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Abstract
Out-Of-Domain (OOD) generalization is a sig-
nificant challenge in learning dynamical systems,
especially when they exhibit bifurcation, a sud-
den topological transition triggered by a model
parameter crossing a critical threshold. A prevail-
ing belief is that machine learning models, unless
equipped with strong priors, struggle to general-
ize across bifurcations due to the abrupt changes
in data characteristics. Contrary to this belief, we
demonstrate that context-dependent Neural Or-
dinary Differential Equations (NODEs), trained
solely on localized, pre-bifurcation, symmetric
data and without physics-based priors, can still
identify post-bifurcation, symmetry-breaking be-
haviors, even in a zero-shot manner. We interpret
this capability to the model’s implicit utilization
of topological invariants, particularly the Poincaré
index, and offer a formal explanation based on the
Poincaré–Hopf theorem. We derive the condi-
tions under which NODEs can recover—or erro-
neously hallucinate—broken symmetries without
explicit training. Building on this insight, we
showcase a topological regularizer inspired by
the Poincaré–Hopf theorem and validate it empir-
ically on phase transitions of systems described
by the Landau–Khalatnikov equation.

1. Introduction
The laws of physical systems are frequently expressed by
differential equations rooted in dynamical systems theory.
Across all scientific disciplines, a key objective lies in con-
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structing accurate mathematical models that seamlessly in-
tegrate observational data with physical principles. Properly
modeled dynamical systems allow for the prediction of rare
events or even unobserved phenomena, providing scientific
intuition and opportunities for groundbreaking discoveries.
Recently, learning dynamical systems directly from data
has emerged as a promising alternative to traditional model-
ing approaches, offering a partial automation of scientific
discovery (Brunton et al., 2016; Fotiadis et al., 2023; Huh
et al., 2020; Kirchmeyer et al., 2022; Mouli et al., 2024;
Nzoyem et al., 2025; Yin et al., 2021a;b). To serve as vi-
able alternatives to physics-based models, these approaches
must demonstrate robust forecasting capabilities beyond
their training domain, making Out-Of-Domain (OOD) gen-
eralization a critical challenge (Göring et al., 2024).

Formally, a continuous dynamical system is represented by
a phase space Ordinary Differential Equation (ODE):

ẋ(t) = f(x(t);µ), x ∈ M, µ ∈ Rn, f : M×Rn → TM,

where x(t) is a phase space state at time t, µ is a n-
dimensional model parameter vector, f(·; ·) is a vector field
of the µ-parameterized ODE, and M is a phase manifold.
Here, the model parameters µ refer to factors that charac-
terize the physical environment of the system, such as the
mass of a pendulum1. Trajectories of ODEs are given by

x(T ;x(0), µ) = x(0) +

∫ T

0

f(x(t);µ)dt,

where x(0) is called the initial condition. The goal of learn-
ing dynamics is to use machine learning models like Recur-
rent Neural Networks (RNNs) (Brenner et al., 2022; 2025;
Vlachas et al., 2018) or Neural ODEs (NODEs) (Chen et al.,
2018; Rubanova et al., 2019) to accurately approximate the
unknown vector field f(·; ·) based on the trajectory data.
Clearly, for a given trajectory over T , there are two degrees
of freedom: the initial condition x(0) and the model parame-
ter µ. Therefore, OOD challenges in the learning dynamics
problem can be categorized into two types: generalizations
to the unseen x(0) and to the unseen µ (Mouli et al., 2024).

1Therefore, we will use the terms environment and parame-
ter interchangeably, though the latter specifically referring to a
numerical value that characterizes the environment.
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The challenges of OOD learning dynamics become par-
ticularly prominent in the presence of bifurcations, where
the system undergoes abrupt qualitative transitions in be-
havior as a certain parameter of µ crosses a critical thresh-
old (Arnold et al., 2013; Strogatz, 2018). Among the var-
ious types of bifurcations, spontaneous symmetry break-
ing—where symmetric states lose stability and give way
to asymmetric states—stand out for their profound impli-
cations across diverse fields, including the Higgs mecha-
nism in particle physics (Bernstein, 1974), phase transi-
tions in condensed matter field theory (Aranson & Kramer,
2002), switching operations in nanoelectronic (Alam & Za-
gni, 2024) and nanophotonic devices (Hamel et al., 2015),
and even the dynamics of generative diffusion models (Raya
& Ambrogioni, 2023). The (symmetry-breaking) bifurca-
tions induce significant topological changes in the dynami-
cal system due to the creation and annihilation of equilib-
rium states, thereby intertwining OOD challenges related to
both initial conditions and parameters. Given these dramatic
changes, purely data-driven models are widely believed to
face challenges when extrapolating across bifurcation points,
largely due to a lack of invariant features (Ye et al., 2021) be-
tween pre- and post-bifurcation trajectories. Hence, existing
studies have emphasized integrating physics-informed pri-
ors (Garcı́a Pérez et al., 2023; Ghadami & Epureanu, 2018;
Kalia et al., 2021) or collecting cross-parameter datasets (Li
& Yang, 2024) to improve the identifiability of bifurcations.

