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Abstract

We present Timbru, a post-hoc audio watermarking model that achieves state-of-the-
art robustness and imperceptibility trade-offs without training an embedder-detector
model. Given any 44.1 kHz stereo music snippet, our method performs per-audio
gradient optimization to add imperceptible perturbations in the latent space of a
pretrained audio VAE, guided by a combined message and perceptual loss. The
watermark can then be extracted using a pretrained CLAP model. We evaluate
16-bit watermarking on MUSDB18-HQ against AudioSeal and WavMark across
common filtering, noise, compression, resampling, cropping, and regeneration
attacks. Our approach attains the best average bit error rates, while preserving
perceptual quality, demonstrating an efficient, dataset-free path to imperceptible
audio watermarking.

1 Introduction

Audio watermarking embeds imperceptible, machine-verifiable signals into audio to support prove-
nance, attribution, and copyright protection. This capability is increasingly critical in the era of social
media and rapidly improving generative models, which enable the production and dissemination of
highly realistic synthetic audio. Reliable watermarking can help end-users verify the legitimacy of
clips, deter unauthorized sampling, and credit creators, while simultaneously raising the stakes for
adversaries who seek to remove or forge watermarks.

Historically, audio watermarking was largely based on empirical schemes such as Quantization Index
Modulation [1], patchwork algorithms [2], least significant bit embedding [3], and spread-spectrum
techniques [4]. Although effective in certain settings, these methods often fail under common
transformations such as audio compression. The trade-off between watermark imperceptibility and
robustness against attacks remains at the center of audio watermarking and motivates our work.

Recent learning-based approaches have made significant progress, spanning passive detectors [5, 6]
and joint embedded-detector architectures [7–11] trained end-to-end. Passive detection is becoming
increasingly less effective due to high-fidelity synthetic audio that closely mimics genuine content.
In general, current watermarking approaches can be further categorized into ad-hoc and post-hoc
methods. Ad-hoc models integrate watermarking within a generator to emit user- or model-specific
watermarks [12]; post-hoc methods watermark arbitrary inputs after the fact. The latter offers greater
flexibility and accessibility, enabling users to protect existing and novel content alike.

In this work, we propose Timbru, a post-hoc optimization-based method that performs gradient
updates on a single audio snippet, by perturbing the audio imperceptibly until a watermark is obtained
that is robust to a wide range of attacks. This eliminates the compute and data requirements of
training dedicated embedder-detector models and does not necessitate domain-specific fine-tuning
for speech, music, or environmental audio.
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Figure 1: Overview of our proposed approach. The raw waveform AR is first transformed into the
latent representation using a pretrained Stable Audio Open VAE. To embed a watermark, minor
perturbations are added to this intermediate representation. At every step, this representation is
decoded back into a waveform (AW ) and then augmented to simulate a variety of attacks. The
perceptual loss and the message loss from the decoded message are then used to calculate the gradient
which optimizes the perturbations. All other components remain frozen.

Our contributions can be summarized as follows. We propose a post-hoc audio watermarking
approach for 44.1 kHz stereo audio. Our approach encodes the audio using a pretrained Stable Audio
Open VAE [13], which is then perturbed using gradient optimization to obtain an imperceptible
watermark. To detect a watermark and its payload, we use a pretrained CLAP [14] model as the
feature extractor for watermark detection. We find that our approach is on average more robust to
attacks and achieves higher perceptual quality compared to previous state-of-the-art methods.

2 Methodology

The core idea behind Timbru is that perturbations are added to a latent representation of the audio
during the optimization process in order to embed a watermark string of k bits m = m1, ...mk into
the audio snippet, as shown in Fig. 1. The purpose of such perturbations is to modify the audio’s
features in a way that aligns with a secret key held by the user [15, 16]. In a multi-bit setting, each
user has a secret key consisting of k randomly selected orthogonal vectors. Each vector v1, ..., vk
corresponds to an encoded bit. During the optimization process, the message m is modulated into the
signs of the projection of the features extracted by a pretrained CLAP model, ϕ(AW ), against each
of the carriers. The detector component then retrieves m̃ as follows:

m̃ = [sign(ϕ(AW )⊤v1), ..., sign(ϕ(AW )⊤vk)] (1)

Training Pipeline. Audio waveform snippets AR are passed through a transformation stage T (·)
in order to extract an embedding space within which to embed the watermark. We define T (·)
to be passing the waveform through the Stable Audio Open VAE [13] such that the intermediary
representation can be written as

AI = T (AR) = Enc(AR) (2)

Small perturbations δm are then added to the intermediary representation AI and the inverse trans-
formation is applied to convert the latent back to a raw audio waveform such that the resultant
watermarked audio is:

AW = T−1(AI + δm) = Dec(AI + δm) (3)

During the optimization stage, before detecting the watermark in the audio snippet, the watermarked
audio AW is subjected to a random attack to introduce robustness. The attacked audio is then passed
through a detector and the message is retrieved. The loss, composed of both the perceptual loss
between AR and AW and the message loss is then calculated and the gradient propagated back to AI ,
which acts as a perturbation δw added inside the latent space.

