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Figure 1: (left) Given multi-light images from a fixed viewpoint, LINO UniPS recovers sharper, more faithful
normals than UniPS/SDM-UniPS and visually rivals a 3D scanner. (right) On the DiLiGenT, a clear correlation
exists between the consistency of encoder features (CSIM/SSIM) and the final reconstruction accuracy (1/MAE).

ABSTRACT

Universal photometric stereo (PS) is defined by two factors: it must (i) operate
under arbitrary, unknown lighting conditions and (ii) avoid reliance on specific
illumination models. Despite progress (e.g., SDM UniPS), two challenges remain.
First, current encoders cannot guarantee that illumination and normal information
are decoupled. To enforce decoupling, we introduce LINO UniPS with two key
components: (i) Light Register Tokens with Light Alignment supervision to ag-
gregate point, direction, and environment lights; (ii) Interleaved Attention Block
featuring global cross-image attention that takes all lighting conditions together
so the encoder can factor out lighting while retaining normal-related evidence.
Second, high-frequency geometric details are easily lost. We address this with (i)
a Wavelet-based Dual-branch Architecture and (ii) a Normal-gradient Perception
Loss. These techniques yield a unified feature space in which lighting is explicitly
represented by register tokens, while normal details are preserved via wavelet
branch. We further introduce PS-Verse, a large-scale synthetic dataset graded by
geometric complexity and lighting diversity, and adopt curriculum training from
simple to complex scenes. Extensive experiments show new state-of-the-art results
on public benchmarks (e.g., DiLiGenT, Luces), stronger generalization to real
materials, and improved efficiency; ablations confirm that Light Register Tokens +
Interleaved Attention Block drive better feature decoupling, while Wavelet-based
Dual-branch Architecture + Normal-gradient Perception Loss recover finer details.

1 INTRODUCTION

Photometric stereo (PS) Woodham (1980) aims to recover surface normals from multiple images
under varying lighting conditions. Traditional methods Ikehata et al. (2012; 2014); Ikehata (2018);
Mo et al. (2018); Haefner et al. (2019) rely on assumptions of specific light sources or physical
models, making them difficult to adapt to complex natural scenes.
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Recent Universal PS methods Ikehata (2022; 2023); Hardy et al. (2024) have alleviated this reliance
by replacing explicit physical modeling with a learnable encoder-decoder architecture. The encoder
extracts representations of pixel-wise, spatially varying illumination from multiple input images and
produces a global lighting context, while the decoder, acting as a calibration network Ikehata (2021),
transforms this context into normal predictions. This paradigm achieves robust normal estimation
in diverse and spatially non-uniform lighting environments, substantially advancing the field. Yet,
achieving reliable performance in this setting is more challenging than it seems.

The first challenge lies in the ineffective decoupling of illumination and normal cues. Existing
encoders jointly process lighting and normal, but without explicit illumination representation the
decoder inherits unstable features, producing inconsistent normal predictions. Interestingly, we
observe that when encoders produce more similar normal features across different inputs, the accuracy
of normal estimation improves (Fig. 1 right), suggesting that explicitly factoring out illumination
is crucial for normal recovery. The second challenge is the loss of geometry details. Conventional
up/downsampling operations (e.g., bilinear interpolation Ikehata (2022), pixel shuffle Ikehata (2023))
either smooth fine details or disrupt high-frequency semantics Odena et al. (2016), leading to degraded
normal quality, especially in regions with complex variation (see Fig. 1 left).

In this paper, we propose LINO UniPS, a ViT-based framework that explicitly decouples illumination
from surface cues while preserving geometric detail. First, we introduce learnable Light Register
Tokens to capture illumination information. To handle diverse lights, we design three distinct types
of tokens, each dedicated to a specific light source: point, direction light, and environment (Env)
lights. Our key innovation is an explicit Light Alignment supervision, which guides each register
token to learn the characteristics of its corresponding illumination type. Second, we introduce an
Interleaved Attention Block to process the image features alongside these specialized registers. This
block employs a global cross-image attention mechanism that simultaneously attends to all tokens
from all lighting conditions. The synergy between the Light Register Tokens and the Interleaved
Attention Block enables the decoupling of lighting and normal cues, allowing our encoder to yield a
unified feature representation. In parallel, we introduce two components to ensure the preservation
of fine-scale geometry: a Wavelet-based Dual-branch Architecture, which introduces the wavelet
domain to help the model better attend to high-frequency details, and a Normal-gradient Perception
Loss that more heavily penalizes errors in high-frequency regions during training, thereby further
refining local predictions. We further construct PS-Verse, a new dataset graded by surface complexity
and lighting diversity, which enhances robustness and generalization under challenging real-world
lighting. Together, these designs enable state-of-the-art accuracy, robustness, and generalization
across synthetic and real benchmarks.

Overall, our contributions can be summarized as the following three points:

1. We introduce Light Register Tokens and an Interleaved Attention Block to explicitly decouple
illumination from normal features, thereby yielding a unified feature representation.

2. We adopt a Wavelet-based Dual-branch Architecture and a Normal-gradient Perception Loss,
which together substantially improve the reconstruction of fine-grained geometric details.

3. We build PS-Verse, a synthetic dataset graded by surface complexity and lighting diversity,
and demonstrate superior accuracy and generalization through curriculum training.

2 RELATED WORK

Calibrated Photometric Stereo: Calibrated PS Woodham (1980) deduces surface normals by
assuming meticulously pre-calibrated illumination, often relying on precise light source parameters.
This stringent requirement limits the applicability of early methods. Initial methods successfully
addressed Lambertian surfaces under such known lighting Woodham (1980). Subsequent research
extended capabilities to handle complex non-Lambertian reflectance, including varied BRDFs and
specular highlights Grossberg & Nayar (2003); Chandraker et al. (2005); Goldman et al. (2005;
2010); Ikehata et al. (2012), albeit always presupposing perfectly known illumination conditions.
More recently, deep learning techniques Jung et al. (2015); Santo et al. (2017); Chen et al. (2018); Ju
et al. (2021) have significantly enhanced the ability to model intricate materials within this calibrated
framework. However, the reliance of Calibrated PS on precise light source parameters severely
restricts its applications to controlled laboratory environments, thereby limiting its real-world utility.

2
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Uncalibrated Photometric Stereo: To alleviate photometric stereo’s dependence on pre-calibrated
light sources, the task of Uncalibrated Photometric Stereo (Uncalibrated PS) was introduced. Uncal-
ibrated PS methods Hayakawa (1994); Belhumeur & Kriegman (1996); Mallick et al. (2005); Chen
et al. (2020); Taniai & Maehara (2018); Kaya et al. (2021); Lichy et al. (2022) commonly adopt a two-
stage pipeline: an initial stage where a network module estimates the unknown lighting parameters,
followed by a second stage where these estimates are utilized as known inputs, like conventional Cali-
brated PS frameworks. While such Uncalibrated PS techniques have demonstrated success in handling
more complex scenarios Lichy et al. (2022), their application under unconstrained natural or ambient
illumination encounters significant challenges. These challenges primarily stem from the inherent dif-
ficulty in accurately modeling the physics of such arbitrary and often intricate lighting environments.

Universal Photometric Stereo: The Universal PS task, as recently formulated by Ikehata in Ikehata
(2022), leverages a purely data-driven approach to solve the photometric stereo problem. This task
enables operation under arbitrary and unknown lighting environments, critically obviating the need
for complex predefined assumptions regarding the illumination. Building on this foundation, methods
such as SDM UniPS Ikehata (2023) further advanced Universal PS by employing an encoder to
extract features from multi-illumination images; these features are then fused to create a global
lighting context, which a subsequent decoder utilizes in conjunction with pixel-level information
to estimate surface normals. Uni MS-PS Hardy et al. (2024) has explored multi-scale strategies
to address the Universal PS problem; however, such approaches often fall short of reconstructing
surface normals that are simultaneously detailed and accurate. Our analysis of prior methods like
UniPS and SDM UniPS indicates that an encoder’s ability to extract features with greater consistency
significantly facilitates the decoder’s task of producing higher-fidelity normal maps. Motivated by
this observation, we propose our method, LINO UniPS, which is designed to learn a superior Unified
Feature Representation for Universal Photometric Stereo. Furthermore, we adopt a Wavelet-based
Dual-branch Architecture and a Normal-gradient Perception Loss to address the challenge of detailed
reconstruction in high-frequency regions.

3 METHOD

The task of Universal PS is to accurately recover the surface normal map N ∈ RH×W×3 of an object
or scene from a set of F images {If}Ff=1, where If ∈ RH×W×3, captured under a single viewpoint
but multiple unknown lighting conditions {Lf}Ff=1 Ikehata (2022).

As illustrated in Fig. 2, our method processes multi-light images through an encoder-decoder archi-
tecture. Within the encoder, the pipeline consists of three main stages: 1) First, the input images
undergo processing by the (I) Wavelet Feature Extractor. This module simultaneously generates
downsample components and low- and high-frequency wavelet components via wavelet decomposi-
tion Daubechies (1990); Finder et al. (2024), and then converts both components into independent
token sequences through the backbone Dosovitskiy et al. (2021). 2) These sequences then enter the
(II) Light Registered Attention Module, where they are prepended with specialized Light Register
Tokens (Point, Direction, Env) to aggregate global illumination, before being processed by cascaded
Interleaved Attention Blocks. 3) Next, these tokens, excluding the Light Register Tokens, are fed
into the (III) Wavelet Aggregator. Here, features from the downsample and wavelet branches are
fused to produce the unified feature representation, which is finally passed to a decoder for normal
prediction.

The training is guided by two supervisory signals. First, a Light Alignment loss ensures that the
register tokens capture the characteristics of their corresponding illumination sources. Second, a
Normal Gradient Perception Loss enhances the model’s ability to reconstruct fine-grained geometric
details. Furthermore, this section only provides a high-level overview; please refer to appendix A1.1
for details.

3.1 LINO-UNIPS

Despite recent progress in this field, prior methods still suffer from two primary challenges.

Challenge 1: The encoder fails to effectively decouple illumination and normal information.

3
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Figure 2: Overview of the LINO UniPS architecture. The encoder includes (I) Wavelet Feature Extractor, (II)
Light Registered Attention Module and (III) Wavelet Aggregator, which together fuse wavelet and downsample
domain features for obtaining unified feature.

This failure forces the decoder to perform this disentanglement in addition to its primary prediction
task. This creates a paradoxical workflow, as the more powerful encoder partially offloads the most
difficult disentanglement to the weaker decoder. Motivated by this, our approach empowers the
encoder to generate consistent, disentangled normal features. This simplifies the decoder’s role to
that of a simple refiner, easing the learning process. To achieve this, our method introduces two core
components for this purpose: Light Register Tokens and Interleaved Attention Block.

Light Register Tokens: Inspired by the register mechanism in DINO Darcet et al. (2024), we
introduce Light Register Tokens to aggregate global illumination information. To account for varied
illumination types, we design distinct register tokens for point, direction, and environment (Env)
lights. Our key innovation, and a crucial departure from DINO’s unsupervised registers, is the
introduction of an explicit Light Alignment supervision.