However, in this work, we make the surprising discovery
that context-dependent free-form NODEs, trained exclu-
sively on highly localized pre-bifurcation data, without any
physics-based priors, can unexpectedly detect the presence
of symmetry-breaking bifurcations and recover the post-
bifurcation behavior of hidden symmetries, in a zero-shot
manner. We demonstrate how purely data-driven NODE
models can identify the bifurcation phenomena through the
topological invariant known as the Poincaré index (Brasse-
let et al., 2009; Strogatz, 2018), revealing that the models
implicitly learn and leverage it as a key invariant feature
of the data. To support this observation, we formalize our
explanation using the Poincaré–Hopf theorem (Hopf, 1927;
Milnor & Weaver, 1997) and derive the conditions under
which NODEs can either infer or, intriguingly, hallucinate
broken symmetry without explicitly learning them. Based
on this insight, we present a proof-of-concept study intro-
ducing a novel Poincaré–Hopf regularization, demonstrated
through its application to the Landau–Khalatnikov (LK)
theory (Landau & Khalatnikov, 1954) as an exemplar case.

2. Preliminary
Context-dependent free-form NODEs. Free-form
NODEs refer to vanilla NODEs (Chen et al., 2018;
Rubanova et al., 2019), where the vector field is a neural
network parameterized by trainable weights θ:

ẋ(t) = f(x(t); θ), θ ∈ Rm. (1)

This formulation describes a system operating within a sin-
gle environment characterized by a fixed physical model
parameter µ, which is implicitly encoded in a single weight
vector θ. To generalize NODEs to represent multiple envi-
ronments, θ should be expressed as dependent on µ such
that ẋ(t) = f(x(t); θ(µ)). In practice, however, the exact
values of µ are often unknown. In such cases, the NODEs
must also seek a latent vector ξe that captures the infor-
mation of the specific physical model parameter µ = µe
corresponding to each given environment indicator e:

ẋ(t) = f(x(t); θe = θ(ξe)).

The environment-aware weight θe = θ(ξe) can be imple-
mented using the Feature-wise Linear Modulation (FiLM)
layer (Perez et al., 2018) or hypernetwork structure (Ha
et al., 2017). For a specific example, the Context-informed
Dynamics Adaptation (CoDA) model (Kirchmeyer et al.,
2022) employs a hypernetwork with low-rank decomposi-
tion, such that θe = θ(ξe) = θc +Wξe. Here, θc is the
centered weight that shared across all trajectories while ξe,
referred to as the context vector, is specifically optimized
for each set of trajectories associated with a distinct environ-
ment e. Typically, dim ξe ≪ dim θ = m and it is often as-
sumed dim ξe = dimµ = n. The matrix W , which is also
shared across all environments, maps the low-dimensional
context vector ξe to the m-dimensional weight space.

Then, this context-informed NODE is trained with some
standard loss functions such as the Mean Squared Error
(MSE) between the predicted and ground truth trajectories:

L(θe, De)=

T/∆t∑
j=1

N∑
i=1

∥∥xie(tj)− x̃ie(t
j ;xie(0), θc +Wξe)

∥∥2
2
,

x̃(tj ;xie(0), θc +Wξe)= xie(0) +

∫ tj

0

f(x̃(t); θc +Wξe)dt,

for an environment-specific dataset De consists of N differ-
ent (T/∆t)-length discretized trajectories. Because there
are multiple environments Etr sampled with different param-
eter values in the training dataset, the final objective is given
by a summation over Etr:

min
θc,W,{ξe}e∈Etr

∑
e∈Etr

L(θc +Wξe, De) +R(W, ξe), (2)

where R(·) is a regularizer defined as R(W, ξe) =
λξ∥ξe∥22 + λΩ

∑m
i=1∥Wi,:∥2, which induces sparsity on

Wξe and encourages the influence of θc to be sufficiently
large across different environments (Kirchmeyer et al.,
2022). λξ and λΩ are hyperparameters. Note that both the
architecture and loss function of the model do not include
any specific physical priors, aside from standard assump-
tions such as sparsity. After training, the model can simulate
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Figure 1. Phase portraits of the Hamiltonian system (3) for (a) µ = −0.5, (b) µ = −0.1, (c) µ = 0.1, and (d) µ = 0.5. Background
contours represent the min-max normalized values of the Hamiltonian H(q, p;µ) in (3). Red indicates higher relative values.