Losses. To capture robustness and the ability to detect and decode a watermark, we use a message
loss [16]. The optimization objective is to align the audio features x as closely as possible to the
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Table 1: Results for 16-bit watermarking. We compare Timbru against AudioSeal (AS) and WavMark
(WM) in terms of bit error rate (lower is better). We evaluate the watermarking models on bandpass
(BP), lowpass (LP), highpass (HP), echo (E), smoothing (S), duck audio (DA), boost audio (BA),
gaussian noise (GN), pink noise (PN), resampling (RS), quantization (Q), sample suppression (SS),
random cropping (RC), EnCodec re-encoding (EnC.), and regeneration attack (Regen.). More details
on each attack can be found in Appendix A. Whilst each method demonstrates their own clear
advantages and disadvantages, on average, our method demonstrates the best average bit error rate,
and notably outperforms previous methods on unseen regeneration attacks.

Model None BP LP HP E S DA BA GN PN
AS [9] 1.58 1.75 41.00 61.13 2.63 5.25 1.58 1.54 9.54 1.63
WM [10] 0.55 2.58 49.92 0.64 14.75 4.16 0.55 0.54 48.90 0.95
Timbru 0.83 17.5 53.30 25.00 22.5 0.00 0.83 0.42 20.42 2.5

Model MP3 AAC RS Q SS RC Speed EnC. Regen. Avg.
AS [9] 1.79 42.83 1.58 1.75 2.50 42.92 43.83 6.96 66.46 17.79
WM [10] 11.05 10.44 0.55 1.23 32.35 43.22 50.30 49.37 49.24 19.54
Timbru 5.42 22.08 0.83 1.67 6.67 30.83 40.00 10.41 21.67 14.89

k vectors v1, ..., vk that correspond to the encoded message. The message loss is a hinge loss with
margin µ > 0 on the projections, defined as

Lm(AW ) =
1

K

K∑
k=1

max(0, µ− (x⊤vi).mi), (4)

where m = (m1, ...mk) ∈ {−1, 1}k is the hidden message we embed in the audio snippet.

Additionally, a perceptual loss is used to ensure that any perturbations added to the audio remain
imperceptible to humans. This perceptual loss, Lp, is taken from DAC [17] and consists of a
combination of different losses, including a multi-scale Mel Spectrogram loss, as well as an adversarial
discriminator loss. The total loss is therefore

L = λmLm + λpLp, (5)

where λm = 160 and λp = 4 were empirically chosen as the optimal message weight and perceptual
weight, respectively.

3 Experiments

In line with previous work [10, 9], we embed 16 bits as our watermark message payload. We
randomly pick 10% of MUSDB18-HQ [18] mixtures and crop out 10-second snippets of these
samples to evaluate the methods. We test the robustness of our approach against a variety of attacks
using bit error rate metric to measure watermark message retrieval accuracy. In addition, we use
ViSQOL [19] and SI-SNR [20] to measure objective perceptual quality, as well as conducting a
MUSHRA [21] human evaluation study with 10 participants,1 where each participant was asked to
score all watermarked audios on perceptual quality. The subjective perceptual study contained one
hidden reference, and two anchors (3.5 kHz, 7 kHz) as well as three stimuli (Timbru, WavMark,
and AudioSeal). The participants were briefed beforehand about the task and were asked to rate the
perceptual quality of each stimuli.

The bit error rates for each attack are shown in Table 1. While we observe that our method is on
average able to outperform both AudioSeal [9] and Wavmark [10] in message reconstruction accuracy,
it is evident that each proposed watermarking approach has its own strengths and weaknesses. For
example, Audioseal proves to be robust against sample suppression due to its sample-level localization
techniques that implement sample-level masking during training. Bandpass and Lowpass results
show that AudioSeal also demonstrates its strength by not encoding a watermark in the low-frequency

1MUSHRA was conducted on https://www.mabyduck.com
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Table 2: Results for perceptual audio quality for 16-bit watermarking. We evaluate perceptual audio
quality on ViSQOL, SI-SNR, and by conducting a MUSHRA human evaluation study. For ViSQOL
and SI-SNR we show the standard deviation and for MUSHRA the 95% confidence interval. We find
that overall, our gradient-based optimization approach leads to the least impact on perceptual quality.

ViSQOL ↑ SI-SNR (dB) ↑ MUSHRA ↑
AudioSeal [9] 1.91±0.54 19.65±6.18 44.92±2.92
WavMark [10] 1.91±0.53 23.03±5.16 44.74±3.14
Timbru (ours) 4.08±0.25 5.15±3.13 70.83±3.53
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Figure 2: (Left) Mean bit recovery rate (BRR = (1−BER)/100) for 16-bit payload over optimization
steps shows the longer we run Timbru, the more robust the embedded watermark becomes. (Right)
Ablation where each point represents the mean BRR for watermarked audio with specific payload
length, showing how the mean BRR and the perceptual quality change as the payload length increases.

or high-frequency domain, unlike Wavmark, which tends to encode its watermarks in the high
frequencies. Furthermore, it is interesting to note that, compared to AudioSeal and WavMark, Timbru
offers the best robustness against unseen regeneration attacks, which tend to be the most difficult
attack type to defend against. The regeneration attack is carried out by encoding and decoding the
audio with DAC [17]. Since our approach embeds perturbations in the latent space of a pretrained
VAE which was originally trained against a loss containing Mel components, we believe that the
watermark is more likely to be preserved compared to other approaches. The bit error rates for
Wavmark were obtained by extracting only the last 16 bits corresponding to the payload.