Drawing on the feature alignment methods used in VAVAE Yao et al. (2025) and REPA Yu et al.
(2025) to accelerate generative model training, we encode the three types of Light Register Tokens to
align with information about the light sources in the training dataset, including the point, direction
and environment lights, (see Fig. 2, upper right corner), and supervise each of them separately with a
cosine similarity loss. We summarize the form of the loss functions as follows:

Llight = λ1Lenv + λ2Lpoint + λ3Ldirection (1)

where λ1, λ2, and λ3 are hyperparameters.The settings for these hyperparameters and the detailed
formulations of the Lenv, Lpoint, and Ldirection are provided in appendix A1.1.7 and appendix A1.1.3.

Through Light Alignment supervision, these tokens learn to capture and encode their respective
illumination information, thereby achieving decoupling of lighting from normal features. This is
demonstrated by the phenomena observed in Fig. 3. The attention maps show that the register
tokens have learned specialized focus. Specifically, the Point register tokens exhibit a sparse and
sharp attentional focus, concentrating on high-intensity regions, which strongly aligns with the high-
frequency characteristics of point light sources that produce distinct specular highlights. The Direction
and Env register tokens attend to broad, spatially-diffuse regions across the object, aligning perfectly
with the expected low-frequency characteristics of directional and environmental illumination that
govern global shading and softer shadows. This clear division of labor confirms the effectiveness of
our register tokens in disentangling the different physical components of the illumination.

Interleaved Attention Block: Previous methods like UniPS and SDM UniPS rely solely on Frame
Attention (Frame) Dosovitskiy et al. (2021) and Light Axis Attention (Light) Ikehata (2023). While
these mechanisms facilitate local information flow, they are insufficient for effectively decoupling
lighting variations and normal features. Inspired by VGGT Wang et al. (2025), our Interleaved
Attention block introduces a more powerful global cross-image attention mechanism (Global) that

4
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Figure 3: Attention maps for our different Light Register Tokens, derived from the encoder’s final-layer feature
maps for both real (left) and synthetic (right) data. These maps visually confirm that the tokens learn to focus on
distinct distributions of illumination information.

attends to all input image tokens simultaneously. Specifically, our block applies four attention layers
in an interleaved sequence: Frame → Light → Global → Light (see Fig. 2, middle).

The key advantage of this design is its ability to aggregate and fuse information across multiple
hierarchical levels. Light-axis attention operates at the patch level, frame attention captures intra-
image context, and our global attention integrates information at the cross-image level. This multi-
level awareness enables the model to build a holistic understanding of the global illumination from
local to global scales, thereby achieving a better decoupling from the intrinsic normal features.

Challenge 2: The model fails to preserve high-frequency geometric details.

Accurate normal reconstruction is highly dependent on preserving high-frequency geometric details,
yet current feature extraction techniques often discard them. Although prior methods recognize this
issue, their solutions are inadequate. UniPS Ikehata (2022) extracts features from downsampled
images, which inherently introduces blurring. While SDM UniPS Ikehata (2023) attempts to mitigate
this with a "split-and-merge" operation, this process can disrupt high-frequency semantics Odena
et al. (2016). To overcome these limitations, we propose a two-pronged approach: a Wavelet-based
Dual-branch Architecture to preserve information during feature extraction, and a Normal Gradient
Perception Loss to guide the model’s focus towards these fine details during training.

Wavelet-based Dual-branch Architecture: To mitigate information loss during downsampling, our
dual-branch uses the discrete wavelet transform Daubechies (1990). This allows us to decompose
multi-light images into their high- and low-frequency components. At the same time, to retain global
image-domain semantic information, we maintain a parallel branch that performs downsampling.
During feature upsampling, an inverse wavelet transform reconstructs features from the wavelet
domain, ensuring detail preservation throughout the network.

Normal Gradient Perception Loss: To further guide the network’s focus towards complex geometric
and richly textured regions, we introduce a Normal Gradient Perception Loss (Ln). Instead of treating
all pixels equally, this loss uses the predicted normal gradient (G̃) to generate a confidence map
(C = eG̃) that amplifies the error signal in high-frequency areas. The loss is a weighted sum of this
confidence-weighted reconstruction error and a gradient supervision term:

Ln = λ4

∑
(N − Ñ)2 ⊙ C + λ5

∑
(G̃−G)2, (2)

Here, the first term penalizes the difference between the predicted normal (Ñ ) and ground truth (N ),
weighted by the confidence map C. The second term directly supervises the predicted gradient (G̃)
against the ground truth gradient (G = ∇N ). The coefficients λ4 and λ5 balance these two objectives.
This design makes the network explicitly sensitive to fine surface details, significantly improving
reconstruction quality in challenging regions.

3.2 PS-VERSE DATASET

Prior large-scale synthetic datasets, such as PS-Wild Ikehata (2022) and PS-Mix Ikehata (2023), have
advanced the field by enabling data-driven Universal PS. However, they remain limited by either
overly simplistic lighting (e.g., lacking high-frequency point sources) or geometrically simple objects
that fail to produce complex lighting variations and self-shadowing effects.

5
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Figure 4: Features from different methods’ encoders;
rightmost column is variance.
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Figure 5: Results of object inference with masks in
Luces and DiLiGenT. Using 16 input images.

Table 1: Comparison of PS-Verse with Other Photometric Stereo Datasets. The terms ‘Intrinsic‘, ‘Normal‘,
and ‘Light‘ indicate the availability of material parameters (albedo, etc.), the use of normal maps for rendering
detail, and the presence of light type annotations. ‘Complexity‘ quantifies the average magnitude of surface
normal gradients, where higher values denote greater geometric intricacy. ‘Shapes‘, ‘Env‘, and ‘Scenes‘ are the
respective counts of 3D models, HDRI environment maps, and rendered scenes.

Dataset Intrinsic Normal Light Complexity # Shapes # Env # Scenes

CyclesPS-Train Ikehata (2018) ✗ ✗ ✓ 4.9 15 0 45
PS-Wild Ikehata (2022) ✗ ✗ ✗ 3.5 410 31 10,099
PS-Mix Ikehata (2023) ✓ ✗ ✗ 11.5 410 31 34,927
PS-Uni MS-PS Hardy et al. (2024) ✗ ✗ ✓ 8.6 11,000 1100 100,000
PS-Verse ✓ ✓ ✓ 26.7 17,805 2423 100,000

Leveraging publicly available large-scale 3D asset datasets Deitke et al. (2022; 2023); Vecchio &
Deschaintre (2024), we propose the PS-Verse dataset (see Tab. 1 for a detailed comparison with other
Photometric Stereo datasets). To increase the lighting complexity in rendered scenes, we carefully
select 17,805 textured 3D models with UV coordinates and PBR materials from the Objaverse
dataset Deitke et al. (2022), which contains nearly 800,000 models. Following Dora Chen et al.
(2024), which quantifies geometric complexity based on the density of sharp edges, we categorize the
objects into four complexity levels. We then construct scenes by recursively selecting 4 to 6 objects
from each level, and classify scenes into four corresponding complexity tiers.

Regarding materials, textures are randomly sampled from the MatSynth large-scale PBR material
database Vecchio & Deschaintre (2024), consisting of 806 metallic, 1,226 specular, and 3,321 diffuse
material groups. To balance the distribution of specular and diffuse lighting effects, we assign object
materials according to the ratio of 1:4:2.5:2.5 across original object textures, diffuse, specular, and
metallic materials. To more realistically simulate fine surface detail interactions with light, we
introduce normal mapping for objects for the first time in such data, defining this as a fifth complexity
level that injects rich high-frequency lighting details.

In terms of lighting setup, we use uniform environment light to simulate non-dark ambient conditions.
Detailed lighting configurations are provided in the appendix A1.3.3. Overall, the PS-Verse dataset
consists of 100,000 scenes generated with Blender Foundation. Each scene includes two rendering
outputs: with and without normal mapping. We render 20 images at a resolution of 512 per scene.

In addition to providing ground truth for surface normals, the PS-Verse dataset also offers ground
truth for albedo, roughness, and metallic, to support PBR prediction tasks. The PBR prediction results
and visual showcase of the PS-Verse dataset can be found in the appendix A1.2 and A1.3.

4 EXPERIMENTS

Implementation Details: To effectively enhance our method’s capability for reconstructing fine-
grained surface normals, we employ a curriculum learning strategy that progresses from low to high
geometric complexity. We start training on PS-Verse Level 1 data, adding higher levels every 10
epochs up to Level 4, for about 150 epochs. Then, we finetune on Level 5 data with ground truth
normals until 200 epochs to improve surface detail reconstruction. We use AdamW Optimizer with
1e−4 initial learning rate, 0.05 weight decay and a step decay of 0.8 every ten epochs. Input images

6
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Ground Truth Baseline + light register tokens + global attention

+ light alignment + wavelet branch + grad perception loss + curriculum learning

Figure 6: Qualitative results for the main ablation study. The visual comparisons are shown on samples from
our PS-Verse Testdata. We recommend zooming in to observe fine-grained details.

per batch vary randomly from 3 to 6. The total loss L combines multiple components:

L = Llight + Ln (3)

Training runs on 2 NVIDIA H100 GPUs for roughly 3 days. Inference takes around 1.5 seconds for
16 input images at 512×512 on H100.

Evaluation Metric: We evaluate our results using three metrics. For surface normal accuracy,
we measure the Mean Angular Error (MAE, in degrees, ↓). To assess feature similarity, we utilize
Cosine Similarity (CSIM ↑) on normalized features and the Structural Similarity (SSIM ↑) Wang et al.
(2004) on their 3D PCA projections. For both metrics, the final score is obtained by averaging the
similarity values computed between all possible feature pairs. For instance, given a set of 6 features,
we calculate all C2

6 pairwise values to derive this mean.

Evaluation Dataset: For evaluation, Comparison experiments and ablation studies, we employ
two public benchmarks, DiLiGenT Shi et al. (2018) and Luces Logothetis et al. (2022), and our
synthetic PS-Verse Testdata. This set contains 441 scenes held out from the training data, with each
scene featuring a single object to allow for clearer qualitative evaluation. To verify the model’s
generalization capabilities, we test on real-world images from SDM UniPS Ikehata (2023).

7
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4.1 ABLATION STUDY AND COMPARISON EXPERIMENT

Ablation: The main ablation quantitative results are presented in Tab. 2, and the qualitative re-
sults are in Fig. 6. First, to demonstrate the superiority of our PS-Verse dataset, we retrain the
Uni MS-PS Hardy et al. (2024) on both the PS-Mix Ikehata (2023) and our PS-Verse. We then
compare these models against the officially released Uni MS-PS, which was trained on its native
data (PS-Uni MS-PS). The results show that the model trained on PS-Verse yields substantially
better feature similarity scores (CSIM and SSIM) and a lower MAE for normal reconstruction,
which strongly indicates that PS-Verse is more effective for training high-performance models.