trajectories in a new environment either by adapting ξe based
on a small number of new observations (few-shot adapta-
tion) or by directly modulating ξe without further training
(zero-shot exploration, analogous to latent space traversal
in generative models (Song et al., 2023; Wei et al., 2024)).

OOD in initial conditions. The OOD condition for initial
states is defined as a scenario where the model is trained on
initial conditions xie(0) ∼ ptre (x(0)), but the initial con-
ditions of the test data fall outside the training support
supp(ptre ) (Mouli et al., 2024). As highlighted in recent
publications (Göring et al., 2024), OOD challenges in initial
conditions become particularly significant when the dynam-
ical system contains separatrices. These separatrices parti-
tion the phase space M into distinct regions, where trajecto-
ries originating from different domains exhibit qualitatively
distinct behaviors, such as converging to different limit sets
(e.g., in multistable systems) or transitioning between di-
vergent motion patterns (e.g., from libration to rotation in
pendulums). Consequently, each subdomain presents a chal-
lenging OOD scenario relative to the others. Formally, one
can decompose such a system into K disjoint subdomains
Mi such that M =

⋃K
i=1 Mi

⋃
∂M, where ∂M is the

separatrix such that its Lebesgue measure is zero. Notably,
if the entire training dataset is collected from one subdomain
supp(ptre ) ⊆ Mk but the test data come from a different
subdomain supp(pteste ) ⊆ Mi ̸=k, this naturally creates the
OOD condition, as the model will never encounter that par-
ticular regime during training, regardless of the sample size
N and time horizon T of trajectories in the training dataset.

OOD in model parameters. The separatrix and multi-
stable structures of phase spaces naturally define the bound-
aries of OOD problems in terms of initial conditions. Simi-
larly, in the context of model parameters, bifurcations serve
as key markers for delineating these boundaries in the pa-
rameter space. Formally, a parameter value µcrit is called
a bifurcation point of the family of parameterized ODEs
ẋ = f(x;µ) if, for every neighborhood U of µcrit in the
parameter space, there exist parameters µ1, µ2 ∈ U such
that ẋ = f(x;µ1) and ẋ = f(x;µ2) are not topologically
(or qualitatively) equivalent in some neighborhood of the
corresponding fixed points (or invariant set) in the phase

space. Consequently, the OOD condition for parameters
arises when a model is trained on parameters µtr

e < µcrit

but the support of the test data is µtest
e > µcrit

2.

Symmetry-breaking bifurcation, though purely arising from
variations in parameters, inherently intertwines with OOD
challenges in both model parameters and initial conditions.
This complexity emerges because the broken symmetries
introduce new asymmetric stable points with separatrices,
complicating OOD generalization. Figure 1 shows a rep-
resentative example of such a bifurcation, a Hamiltonian
system with H = p2/2 − µq2/2 + q4/4, known as the
double-well potential. The system’s dynamics is given by

ẋ = (q̇, ṗ) = (∂pH,−∂qH) = (p, µq − q3), (3)

where (q, p) represent the canonical coordinates, and µ is
the model parameter. This system has a critical value of
µcrit = 0: as shown in Figure 1 (a–b), when µ < 0, the
system exhibits a single family of orbits centered at the sta-
ble, symmetric center (0, 0) (black dots). However, when
µ > 0, the bifurcation occurs as depicted in Figure 1 (c–d):
the center of orbits at (0, 0) becomes an unstable saddle
point (white dots), and two new centers of orbits emerge
at (±√

µ, 0) (black dots), forming a double-well structure.
Note that after this bifurcation, any infinitesimal oscilla-
tion around (0, 0) will drive the system toward one of these
newly emerged wells, thereby spontaneously breaking the
original symmetry; although the system remains symmetric
under (q, p) → (−q,−p), this hidden symmetry cannot be
observed in practice. Furthermore, the homoclinic orbits
(dashed lines) originating from the saddle point (0, 0) delin-
eate the separatrix, separating the left well, the right well,
and the larger outer orbit structures. It naturally derives the
OOD boundary under initial conditions.

