels. Clusters are ranked according their expressivity (number of unique
tokens expressing the cluster, divided by the radius of the cluster in the latent space)

Rank Cluster Manual Label Automated label
(Token-centric)

Automated label
(Context-centric)

Expressivity

1 18 Exploration of alterna-
tive routes and possibil-
ities

Evaluating candidate
routes and calculating
total distances.

2.58

2 30 produce final
answer

Output formatting with
<final_answer>
tag

Output formatting with
<final_answer>
tag.

1.17

Continued on next page

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 5: (continued)

Rank Cluster Manual Label Automated label
(Token-centric)

Automated label
(Context-centric)

Expressivity

3 41 compare or
verify 2

Route exploration and
modification sugges-
tions

Route evaluation and
improvement through
swaps and recalcula-
tions.

1.11

4 37 nearest neighbor ”Selecting best path
based on edge weights”

”Selecting best path
based on edge costs.”

0.94

5 19 Path and distance nota-
tion

Calculating and com-
paring path distances.

0.82

6 7 Key terms in TSP prob-
lem description

Shortest path computa-
tion in Traveling Sales-
man Problem (TSP).

0.65

7 9 City and path identifiers Distance calculations
between city pairs.

0.56

8 35 compare or verify Proposed alternative
routes

Route optimization and
evaluation in TSP solu-
tions.

0.35

9 15 compute distance Summation and accu-
mulation of path costs

Addition and summa-
tion of route distances.

0.32

10 40 City and path descrip-
tors

City-to-city distance
representation.

0.32

11 11 Intermediate cumula-
tive sum calculations

Incremental distance
calculations with com-
parisons to find optimal
path.

0.30

12 25 Delimiters and separa-
tors in route descrip-
tions

Evaluating and select-
ing paths based on dis-
tance or cost.

0.30

13 0 Distance values be-
tween cities

City-to-city distance
calculations

0.29

14 6 Exploring alternative
routes and strategies
for optimization.

Route exploration and
optimization through
swaps and recalcula-
tions.

0.28

15 29 Punctuation or spacing
in route calculations

Calculating and updat-
ing total distances in
routes.

0.27

16 17 Distances between city
pairs

Pairwise city distances
in traveling salesperson
problems.

0.25

17 26 generate new path Proposed routes for al-
ternative solutions

Route exploration
and evaluation for
optimization.

0.21

18 42 Intermediate sum in cu-
mulative addition cal-
culations

Incremental sum cal-
culations for path cost
evaluation.

0.20

19 12 Path and distance nota-
tion in TSP solutions

Path calculation and
distance summation.

0.18

20 34 Intermediate sum val-
ues in calculations

Incremental addition of
distances to calculate
total path length.

0.15

Continued on next page

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 5: (continued)

Rank Cluster Manual Label Automated label
(Token-centric)

Automated label
(Context-centric)

Expressivity

21 45 Edge weight in TSP
route calculations

Edge traversal and cost
calculation in paths.

0.14

22 24 Colon and equals sign
for distance assignment

Node-to-node distance
calculations

0.13

23 22 City identifiers in path
descriptions

Pairwise city distance
calculations

0.13

24 33 Edge weights in path
calculations

Incremental cost calcu-
lations and route sug-
gestions

0.13

25 1 Node in a potential TSP
route sequence.

Proposing alternative
routes and computing
distances.

0.12

26 32 Next node in path se-
quence

Node-to-node distance
calculations

0.12

27 43 Instructional and
structural language
for problem-solving
process

Structured reasoning
and solution presenta-
tion.

0.12

28 20 City identifiers in
routes and calculations

Path selection and dis-
tance calculation.

0.12

29 38 Node in a potential
route path.

Evaluating and compar-
ing potential routes and
distances.

0.10

30 47 Separating route seg-
ments and calculations

Edge weights and path
calculations

0.10

31 3 Route segment in can-
didate solutions

Evaluating and updat-
ing candidate routes
based on distance
calculations.