Table 2: Main ablation with 20 multi-lights input images. The evaluation
metrics were measured on our PS-Verse Testdata.
Method Dataset CSIM↑ SSIM↑ Avg. MAE↓
Uni MS-PS PS-Uni MS-PS 0.72 0.70 9.02
Uni MS-PS PS-Mix 0.63 0.66 10.02
Uni MS-PS PS-Verse 0.75 0.73 7.82

Baseline PS-Verse 0.71 0.69 8.73
+ light register tokens PS-Verse 0.74 0.73 8.13 (0.60 ↓)
+ global attention PS-Verse 0.80 0.78 6.44 (2.29 ↓)
+ light alignment PS-Verse 0.86 0.82 5.58 (3.15 ↓)
+ wavelet branch PS-Verse 0.85 0.82 5.15 (3.58 ↓)
+ grad perception loss PS-Verse 0.86 0.83 4.84 (3.89 ↓)
+ curriculum learning PS-Verse 0.88 0.86 4.51 (4.22 ↓)

Second, we conduct ab-
lations of the various mod-
ules within our LINO UniPS
method, starting from a base-
line model where all our pro-
posed enhancements are re-
moved. Our initial finding is
that by merely incorporating
unsupervised Light Register
Tokens, both the feature sim-
ilarity metrics and the normal
reconstruction results show an
improvement. This suggests
that these additional tokens can often capture global lighting information even without direct supervi-
sion, thereby aiding the disentanglement of normals from illumination. Progressively incorporating
our global cross-image attention mechanism to our interleaved Attention Block and light alignment su-
pervision leads to more significant improvements in both feature similarity and normal reconstruction
performance. This further validates our central conclusion: that more effectively decoupling lighting
and normal features enhances the quality of normal reconstruction. Next, we integrate the wavelet
branch to form our Wavelet-based Dual-branch Architecture and the Normal-gradient Perception
Loss for extracting fine-grained context. While these two modules have a modest impact on feature
similarity metrics, they substantially improve performance on data with complex geometries as
intended. Finally, from the last row, adopting curriculum learning boosts all metrics, improving
feature similarity while also reducing MAE, which confirms the effectiveness of this training strategy.

Table 3: Architectural comparison on the PS-Mix dataset Ikehata (2023).
The consistency of the encoder features is measured by Cosine Similarity
(CSIM) and Structural Similarity (SSIM), while the final normal reconstruction
accuracy is evaluated by Mean Angular Error (MAE).

Method CSIM↑ SSIM↑ MAE↓
DiLiGenT Luces

SDM UniPS Ikehata (2023) 0.84 0.72 5.80 13.50
Uni MS-PS Hardy et al. (2024) 0.82 0.76 5.75 13.71
Ours 0.90 0.91 5.60 12.70

Comparison 1: To isolate
the architectural advantages
of LINO UniPS from the ef-
fects of training data, we re-
train it alongside Uni MS-
PS Hardy et al. (2024) on
the PS-Mix dataset Ikehata
(2023) to convergence ( 100
epochs). As presented in
Tab. 3, our LINO UniPS sur-
passes SDM UniPS and Uni
MS-PS across both evalu-

ated public datasets. Notably, LINO UniPS yields higher CSIM and SSIM scores, quantitatively
demonstrating that features extracted by our encoder exhibit greater similarity compared to those
from SDM UniPS Ikehata (2023) and Uni MS-PS. It is noteworthy that our LINO UniPS utilizes a
decoder architecture identical to that of SDM UniPS Ikehata (2023). This architectural commonality
strongly suggests that the observed performance improvements are primarily attributable to our en-
coder’s enhanced capability to more effectively decouple illumination from geometry. Such effective
decoupling fosters stronger normal consistency within the learned features, consequently boosting
the accuracy and capability of the final normal reconstruction.

Comparison 2: We present a comprehensive analysis of the parameter count in Tab. 6. To investigate
the impact of model size, we finetune two smaller variants on PS-Verse, Ours-S1 (73.2M) and
Ours-S2 (60.4M), by reducing the number of layers in Feature Extractor and Interleaved Attention
blocks. These models are designed to have parameter counts comparable to Uni MS-PS (75.5M)
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Table 4: Evaluation on DiLiGenT Shi et al. (2018). Uses all 96 images unless otherwise noted (K). Normal
reconstruction accuracy is evaluated by Mean Angular Error (MAE).

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg. MAE

UniPS Ikehata (2022) 4.90 9.10 19.40 13.00 11.60 24.20 25.20 10.80 9.90 18.80 14.70
SDM UniPS Ikehata (2023) 1.50 3.60 7.50 5.40 4.50 8.50 10.20 4.70 4.10 8.20 5.80
Uni MS-PS Hardy et al. (2024) 1.92 3.14 6.16 3.60 4.04 6.35 8.84 4.08 4.88 7.09 5.01
Ours w/ mlp 1.21 3.62 7.36 4.83 4.94 6.11 10.71 5.37 5.23 7.54 5.69
Ours 1.74 2.64 6.12 3.38 3.99 5.17 8.58 4.07 4.14 6.67 4.65
Ours(K=32) 1.75 2.66 6.26 3.49 4.06 5.25 8.71 4.12 4.26 6.75 4.73
Ours(K=16) 1.92 2.74 6.40 3.51 4.25 5.41 8.81 4.14 4.45 7.12 4.88

Table 5: Evaluation on Luces Mecca et al. (2021). Uses all 52 images unless otherwise noted (K). Normal
reconstruction accuracy is evaluated by Mean Angular Error (MAE).

Method Ball Bell Bowl Buddha Bunny Cup Die Hippo House Jar Owl Queen Squirrel Tool Avg. MAE

UniPS Ikehata (2022) 11.01 24.12 23.84 27.90 23.51 28.64 16.24 21.41 35.93 14.53 32.87 28.36 25.36 19.03 23.77
SDM UniPS Ikehata (2023) 13.30 12.76 8.44 18.58 8.53 19.67 7.25 8.86 26.07 8.30 12.67 15.97 16.01 12.54 13.50
Uni MS-PS Hardy et al. (2024) 10.20 10.52 6.98 12.83 9.60 13.68 6.19 8.33 25.29 6.30 11.47 12.45 11.36 11.79 11.21
Ours w/ mlp 9.09 12.00 10.09 16.63 9.87 15.97 6.86 9.44 25.37 7.65 11.77 13.62 16.57 13.22 12.62
Ours 10.16 8.78 6.96 12.67 6.09 8.15 6.16 5.99 22.91 6.24 9.58 9.84 10.25 8.25 9.43
Ours (K=15) 10.27 8.80 9.01 14.05 6.40 8.42 6.87 6.04 23.60 6.89 10.48 9.93 10.29 8.29 9.94

and SDM UniPS (59.9M). The results clearly show that our models consistently outperform their
counterparts at similar parameter scales, confirming that the superiority of our method stems from its
architectural design, not merely from a larger parameter count.

Furthermore, the table compares inference times. On both high-resolution (4000×4000) and standard-
resolution (512×612) images, our method runs slightly faster than SDM UniPS and is substantially
more efficient than Uni MS-PS, which requires approximately 35 times more computation time.
This highlights the efficiency of our approach, particularly for high-resolution processing.

4.2 QUANTITATIVE RESULTS

As observed in Tab. 4, on the DiLiGenT Shi et al. (2018), our method achieves a new SOTA
performance with an average MAE of 4.65°, outperforming the previous best method. Similar
results can also be seen in Tab. 5. On Luces Mecca et al. (2021), a dataset featuring high-frequency
information, our method obtains an average MAE of 9.43°. This represents a substantial improvement
over the prior best performance (11.21°). Some qualitative results are presented in Fig. 5.

To further underscore the efficacy of our encoder, we conduct an additional experiment. In this setup,
we replace the standard decoder in our LINO UniPS with a simpler Multi-Layer Perceptron (MLP)
and then finetune this variant until convergence. Our findings are twofold: First, the consistency of
the extracted features is further enhanced, as detailed in Fig. 4. Second, although the reconstruction
performance sees a slight degradation compared to LINO UniPS with its original, more sophisticated
decoder, this MLP-decoder variant (w/mlp) still outperforms SDM UniPS. These results align with
our hypothesis that the superior performance of LINO UniPS is primarily driven by its encoder’s
advanced capability to generate highly consistent and well-disentangled features.

Moreover, as detailed in Tab. 4 and Tab. 5, our method achieves SOTA on all scenes except for the
’Ball’ object in both benchmarks, demonstrating the general superiority of our approach. Interestingly,
on the ’Ball’ scenes, the best performance is achieved by our MLP-decoder variant. We hypothesize
that this is because a simpler MLP decoder is better suited for recovering geometrically simple
primitives like the ’Ball’.

4.3 QUALITATIVE RESULTS

Fig. 1 and Fig. 7 showcase our method’s ability to reconstruct highly detailed and accurate surface
normals for real-world objects and scenes, highlighting its strong generalization capabilities. As
shown in Fig. 1, when processing high-resolution images, a close inspection of detail-rich regions
like the rabbit’s ears and abdomen reveals a clear distinction. While UniPS and SDM UniPS produce
over-smoothed results and fail to capture the intricate surface geometry, our LINO UniPS successfully
reconstructs fine-grained details in these challenging areas. Fig. 7 further demonstrates our method’s
performance on more complex, high-resolution (4K) real-world scenes. Our method consistently

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on parameter count. Inference time is measured on 16 images (K=16). The 4000×4000
and 512×612 resolution images are sourced from the SDM UniPS real data Ikehata (2023) and the DiLiGenT Shi
et al. (2018).

Method Params (M) Inference Time (s) MAE (°)↓
4000× 4000 512× 612 DiLiGenT LUCES

Ours 84.2 85.1 1.7 4.65 9.43
Ours-S1 73.2 82.9 1.5 4.83 10.05
Ours-S2 60.4 81.0 1.5 4.95 10.89

SDM UniPS 59.9 92.7 1.8 5.83 13.52
Uni MS-PS 75.5 3012.2 35.3 5.01 11.21

Input RGB Ours SDM UniPS UniPSUni MS-PS

Figure 7: Qualitative comparison for the high-resolution (4K) ’Coins and keyboard’ scene from SDM UniPS Ike-
hata (2023) with 8 input images. Our method recovers more intricate details than the baseline.

produces more physically plausible and detailed results. For instance, a key differentiator is revealed
in the background textile, as shown in the magnified view of the top row. Here, Uni MS-PS, SDM
UniPS and UniPS fail to reconstruct the complex texture of the tablecloth, whereas our method
demonstrates stronger generalization by accurately recovering its intricate fabric pattern. Additional
reconstruction results on real-world scenarios can be found in appendix A1.5.2.