3. Motivating Empirical Observations
3.1. Bifurcation Identification using NODEs

Training procedure. We trained the context-informed
NODE (2) on the Hamiltonian system (3) under the pre-
bifurcation regime exclusively. Specifically, we randomly

2For simplicity, this assumes a codimension-1 bifurcation with
n = 1. For higher-dimensional cases, refer to Definition A.1.
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Figure 2. Examples of (a) training (µ = −0.5) and (b) adaptation (µ = 0.5, the left well case) trajectories. Predicted phase portraits
of the (c) vanilla NODE and (d) context-informed NODE models, with background contours representing the numerically computed
Hamiltonian profiles. In (c), the Hamiltonian is physically meaningless as the constructed dynamics is not a conservative system.

Table 1. MSEs (×10−3) between the ground truth and models.

SCENARIO VANILLA CONTEXT

LEFT WELL 2427 ±808.8 0.1517 ±0.068

RIGHT WELL 1724 ±365.1 0.2504 ± 0.033

OUTER ORBIT 3943 ±904.8 0.1457 ±0.065

sampled four initial conditions from the uniform distri-
bution (q(0), p(0)) ∼ U([−2.0, 2.0]2) for each of the
eight parameter values µtr

e ∈ {−2.0,−1.75,−1.5,−1.25,
−1.0,−0.75,−0.5,−0.25}. For each sampled initial con-
dition, we simulated the dynamics with a time horizon
T = 2.0 and a time step ∆t = 0.1. This results in |De| = 4
trajectories per value of µtr

e , yielding a total of |De|×8 = 32
training trajectories. It is important to note that all train-
ing data consists solely of single-orbit trajectories from the
pre-bifurcation regime that exhibits the symmetric single-
well structure. Figure 2 (a) shows the phase portraits of the
training trajectories corresponding to µ = −0.5 (refer to
Appendix C for other cases and experimental details).

One-shot adaptation. After training the model with pre-
bifurcation data, we adapted it using a single trajectory for
µ = 0.5, representing post-bifurcation data. We consid-
ered the following three broken symmetry scenarios, namely
adaptations using: (i) a trajectory confined to the left well,
(ii) one confined to the right well, and (iii) one outside the
separatrix, traversing the outer orbit. These scenarios limit
the model’s exposure to the global structure of the phase
space during adaptation, reflecting the symmetry breaking
observed in real-world situations. For comparison, we also
trained vanilla neural ODE models (1) under each scenario.

Figure 2 (b–d) compares the phase portraits of the ground
truth (3), vanilla NODEs, and context-informed NODEs
for the left well adaptation scenario near (−√

µ, 0) (refer
to Appendix C for other scenarios). The vanilla NODEs
struggle to accurately capture the double-well structure,
replicating the topology only within the region covered by
the adaptation data. This result is consistent with recent
theoretical findings suggested in (Göring et al., 2024). Note
that it is a fundamental limitation of vanilla NODEs in
OOD: increasing the number of post-bifurcation samples,

Figure 3. (a) Relationship between µe and ξe. (b) The phase por-
trait of the context-informed model (µe = 0.5) extracted from (a).

yet remaining confined to the left well, does not improve the
performance of this model. In contrast, the context-informed
NODEs successfully reconstruct the entire phase topology
across all scenarios. Remarkably, they successfully recover
the hidden symmetry in the post-bifurcation regime, despite
being trained exclusively on pre-bifurcation data and fine-
tuned using only a single, chosen trajectory resulting from
the broken symmetry. Table 1 shows the MSE between 32
test trajectories and NODE-predicted trajectories.

Zero-shot exploration. Figure 3 (a) illustrates the rela-
tionship between the ground truth parameters µe and the cor-
responding context ξe constructed during the pre-bifurcation
training. The plot reveals a nearly linear correlation between
the two sets of values. Building on this observation, we ex-
trapolated the context value for the post-bifurcation case
where µe = 0.5, obtaining ξe = −0.2058, and integrated
it into the context-informed model. Note that this process
was conducted without utilizing any post-bifurcation data
adaptation, thus we refer to as zero-shot exploration. Figure
3 (b) presents the resultant phase portrait discovered in a
zero-shot manner, showing it reproduces the ground truth
one accurately (refer to Appendix C for different µ values).

