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Abstract: Learning bimanual manipulation is challenging due to its high dimen-
sionality and tight coordination required between two arms. Eye-in-hand imita-
tion learning, which uses wrist-mounted cameras, simplifies perception by focus-
ing on task-relevant views. However, collecting diverse demonstrations remains
costly, motivating the need for scalable data augmentation. While prior work has
explored visual augmentation in single-arm settings, extending these approaches
to bimanual manipulation requires generating viewpoint-consistent observations
across both arms and producing corresponding action labels that are both valid
and feasible. In this work, we propose Diffusion for COordinated Dual-arm Data
Augmentation (D-CODA), a method for offline data augmentation tailored to eye-
in-hand bimanual imitation learning that trains a diffusion model to synthesize
novel, viewpoint-consistent wrist-camera images for both arms while simultane-
ously generating joint-space action labels. It employs constrained optimization to
ensure that augmented states involving gripper-to-object contacts adhere to con-
straints suitable for bimanual coordination. We evaluate D-CODA on 5 simulated
and 3 real-world tasks. Our results across 2250 simulation trials and 300 real-
world trials demonstrate that it outperforms baselines and ablations, showing its
potential for scalable data augmentation in eye-in-hand bimanual manipulation.
Our project website is at: https://dcodaaug.github.io/D-CODA/.
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1 Introduction

Bimanual robotic manipulation is often necessary for diverse real-world tasks [1]. Recently, re-
searchers have shown the merits of wrist cameras in visual-based robot learning for manipula-
tion [2, 3, 4], as they help simplify certain aspects of the visual scene and focus on task-relevant
objects. However, a fundamental challenge remains: learning-based systems still require large
amounts of data for effective generalization, and collecting additional data across different view-
points and states is both costly and labor-intensive.

One way to address this issue is with data augmentation. This is a widely used technique in com-
puter vision [5, 6] and visual reinforcement learning [7, 8] to broaden the training data and facilitate
generalization. In robotics, prior work has explored ways to automatically generate and synthesize
novel image views while preserving action labels [9, 10, 11, 12], although such efforts have been
limited to single-arm settings. Bimanual manipulation introduces additional challenges, including
higher degrees of freedom (DOFs), enforcing consistency across the two generated wrist-camera
views, and ensuring that augmented actions remain valid for coordinated manipulation. A comple-
mentary approach to increase data coverage is Dataset Aggregation (DAgger) [13], which leverages
a supervisor to provide corrective labels. However, this method incurs additional online environment
interactions and assumes a supervisor is available, which is not always feasible.
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Figure 1: Overview of D-CODA for a coordinated bimanual lifting task with two UR5 arms. D-CODA is a
method for offline data augmentation in bimanual eye-in-hand imitation learning. Given a pair of wrist camera
images from demonstrations and sampled pose perturbations, a diffusion model generates novel and viewpoint-
consistent wrist images for both arms (i.e., consistent object shape, color, position, and orientation). We use an
optimization procedure to generate constraint-enforced actions to ensure augmented states are appropriate for
bimanual coordination. This enables scalable data augmentation of diverse training data.

In this paper, we propose Diffusion for COordinated Dual-arm Data Augmentation (D-CODA), a
diffusion-based data augmentation framework tailored for eye-in-hand bimanual imitation learning.
D-CODA synthesizes novel wrist-camera views along with consistent action labels to generate ad-
ditional training data for bimanual manipulation policies offline, without the need for a simulator or
the recreation of experimental setups. We design a diffusion model that takes two reference wrist
images and camera pose perturbations as input and synthesizes novel viewpoint-consistent wrist-
camera images for both arms. We leverage a Large Vision Model, SAM2 [14], to decompose any
bimanual manipulation task into contactless (free-space) and contact-rich states. For contactless
states, we uniformly sample random camera pose perturbations, while for contact-rich states, we
employ constrained optimization to ensure that the perturbations satisfy coordination constraints
required for bimanual manipulation. See Figure 1 for an overview.

Our contributions are as follows: (i) A novel method for bimanual manipulation that leverages diffu-
sion models to generate diverse and consistent wrist camera images. (ii) A perception-based pipeline
that decomposes any bimanual manipulation task into contactless and contact-rich states. For
contact-rich states, we introduce a camera perturbation sampling procedure that generates constraint-
enforced action labels. (iii) Experiments in 5 simulation and 3 real-world tasks that demonstrate the
effectiveness of D-CODA over alternative baseline methods and ablations.