0.09

32 5 Edge weights in path
calculations

Edge weights and path
sequences in TSP solu-
tions

0.09

33 14 Path traversal represen-
tation

Path construction and
evaluation

0.09

34 23 Route termination or
cycle completion indi-
cator

Proposing alternative
routes and calculating
their distances.

0.08

35 4 Addition operation in
arithmetic calculations

Incremental sum calcu-
lation with intermediate
results

0.07

36 13 Addition operation in
distance calculations

Incremental distance
calculation for route
optimization.

0.07

37 27 Edge weights in path
calculations

Sequential path calcu-
lations with cumulative
distance summation.

0.07

38 16 Addition operation in
cost calculations

Partial sum calculations
for route cost evalua-
tion.

0.06

Continued on next page

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 5: (continued)

Rank Cluster Manual Label Automated label
(Token-centric)

Automated label
(Context-centric)

Expressivity

39 31 Route transition indica-
tor in path sequences

Route exploration and
evaluation in TSP solu-
tions.

0.05

40 48 Indicating direction
or transition between
nodes.

Node-to-node path with
distances

0.05

41 8 Equality check in arith-
metic operations

Incremental distance
calculations for route
optimization.

0.05

42 46 Route transition indica-
tor

Route exploration
and evaluation for
optimization.

0.03

43 39 Route transition indica-
tor

Route exploration and
evaluation for optimal-
ity.

0.03

44 44 Intermediate node in
proposed paths

Evaluating and suggest-
ing alternative routes
for optimization.

0.03

45 21 Return to starting point
in route.

Evaluating and calcu-
lating potential routes
and their distances.

0.02

46 10 Starting point or refer-
ence city in TSP routes.

Evaluating and com-
paring potential TSP
routes and distances.

0.02

F.2 ROBUSTNESS OF OUR PIPELINE TO DIFFERENT NUMBERS OF CLUSTERS

To explore the robustness of our pipeline to varying the number of clusters, we identified auto-
mated labels for the clusters inferred on responses by Phi-4 and Phi-4-Reasoning at k = 100. We
analyzed the five responses that were most strongly used in Phi-4-Reasoning and Phi-4 respec-
tively, as indicated by their χ2-difference. Notably, the top cluster in Phi-4-Reasoning expressed a
nearest-neighbor approach, whereas the top cluster in Phi-4 expressed a brute-force approach. This
replicates our insights at k = 50 and demonstrates the utility of our automated approach.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Cluster Automated label (Token-centric) Automated label (Context-centric) χ2-difference

89 Punctuation and separators in problem-
solving context

Selecting shortest path or edge based on
distance.

0.04

67 Exploration of alternative routes and so-
lutions.

Route optimization through permuta-
tion and manual inspection.

0.03

54 Route and distance calculation punctu-
ation

Route evaluation and distance calcula-
tion.

0.02

22 Comparative or superlative evaluation
of routes or distances.

Route exploration and optimization in
TSP solutions.

0.02

48 Route evaluation and comparison indi-
cators

Route exploration and evaluation for
optimization.

0.02

1 Placeholders for missing or irrelevant
information

City-to-city distance calculations -0.02

58 Route representation in traveling sales-
person problem solutions.

Node sequences representing potential
solutions

-0.02

64 Punctuation and formatting for path or
route descriptions.

Node sequence representation -0.03

15 Placeholder for missing distance values Summing distances for paths or routes. -0.05
59 Brute-force approach for small number

of cities (6).
Brute-force permutation evaluation for
small-scale TSP solutions.

-0.06

Table 6: Labels for clustering model fit to responses from Phi-4 and Phi-4-Reasoning with k =
100. We provide the five clusters with the largest positive χ-squared difference (indicating that they
are more often used in Phi-4-Reasoning) and the five clusters with the largest negative χ-squared
difference (indicating that they are more often used in Phi-4).

G NEAREST NEIGHBOR STRATEGY ANALYSIS

We compared the implementation of the nearest neighbor search heuristic on the Traveling Sales-
person Problem (TSP) in Phi-4-Reasoning and Phi-4-Base. First, we computed the minimum edit
distance between nearest neighbor solution and the optimal solution and analyzed how this distance
relates to accuracy. We computed these minimal NN-optimal edit distances using any city as the
starting point (Figure 12 a) and with city 0 as the starting point (Figure 12 b). The latter edit dis-
tance was chosen, because in practice, we observed that the models frequently used city 0 as the
initial node.