Automated generation of bifurcation diagrams. Lever-
aging the zero-shot exploration capability and fully differen-
tiable structure of NODEs, we can automatically construct
bifurcation diagrams. To achieve this, we employ the neural-
adjoint method (Ren et al., 2020) commonly used for inverse
problems with neural networks. Specifically, for a given ξ,
we identify fixed points x∗ such that f(x∗) = 0 by solving
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Figure 4. Bifurcation diagrams generated using context-informed
models trained on (a) default and (b) localized domains.

the inverse problem x∗ = argminx∥f(x; ξ) − 0∥22 using
the neural-adjoint method. Once the fixed points x∗ are
found, we compute the eigenvalues of the Jacobian matrix
of Df(x∗; ξ) at these points. The fixed points are then clas-
sified based on the characteristics of their eigenvalues, such
as sign and the presence of real or imaginary components.
By modulating ξ and repeating this procedure, we construct
a bifurcation diagram that intuitively illustrates the emer-
gence or disappearance of fixed points. Refer to Appendix
B for a detailed description of the proposed method. Figure
4 (a) presents the bifurcation diagram generated fully auto-
matically, illustrating that a symmetry-breaking bifurcation
occurs upon crossing the critical threshold, ξcrit.

Robustness test. To evaluate whether context-informed
NODEs can identify the bifurcation structure under realistic
conditions, including noisy observations and limited training
data, we conducted additional robustness tests, as shown
in Figure 5. These challenging settings revealed that the
model remains capable of accurately identifying symmetry-
breaking bifurcations, albeit with slightly increased variance
compared to the ideal noise-free scenario.

Context-informed NODEs identify broken symmetry.
The above presented experiments reveal that the context-
informed model can infer the symmetry breaking behavior
in the post-bifurcation regime, despite being trained solely
on pre-bifurcation data in a purely data-driven manner. It
showcases the model’s capability to capture how parameter
modulation influences the vector field, even without direct
exposure to appropriate data. The most plausible expla-
nation for this OOD learnability is that the context-aware
model accurately captures the normal form of (3). Note that
by using the Taylor expansion near ξ = ξcrit,

f(x; θ(ξ)) ≃ f(x; θ(ξcrit)) +∇ξf(x; θ(ξ))
∣∣
ξcrit

· (ξ − ξcrit)

= f(x; θ(ξcrit)) + Φ(x) · (ξ − ξcrit),

where θ(ξ) = θc + Wξ and Φ(x) = ∇ξf(x; θc +
Wξ)

∣∣
ξ=ξcrit

is the feature map. If the model is properly de-
composed such that f0(x) ≃ (p,−q3) and Φ(x) ≃ (0, γq),
where γ is a constant, then the model can accurately repli-
cate the bifurcation behavior. Indeed, when we compute

Figure 5. Bifurcation diagrams generated by context-informed
models trained under two realistic settings: (a) the noisy setting,
where small Gaussian noise (σ = 0.02) is added to the trajectories
to mimic measurement noise. (b) the limited data setting, where
only two initial conditions are used per parameter, compared to
four in the default setting. Each setting is repeated five times with
random initializations, indicated by distinct symbols.

Φ(x), we find Φ(x) ≃ (0, γq), with γ ≃ −8.3 which corre-
sponds closely to the slope shown in Figure 3 (a).

This analysis confirms that the model can approximate the
parameter modulation as a feature map Φ(·). However, to
fully model the symmetry-breaking bifurcation, the model
must accurately capture not only µq but also q3. This raises
a pertinent question arises: Can the model accurately recon-
struct the bifurcation of the dynamical system when trained
on a highly constrained phase domain, such as the immedi-
ate vicinity of (0, 0)? This presents a significant challenge,
as it genuinely involves simultaneously addressing both
parameter OOD and initial condition OOD issues.

3.2. Bifurcation Identification with Localized Domain

Experimental setting. We trained the context-informed
NODE (2) on the Hamiltonian system (3) for pre-bifurcation
scenarios, focusing on localized training domains. The ex-
perimental setup is consistent with the previous configura-
tion, except that initial conditions were sampled from a nar-
rower uniform distribution, (q(0), p(0)) ∼ U([−0.5, 0.5]2)
(see Appendix D for details).