2 Related Work

Bimanual Manipulation. Bimanual manipulation [1] is essential for a wide range of real-world
tasks that are difficult to perform with one arm, such as folding fabrics [15, 16, 17, 18, 19, 20],
inserting objects into deformable bags [21, 22, 23], and handling food [24, 25]. These tasks often
require tight coordination between the arms, either through simultaneous motions or an acting-
stabilizing division of roles [25, 26] where one arm stabilizes parts of an item (e.g., holding food) to
enable the other arm to act (e.g., cutting the food). While we mainly test our method for bimanual
tasks where arms move simultaneously, our approach is not task-specific.

Some prior work on bimanual manipulation formalizes coordination via learned primitives [27]
or constraint-based representations [28], but may suffer from generalization in unseen test-time
scenarios. More general learning-based methods have emerged to address these limitations. Some
rely on deep reinforcement learning (RL) [29, 30], which can be useful for simulation-based training
of policies to control high-DOF hands [31, 32, 33, 34] or humanoids [35]. However, deep RL
alone is generally difficult and brittle for bimanual manipulation [36]; therefore, researchers have
explored imitation learning [37, 38, 39, 40, 41, 42, 43]. In a landmark paper, Zhao et al. [44] showed
the benefit of predicting sequences of actions to learn fine-grained bimanual manipulation from
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demonstrations. Data scaling [45, 46, 47] and improved robot hardware [48, 49, 50, 51, 52] have
enabled great improvement and generalization in bimanual manipulation. Despite such progress,
significant room remains to achieve human-level generalization, and methods still struggle when
facing novel viewpoints or out-of-distribution states [12]. Our focus is complementary and is a
general data augmentation approach compatible with diverse eye-in-hand imitation systems.

Data Augmentation in Robotics. Data augmentation is a widely used strategy to improve general-
ization in supervised learning systems such as behavioral cloning [53]. These methods suffer from
compounding execution errors at test time, where small prediction errors lead to out-of-distribution
states that result in larger errors [13]. Data augmentation techniques in robotics can be roughly
divided into environment-level augmentation and trajectory-level augmentation. Environment-level
methods aim to expand visual diversity or semantic richness of training data. These include au-
tomatic environment generation using LLMs [54, 55, 56, 57] and controllable visual and scene
augmentation [58, 59, 60]. Some works also synthesize image-keypoint pairs [61] or hand-object
interactions [62]. These techniques are complementary, as we study imitation learning from existing
offline RGB trajectory data. More closely related works include RoVi-Aug [11] and VISTA [12],
which use diffusion models to generate novel viewpoints but lack action label supervision. In con-
trast, D-CODA generates viewpoint-consistent images and corresponding joint-space action labels.

Trajectory-level augmentation methods [63, 64, 65, 66] synthesize new robot states, transitions,
and/or actions. MimicGen [64], SkillMimicGen [65], and DexMimicGen [66] generate full demon-
stration trajectories, but rely on access to simulation or environment interaction during data gener-
ation, whereas D-CODA operates offline. Other works augment state-based inputs [67, 68] which
limits applicability to vision-based learning. Zhou et al. [10] use NeRF [69] to augment visual input
for corrective imitation but assume static scenes. Among the most closely related approaches is Dif-
fusion Meets DAgger (DMD) [9], which augments single-arm eye-in-hand images with action labels
using a diffusion model [70]. D-CODA builds on this foundation by demonstrating how to extend it
to bimanual setups through a unified framework that synthesizes left and right wrist-camera views
and employs constrained optimization to generate action labels suitable for bimanual manipulation.

3 Problem Statement and Preliminaries
We assume a bimanual robot with a left arm l and right arm r. Throughout the following sections,
mathematical notations with superscripts l and r denote the left and right arms, respectively. We
study vision-based eye-in-hand imitation learning, which trains a policy πθ parameterized by θ that
learns from demonstration data with wrist camera images. To indicate the source arm for each
wrist camera image, we use the I l and Ir notation, though we may suppress the superscripts if
the distinction is not necessary. To represent images at time t in a demonstration, we use I lt and
Irt . All images are in RH×W×3 with matching height H and width W values. These form the
policy input, which produces actions at = πθ((I

l
t, I

r
t )). Here, at = (alt,a

r
t ), where alt and art are

target joint positions for the respective arms. To train πθ, imitation learning uses a dataset of expert
demonstrations D = {τ1, . . . , τM}. Each τi is a sequence of wrist-camera images observations and
actions: τi = (I l1, I

r
1 ,a

l
1,a

r
1, . . . , I

l
T , I

r
T ,a

l
T ,a

r
T ) for a demonstration with T time steps.