5 CONCLUSION

In this paper, we propose LINO UniPS, a novel framework for Universal Photometric Stereo that
addresses two core challenges. The first is the failure to disentangle illumination-invariant surface
normals from spatially-varying lighting. To this end, we employ Light Register Tokens with an explicit
light alignment and an Interleaved Attention Block with a global cross-image attention mechanism.
These components work in concert to capture the global lighting context and enable better separation
of lighting and normal features. The second challenge is the loss of fine-grained detail. To address
this, we integrate a wavelet branch to form a Wavelet-based Dual-branch Architecture and introduce
a Normal-gradient Perception Loss, which heightens the model’s sensitivity to intricate geometry.
Finally, we contribute a complex and large-scale photometric stereo dataset, hoping to provide
valuable reference for future research.

ETHICS STATEMENT.

This work does not involve human subjects, personally identifiable information, or sensitive data.
The datasets used in this study are publicly available and widely adopted in the machine learning
community. All experiments were conducted using standard computational resources without en-
vironmental or societal harm. The methodology does not introduce discriminatory biases, and the
model’s potential applications are aligned with responsible AI principles. The authors have reviewed
the ICLR Code of Ethics and confirm that this submission adheres to its guidelines.
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REPRODUCIBILITY STATEMENT.

To support reproducibility, we provide a complete description of our model architecture, training
procedures, hyperparameters, and evaluation protocols in the main paper. Additional implementation
details are included in the Appendix. We have strived to document all necessary components with
sufficient clarity to enable independent replication of our results.

REFERENCES

P. Belhumeur and D. Kriegman. What is the set of images of an object under all possible lighting conditions? In
Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 1996.

M. Chandraker, F. Kahl, and D. Kriegman. Reflections on the generalized bas-relief ambiguity. Proceedings of
IEEE/CVF Computer Vision and Pattern Recognition, 2005.

G. Chen, K. Han, and K-Y. K. Wong. Ps-fcn: A flexible learning framework for photometric stereo. Proceedings
of European Conference on Computer Vision, 2018.

Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita, and Kwan-Yee K. Wong. Sdps-net: Self-calibrating
deep photometric stereo networks. In Proceedings of IEEE/CVF Computer Vision and Pattern Recognition,
2019.

Guanying Chen, Michael Waechter, Boxin Shi, Kwan-Yee K Wong, and Yasuyuki Matsushita. What is learned
in deep uncalibrated photometric stereo? In Proceedings of European Conference on Computer Vision, 2020.

Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long, Jiashi Feng,
and Ping Tan. Dora: Sampling and benchmarking for 3d shape variational auto-encoders. In Proceedings of
IEEE/CVF Computer Vision and Pattern Recognition, 2024.

Pointcept Contributors. Pointcept: A codebase for point cloud perception research. https://github.com/
Pointcept/Pointcept, 2023.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers. In
International Conference on Learning Representations, 2024.

I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on
Information Theory, 36(5):961–1005, 1990.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects, 2022.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Christian
Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl: A universe of 10m+ 3d objects,
2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

Shahaf E Finder, Roy Amoyal, Eran Treister, and Oren Freifeld. Wavelet convolutions for large receptive fields.
In Proceedings of European Conference on Computer Vision, 2024.

Blender Foundation. Blender. https://www.blender.org/.

Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from a single image. In ICCV, 2009.

D. Goldman, B. Curless, A. Hertzmann, and S. Seitz. Shape and spatially-varying brdfs from photometric stereo.
In Proceedings of IEEE/CVF International Conference on Computer Vision, October 2005.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and spatially-varying brdfs from photometric
stereo. IEEE Trans. Pattern Anal. Mach. Intell., 32(6):1060–1071, 2010.

M. Grossberg and S. Nayar. Determining the camera response from images: What is knowable? IEEE Trans.
Pattern Anal. Mach. Intell., 25(11):1455–1467, 2003.

11

https://github.com/Pointcept/Pointcept
https://github.com/Pointcept/Pointcept
https://www.blender.org/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tiantong Guo, Hojjat Seyed Mousavi, Tiep Huu Vu, and Vishal Monga. Deep wavelet prediction for image
super-resolution. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
2017.

Bjoern Haefner, Zhenzhang Ye, Maolin Gao, Tao Wu, Yvain Quéau, and Daniel Cremers. Variational uncalibrated
photometric stereo under general lighting. In Proceedings of IEEE/CVF Computer Vision and Pattern
Recognition, 2019.

Clément Hardy, Yvain Quéau, and David Tschumperlé. Uni ms-ps: A multi-scale encoder-decoder transformer
for universal photometric stereo. Computer Vision and Image Understanding, 248:104093, 2024.

H. Hayakawa. Photometric stereo under a light souce with arbitary motion. JOSA, 11(11):3079–3089, 1994.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

Huaibo Huang, Ran He, Zhenan Sun, and Tieniu Tan. Wavelet-srnet: A wavelet-based cnn for multi-scale face
super resolution. In Proceedings of IEEE/CVF International Conference on Computer Vision, 2017.

S. Ikehata. Cnn-ps: Cnn-based photometric stereo for general non-convex surfaces. In Proceedings of European
Conference on Computer Vision, 2018.

S. Ikehata. Ps-transformer: Learning sparse photometric stereo network using self-attention mechanism. In
Proceedings of British Machine Vision Conference, 2021.

S. Ikehata. Universal photometric stereo network using global lighting contexts. In Proceedings of IEEE/CVF
Computer Vision and Pattern Recognition, 2022.

S. Ikehata, D. Wipf, Y. Matsushita, and K. Aizawa. Robust photometric stereo using sparse regression. In
Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2012.

S. Ikehata, D. Wipf, Y. Matsushita, and K. Aizawa. Photometric stereo using sparse bayesian regression for
general diffuse surfaces. IEEE Trans. Pattern Anal. Mach. Intell., 36(9):1816–1831, 2014.

Satoshi Ikehata. Scalable, detailed and mask-free universal photometric stereo. In Proceedings of IEEE/CVF
Computer Vision and Pattern Recognition, 2023.

Yakun Ju, Junyu Dong, and Sheng Chen. Recovering surface normal and arbitrary images: A dual regression
network for photometric stereo. IEEE Transactions on Image Processing, 30:3676–3690, 2021.

Jiyoung Jung, Joon-Young Lee, and In So Kweon. One-day outdoor photometric stereo via skylight estimation.
In Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2015.

Berk Kaya, Suryansh Kumar, Carlos Oliveira, Vittorio Ferrari, and Luc Van Gool. Uncalibrated neural inverse
rendering for photometric stereo of general surfaces. In Proceedings of IEEE/CVF Computer Vision and
Pattern Recognition, pp. 3804–3814, 2021.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A
framework for attention-based permutation-invariant neural networks. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

Zhibing Li, Tong Wu, Jing Tan, Mengchen Zhang, Jiaqi Wang, and Dahua Lin. IDArb: Intrinsic decomposition for
arbitrary number of input views and illuminations. In International Conference on Learning Representations,
2025.

Daniel Lichy, Soumyadip Sengupta, and David W Jacobs. Fast light-weight near-field photometric stereo. In
Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2022.

Fotios Logothetis, Roberto Mecca, Ignas Budvytis, and Roberto Cipolla. A cnn based approach for the point-light
photometric stereo problem. Int. J. Comput. Vision, 131(1):101–120, October 2022. ISSN 0920-5691. doi:
10.1007/s11263-022-01689-3. URL https://doi.org/10.1007/s11263-022-01689-3.

S. P. Mallick, T. E. Zickler, D. J. Kriegman, and P. N. Belhumeur. Beyond lambert: reconstructing specular
surfaces using color. In Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2005.

Roberto Mecca, Fotios Logothetis, Ignas Budvytis, and Roberto Cipolla. Luces: A dataset for near-field point
light source photometric stereo. arXiv preprint arXiv:2104.13135, 2021.

Zhipeng Mo, Boxin Shi, Feng Lu, Sai-Kit Yeung, and Yasuyuki Matsushita. Uncalibrated photometric stereo
under natural illumination. In Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2018.

12

https://doi.org/10.1007/s11263-022-01689-3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts. Distill, 2016.
URL http://distill.pub/2016/deconv-checkerboard.

Yaopeng Peng, Milan Sonka, and Danny Chen. Spectral u-net: Enhancing medical image segmentation via
spectral decomposition. arXiv.2409.09216, 2024.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. ArXiv preprint,
2021.

Jieji Ren, Feishi Wang, Jiahao Zhang, Qian Zheng, Mingjun Ren, and Boxin Shi. Diligent102: A photometric
stereo benchmark dataset with controlled shape and material variation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12581–12590, June 2022.

H. Santo, M. Samejima, Y. Sugano, B. Shi, and Y. Matsushita. Deep photometric stereo network. In Proceedings
of IEEE/CVF International Conference on Computer Vision, 2017.

Boxin Shi, Zhipeng Mo, Zhe Wu, Dinglong Duan, Sai-Kit Yeung, and Ping Tan. A benchmark dataset and
evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 41(2):271–284, 2018. doi: 10.1109/TPAMI.2018.2799222.

Ziyang Song, Zerong Wang, Bo Li, Hao Zhang, Ruijie Zhu, Li Liu, Peng-Tao Jiang, and Tianzhu Zhang.
Depthmaster: Taming diffusion models for monocular depth estimation. arXiv:2501.02576, 2025.

T. Taniai and T. Maehara. Neural inverse rendering for general reflectance photometric stereo. In International
Conference on Machine Learning, 2018.

Giuseppe Vecchio and Valentin Deschaintre. Matsynth: A modern pbr materials dataset. In Proceedings of
IEEE/CVF Computer Vision and Pattern Recognition, 2024.

Feishi Wang, Jieji Ren, Heng Guo, Mingjun Ren, and Boxin Shi. Diligent-pi: A photometric stereo benchmark
dataset with controlled shape and material variation. In Proceedings of IEEE/CVF Computer Vision and
Pattern Recognition, 2023.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny.
Vggt: Visual geometry grounded transformer. In Proceedings of IEEE/CVF Computer Vision and Pattern
Recognition, 2025.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.
819861.

P. Woodham. Photometric method for determining surface orientation from multiple images. Opt. Engg, 19(1):
139–144, 1980.

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2: Grouped vector
attention and partition-based pooling. In Proceedings of Advances in Neural Information Processing Systems,
2022.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, and
Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger. In Proceedings of IEEE/CVF Computer
Vision and Pattern Recognition, 2024a.

Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, and Hengshuang Zhao. Towards
large-scale 3d representation learning with multi-dataset point prompt training. In Proceedings of IEEE/CVF
Computer Vision and Pattern Recognition, 2024b.

Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization dilemma in
latent diffusion models. In Proceedings of IEEE/CVF Computer Vision and Pattern Recognition, 2025.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining
Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. In
International Conference on Learning Representations, 2025.

Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

13

http://distill.pub/2016/deconv-checkerboard


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A1 APPENDIX

This supplementary document offers further technical details, demonstrations of the datasets em-
ployed, additional insights, and comprehensive results pertaining to our LINO UniPS.