Remarks on the experimental setting. Within this re-
stricted domain, the cubic term q3 in (3) becomes less sig-
nificant compared to the linear term µq, causing the training
trajectories to resemble linear oscillators (q̇, ṗ) = (p, µq).
This leads the model to predominantly observe linear be-
havior, potentially causing it to underestimate the role of
the cubic term. Consequently, this limitation is expected
to make the model prone to overlooking the formation of
double-well structure caused by the influence of the cubic
term. Note that, for the linear system (q̇, ṗ) = (p, µq), a bi-
furcation still occurs at (0, 0) when µcrit = 0, transitioning
from a center of orbits to a saddle point (refer to Remark
A.2 of Appendix A for details). However, unlike (3), this
system does not produce additional double centers of orbits,
homoclinic loops, and outer orbit structure.
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Figure 6. Phase portraits of the context-informed model trained with (q(0), p(0)) ∼ U([−0.5, 0.5]× [−0.5, 0.5]), and constructed in a
zero-shot manner by linearly extrapolating ξe, correspond to (a) µe = −0.5, (b) µe = 0.1, (c) µe = 0.5, and (d) µe = 1.5.

Context-informed NODEs identify broken symmetry,
unexpectedly. We conducted the same zero-shot explo-
ration procedure in Section 3.1. Figure 6 (b–d) presents
the post-bifurcation phase portraits reconstructed in a zero-
shot manner by inputting the explored context values ξe for
µe = 0.1, 0.5, 1.5. We also plot the learned pre-bifurcation
phase portrait at µ = −0.5 as a reference in Figure 6 (a).

Remarkably, even though the model was trained only on
localized linear-like data, it still reconstructs the broken
symmetry, even for µe = 0.5, where the double centers
are located at ±

√
0.5 ≃ 0.707 > 0.5 (Figure 6 (c)). As

noted earlier, it is not surprising that the model identifies
the center-to-saddle transition, because a similar bifurcation
is present in the linear system. If the model learns the local
behavior near (0, 0) with respect to parameter modulation,
it can naturally capture this transition. What is truly notable,
however, is that the model accurately predicts the emergence
of the double-well structure along with the homoclinic loop.

Another noteworthy observation is that, as µe increases
(i.e., as −ξe increases), the model’s double-well topology
collapses, reverting to a single linear saddle point (see Figure
6 (d), and bifurcation diagram Figure 4 (b)). Note that the
model from Section 3.1 retains the double-well structure
throughout the range of µ > 0, as shown in Figure 4 (a).

Additionally, we found that the context-informed model,
even when trained on a linear system (q̇, ṗ) = (p, µq) with-
out the q3 term, surprisingly produces a spurious double-
well structure as well. A detailed presentation and dis-
cussion of this finding are provided in Section 4.3. These
findings suggest the presence of an intrinsic mechanism that
drives the model to spontaneously generate a double-well
structure, rather than correctly learning the functional form.

4. Insights from the Poincaré–Hopf Theorem
4.1. Poincaré–Hopf Index Theory

In this section, we briefly introduce the concept of the
Poincaré index, an integer that can characterize topology of
a vector field not only locally, but also globally, depending
on the choice of a test contour (Strogatz, 2018). It helps an-
swer questions such as: what types of fixed points can merge

during bifurcations? We then interpret the observations in
Section 3.2 through the lens of the Poincaré index.
Definition 4.1. (Poincaré index) Let M be an oriented
smooth d-manifold and let f : M → TM be a smooth
vector field. Suppose x∗ ∈ M is an isolated zero of f ,
i.e., f(x∗) = 0 and there is a neighborhood U of x∗ with
f(x) ̸= 0 for all x ∈ U \ {x∗}. Choose an oriented coordi-
nate chart around x∗ and a closed d-ball D ⊂ M centered
at x∗ such that x∗ is the only zero of f in D and f(x) ̸= 0
for all x ∈ ∂D on the boundary ∂D. The Poincaré index of
f at x∗, Ind(f,x∗), is defined as the topological degree of
the map Φ : ∂D → Sd−1, Φ(x) = f(x)/∥f(x)∥:

Ind(f,x∗) := deg
(
Φ
)
∈ Z.

This integer is independent of the choice of chart and D.
Remark 4.1. For M = R2, the Poincaré index of a zero
x∗ coincides with the winding number of the vector field f
around x∗. Intuitively, this measures how many times and
in which direction the vector field rotates around x∗ as one
traverses a simple closed test contour ∂D that encircles x∗

counterclockwise. For f(x) = (fq(x), fp(x)), it is equal to

Ind(f,x∗) =
1

2π

∮
∂D

dθ =
1

2π

∮
∂D

−fpdfq + fqdfp
f2q + f2p

.