Synthesizing Novel Bimanual Images and Actions: Our method synthesizes novel eye-in-hand
viewpoint images while automatically deriving suitable actions to make the robot return to in-
distribution data. Based on [9], we formalize this problem as learning a function fψ that creates
an eye-in-hand image conditioned on a current image and a pose perturbation ∆p. In this case, let
∆p = aTb represent the pose transformation between two cameras a and b, where a is the source and
b is the target. To represent images from these cameras for both arms, we suppress t and instead use
the following notation: {I la, Ira , I lb, Irb }. However, if notation requires specifying a camera {a, b} as
well as time t, both camera and time are included in the subscript (e.g., I lb,t), with the camera listed
first, then the timestep. Given the source images I la and Ira and pose transformations ∆pl and ∆pr

as input, fψ must synthesize novel and consistent images Ĩ lb and Ĩrb for the two cameras, matching
the targets I lb and Irb . Additionally, we use ∆p to compute perturbed actions ãt = (ãlt, ã

r
t ). Finally,

an augmented dataset of novel viewpoints with corresponding action labels, D̃, is generated.
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(i) Diffusion Model for Novel-View Synthesis (ii) Camera Perturbation Sampling
Original Pose

Left-Arm  
Augmented Pose

Right-Arm  
Augmented Pose

Constraint-Enforced 
Augmented Pose

Contactless States: sample random perturbations from a 
uniform distribution.
Contact-Rich States: apply identical constraint-optimized 
perturbations (e.g., upper-left arrows) to both arms. 

(iii) Downstream Policy Learning

Original 
Dataset 

(D-CODA) 
Augmented Dataset 

+
Bimanual 

Manipulation Policy

VQ  
Encoder

Random

Constrained

Figure 2: Overview of D-CODA. (i): The diffusion model is an iterative denoiser that learns to map source
wrist-camera images Ila and Ira to target wrist-camera images Ilb and Irb , conditioned on pose transformations
∆pl and ∆pr , using the original dataset (i.e., the dataset to be augmented). (ii): We use SAM2 [14] to de-
compose a bimanual manipulation task into contactless and contact-rich states. We uniformly sample random
camera pose perturbations for contactless states (green and yellow dots). For contact-rich states (maroon dots),
we use constrained optimization to sample perturbations that satisfy a set of constraints suitable for coordinated
manipulation. We then employ the trained diffusion model to synthesize novel views based on the original
dataset, using its images and corresponding sampled perturbations. This generates an augmented dataset. (iii):
We combine the original and augmented datasets to train a bimanual manipulation policy.

4 Method: D-CODA

We introduce D-CODA, a diffusion-based framework for data augmentation of eye-in-hand biman-
ual imitation learning, which synthesizes novel wrist-camera views with action labels (see Figure 2).

4.1 Diffusion Model for Novel-View Synthesis

We modify the conditional diffusion model proposed by Zhang et al. [9] to synthesize novel wrist
camera views for the two arms. The diffusion model, denoted as ϵϕ, is an iterative denoiser. It
is conditioned on the source images I la and Ira and the pose transformations ∆pl and ∆pr. The
diffusion targets are I lb and Irb . Both source and target images are passed through a VQ-GAN
autoencoder V [71, 72] to allow denoising on the latent representations {zla, zlb,t, z

r
a, zrb,t}, which

correspond to the source and target images of both robot arms. This enables the diffusion process
to operate in the latent space of the autoencoder rather than the high-dimensional pixel space. The
model is trained to predict ϵ̂l and ϵ̂r, which correspond to the noise terms ϵl and ϵr that were added
to the latent vectors of the noise targets zlb,t and zrb,t. Thus, the training objective is to minimize L:

L = ∥ϵl − ϵ̂l∥22 + ∥ϵr − ϵ̂r∥22 where {ϵ̂l, ϵ̂r} = ϵϕ

(
zlb,t, V (I la),∆pl, zrb,t, V (Ira),∆pr, t

)
(1)

and where zlb,0 = V (I lb) and zrb,0 = V (Irb ). The diffusion model architecture [70] is based on U-
Net [73], which consists of convolution, cross-attention, and self-attention layers. To condition the
model on pose transformations, we inject ∆pl, (∆pl)−1,∆pr, (∆pr)−1 into the cross-attention lay-
ers. This improves the feature representations by incorporating relative camera pose information be-
tween the source and target views [70]. During training, we randomly sample images {I la, I lb, Ira , Irb }
from a robot trajectory to construct the input (I la, I

l
b,∆pl, Ira , I

r
b ,∆pr) for the model, and we com-

pute ∆p = aTb by taking the matrix product of the inverse of camera pose a and camera pose b.
Given a dataset of expert demonstrations D, we train the diffusion model on D for a fixed number
of iterations. We then use the trained model and sampled camera perturbations (subsection 4.2) to
synthesize novel wrist camera views based on the same dataset.
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4.2 Camera Perturbation Sampling