A1.1 NETWORK ARCHITECTURE DETAILS
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(c) Light Registered Attention Module

Figure A1: An overview of our network architecture, illustrating the corresponding tensor shape transformations.
Black solid arrows denote the forward pass of the downsample branch, while purple dashed arrows denote the
forward pass of the wavelet branch.

To provide readers with a more in-depth understanding of our LINO UniPS network architecture,
in the following, we detail the architecture of our LINO UniPS, breaking it down into several key
modules: (a) Wavelet DownSample Module, (b) Feature Extractor, (c) Light Registered Attention
Module, (d) Fusion Block, (e) Wavelet UpSample Module, (f) Decoder and the training loss. An
overview of our network architecture is presented in Fig. A1. In the subsequent sections, we will
provide a detailed account of the network’s structural components and the specific transformations of
tensor shapes as data progresses through the model.

A1.1.1 WAVELET DOWNSAMPLE MODULE:

To enable our encoder to extract more fine-grained contexts, we first incorporate the wavelet trans-
form Daubechies (1990), chosen for its ability to separate an image’s high- and low-frequency
components Finder et al. (2024); Huang et al. (2017) while concurrently mitigating losses typically
incurred during downsampling Peng et al. (2024).

Initially, the input to our network is a batch of multi-light image sets, represented by a tensor
I ∈ RB×F×H×W×3. In this notation, B denotes the batch size, F is the number of images captured
under different illumination conditions for each scene instance, H and W represent the spatial
dimensions (height and width), and the final dimension 3 corresponds to the RGB color channels. To
simplify the subsequent exposition, we will assume a batch size of B = 1 unless otherwise specified,
effectively considering the processing of a single multi-illumination image set at a time. As part of
the preprocessing, to ensure that image pixel values lie within a comparable range, each of the F
images within a given scene instance is normalized by a random scalar sampled uniformly between its
maximum and mean values. Following this preprocessing, for the purpose of subsequent discussion
(effectively assuming B = 1), we obtain a set of F images {If}Ff=1, where each If ∈ RH×W×3.

Following SDM UniPS Ikehata (2023), for each pre-processed input image If ∈ RH×W×3, we
perform two separate transformations: naive downsampling to obtain Idf ∈ RH

2 ×W
2 ×3 in the image

domain, and a wavelet transform to yield its corresponding wavelet domain components Iwf ∈
R4×H

2 ×W
2 ×3, namely I llf ∈ RH

2 ×W
2 ×3, I lhf ∈ RH

2 ×W
2 ×3, Ihlf ∈ RH

2 ×W
2 ×3, and Ihhf ∈ RH

2 ×W
2 ×3.

A1.1.2 FEATURE EXTRACTOR:

Subsequently, both the downsample image representation Idf ∈ RH
2 ×W

2 ×3 and the set of wavelet
components Iwf (comprising I llf , I

lh
f , Ihlf , Ihhf , each in RH

2 ×W
2 ×3) are individually processed. First,

each of these input components is partitioned into a sequence of patch-based tokens. These token
sequences are then fed into our Feature Extractor backbone. This backbone is trained during our
training procedure to extract rich visual representations from these diverse inputs. In our specific
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implementation, we set the patch size to P = 8. Consequently, for each input component with spatial
dimensions H/2 × W/2, the resulting sequence length is L = (H/2)×(W/2)

P 2 tokens. The feature
embedding dimension is D = 384. Following processing by this backbone, we respectively obtain
shallow visual feature representations F d

s,f ∈ RL×D from the downsample image stream (derived
from Idf ) and Fw

s,f ∈ R4×L×D from the wavelet components stream (derived from Iwf ).

A1.1.3 LIGHT REGISTERED ATTENTION MODULE:

To achieve a more effective decoupling of lighting and normal features that are subsequently processed
by the decoder, we introduce our Light Registered Attention Module.

Firstly, we design the Light Register Tokens to improve the handling of global illumination. While
lighting information predominantly exhibits global characteristics across multi-light inputs Ikehata
(2018; 2022; 2023), traditional attention mechanisms in existing Universal PS methods often fail
to fully leverage this distributed information. This deficiency can hinder effective illumination-
geometry separation, motivating our specialized token-based strategy. Drawing inspiration from
advancements like Darcet et al. (2024), and further considering the inherent illumination-dependency
of the Universal PS task, we introduce these Light Register Tokens to explicitly capture and represent
decoupled global lighting information within our framework.

To facilitate the perception of distinct lighting components, we additionally introduce three specialized
Light Register Tokens: xenv ∈ R1×D, designated for perceiving environment light; xpoint ∈ R1×D,
tailored for point lights (which often contribute high-frequency illumination effects); and xdirection ∈
R1×D, for directional light (typically representing low-frequency illumination sources). Subsequently,
this set of three specialized light tokens is prepended to the token sequences derived from F d

s,f

(features from the downsample image stream) and Fw
s,f (features from the wavelet components

stream), respectively, leading to:F d
s,f,r ∈ RL′×D and Fw

s,f,r ∈ R4×L′×D, where L′ = L+ 3.

Then F d
s,f,r and Fw

s,f,r are fed into our Interleaved Attention Block Wang et al. (2025) to enhance inter-
intra feature communication. Specifically, our Interleaved Attention Block contains four attention
layers, which can be represented as: Frame → Light → Global → Light.

Previous work has found that feature communication within the encoder is very important Ikehata
(2022; 2023); Hardy et al. (2024), but their methods are often limited to patch-level local light-axis
attention. Our Interleaved Attention Block, however, breaks such limitations. On the one hand, it
incorporates Frame attention to enhance intra-image communication. On the other hand, we have
added Global attention, a more comprehensive global operation, allowing inter-image features to
also be extended from the patch level to the image level. Upon processing by these four cascaded
Interleaved Attention Blocks (the number chosen to maintain a manageable parameter count, although
more blocks could potentially be employed), we obtain the deep feature representations denoted as
F d
d,f,r ∈ RL′×D and Fw

d,f,r ∈ R4×L′×D. It is worth noting that the attention operations inherent in
these blocks do not alter the fundamental shapes of these tensor sequences.

To ensure the Light Register Tokens xenv, xpoint, xdirection effectively capture global illumination,
as direct supervision of the decoded light map is challenging, we introduce a light-aware feature
alignment strategy during training Yu et al. (2025); Yao et al. (2025); Song et al. (2025). Since
we train LINO UniPS on our own rendered synthetic dataset PS-Verse, for every scene within this
training dataset, we have access to its corresponding lighting information from the rendering process.
This includes: the HDRI environment map, the positions, the distance to camera and intensities
of point lights, and the positions, the distance to camera, intensities and areas of direction lights.
Mathematically, these are denoted as Lenv ∈ RH×W×3, Lpoint ∈ RM1×5, and Ldirection ∈ RM2×6,
respectively. For Lpoint ∈ RM1×5, where M1 is the number of point lights, its first three dimensions
denote position, the fourth denotes the distance and the fifth denotes the intensity. For the directional
light component Ldirection ∈ RM2×6, where M2 denotes the number of directional lights, its first
three dimensions specify position, the fourth denotes the distance, the fifth denotes the directional
light size, and the sixth indicates intensity. Subsequently, we encode the lighting components Lenv,
Lpoint, and Ldirection by projecting them into a D-dimensional feature space, thereby obtaining their
respective representations lhenv ∈ RD, lhpoint ∈ RD, and lhdirection ∈ RD. Similarly, the light tokens
xenv, xpoint, and xdirection, after being processed by the cascaded Interleaved Attention Blocks, are
projected into the same D-dimensional feature space. This yields their respective high-dimensional
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Table A1: Comparison of PBR material prediction performance. A dash (-) indicates the method
does not provide the corresponding output.

Method Normal Albedo Metallic Roughness

MAE↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
UniPS Ikehata (2022) 24.67 - - - - - -
IDarb Li et al. (2025) 29.51 25.11 0.9271 25.62 0.9148 24.85 0.9342
SDM UniPS Ikehata (2023) 10.25 24.04 0.9076 23.68 0.9060 23.87 0.9289
Uni MS-PS Hardy et al. (2024) 8.92 - - - - - -

Ours 4.51 30.49 0.9529 32.99 0.9357 31.32 0.9670

Input RGB Ours SDM UniPS UniPSUni MS-PSGround Truth IDArb

Input RGB Ours SDM UniPSGround Truth IDArb
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Figure A2: Qualitative comparison on PSVerse Testdata. LINO UniPS demonstrates superior PBR estimation
compared to all other methods.

representations: xh
env, xh

point, and xh
direction, all in RD. Specifically, this projection is realized using

three structurally similar two-layer Multi-Layer Perceptrons (MLPs). Within this common embedding
space, we employ cosine similarity to supervise and align their respective feature distributions. Cosine
similarity is chosen as it effectively measures the directional concordance between feature vectors,
making it suitable for aligning representations of different lighting characteristics. This supervision
translates into three distinct loss functions, denoted as Lenv, Lpoint, and Ldirection. Their respective
mathematical formulations are:

Lenv = 1−
∑

(lhenv · xh
env) (A1a)

Lpoint = 1−
∑

(lhpoint · xh
point) (A1b)

Ldirection = 1−
∑

(lhdirection · xh
direction) (A1c)

A1.1.4 FUSION BLOCK:

The subsequent discussion details the Fusion Block applied to features extracted during the initial
stages of our Encoder. The overall feature fusion process is DPT-based Ranftl et al. (2021). For clarity,
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we will first illustrate this process using the features derived from the downsample image features
F d
d,f,r as the primary example. Within each Interleaved Attention Block of the encoder, features

obtained from its four internal attention—Frame, Light Axis, Global, and Light Axis—are first
concatenated along the feature dimension. This operation yields an aggregated feature set for each
block, denoted as F d,(i)

d,f ∈ RL×4D, where i ∈ {1, 2, 3, 4} represents the index of the i-th attention
block. It is crucial to note that the three additional Light Register Tokens (introduced previously) do
not participate in this specific feature aggregation (concatenation) process. Therefore, the feature
dimension of F d,(i)

d,f is 4D, not 4D′.

