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Abstract

How do people decide whether it is worth pursuing innovation? For example, in1

machine learning new methods often result from combining existing methods, but2

there is a risk that a given combination will not work. While seasoned experts3

could use their intuitions gained through experience to decide whether some com-4

binations are worth trying out, novices to the field have to learn these insights5

while trying to maximize their rewards. Here, we formalize this problem and de-6

rive optimal policies for agents who know, or do not know, how likely each kind of7

combination is to succeed, emulating the effects of expert knowledge. Our model8

predicts that novices should not only gather fewer rewards, but also explore sys-9

tematically less than the experts. An online behavioral experiment (n = 300) sup-10

ports this finding, showcasing the profound impact of domain expertise in guiding11

innovative decision making in a combinatorial space.12

1 Introduction13

People often create new things by recombining (parts of) existing things [1]. To name a few ex-14

amples, adding engines to machines unleashed an era of industrial revolution; combining artificial15

neural networks with internet-scale data produced astonishing artificial intelligence systems. More16

recently, pooling together a range of pipelines created AI scientists that can automatically propose17

ideas, test hypotheses, and publish papers [2]. In short, a large part of human discovery has a funda-18

mentally combinatorial nature.19

The space of combinatorial discoveries can have structure, and knowing the odds of attempting20

recombination plays a vital role in the decision-making process. Take medical research for example:21

experts with good knowledge of whether certain chemicals and proteins go together can make more22

efficient experiment designs than those who have to figure out these information. [3] showed that,23

when the success rates of recombination are known and the horizon is finite, this decision problem24

can be expressed as a Markov decision process and hence solved. In a behavioral experiment, [3]25

found that people’s behaviors are in line with those solutions.26

However, in more realistic settings, the success rate is not always known. Here, we examine the in-27

fluence of such domain-level uncertainty. We ask what a rational agent should do to maximize their28

rewards when the success rate of attempting recombination is unavailable. As the number of un-29

known domains changes, would a rational agent react differently? How much gain does knowledge30

of success rates bring us? We answer these questions both from a Bayesian modeling perspective,31

and using data collected via an online behavioral experiment. Understanding these questions crys-32

tallizes the dynamics of how people pursue innovation in fields involving combinatorial discoveries,33

and helps us make better plans to facilitate future discoveries.34
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2 Methods35

2.1 Combinatorial Discovery Games36

Following [3], we first define a basic combinatorial discovery game G as a tuple ⟨M,T,A,R⟩, where37

M is a set of items, T the game tree containing successful combinations, A a set of actions, and R the38

reward function. Combining an item m ∈ M and item n ∈ M is denoted as c(m,n). If c(m,n) ∈ T ,39

this is a successful combination and will produce a new item, say, c(m,n)⇒ o; if c(m,n) ̸∈ T , the40

combination fails and no new item is discovered. Items that cannot be produced by combining other41

items are base items, m0, with base reward r. Climbing up the game tree increases levels: for a42

combination c(mi,m j) ⇒ mk, k = max(i, j)+ 1, and the reward associated with item mk is wk · r.43

Players can take two actions A = {use,combine}. Action use receives the rewards associated with44

the item, R(use(mk)) = wkr, and action combine combines two items of the player’s choice. The45

immediate reward for taking this action is always zero, R(combine(m,n)) = 0.46

A discovery game can be parameterized by a success rate p ∈ [0,1]—the probability of receiving a47

successful discovery for any given item, and the reward increase rate w > 1. [3] showed that these48

definitions form a Markov decision process (MDP), and under a finite horizon of D steps in total, the49

optimal policy in this particular setting corresponds to an optimal stopping problem [4]: One should50

keep attempting innovation (combine) until a switch point d, then focus on collecting the highest51

possible existing rewards (use). The expected return for switching at step d is52

Eπ(d) = (n−d)

(
d

∑
i=0

(
d
i

)
(pw)i(1− p)d−i

)
r (1)

and the optimal switch point is d∗ = argmaxd Eπ(d). Solving Equation 1 analytically states that a53

rational player should switch from use to combine when there is d′ steps left, where54

d′ ≥ 1
p(w−1)