Remark 4.2. For M = R2, an isolated sink, source, center
of orbits, and spiral each have a Poincaré index of +1,
whereas a saddle point has a Poincaré index of −1.
Remark 4.3. For M = R2, if a test contour Γ contains mul-
tiple isolated zeros {x∗

1,x
∗
2, . . . ,x

∗
k}, the index of f along

Γ is Ind(f,Γ) =
∑k
i=1 Ind(f,x

∗
i ). This follows because Γ

can be continuously deformed into a new closed curve Γ′

that consists of k small closed loops {∂D1, ∂D2, . . . , ∂Dk},
each surrounding one of the zeros {x∗

1,x
∗
2, . . . ,x

∗
k}, con-

nected by two-way bridges (see Figure 7 (a)). Considering
that the contributions from the bridges cancel each other
out, Ind(f,Γ) =

∑k
i=1 Ind(f,x

∗
i ) holds.

Theorem 4.1. (Poincaré–Hopf Theorem) Let M be a com-
pact, oriented, smooth manifold without boundary, and let
f : M → TM be a smooth vector field on M with finitely
many isolated zeros {x∗

1,x
∗
2, . . . ,x

∗
k}. Then, the sum of the

Poincaré indices of f at these zeros is equal to the Euler
characteristics χ(M) of M:

∑k
i=1 Ind(f,x

∗
i ) = χ(M).
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(a)

xi

Γ’

Γ f(x)

Figure 7. (a) Poincaré index of a closed orbit Γ contains multiple
fixed points. (b) Computed local (r = 0.1) and global (r = 10)
Poincaré indices for the model in Section 3.2 (see Figure 4 (b)),
where r is the radius of a test contour centered at (0, 0).

A formal proof can be found in textbooks on differential
topology, such as (Milnor & Weaver, 1997). In addition,
although Theorem 4.1 is presented in a generalized form,
the following 2-dimensional statement is more directly ap-
plicable to interpret the situation observed in Section 3.2.

Corollary 4.1. (Poincaré–Hopf for Closed Orbits) Let
f : R2 → R2 be a smooth vector field and let Γ be a
simple (non-self-intersecting) closed orbit of the dynami-
cal system ẋ = f(x). Suppose that all fixed points (all
zeros of f ) inside Γ are isolated. Then, the sum of the
Poincaré indices of all fixed points inside Γ is equal to +1:∑

x∗∈int(Γ) Ind(f,x
∗) = +1.

Proof. A detailed proof can be found in standard text-
books, such as (Strogatz, 2018). Intuitively, because Γ is
an actual trajectory of the dynamical system ẋ = f(x),
f(x) is tangential at every x ∈ Γ (see Figure 7 (a)).
It ensures Ind(f,Γ) is equal to +1. Then, from Re-
mark 4.3, Ind(f,Γ) =

∑k
i=1 Ind(f,x

∗
i ) = +1, where

x∗
1,x

∗
2, . . . ,x

∗
k are fixed points lying in the interior of Γ.

4.2. Poincaré–Hopf as an Implicit Regularization

Note that any NODE represents a smooth vector field when
using smooth activations such as tanh or swish. Then, as-
sume that the context-informed model effectively captures
the transition where the center of single orbits at (0, 0) trans-
forms into a saddle point. In this case, the emergence of the
saddle point implies a change in the local Poincaré index
from +1 to −1, according to Remark 4.2.

The context-informed model learns a foliation of closed
orbits for ξ < ξcrit from the single-well training data (Figure
6 (a)). Now, assume that the model preserves at least one
orbit Γ encircling (0, 0), under small perturbations in ξcrit3.
Then, the summation of the Poincaré indices within Γ must
be +1 by Corollary 4.1. Thus, to preserve the total index of
+1 inside Γ, the model must generate additional fixed points
whose combined Poincaré index sums to +2, offsetting the

3Empirically, we observed that this assumption often holds. It
can be partially justified by noting that a small perturbation does
not completely collapse the foliated orbits of conservative systems.

−1 from the newly formed saddle. These additional fixed
points serve as centers of two orbits (see Figure 6 (b–c)).

However, if the outer orbit containing fixed points collapses
due to a strong ξ perturbation, the constraints from Corollary
4.1 no longer apply, and there is no need to maintain these
additional centers (Figure 6 (d)). We computed the Poincaré
index as a function of ξ in Figure 7 (b), which predicts
the lifetime of the double-well observed in Figure 4 (b)
(highlighted in yellow for both plots).