While the prior formulation enables image synthesis, it lacks constraint-enforced action sampling to
ensure that sampled perturbations are valid. We introduce a novel camera pose sampling procedure
for coordinated bimanual manipulation tasks. Given such a task, we decompose it into contactless
and contact-rich states. To detect such contact, we use SAM2 [14] to extract segmentation masks
of the grippers and track them throughout the robot trajectories. This approach enables accurate
segmentation even when the grippers are closing or partially closed. If depth images from the wrist
cameras are available, we use them in conjunction with the masks to detect contact events using
z-score filtering, depth thresholding, and mask filling. If depth images are unavailable, we infer
contact events by checking whether the grippers are fully visible within the wrist camera view using
the Structural Similarity Index (SSIM) [74].

If gripper-to-object contact is absent, we uniformly sample a random direction for each arm within a
predefined range of magnitudes [mlb, mub] and rotations [rlb, rub] to generate camera perturbations.
However, when contact is detected, we formulate camera perturbation sampling as a constrained op-
timization problem. Our key insight is to apply identical perturbations to both arms during contact
events, ensuring coordinated behavior. For this, we employ Dual Annealing [75], a global optimiza-
tion algorithm capable of handling constraints, with early stopping. The decision variables are the
translation coordinates ctrans, representing the transformation applied to the camera perturbations
(normalized to [-1, 1]). The cost function penalizes perturbations that are too small, and end-effector
poses that are either too close to the table or too close to the other end-effector. Additionally, we use
an inverse kinematics solver based on the Levenberg-Marquardt (LM) method to check the feasibil-
ity of the perturbed end-effector poses. We define the overall optimization problem as:

minimize
ctrans

Cost(ctrans) subject to


ctrans ∈ [−1, 1]3 and ctrans ≥ mlb

ProximityToTable(ctrans) ≥ dtable

ProximityToOtherEEF(ctrans) ≥ deff

IKSolver(ctrans) = valid

We construct the transformation matrix for the camera perturbation T using the lowest-cost ctrans
and the identity rotation matrix. In short, this sampling strategy aims to identify a subset of feasible
perturbations that better supports coordinated bimanual manipulation tasks.

4.3 Action Labeling and Dataset Construction

Original  
Camera Position

Left-Arm Augmented 
Camera Position

Right-Arm Augmented  
Camera Position

(meters)

Figure 3: Isometric view of original and aug-
mented camera positions for the real-world
Lift Ball task. The augmented camera posi-
tions (maroon and yellow dots) provide broader
coverage of state-space regions not occupied by
the original camera positions (blue dots).

Given the dataset D and its corresponding sampled
camera perturbations, we use the trained diffusion
model to synthesize novel wrist camera views for
both arms. To generate perturbed end-effector poses,
we perform matrix multiplications involving the cam-
era perturbation transformation T , the original camera
pose C, and the end-effector pose E: C ·T ·(C)−1 ·E.
Since our eye-in-hand imitation learning algorithm op-
erates in joint space, we use the LM inverse kinemat-
ics solver to compute the perturbed target joint posi-
tions ãt (ãlt and ãrt ). If the resulting configuration
is invalid, we discard the augmentation for that state
and retain the original state information. Otherwise,
we replace the original state with the augmented (out-
of-distribution) state every k timesteps, which helps
mitigate the issue of compounding errors in behav-
ior cloning policies. The non-augmented action labels
and corresponding states remain in-distribution, which
guides the behavior cloning policies to complete the
tasks. This will result in an augmented dataset of novel views D̃, and πθ is trained on D = D ∪ D̃.
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Figure 4: Examples of the original and synthesized wrist-camera images using D-CODA on Coordinated
Lift Ball and Coordinated Lift Tray tasks in simulation. The first black column of images are the origi-
nal states where the following column of red images are the augmented (perturbed original) states. All original
and augmented state pairs are at the same timestep and each task is from the same episode. See Appendix G
for more examples.

See Figure 3 for a visualization of the original and augmented camera positions in a combined
dataset, and Figure 4 for examples of the synthesized images.

5 Experiments and Results

Simulation. We adopt five bimanual tasks from PerAct2 [76], which is built on top of RLBench [77],
a popular robot manipulation benchmark. To improve the performance of the ACT baseline [44], we
simplify certain tasks by reducing the axes of variation (e.g., shrinking the workspace), as mentioned
below. We use the following five bimanual tasks (see the Appendix for more details):

• Coordinated Lift Ball: a ball is randomly spawned in a workspace of 0.65× 0.91 m, same as
PerAct2. A success is when the ball is lifted to a height above 0.95 m.