Then, to effectively fuse features from different depths within the encoder, our Fusion Block employs
a top-down, multi-scale fusion strategy. This process begins by selecting the aggregated output
features, F d,(i)

d,f , from four different stages of the Interleaved Attention Blocks. These features are
initially 1D token sequences.First, these token sequences are reshaped from their 1D sequence
format back into 2D spatial feature maps. Next, these four distinct spatial maps (which come from
different depths of the Interleaved Attention Blocks) undergo a series of projection and downsampling
operations to transform them into a standardized, four-level hierarchical feature pyramid, denoted
H1, H2, H3, and H4. These operations typically consist of 1x1 convolutions to project the features
to their target channel dimensions (C, 2C, 4C, 4C) and downsampling (2x2 convolutions with a
stride of 2) to match the target resolutions.This pyramid captures multi-scale information, ranging
from high-resolution features at H1 (shape F × C ×H/2×W/2) to low-resolution/high-semantic
features at H4 (shape F × 4C ×H/16×W/16), where F is the number of multi-light images, C
is 256, and H,W refer to the spatial resolution of the original, full-sized input images. We then
employ a progressive, top-down fusion path. This fusion is implemented using residual convolutional
blocks He et al. (2015) and upsampling operations (2x2 transposed convolution with a stride of
2). Specifically, the deepest feature H4 is first upsampled and then fused with H3 via a residual
block; this result is then upsampled and fused with H2, and so on.The final output of this progressive
fusion is a single, information-rich fused feature map, F d

fused, with a shape of RF×H
2 ×W

2 ×C , which is
then passed to the Wavelet UpSample module. A similar fusion process is applied to the features
derived from the wavelet components path (Fw

d,f,r ), yielding a corresponding fused representation,
Fw

fused ∈ R4×F×H
2 ×W

2 ×C . It is noteworthy that this strategy of selecting four feature levels for
hierarchical fusion can be adapted if more than four Interleaved Attention Blocks are employed in the
encoder’s initial stages. For instance, if six such blocks are utilized, features from blocks indexed 1, 2,
4, and 6 might be selected to form the pyramid. Similarly, for an eight-block configuration, features
from blocks 1, 3, 5, and 7 could be chosen as inputs to the hierarchical fusion pathway.

A1.1.5 WAVELET UPSAMPLE MODULE:

To obtain the final encoder output Fenc ∈ RF×H×W×C , the features derived from the downsample
image path F d

fused and those from the wavelet components path Fw
fused should be integrated. The

process is as follows: first, the feature map F d
fused is upsampled, yielding a representation F up

fused ∈
RF×H×W×C . Concurrently, for Fw

fused, which originates from the wavelet-transformed inputs, an
inverse wavelet transform is applied to convert it back to the spatial domain, resulting in F dwt

fused ∈
RF×H×W×C . Finally, these two processed feature sets, Fup

fused and F dwt
fused, are element-wise summed.

A Gaussian blur is subsequently applied to this sum to promote a smoother and more effective fusion
of these potentially cross-domain features, ultimately producing the final encoder representation
Fenc ∈ RF×H×W×C .

A1.1.6 DECODER:

The decoder architecture in our LINO UniPS is largely identical to that of SDM UniPS Ikehata
(2023); for clarity, we briefly outline its key components and rationale here.

A common initial step in PS for surface normal estimation is the pixel-wise aggregation of spatial-light
features along the illumination axis, effectively reducing F light channels to a single representation
per pixel using input images If and their corresponding encoded features F f

enc. We introduce an
approach, termed the pixel-sampling Transformer Wu et al. (2024b); Contributors (2023); Wu et al.
(2022; 2024a), which uniquely operates on a fixed count (m, e.g., m = 2048) of randomly chosen
pixel locations. This strategy offers distinct advantages: it maintains a constant memory footprint
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Figure A3: 20 multi-light images of one scene and their respective lighting configurations.

per sample set regardless of image dimensions, thus ensuring excellent scalability; furthermore,
by processing a sparse, randomly distributed set of points, it substantially curtails over-smoothing
artifacts often prevalent in dense convolutional operations. The practical implementation of the
pixel-sampling Transformer involves selecting m random pixels, denoted {xi}mi=1, from the valid
(masked) region of the input image. For each sampled pixel xi, its associated features F f

enc(xi) ∈
RC are obtained. These features F f

enc(xi) are then combined through element-wise addition with
I ′f (xi) ∈ RC . The term I ′f (xi) represents a high-dimensional projection of the raw pixel observations
If (xi) ∈ R3, and this projection is performed by a two-layer MLP with the objective of enhancing the
representational power of these raw observations by mapping them to this higher-dimensional space.
Notably, our strategy of first projecting the raw observations to RC and then performing addition
differs from SDM UniPS Ikehata (2023), which typically employs direct concatenation of features
and the raw observations. These added per-pixel features F f

add(xi) are subsequently condensed into
compact descriptors A(xi) by employing Pooling by Multi-head Attention (PMA) Lee et al. (2019).
The resulting collection of m descriptors, A(xi)

m
i=1, is then fed into a Transformer network. The

processing for each of the m sampled points involves applying frame attention and light-axis attention
to aggregate non-local context and cross-image information. Following this, a two-layer MLP is
utilized to predict the surface normal vector for each location. These sparsely predicted normals are
then systematically merged—for instance, through spatial interpolation or a dedicated upsampling
module—to reconstruct the full-resolution surface normal map corresponding to the original input
image dimensions. In essence, the pixel-sampling Transformer facilitates the modeling of robust
non-local dependencies with notable computational efficiency, while concurrently preserving fine
details in the output normal map. This makes the approach particularly well-suited for physics-based
vision tasks that involve high-resolution imagery.

A1.1.7 TRAINING LOSS:

In this part, we elaborate on the composition of our total training loss and the design of the respective
weights for its constituent components. Based on the definitions provided in Eq. 3, Eq. 2 and Eq. A1,
the overall training loss L for our LINO UniPS method can be expressed as:
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L = λ1Lenv + λ2Lpoint + λ3Ldirection + λ4

∑
(N − Ñ)2 ⊙ C + λ5

∑
(G̃−G)2, (A2)

Let us define the confidence-weighted normal reconstruction loss as Lconf and the normal gradient
supervision loss as Lg. The overall training loss L can then be expressed as:

L = λ1Lenv + λ2Lpoint + λ3Ldirection + λ4Lconf + λ5Lg (A3)

Since our primary objective is surface normal reconstruction, Lconf (our confidence-weighted recon-
struction loss) is established as the principal component of our total loss function. First, we provide a
detailed explanation for our selection of Lconf as the primary loss function. We elaborate on why this
specific formulation was chosen over other potential candidates, such as a direct MSE,

∑
(N − Ñ)2,

or an alternative loss weighted by eG, G = ∇N , namely
∑

(N − Ñ)2 ⊙ eG.

A primary motivation for our LINO UniPS framework is to advance beyond prior Universal PS
methods by specifically improving the handling of challenging high-frequency regions. We identify
these regions based on large magnitudes of the surface normal gradients, as these directly reflect
geometric complexity. We deliberately avoid using gradients derived from the input RGB multi-light
images as the primary criterion for this identification. The rationale is that while RGB gradients are
indeed large in areas of intricate geometric detail, they can also exhibit high magnitudes in regions
with significant basecolor variations, which do not necessarily correspond to the geometric high-
frequency features we aim to emphasize and reconstruct accurately. Consequently, our methodology
incorporates a loss function that is directly informed by surface normal gradients, rather than relying
on a naive MSE.

A crucial aspect of this gradient-informed loss strategy concerns the source of the gradients utilized
for weighting or guidance. We opt to utilize network-estimated normal gradients G̃ for this purpose,
rather than directly employing ground truth normal gradients G. This design choice is primarily
motivated by two factors: Firstly, it compels the network to intrinsically estimate high-frequency
components from the input, thereby fostering its inherent capability to process and represent fine-
grained details. Secondly, refraining from direct weighting by ground truth normal gradients typically
leads to a more stable and manageable training process, especially during the initial stages when
network predictions may significantly deviate from the ground truth.

Our design for the loss weights is as follows:

λ1 =
0.1

(Lenv/Lconf)sg
, λ2 =

0.1

(Lpoint/Lconf)sg
,

λ3 =
0.1

(Ldirection/Lconf)sg
, λ4 = 1, λ5 =

0.1

(Lg/Lconf)sg

(A4)

where the subscript ‘sg‘ denotes that the term within the parenthesis is treated as a constant (i.e.,
its gradient is not computed during backpropagation for the purpose of this scaling factor, akin to
.detach() in PyTorch).

Our decision to set λ4 to 1 is because Lconf serves as the principal component in our overall loss
function. The remaining auxiliary losses are then scaled using the adaptive weighting mechanism
detailed in Eq. A4. This mechanism constrains their magnitudes to 0.1 times that of the primary loss’s
detached value, (Lconf)sg, while still allowing their gradients to backpropagate fully. Such a strategy
effectively positions these auxiliary losses to act as regularizers to the main learning objective, rather
than allowing disparate loss magnitudes to vie for dominance and potentially destabilize training. This
controlled weighting is crucial for ensuring stable and efficient training of LINO UniPS, mitigating
issues such as excessively slow convergence or even training failure that can arise from an unbalanced
multi-term loss function.

A1.2 PBR MATERIALS PREDICTION

The intrinsic properties of a surface (albedo, metallic, normal, and roughness) are fundamentally
entangled, as they are all governed by the underlying surface geometry and material composition.
Consequently, our LINO UniPS architecture, designed for normal recovery, can be naturally extended
to jointly estimate a full set of PBR material parameters. This extension requires only finetuning on
an appropriate dataset with a modified loss function.
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A1.2.1 IMPLEMENTATION DETAILS

Our PS-Verse dataset was created with this purpose in mind; alongside surface normals, we also
rendered ground truth maps for albedo (3-channel RGB), metallic (1-channel), and roughness (1-
channel). A sample of this data is shown in Sec. A1.3.

Starting with our LINO UniPS model pre-trained for normal estimation, we finetune it on this
complete PBR dataset for approximately 10 epochs until convergence. This process enables the
model to simultaneously predict all four properties from the same input images. For the loss function,
we augment the original loss L with a weighted MSE term for the material maps. The new loss is
defined as:LPBR = L+ λ6La + λ7Lm + λ8Lr, where La,Lm,Lr are the MSE between ground truth
and predicted albedo, metallic, and roughness maps, respectively. The coefficients λ6, λ7, λ8 are
their corresponding loss weights, which are defined as:

λ1 =
1

(La/Lconf)sg
, λ2 =

1

(Lm/Lconf)sg
, λ3 =

1

(Lr/Lconf)sg
(A5)

A1.2.2 EXPERIMENTAL SETUP

Baselines: Besides the Universal PS methods mentioned in the main paper (UniPS Ikehata (2022),
SDM UniPS Ikehata (2023), Uni MS-PS Hardy et al. (2024)), we added one more baseline, IDArb Li
et al. (2025). It should be noted that we chose the BRDF version of SDM UniPS, which can predict
PBR materials. And IDArb can also predict PBR materials. In contrast, UniPS and Uni MS-PS can
only predict normals.

Evaluation Metrics: We evaluate our results using three metrics. For surface normal accuracy, we
measure the Mean Angular Error (MAE, in degrees, ↓), consistent with our main experiments. For the
predicted albedo, metallic, and roughness maps, we assess their quality via the Peak Signal-to-Noise
Ratio (PSNR, in dB, ↑) and the Structural Similarity Index (SSIM ↑).

Evaluation Dataset: The evaluation is conducted on our PS-Verse Testdata, which contains ground
truth for all four intrinsic properties.