+1. (2)

2.2 Domain Uncertainty55

The above policy specifies what a rational agent should do when they have complete information56

about the success rates and reward increase rates. In the real world, this setup corresponds to an57

expert with strong domain knowledge, enabling informed decisions that drive innovation and yield58

desirable outcomes.59

To account for uncertainty in domain knowledge, we extend the setup in [3] to include types of items,60

aiming to reflect a more realistic scenario where different types of things may be associated with61

different success rates and reward increase rates—like which kinds of chemicals can be productively62

combined together. A discovery game with types Gτ extends a discovery game G∪{Z,σ ,τ}, where63

type indices Z = {1,2, . . . ,z} is a finite set of integers, and σ : M → Z maps each game item to a type64

index. For |Z| = z number of types, choosing two types from z with replacement—allowing same-65

type combination—is given by
(z+2−1

2

)
= (z+1)!

2!(z−1)! ways of combining types of items. We denote66

each kind of these combinations by τ .67

Each kind of combination has its own success rate pτ and reward increase rate wτ . Experts are68

defined as those knowing the pτ and wτ for all τ . An expert can thus estimate the maximum total69

reward for each kind of combination using Equation 1, and apply Equation 2 to compute the optimal70

switch point d∗
τ for the kind of combination that produces the highest rewards. Formally, the rational71

decision is to optimize along the most rewarding τ:72

τ̂ = argmaxEπ(d∗τ ). (3)

Non-experts, or novices, are not blessed with such information. They are tasked with both inferring73

the relevant parameter values, and maximizing their rewards. While the reward increase rate w can74

be known immediately after a successful combination is found, the success rate p poses a harder75

inference problem. Without loss of generality, we model a novice’s belief about the success rate76

with a beta distribution77

pτ ∼ Beta(ατ ,βτ). (4)
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Figure 1: Comparing the performance of a novice learning via Bayesian inference and an expert.
a. max total rewards achieved by the novice per prior and number of unique item types. b. fusion
proportions. Red dotted lines mark expert’s performances.

Given this prior, the novice player updates their belief about pτ after observing xτ successes out of78

nτ attempts of combine actions for this kind of combination, with79

pτ | xτ ,nτ ∼ Beta(ατ + xτ ,βτ +nτ − xτ). (5)

The novice player can integrate the belief defined in Equation 5 with Equation 2 to estimate a switch80

point d̃∗
τ given their current belief of success rate pτ for τ , and it is possible to compute the max81

expected reward for each τ using Equation 1. The novice player can then apply the same decision82

rule in Equation 3 to choose which kind of combination they will interact with, and choose the action83

aτ =

{
combineτ if nτ < d̃∗

τ ,

useτ otherwise.
(6)

Note that Equations 1–6 effectively equate to Thompson Sampling [5], a posterior sampling algo-84

rithm widely used in online learning problems [6].85

For a novice’s prior belief, we set ατ = βτ = k, representing no biases about whether a kind of86

combination is particularly promising or devastating. We ran simulations with symmetric beta pri-87

ors k = 1, . . . ,10, and number of item types z = 2,3,4,5, leading to |τ| = 3,6,10,15 respectively.88

Figure 1 summarizes these simulation results, and reveals that novices both gain fewer rewards and89

attempt fusion less frequently than the experts. How strong the prior is—reflected by the k values—90

has no substantial influence on the learner’s behavior; domain richness—measured by the number91

of item types—has a much stronger impact: The richer the domain is, the bigger the differences be-92

tween the novice’s and the expert’s performances are. These results suggest that higher uncertainty93

for the novices can lead to more conservative behavior in this particular setting.94