• Coordinated Lift Tray Easy: a tray with an item placed on top is randomly spawned in a
workspace of 0.46 × 0.64 m, 70% of PerAct2’s original workspace, and the tray does not rotate.
A success is when the tray and the item are lifted to a height above 1.2 m.

• Coordinated Push Box Easy: a large box and a target area are randomly spawned in a
workspace of 0.59× 0.82 m, 90% of PerAct2’s original workspace, and the box may be randomly
rotated by up to 4 degrees. A success is when the box reaches the target area.

• Dual Push Buttons: three buttons with different colors are randomly spawned in a workspace of
0.65×0.91 m, as in PerAct2. A success is when two specified buttons are pressed simultaneously.

• Bimanual Straighten Rope: a long rope and target areas are randomly spawned in a workspace
of 0.65×0.91 m, same as PerAct2. A success is when both ends of a rope are in their target areas.

Real-World. We use three coordinated tasks: Lift Ball, Lift Drawer, and Push Block, as
coordinated dual-arm data augmentation is our primary focus. We use two CB2 UR5 6-DOF robot
arms in a bimanual setup in a 0.97× 0.79 m workspace, with a front camera and two wrist-mounted
cameras. Each arm has a Robotiq 2F-85 parallel-jaw gripper and an Intel RealSense D415 RGB-D
wrist camera. An experienced roboticist uses GELLO [78] to teleoperate the robots and collects
∼32 demonstrations per task. For evaluation, we perform 20 rollouts per task. In Lift Ball, a
0.35 m diameter ball is placed in randomized positions within a 0.64× 0.20 m region. A success is
when the ball is lifted to a height above 0.25 m. In Lift Drawer, a 0.29 × 0.29 × 0.15 m square
drawer is placed randomly within a 0.48×0.38 m region and randomly rotated up to 25°. A success
is when the drawer is lifted to a height above 0.22 m. In Push Block, a 0.07× 0.35× 0.12 m foam
block is randomly placed within a 0.97 × 0.43 m region and rotated up to 13°. A success is when
the block is pushed past the front of the workspace.

6



# of Coordinated Coordinated Coordinated Dual Push Bimanual
Method Cameras Lift Ball Lift Tray Push Box Buttons Straighten Rope

Fine-tuned VISTA 3 61.3 2.6 76.0 1.3 26.7
D-CODA (ours) 3 77.3 34.7 58.7 34.7 48.0

Bimanual DMD 2 50.7 13.3 32.0 48.0 13.0
ACT (more data) 2 48.0 26.7 29.3 49.3 26.7
ACT (w/o augment.) 2 56.0 37.3 36.0 46.7 18.7
D-CODA (ours) 2 73.3 44.0 56.0 53.3 30.7

Table 1: Results from simulation experiments comparing D-CODA against four baselines (see Section 5.1).
The success rate results are the average evaluation over three seeds. The ACT policy is used across all methods.

5.1 Baselines

In simulation, we compare D-CODA against strong baselines: Fine-tuned VISTA [12] and Bi-
manual DMD. All methods generate an augmented dataset, and we train Action Chunking with
Transformers (ACT) [44], a state-of-the-art imitation learning method for bimanual manipulation,
on both the augmented and original data to evaluate task performance. For all baselines, we adopt
PerAct2’s ACT implementation with fine-tuned action chunk sizes. VISTA leverages a diffusion-
based novel view synthesis model, ZeroNVS [79], to augment third-person viewpoints from a single
third-person view. We fine-tune VISTA on each task’s training data using 10 randomly sampled
overhead camera viewpoints drawn from a quarter-circle arc distribution. Following the training
strategy of the best-performing VISTA variant [12], we train ACT on both the augmented overhead
camera images and the original wrist-camera images. The Bimanual DMD baseline uses one DMD
model per arm to synthesize wrist-camera images and employs the same k, interval at which origi-
nal states are replaced, and random seed as D-CODA to generate perturbed actions and augmented
states. The ACT (w/o augment.) baseline is trained only on the original dataset, serving as a ref-
erence for ACT performance without data augmentation. The ACT (more data) is trained on the
original dataset along with 100 additional demonstrations without data augmentation, serving as an
upper bound for ACT performance with more expert data.

5.2 Experiment Protocol and Evaluation

In simulation, we use the same training, validation, and testing data with the same environment seeds
across all methods to ensure a fair comparison. Demonstrations are generated using a waypoint-
based motion planner in RLBench [77]. We train the ACT policy for all methods using 100 episodes
of training data along with their corresponding augmented data, saving a checkpoint every 2,000 it-
erations up to a total of 260,000 iterations. All checkpoints are validated using the same 25 episodes
of validation data. Based on validation performance, the best-performing checkpoint is then evalu-
ated on 25 unseen test data. In real-world experiments, we use the last checkpoint for each method
and attempt to use the same starting configurations (e.g., object spawn locations and rotations).