A1.2.3 EXPERIMENT RESULTS

The quantitative results for PBR material estimation are presented in Tab. A1. The results clearly
show that our PBR-version LINO UniPS achieves SOTA performance across all predicted maps,
including normal, albedo, metallic, and roughness. This comprehensive superiority further validates
the effectiveness of our proposed architecture. Furthermore, we observe interesting trade-offs among
the baseline methods. While IDArb underperforms all other baselines on the normal prediction task,
it surpasses SDM UniPS in estimating the other PBR properties (albedo, metallic, and roughness).

Fig. A2 presents the qualitative results on our PS-Verse Testdata, where our LINO UniPS predictions
demonstrate the highest visual fidelity to the ground truth for all properties. In contrast, the baselines
exhibit noticeable artifacts. For complex normal estimation, most methods struggle, and IDArb fails
completely by predicting a flat surface. For the other material maps, SDM UniPS tends to bake
in RGB texture details (e.g., the barrel pattern), while IDArb fails to disentangle complex shading,
particularly in shadowed regions like on the soundbox. These visual comparisons further highlight
the robustness and superior disentanglement capabilities of our approach.

A1.3 DATASET ANALYSIS AND PRESENTATION

A1.3.1 CATEGORIZATION METHODOLOGY

To rigorously evaluate and enhance the capability of our LINO UniPS method for reconstructing
surface normals of objects that feature high-frequency geometric details on complex surfaces, we
curated a dedicated set of objects exhibiting diverse geometric complexities. These objects were
subsequently graded by difficulty into five distinct levels, designated Level 1 to Level 5. Specifically,
Levels 1–4 are classified following Dora Chen et al. (2024) criterion, based on the number of salient
edges NΓ. Level 5, in contrast, is distinguished by the use of normal mapping in its rendering. The
specific criteria for this classification are as follows:
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Level 1 Level 2 Level 3 Level 4 Level 5

Figure A4: The objects are displayed sequentially from left to right, representing Level 1 to Level 5. Across
Levels 1 through 5, there is a progressive rise in geometric complexity. Specifically, Level 5 features exceptionally
complex surface geometry due to the utilization of normal mapping in its rendering process.
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• Level 1 (Less Detail): 0 < NΓ ≤ 5000;

• Level 2 (Moderate Detail): 5000 < NΓ ≤ 20000;

• Level 3 (Rich Detail): 20000 < NΓ ≤ 50000;

• Level 4 (Very Rich Detail): NΓ > 50000.

• Level 5 : With Normal Mapping.

Fig. A4 shows representative cases from the different defined levels. PS-Verse comprises 100,000
scenes. For each of these scenes, two distinct renderings are typically generated: one that utilizes
normal mapping to incorporate fine geometric details, and another rendered without this normal
mapping. Levels 1-4 consist exclusively of scenes rendered without normal mapping, with each
of these four levels containing 25,000 scenes. Level 5 is composed entirely of the 100,000 scenes
rendered with normal mapping enhancement.

A1.3.2 THE USE OF NORMAL MAPPING
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Figure A5: Effect of normal mapping on rendered surface detail. The top
two rows display renderings without normal mapping, while the bottom
two rows showcase the same scenes rendered with normal mapping.
It is evident that employing normal mapping (bottom rows) results in
significantly more high-frequency surface normal detail compared to
renderings without (top rows).

To enhance PS normal recon-
struction for objects character-
ized by intricate, high-frequency
details, training data rich in
such geometric features is essen-
tial. However, 3D models gen-
uinely possessing fine-grained
geometric intricacies are often
scarce and prohibitively expen-
sive, which impedes the creation
of diverse, large-scale, high-
fidelity datasets. To overcome
this limitation within the Univer-
sal PS framework, our work pi-
oneers the integration of normal
mapping directly into the dataset
generation process. Normal map-
ping, a 3D computer graphics
technique, imbues low-polygon
models with the visual appear-
ance of high-frequency geomet-
ric details by applying a special-
ized texture, which encodes fine-
scale perturbations of the surface
normals. During rendering, these
stored normal variations are then
utilized to simulate intricate sur-
face details without actually in-
creasing the underlying geomet-
ric complexity or polygon count
of the model.

A visual comparison of render-
ings with and without the use of normal mapping is presented in Fig. A5. It is clearly evident from
the figure that employing normal mapping during the rendering process yields a significantly higher
level of detail in the resulting surface normals.

A1.3.3 LIGHTING SETUP

When rendering PS-Verse, we use four types of light sources; (a) environment lighting, (b) directional
lighting, (c) point lighting, (d) uniform background lighting.
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CyclesPS-Train PS-Wild PS-Mix PS-Uni MS-PS Ours

Resolution: 256×256 Resolution: 512×512 Resolution: 512×512 Resolution: 128×128 Resolution: 512×512

Figure A6: Visual comparison of different datasets. The spatial resolution of the images corresponding to each
column is indicated beneath it.

During rendering, we generate ten distinct lighting configurations by combining several base lighting
components (conceptually denoted here as (a), (b), (c), and (d)). These specific configurations are as
follows: (1) Component (a), (2) Component (b), (3) Component (b), (4) Components (a) + (b), (5)
Components (a) + (c), (6) Components (b) + (c), (7) Components (a) + (b) + (c), (8) Components
(a) + (d), (9) Components (b) + (d), (10) Components (a) + (b) + (d). The lighting setup includes:
directional light, point light and uniform background lighting, which is introduced to better simulate
realistic global illumination. Every scene in PS-Verse is rendered as 20 images, each employing a
lighting setup randomly chosen from our ten predefined lighting configurations. An example of such
an image set for a single scene is illustrated in Fig. A3.

A1.3.4 COMPARISON WITH OTHER DATASETS

Here, we primarily compare several training datasets: CyclesPS-Train Ikehata (2018), PS-Wild Ike-
hata (2022), PS-Mix Ikehata (2023), PS-Uni MS-PS Hardy et al. (2024), and our PS-Verse. For
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RGB Albedo Metallic Normal Roughness

Figure A7: Our PS-Verse dataset contains ground truth for albedo, metallic, normal, and roughness.

a quantitative comparison of these datasets, please refer to Tab. 1. We now present illustrative
qualitative comparisons in Fig. A6. Our comprehensive evaluation, encompassing both qualitative
and quantitative aspects, leads us to conclude that PS-Verse is the premier training dataset in terms of
quality for the Universal PS task.

A1.3.5 PBR MATERIALS

In addition to ground truth normals, our PS-Verse dataset also provides ground truth maps for albedo,
metallic, and roughness, as shown in Fig. A7.
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Figure A8: Post-PCA visualization of features extracted by different method encoders for the CowPNG from
the DiLiGenT Shi et al. (2018). Metrics displayed to the right of each row is (CSIM/SSIM), higher values
indicate higher feature similarity.

A1.4 ADDITIONAL DISCUSSION

A1.4.1 WHY FEATURE CONSISTENCY MATTERS

Universal PS aims to solve an inverse problem: recovering the intrinsic surface normal field N from a
set of observations {If}Ff=1 formed under varying, unknown illumination conditions {Lf}Ff=1. The
imaging process can be formally described as If = F(N, ρ,Lf ), where F represents the rendering
equation and ρ the surface reflectance.

An ideal encoder E seeks to extract a unified feature representation Fenc = E({If}Ff=1) that is
strictly illumination-invariant, effectively marginalizing out the extrinsic variable {Lf}Ff=1. In this
physical context, feature similarity (CSIM; SSIM) serves as a direct quantitative metric of this
invariance; a low CSIM/SSIM score implies that the feature Fenc retains significant dependency on
{Lf}Ff=1, indicating a failure to decouple extrinsic illumination from intrinsic geometry.

The decoder D is tasked with learning the mapping N̂ = D({Zf}Ff=1). When features are not
decoupled, the decoder confronts a highly ill-posed problem: it receives highly variable inputs Fenc

for the exact same physical geometry N , which inevitably introduces ambiguity and variance into the
estimator, manifesting as higher reconstruction error (MAE).

Therefore, a primary driver for our LINO UniPS is the introduction of an improved encoder E. By
explicitly employing Light Register Tokens supervised by Light Alignment to physically isolate
variant illumination components {Lf}Ff=1, our encoder ensures that the feature representation passed
to the decoder remains pure and consistent. This effectively mitigates the ill-posed nature of the
decoding task, naturally yielding higher accuracy.

While the decoder’s capabilities represent a non-negligible factor in overall performance, the decoders
utilized in UniPS, SDM UniPS, and our LINO UniPS are architecturally similar, all adhering to the
pixel-sampling paradigm. Consequently, the direct correlation between greater feature consistency
and superior normal reconstruction is not an oversimplification; thus, when analyzing this relationship
in Fig. 1, we group these three methods together to facilitate a direct comparison of the impact of
their respective encoder-derived features.

Fig. A8 presents Principal Component Analysis (PCA) visualizations of features extracted by the
encoders of various methods, alongside their corresponding feature similarity metrics (CSIM/SSIM).
In the following discussion, we primarily focus our analysis on our Ours w/mlp variant and Uni
MS-PS.

12
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Ours w/MLP refers to a configuration of our LINO UniPS where the standard decoder is replaced by a
simple two-layer MLP. As illustrated in Fig. A8, this variant gives the highest feature similarity. Visual
inspection of the PCA plots further reveals that its extracted features have effectively disentangled
lighting information. We hypothesize that the superior feature similarity of Ours w/mlp compared to
the full LINO UniPS (with its original decoder) stems from the constraints imposed by the weaker
MLP decoder; this limited decoder capacity compels the encoder to learn more consistent features to
facilitate accurate normal reconstruction. While this enhanced feature consistency from the encoder
may not entirely compensate for the reduced representational power of the simpler decoder in terms
of absolute normal reconstruction quality (when compared to the full LINO UniPS), Ours w/MLP
variant nevertheless significantly outperforms SDM UniPS. This finding strongly corroborates our
central hypothesis regarding the critical role of a powerful and well-regularized encoder in achieving
effective feature disentanglement and consistency.

Uni MS-PS also demonstrates high feature similarity. However, visual analysis of its features
(Fig. A8) suggests that they remain considerably entangled with lighting information. Consequently,
we infer that its high reported feature similarity may be more attributable to geometric self-consistency
within its representations rather than successful illumination decoupling. Despite this apparent lack
of complete feature decoupling, Uni MS-PS often achieves commendable reconstruction results.
We attribute this primarily to its multi-scale architecture: beyond the initial stage, each subsequent
network stage in Uni MS-PS incorporates predicted normals from the preceding stage as an additional
input, effectively leveraging them as a strong geometric prior. This iterative refinement, guided by
intermediate normal predictions, places Uni MS-PS in a distinct operational paradigm compared to
methods like UniPS, SDM UniPS, and our LINO UniPS.

Furthermore, We need to figure out that Uni MS-PS exhibits certain practical limitations. (a) Its
multi-scale nature leads to considerable inference latency, particularly when processing multiple
high-resolution input images (e.g., handling 16 images at 4K resolution can extend to about an hour).
In contrast, our LINO UniPS method typically completes inference within tens of seconds for similar
inputs (see Tab. 6). (b) While Uni MS-PS can reconstruct detailed surface normals, its reliance on
potentially lower-resolution training datasets and its patch-based inference mechanism can lead to a
loss of global contextual information, sometimes resulting in reconstructions that are locally detailed
but globally inconsistent or erroneous (see Fig. 1 and Fig. 7) .