3 Experiment95

We test these model predictions in a pre-registered online behavioral experiment (https://96

osf.io/x2ymd/?view_only=84c4b13ea553457c8661e426169623a9). The experiment was ap-97

proved by the university ethics committee (ref. no. omitted for anonymity).98

Three-hundred participants were recruited from Prolific Academic (age 35±12, 55% female). The99

experiment took 10± 19 minutes. No participants were excluded from analysis. All participants100

gave informed consent before undertaking the experiment.101

3.1 Design102

We used a cover story of making alien crystals that could be used to generate points. Participants103

could either use an existing crystal (action use), or fuse any two existing crystals together (action104

combine). A fusion attempt led to a new crystal with probability p. Participants could take 10 actions105

in each game. Each game had 4 types of alien crystals indicated by 4 shapes: square, triangle,106

diamond (upside-down triangle), and circle. These four shapes form 10 kinds of combinations107

(square + square, square + circle, etc.). All crystals start at the base level with r = 100 points. We108

set the reward increase rate w = 1.5 for all kinds of combinations and let all participants know this109

was the case. Notably, one of the ten kinds of combinations had a high success rate (pH = 0.8),110
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Figure 2: Behavioral results. Each dot is an individual data point. Central lines in the boxes are
median values; the lower and upper edges of the boxes are the first and third quantiles. Red lines in
sub-figure d are mean values.

while the others had lower success rates (pL = 0.2). Participants were randomly assigned to one111

of the two conditions. For those in the expert condition, they were explicitly told the success rate112

parameters. Participants assigned to the novice condition were only told the pH and pL values, but113

had no information of which kind of combination was associated with pH or pL.114

Participants first read the instructions and had to pass a comprehension quiz to start the task. Each115

participant completed 5 practice trials and then 5 task trials. Each trial has only one high-p kind of116

combination, sampled randomly and independently. The experiment ended with a short debriefing.117

See the experiment in action at https://bz.velezlab.opalstacked.com/crystals-ep/p/118

exp.html.119

3.2 Selected Results120

We only analyzed data in the task trials. As illustrated in Figure 2a-b, overall, participants121

in the expert condition collected more total rewards and created items with higher levels. We122

conducted a mixed-design Analysis of Variance (ANOVA) with condition as the primary factor123

and task as a repeated measure to assess the effects. The results reveal that for total rewards,124

there is a significant effect of condition (F(1,298) = 163.479, p < 0.0001), but not for task125

(F(3.81,1136.06) = 1.522, p = 0.196) or their interaction (F(3.81,1136.06) = 0.374, p = 0.819);126

similarly for item levels, condition has a significant effect (F(1,298) = 179.926, p < 0.0001),127

but not for task (F(3.88,1157) = 2.114, p = 0.079) or the interaction between condition and task128

(F(3.88,1157) = 1.264, p = 0.283).129

Crucially, as predicted by the model, participants in the novice condition attempted fewer fusion130

actions (Figure 2c). A mixed-design ANOVA with condition as the primary factor and task as131

a repeated measure indicated a significant effect (F(1,298) = 13.183, p = 0.000332), and not132

for task (F(3.75,1116.59) = 0.285, p = 0.877) or the interaction between condition and task133

(F(3.75,1116.59) = 0.928, p = 0.442).134

Interestingly, despite being less exploratory in the sense of attempting fewer fusions, participants in135

the novice condition interacted with more item types (Figure 2d). Again, a mixed-design ANOVA136

with condition as the primary factor and task as a repeated measure indicated a highly significant ef-137

fect of condition (F(1,268)= 329.443, p< 0.0001), and not for task (F(3.83,1027.65)= 0.770, p=138

0.540) or the interaction (F(3.83,1027.65) = 0.370, p = 0.822).139

4 Conclusion140

Advancing discoveries via recombination is a crucial aspect of human intelligence, ranging from cre-141

ating physical tools to proposing new theories, or even literally creating novel chemical compounds142

or protein structures. We examined decision policies in a task sharing a similar combinatorial nature,143

and in particular investigated the influence of domain uncertainty. As both predicted by the model144

and supported by empirical data, higher uncertainty not only led to fewer rewards or less advanced145

items, but also lower rate of exploration, although touching on a wilder range of domains. These146

results emphasize the importance of integrating domain-expertise in guiding effective exploration,147

and warn the undesirable possibilities of reward-driven policies in highly uncertain domains.148
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