5.3 Simulation Results

Table 1 reports the test success rates of different methods in simulation. D-CODA outperforms the
baselines on 4 out of 5 tasks, including non-coordinated tasks such as Dual Push Buttons and
Bimanual Straighten Rope. However, its performance is lower than VISTA on Coordinated
Push Box because wrist-camera views offer poor visibility of the scene (i.e., the position of the
box relative to the target area). As a result, augmenting wrist-camera views does not significantly
improve the ACT baseline performance, although we still achieve a 20% improvement. Qualita-
tively, all methods can fail due to imprecise grasping, pushing, or placing of objects. Baseline
methods, particularly VISTA, struggle with tasks that require a low tolerance for error, such as
grasping tray handles or pushing small buttons. Overall, D-CODA makes fewer errors in these sce-
narios. We also observe that both Bimanual DMD and D-CODA, which generate out-of-distribution
states, learn to recover from failures. For instance, when the grippers slide off the box during the
Coordinated Push Box task, they recover by repositioning the grippers and continuing to push
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the box to complete the task. Another interesting observation is that all methods using an over-
head camera have worse performance by the downstream ACT policy on high-precision tasks (e.g.,
Coordinated Lift Tray and Dual Push Buttons) compared to ACT without using the over-
head camera. Therefore, we suspect this limitation is from the design of the downstream ACT policy
rather than the data augmentation methods. Further, we found that learning from more data, ACT
(more data), does not always improve policy performance, and data augmentation shows potential
for improving performance. See the Appendix for details of our ablation study.

5.4 Real-World Results
Method Lift Ball Lift Drawer Push Block

Fine-tuned VISTA 12 / 20 0 / 20 20 / 20
ACT (w/o augment.) 15 / 20 7 / 20 15 / 20
D-CODA (ours) 17 / 20 14 / 20 20 / 20

π0-FAST (w/o augment.) 2 / 20 1 / 20 20 / 20
D-CODA (ours) 12 / 20 1 / 20 20 / 20

Table 2: Real-world experiment results comparing D-CODA
with baselines, with 20 trials per method and task combination.

Real-world results are shown in Ta-
ble 2 and example rollouts in Figure 6.
The top three rows use ACT as the
downstream manipulation policy, while
the bottom two use π0-FAST [80],
a vision-language-action model. π0-
FAST is fine-tuned using Low-Rank
Adaptation (LoRA) with the Gemma-
2B-LoRA variant for 150,000 training steps, provided in [80]. Fine-tuned VISTA uses all three
cameras, following its best-performing variant, whereas the other methods use only the wrist cam-
eras, except in Push Block, where we found that all methods benefit from third-person views.
D-CODA outperforms baselines on all three tasks based on evaluations over 20 trials.

We observe that in Lift Ball, when using ACT, the robot arms freeze less frequently with D-
CODA compared to baselines when the arms are in contact and lifting the ball. When using π0-
FAST, the baseline frequently misses the ball by moving the arms over it, or squeezes the ball so
tightly that it triggers a force limit error on the robot. In contrast, D-CODA more reliably completes
the task by positioning the arms beneath the ball to lift it, a strategy not seen in the baseline. How-
ever, most failures of D-CODA are due to large action values generated from the policy, causing
the arms to deviate from the intended trajectory. We suspect that the large actions may result from
the discontinuous nature of action tokens, as the augmented states are out-of-distribution, perturbed
original states, which could inadvertently cause the policy to learn to output actions that suddenly
deviate from the trajectory. This issue does not appear in ACT and might be mitigated by adopting
a smoother action token representation. In Push Block, the robot arms using D-CODA get stuck
less often when the block is positioned farther from the grippers, compared to the ACT baseline. In
Lift Drawer, our method reaches the sides of the drawer more frequently than the baselines, an
intermediate subgoal necessary to complete the task. Fine-tuned VISTA performs very poorly on
this task, similar to its performance in Coordinated Lift Tray Easy. In 9 out of 20 trials, VISTA
successfully reached the sides of the drawer, but the policy failed to close the grippers. These results
suggest that VISTA struggles with tasks requiring precise manipulation, as shown in both simulation
and real-world experiments. We suspect that this limitation arises from the use of augmentations for
third-person views, which may adversely affect policy learning when wrist-camera views are more
critical for task success. In other words, the policy may prioritize learning invariant features from
third-person views rather than focusing on task-relevant features in the wrist-camera views. Overall,
both π0-FAST and ACT demonstrate improved performance with our data augmentation; however,
with limited training data, ACT appears to exhibit greater reliability.