Analyzing the watermarked audio quality in Table 2, we find that our approach offers better general
audio quality as measured by ViSQOL and the human participants in the MUSHRA listening
study. For the MUSHRA study, the participants rated the reference, mid-anchor (7 kHz), and low
anchor (3.5 kHz) as 91.37±1.97, 50.85±3.25, and 21.62±2.92, respectively. The significantly
lower performance of Timbru in terms of SI-SNR can be explained because the audio is passed
through a VAE, which can cause a variety of signal-level artifacts that are imperceptible to humans
(e.g., sample mismatch, phase inversion). In Fig. 2 we show the performance of Timbru in terms
of optimization steps. Unsurprisingly, we find that the longer we optimize, the more robust the
watermark becomes, although there are diminishing returns after a few thousand steps. For our
experiments, we set a stopping condition if the bit recovery rate does not improve for 1k steps. On
average, the watermarking process takes roughly one hour per audio snippet. Furthermore, we show
the trade-off between the number of bits in the payload and the corresponding ViSQOL score. We
find that as the number of bits increases, the robustness against attacks tends to degrade.

Conclusion. We introduced Timbru, a post-hoc audio watermarking method that preserves perceptual
quality while improving robustness by performing per-snippet gradient optimization to embed small
perturbations in a latent representation of audio, offering a strong dataset-free alternative to state-of-
the-art watermarking approaches.
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A Training Parameters

The attacks used for training and evaluation are a set of attacks that are common among other audio
watermarking methods [9–11]. The majority of these attacks were performed through the Audiocraft
library [22]. The parameters were mostly chosen as per the evaluation done in AudioSeal [9].
Parameters used during training are denoted by (T) whilst those used for evaluation are denoted by
(E).

Bandpass Filter: Only allows a specific frequency band to pass through it. (T) Lower cut-off
randomly selected between 300-5000Hz, upper cut-off between 3000-9000Hz. (E) Fixed window of
500-5000 Hz.

Lowpass Filter: Eliminates frequencies above a cut-off. (T) Cut-off randomly chosen between
300-5000 Hz .(E) Cut-off fixed at 500 Hz.

Highpass Filter: Eliminates frequencies below a cut-off. (T) Cut-off randomly chosen between
300-2000 Hz (E). Cut-off fixed at 1500 Hz.

Resampling: Resamples audio to: (T) Random choice between 4kHz, 8kHz, 16kHz, 22.1kHz, 24kHz,
32kHz. (E) Fixed sample rate of 32kHz.

Sample Suppression: Randomly sets a percentage of samples to 0. (T) Random choice between
0.01-0.05%. (E) Fixed at 0.03%.

Boost Audio: Amplifies audio by a factor. (T) Random factor between 1.1-12. (E) Fixed factor of 10.

Duck Audio: Reduces audio volume by a factor. (T) Random factor between 0.1-0.9. (E) Fixed
factor of 0.1.

Random Crop: Random crop of original audio. (T) Length randomly chosen from 1s - original
duration. (E) Length fixed to 50% of original.

AAC Compression: Encodes audio in AAC format. (T) Bitrate randomly chosen between 32kHz,
64kHz, 128kHz, 256kHz. (E) Fixed bitrate of 64kHz.

MP3 Compression: Encodes audio in MP3 format. (T) Bitrate randomly chosen between 32kHz,
64kHz, 128kHz, 256kHz. (E) Fixed bitrate of 32kHz.

Pink Noise: Adds pink noise. (T) Randomly selected standard deviation between 0.001 - 0.05. (E)
Standard deviation fixed at 0.1.

Gaussian Noise: Adds Gaussian noise. (T) Randomly selected standard deviation between 0.001 -
0.05. (E) Standard deviation fixed at 0.05.

Echo: Applies an echo effect to the audio, adding a delay and less loud copy of the original. (T)
random delay between 0.1 and 0.5 seconds, random volume between 0.1 and 0.5; (E) fixed delay of
0.5 seconds, fixed volume of 0.5.

Smooth: Smooths the audio signal using a moving average filter with a variable window size. (T)
window size random between 2 and 10. (E) Window size fixed at 40.

Quantization: Quantizes the samples to a number of values. (T) Number of values randomly chosen
out of 28, 29, 210. (E) Fixed number of 29.

Speed Change: Changes the speed of the original audio by a factor. (T) Factor randomly selected
between 0.95-1.1. (E) Fixed factor of 1.25.

EnCodec: (T) Resamples at 24 or 32kHz, encodes the audio with corresponding EnCodec [23]
version, and resamples it back to 44.1kHz. (E) Only uses EnCodec 24kHz and resamples back to
44.1kHz.

Regeneration: Out-of-domain attack. Only (E) where we encode with DAC [17] 44.1kHz.
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