Next, we tested whether one of the first five generated paths is a nearest-neighbor solution; we
sampled from the first five paths to account for idiosyncrasies in the model’s output (e.g., repeating
path segments from the prompt). Additionally, we examined the relationship between the number
of considered paths and the average distance from the NN solution.

Overall, these findings demonstrate that Phi-4-Reasoning has a strong tendency to implement the
nearest neighbor search heuristic. Specifically, the model tends to begin with the NN solution start-
ing at city 0 and iteratively edit the path to minimize its total distance. While Phi-4-Base does
not invoke the nearest neighbor heuristic as reliably as Phi-4-Reasoning, it does to some degree as
shown in Figures 12 b and 13 a.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

a

b

Figure 12: a The minimal NN-optimal edit distances with any city as the starting point. b The
minimal NN-optimal edit distance using city 0 as the starting point. We observed a strong trend
between edit distance and accuracy in b, even when controlling for the number of cities (and a
somewhat weaker trend in a). This trend was especially strong for Phi-4-Reasoning, suggesting this
model may effectively implement the nearest neighbor heuristic beginning at city 0.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

a b

0 20 40 60
Considered paths

1.4

1.6

1.8

2.0

2.2

2.4

D
is

ta
n
ce

 f
ro

m
 N

N
 P

a
th

Model
Phi-4

Phi-4-Reasoning

6 8 10 12
Cities

0.0

0.2

0.4

0.6

0.8

P
ro

p
o
rt

io
n
 o

f
N

N
 s

ta
rt

s

Figure 13: a We found that Phi-4 reasoning begins with the NN heuristic much more frequently than
Phi-4-Base, especially when >8 cities are present. b Paths generated by Phi-4-Reasoning tend to
have much lower distance on average from NN paths than those generated by Phi-4. Additionally,
in Phi-4-Reasoning edit distance is lowest among the initial paths and increases as more candidate
paths are selected.

35

	Introduction
	Related Work
	Experimental Setup: Models and Tasks
	Methodology
	Definitions and Notation
	Algorithmic Tracing & Steering: Primitive Extraction & Evaluation

	Results
	Discussion
	RECOMMENDED ADDITIONS COPIED FROM GUIDELINES
	LLM Usage Disclosure
	Reproducibility statement

	Identification of algorithmic primitives
	Detailed methods
	Phi-4-Reasoning responses on TSP
	Responses by Phi-4 and Phi-4-Reasoning on TSP
	Clusters more common in Phi-4-Reasoning
	Clusters more common in Phi-4.
	Clusters common to both models.

	Responses by Phi-4 and Phi-4-Reasoning on 3SAT
	Clusters more common in Phi-4.
	Clusters common to both models.

	Responses by Phi-4 and Phi-4-Reasoning on AIME
	Clusters more common in Phi-4-Reasoning
	Clusters more common in Phi-4

	Responses by Phi-4 and Phi-4-Reasoning on GraphNav
	Clusters more common in Phi-4-Reasoning.
	Clusters more common in Phi-4.

	Cluster expressivity

	Experimental Setup Details
	Traveling Salesperson Problem
	American Invitational Mathematics Examination (AIME)
	3-literal Satisfiability Problem (3SAT)
	Graph Navigation (GraphNav)
	Generated model responses
	Primitive vector extraction
	Time complexity

	Identifying and Composing Function Vectors
	Tasks
	Detailed methods and results

	Behavioral hallmarks on TSP
	Comparison to Bag-of-Tokens explanation
	Analysis of interference between primitive vectors
	Reconstructing primitive vectors by their token outputs

	Hyperparameter Comparisons
	Number of layers
	Number of clusters
	Number of samples

	Automated LLM Annotation
	Labels of all clusters for Phi-4-Reasoning responses on TSP
	Robustness of our pipeline to different numbers of clusters

	Nearest Neighbor Strategy Analysis