6 Conclusion

In this paper, we study data augmentation for bimanual manipulation, focusing specifically on eye-
in-hand bimanual imitation learning. Our method, D-CODA, uses a diffusion model to generate
diverse and consistent wrist camera images while enforcing and generating appropriate action labels
using constrained optimization. By augmenting data, we obtain improved imitation learning perfor-
mance across a range of diverse bimanual tasks. We hope our work inspires future exploration of
data augmentation methods for bimanual manipulation.
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7 Limitations

While promising, D-CODA has limitations that suggest opportunities for future work. First, our
method is limited to augmenting wrist view images and is not intended for third-person view aug-
mentation. Augmenting third-person views while modifying the action labels is nontrivial, as it
requires the augmented views to reflect the change in movements of the robot arms implied by the
augmented action labels. Another limitation is that our method relies on the distribution of novel
camera poses being “sufficiently similar” to those in training, and would likely suffer with sub-
stantially different camera poses. Finally, although using D-CODA improves downstream policy
performance by reducing the number of failures, it does not completely eliminate them.
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A Task Details

Coordinated Lift Ball Coordinated Lift Tray 
Easy

Dual Push ButtonsCoordinated Push Box 
Easy

Bimanual Straighten 
Rope

Lift Ball Lift Drawer Push Block

Figure 5: Simulation environments for our bimanual manipulation tasks, adapted from PerAct2 [76].

Lift Ball Lift Tray Dual Push ButtonsPush Box Bimanual Straighten 
Rope

Lift Ball Lift Drawer Push Block

Figure 6: Top: Real-world bimanual manipulation tasks. Bottom: Example successful rollouts (Lift Drawer
on top row; Push Block on bottom row) of D-CODA on a real-world bimanual setup with UR5s. See Sec-
tion 5.4 for quantitative results.

RGB-D 
Camera

UR5 Arm

Figure 7: Real-world bimanual UR5 setup.
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B Ablations

Ablations of D-CODA. In simulation, we test the following methods:

• D-CODA with Replaced Encoders: uses a VQGAN encoder trained on the Open Images [81]
dataset from Latent Diffusion [72] instead of the RealEstate10K [82] dataset.

• D-CODA w/o Constrained Optim.: does not use constrained optimization to sample camera
perturbations (i.e., random sampling).

Coordinated
Method Lift Ball

D-CODA with Replaced Encoders 53.3
D-CODA w/o Constrained Optim. 57.3
D-CODA (ours) 73.3

Table 3: Ablation experiment results in simulation.

Table 3 indicates that D-CODA performs best with
constrained optimization and the original VQGAN
encoder. D-CODA without constrained optimiza-
tion fails more often than D-CODA during ball
lifting, as expected, since the perturbations gener-
ated by the model are not constraint-enforced and
are entirely random. See Section F for details on
the importance of constraint-enforced action sam-
pling. Additionally, the model with replaced encoders generates images with more artifacts, result-
ing in poorer policy performance.

C Generalization Experiment

Coordinated
Method Lift Ball

Zero-Shot 44.0
Few-Shot (10 demos) 60.0
Train from Scratch (100 demos) 73.3

Table 4: Generalization experiment results in simu-
lation.

We evaluate the diffusion model’s generalization
capability to unseen objects and tasks. For the
zero-shot and few-shot experiments, we train the
model on 100 demonstrations each from the fol-
lowing PerAct2 [76] tasks: Coordinated Lift
Tray, Pick Up Notebook, Pick Up Plate,
Sweep Dust Pan, and Coordinated Push Box.
We then use the trained model to synthesize
images for the Coordinated Lift Ball dataset.
The following methods are tested:

• Zero-Shot: uses the trained diffusion model to synthesize images without any fine-tuning.
• Few-Shot (10 demos): fine-tunes the trained model for 3000 additional epochs using 10 demon-

strations from the target Coordinated Lift Ball dataset, which is then use for image synthesis.
• Train from Scratch (100 demos): Trains the diffusion model directly on 100 demonstrations

from the Coordinated Lift Ball dataset, without using demonstrations from other tasks.

As shown in Table 4, the diffusion model performs best when trained directly on the target dataset
(i.e., the dataset to be augmented). However, when data collection for the target task is costly, the
model still achieves reasonable performance in the few-shot setting. Qualitatively, the images syn-
thesized by the model trained from scratch contain the fewest artifacts, with image quality degrading
as fewer target demonstrations are used during training.