A1.4.2 LIMITATIONS

Figure A9: For near-planar objects possess-
ing intricate concave and convex surface de-
tails, our LINO UniPS tends to invert the
predicted surface normals. The objects are
from DiLiGenT-Π Wang et al. (2023)

Despite the commendable performance demonstrated by
LINO UniPS, certain limitations remain, offering avenues
for future research.

Firstly, the incorporation of global attention within our en-
coder, while designed to enhance inter-image feature inter-
action for more effective illumination-normal decoupling
and successfully improving disentanglement, inevitably in-
troduces additional computational burden. Consequently,
a key direction for future work is to explore more computa-
tionally efficient mechanisms that can achieve comparable
decoupling efficacy at a reduced operational cost.

Secondly, despite its strong generalization capabilities, it is
important to acknowledge that the Universal PS paradigm
exhibits certain inherent drawbacks compared to tradi-
tional paradigms.

For example, traditional Calibrated PS methods benefit
from explicit, known light source parameters. In con-
trast, Universal PS lacks any explicit light source input
(Although we employ Light Register Tokens to mitigate
this, our network operates without explicit light source
input during inference. However, Calibrated PS methods

do utilize). Consequently, When handling near-planar objects, the Universal PS method struggles
to unambiguously distinguish whether light originates from "above" or "below", resulting in the

13
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Figure A10: Top row: Example from the input multi-light images. Bottom row: Surface normal map
reconstructed by our LINO UniPS.

Figure A11: Results on the DiLiGenT102 dataset Ren et al. (2022): a matrix comparing performance where
rows/columns corre- spond to shapes/materials. For enhanced detail visibility, viewing the electronic version in
color is recommended.

reconstructed surface normals being inverted (see Fig. A9), whereas Calibrated PS handles this
relatively well.

Furthermore, the Universal PS method is data-driven, inherently relying on massive amounts of
data. Conversely, traditional Calibrated and Uncalibrated PS approaches do not rely as heavily on
large-scale training datasets.

A1.4.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized Large Language Models (LLMs), including
Google’s Gemini, as a writing assistant. The primary application of these models was for language
enhancement tasks, such as improving grammar, refining phrasing for clarity, and ensuring stylistic
consistency throughout the paper. It is important to note that the core scientific contributions,
experimental design, results, and analyses presented herein were conceived and executed solely by
the authors. The LLMs’ role was strictly limited to that of a sophisticated tool for polishing the
language and presentation of our work.

A1.5 EXTENDED RESULTS

In this section, we present additional results to further demonstrate the capabilities of our LINO
UniPS.
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Figure A12: Real-world data with masks and corresponding LINO UniPS reconstruction results; data sourced
from UniPS Ikehata (2022) and SDM UniPS Ikehata (2023).

A1.5.1 PUBLIC BENCHMARKS

In this section, we present additional evaluation results on the DiLiGenT102 benchmark Ren et al.
(2022), which are shown in Fig. A11. For a comprehensive comparison, we evaluate against a diverse
set of five baselines spanning three categories: a representative Calibrated PS method (PS-FCN Chen
et al. (2018)), a representative Uncalibrated PS approach (SDPS Chen et al. (2019)), and three
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Universal PS methods (UniPS Ikehata (2022), SDM UniPS Ikehata (2023), and Uni MS-PS Hardy
et al. (2024)). The results demonstrate that our LINO UniPS not only achieves the best performance
among all Universal PS methods but also significantly surpasses the specialized Calibrated and
Uncalibrated approaches. This superiority is particularly pronounced for objects with challenging
material properties (e.g., ACRYLIC) or complex geometries (e.g., PENTAGON). In these demanding
scenarios, our method’s advantage over other contemporary Universal PS techniques becomes even
more evident, highlighting its robustness.

Input 9.3° 14.7° 20.3°

Ground Truth Ours Uni MS-PS SDM UniPS UniPS
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9.0° 27.4° 20.5° 41.0°Input

Figure A13: Comparison of different Universal PS methods on our PS-Verse Testdata, showcasing ground
truth normals, reconstruction normals, and corresponding error maps. The error maps depict the Mean Angular
Error (MAE), measured in degrees; lower MAE values signify a more accurate reconstruction.

A1.5.2 REAL DATA & SYNTHETIC BENCHMARK

Fig. A10 showcases our method’s performance on challenging real-world data. To demonstrate
its robustness, the figure includes mask-free examples from two distinct sources: the two leftmost
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Figure A14: Qualitative results of the effect of each Light Register Token type. The full three-token model
(right) achieves higher visual fidelity than any single-token variant, highlighting the need for all three.

columns show 4K resolution images from the SDM UniPS real data Ikehata (2023), while the
rightmost column displays our own 960×960 captures using a mobile phone.

These results demonstrate that our LINO UniPS is robust to variations in scale and mask-free inputs,
while consistently reconstructing fine-grained details.

Fig. A12 presents examples of real-world captured objects, the overall quality of these reconstructions
underscores our approach’s strong generalization capabilities.

Fig. A13 presents a comparison of various Universal PS methods on our PS-Verse Testdata. Given
that PS-Verse Testdata is a synthetic dataset, ground truth is readily available, facilitating precise
quantitative evaluation. The results clearly demonstrate that our LINO UniPS significantly outper-
forms contemporary approaches, including Uni MS-PS Hardy et al. (2024), SDM UniPS Ikehata
(2023), and UniPS Ikehata (2022).

A1.6 ADDITIONAL ABLATIONS

A1.6.1 EFFECT OF EACH LIGHT REGISTER TOKEN TYPE

Table A2: Quantitative comparison of single-token (Direc-
tion, Env, Point) performance against the full three-token
combination, highlighting the Point token’s contribution and
the critical synergy of all three.

CSIM↑ SSIM↑ Avg. MAE↓
Direction 0.84 0.81 5.32
Env 0.83 0.82 5.30
Point 0.86 0.84 4.98
Direction & Env & Point 0.88 0.86 4.51

To analyze the independent contributions
of each proposed Light Register Token, we
designed a fine-grained ablation study. In
this experiment, we use the final model
presented in the last row of Tab. 2 as our
baseline. The variable is the specific Light
Register Token used, along with their cor-
responding light alignment losses. We eval-
uated the following four setups: (a) Using
Direction Tokens, (b) Using Env Tokens,
(c) Using Point Tokens, (d) Using Point &
Direction & Env Tokens (final model). The total number of register tokens was kept at three for all
setups (consistent with the final model). All other experimental settings were identical.

Quantitative results are shown in Tab. A2, and qualitative results are in Fig. A14. We observe
that: among all single-token configurations, using only the Point Tokens yields the most significant
performance improvement, while the effects of the Direction and Env tokens are similar. This
is because the Point Tokens represent high-frequency illumination information (such as specular
highlights) , which provides the most critical and informative cues for resolving surface normals
Ikehata (2023; 2022). Conversely, the Direction and Env tokens correspond to low-frequency light
sources, providing relatively fewer geometric cues.

17



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Ground Truth Generic Specialized

P
red

icted
 N

o
rm

al
E

rro
r M

ap

Figure A15: Qualitative comparison of Specialized vs. Generic Light Register Tokens. Our specialized token
approach (right) exhibits superior visual fidelity.

Furthermore, we observe that a significant performance gap still exists between any single-token
variant (configurations (a), (b), (c)) and the full model using all three tokens (configuration (d)). This
strongly demonstrates that our design is not redundant: real-world illumination is a complex mixture,
and the synergistic effect of all three tokens enables the model to handle more complex lighting
conditions, thus most thoroughly decoupling the complex illumination information from the normal
features.

A1.6.2 WHY SPECIALIZED TOKENS INSTEAD OF GENERIC TOKENS

Table A3: Quantitative comparison of Specialized vs.
Generic Light Register Tokens. Our specialized token de-
sign outperforms the generic token method.

CSIM↑ SSIM↑ Avg. MAE↓
Generic 0.84 0.84 5.07
Specialized 0.88 0.86 4.51

We introduce three specialized Light Reg-
ister Tokens to correspond to three distinct
illumination types (Point, Direction, and
Env). A natural question arises: why not
use generic tokens instead of this special-
ized design? To answer this, we conduct an
ablation study. For this experiment, we use
our final model (last row of Tab. 2) as the
baseline. All other experimental settings

remain identical. The only change we make is to replace our three specialized Light Register Tokens
with three generic tokens. These generic tokens are simultaneously supervised by all three light
alignment losses (Lenv, Lpoint, and Ldirection)

Quantitative results are shown in Tab. A3, and qualitative results are in Fig. A15. We find that
the performance of the generic token approach is lower than our specialized token approach. We
analyze that this is because the generic tokens are forced to entangle physically disparate lighting
cues (e.g., high-frequency and low-frequency light), which consequently degrades the accuracy of
the subsequent normal prediction.

A1.6.3 WHY USING DUAL-BRANCH ARCHITECTURE

This section analyzes the advantages of our Dual-branch architecture (parallel wavelet and naive
downsample branches). Quantitative results are in Tab. A4, and qualitative results are in Fig. A16.
For this experiment, we use our final model (last row of Tab. 2) as the baseline. All other settings
are identical; we only modify the encoder’s feature extraction architecture to create three variants:
(1) Downsample-only (2) Wavelet-only (3) Dual-branch (final model). From both quantitative
and qualitative results, we find that Wavelet-only outperforms Downsample-only. For normal
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Figure A16: Qualitative comparison of Dual-branch model against its single-branch variants, confirming the
complementary effect.

reconstruction, naive downsample irreversibly discards critical high-frequency geometric information.
In contrast, the wavelet transform, by explicitly preserving these high-frequency components ,
captures finer surface details and yields performance gain.

Table A4: Quantitative comparison of Dual-branch model
against its single-branch variants, demonstrating the quantita-
tive advantage of the Dual-branch design.

CSIM↑ SSIM↑ Avg. MAE↓
Downsample-only 0.80 0.79 5.98
Wavelet-only 0.85 0.84 4.97
Dual-branch 0.88 0.86 4.51

Furthermore, Dual-branch model outper-
forms all single-branch variants. Our
analysis is as follows: The two branches
achieve functional specialization. The
wavelet branch focuses on explicitly pre-
serving high-frequency, fine-grained lo-
cal geometric details. The naive down-
sample branch, while lossy in detail, pro-
vides a smoother, more anti-aliased low-
frequency representation, offering robust
global image-domain semantic information Glasner et al. (2009); Zhang (2019). The advantages of
both branches are complementary Guo et al. (2017), and their fusion allows the model to achieve
superior accuracy; therefore, despite the low-frequency component already included in the wavelet
transform, we additionally retain the parallel naive downsample branch.
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