D Additional Implementation Details

For training the diffusion model, we use the same VQ-GAN pre-trained checkpoint at 2000 epochs
with frozen codebooks as DMD [9]. To randomly sample images I la, I

l
b, I

r
a , I

r
b from a robot tra-

jectory to construct the input (I la, I
l
b,∆pl, Ira , I

r
b ,∆pr), we sample from a range of {5, . . . , 15} for

all simulation tasks, except for Dual Push Buttons, where we use {10, . . . , 30}. For real-world
experiments, we use a range of {1, . . . , 3} for all tasks. For example, if I la, I

r
a are from timestep t,

then I lb, I
r
b are sampled from a future timestep between t+ 1 and t+ 3 in real-world tasks. We use

two NVIDIA 4060 Ti GPUs for both training the diffusion model and performing image synthesis.
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Figure 8: Effects of k on downstream
ACT performance on Coordinated Lift
Tray Easy.

For camera perturbation sampling, the translation magni-
tudes [mlb, mub] are set to 0.01 and 0.02 meters, respec-
tively, for contactless and contact-rich states. For con-
tactless states, the rotation bounds [rlb, rub] are set to
–28.7 and 28.7 degrees, respectively. For k (i.e., the in-
terval at which original states are replaced), we set k = 6
for Coordinated Lift Ball, Coordinated Lift Tray
Easy, Dual Push Buttons, and all real-world tasks, and
k = 9 for Coordinated Push Box Easy and Bimanual
Straighten Rope. Figure 8 shows that our method is
largely insensitive to the choice of k, which motivates our
choice of 6 as the default value for most tasks.

Table 5 summarizes the ACT hyperparameters. While PerAct2 uses a default action chunk size of 10,
we found it to yield suboptimal performance across most tasks. To address this, we tune the chunk
size for all tasks except Coordinated Lift Ball, using a chunk size of 15 for Coordinated Lift
Tray Easy and Coordinated Push Box Easy, and 60 for Dual Push Buttons and Bimanual
Straighten Rope. We use a chunk size of 2 across all real-world tasks. In both simulation and
real-world experiments, the RGB images have dimensions of 128× 128. An NVIDIA 2080 Ti GPU
is used to train the ACT policy.

Hyperparameter Value

learning rate 1e-5
batch size 16
# encoder layers 4
# decoder layers 7
feedforward dimension 3200
hidden dimension 512
# heads 8
beta 100
dropout 0.1

Table 5: Hyperparameters of ACT

For real-world experiments, we use Intel RealSense D415 cameras to capture RGB images at a
resolution of 640× 480 pixels. These images are first zero-padded and then rescaled to 128× 128.
We use the python-urx library to control the robot arms and I/O programming to operate the Robotiq
2F-85 grippers.

E Additional Implementation Details for the Baselines

For fine-tuned VISTA, 10 overhead camera viewpoints are randomly sampled from a quarter-circle
arc distribution and are used to train ZeroNVS with VISTA’s default fine-tuning parameters. The
ZeroNVS model is fine-tuned for 5,000 steps on four NVIDIA A40 GPUs. The resulting model is
then used to synthesize overhead camera views for all timesteps in each episode. These synthesized
images replace all the original overhead images and are used to train ACT.

F Lack of Constraint-Enforced Action Sampling

Figure 9 shows a visualization comparing constraint-enforced actions and random actions in the
Coordinated Lift Ball task. At this timestep, the robot arms have reached the bottom of the
ball and are about to lift it. If the next sampled actions are random (blue arrows), they may cause
the ball to fall due to an increased distance between the end-effectors (black arrows). In contrast, if
constraint-enforced actions are sampled (maroon arrows), the distance and orientations of the end-
effectors are maintained, preserving the conditions necessary for the ball to remain stable atop the
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Figure 9: Visualization comparing constraint-enforced actions and random actions.

grippers. Thus, constraint-enforced actions are critical for achieving coordinated bimanual manipu-
lation.
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G Examples of Synthesized Images
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Figure 10: Examples of the original and synthesized wrist-camera images from both arms using D-CODA on
Coordinated Push Box, Dual Push Buttons, and Bimanual Straighten Rope tasks in simulation. The
first black column of images are the original states where the following column of red images are the augmented
(perturbed original) states. All original and augmented state pairs are at the same timestep and each task is from
the same episode.
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Figure 11: Examples of the original and synthesized wrist-camera images from both arms using D-CODA on
the real-world Lift Ball, Lift Drawer, and Push Block tasks. The first black column of images are the
original states where the following column of red images are the augmented (perturbed original) states. All
original and augmented state pairs are at the same timestep and each task is from the same episode.
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