Based on these observations, in Proposition 4.1, we for-
mally derive the condition under which the context-informed
NODE exhibits the symmetry-breaking bifurcation.
Proposition 4.1. Let f : R2 × R → R2 be a Hamiltonian
vector field of the form f(q, p) = (p, µq + P(q)), where
P(q) is a smooth function such that P(0) = P ′(0) = 0.
Consider another smooth vector field g : R2 × R → R2 for
which there exists a smooth bijective map ϕ : R → R such
that f and g are δ-close in the C1 sense:

sup
x∈U

∥g(x;ϕ(µ))− f(x;µ)∥C1(U) ≤ δ,

in some open interval µ ∈ (−ϵ, ϵ), where U ∈ R2 is some
neighborhood of (0, 0). Suppose that the dynamical sys-
tem ẋ = g(x, ξ) admits at least one closed orbit Γ that
encloses the isolated fixed point x∗ ≃ (0, 0) of g, for some
neighborhood of ξcrit = ϕ(µcrit). Then, g undergoes the
(generalized) symmetry breaking, at least locally near ξcrit.

See Appendix A for an informal proof. Proposition 4.1
points to an intriguing perspective: it only requires that the
ground truth f(·;µ) undergoes a center-to-saddle bifurca-
tion, not necessarily the symmetry-breaking one. Such a
transition could, for instance, result from a simple linear
system as discussed. However, once the context-informed
model f(·; ξ) learns this local behavior and exhibits an orbit
encompassing this local region, the Poincaré–Hopf theorem
compels the model to produce the additional fixed points.

4.3. Hallucinated Broken Symmetry

Inspired from Proposition 4.1, we present an experiment
where the context-informed NODE identifies incorrect bi-
furcation behavior. In this experiment, we consider learning
a linear system defined as (q̇, ṗ) = (p, µq). As briefly
explained in Section 3.2, this system has a simple orbit
structure for µ < 0 and exhibits a center-to-saddle bifur-
cation at (0, 0) when µ > µcrit = 0, but does not pro-
duce the double-well structure. We simulated this linear
system over T = 2.0 with ∆t = 0.1, using four sam-
pled initial conditions from U([−0.3, 0.3]2), for each µtr

e ∈
{−0.35,−0.25,−0.15,−0.05, 0.05, 0.15, 0.25, 0.35}, as
training data (see Appendix E for details). Note that, in
this setting, the model explicitly learns from data in the post-
bifurcation regime, in contrast to the previous experiment.
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Figure 8. Phase portraits of (a) free-form and (b) Hamiltonian models trained with (q̇, ṗ) = (p, µq), and constructed in a zero-shot manner
by linearly extrapolating ξe, correspond to µe = 0.01. Bifurcation diagrams of (c) free-form and (d) Hamiltonian models.

We evaluated two different architectures of context-
informed NODEs: the default free-form and its Hamiltonian
version (Greydanus et al., 2019). The latter is defined as

ẋ = (q̇, ṗ) = f(x, θe) = (∂pH(x; θe),−∂qH(x; θe)) ,

where H(x; θe) = H(x; θc +Wξe) is a context-informed
learnable Hamiltonian (see Appendix E for details). Since
(q̇, ṗ) = (p, µq) is also a Hamiltonian system, applying the
Hamiltonian bias appears fundamentally appropriate.

Figure 8 (a–b) illustrates the phase portraits explored by
context-informed models trained on the linear system. As
shown, despite being trained with both pre- and post-
bifurcation data, the free-form and Hamiltonian NODEs
alike misinterpret the bifurcation, incorrectly identifying it
as a symmetry-breaking transition, resulting in a spurious
double-well structure. Notably, the double-well structure
in the free-form model rapidly collapses with respect to ξ
(highlighted in purple), reverting to a normal saddle point
(Figure 8 (c)), whereas the Hamiltonian model retains the
misidentified structure more persistently (Figure 8 (d)).

This phenomenon can be explained using Proposition 4.1:
both models successfully learn the local center-to-saddle
bifurcation of the linear system. They also preserve an outer
orbit structure that encapsulates the local training domain
at ξ ∼ ξcrit. As a result, they hallucinate extra fixed points,
mimicking broken symmetry. The Hamiltonian model, how-
ever, preserves the outer orbit more robustly due to its sym-
plectic structure (Strogatz, 2018), leading to the persistent
double-well configuration. In Appendix F, we also provide
an experiment conducted under the standard pre-bifurcation
training, which yielded the similar conclusion.

4.4. Diagnosing Hallucinated Bifurcations

Previous findings highlight the importance of determining
whether a model hallucinates bifurcations. We propose a
simple yet effective criterion: assessing the variance in bi-
furcation diagrams generated from multiple independent
training runs, similar to the deep ensemble method (Lak-
shminarayanan et al., 2017). Figure 9 illustrates the esti-
mated variance from 3-fold bootstrapped ensembles in two

Figure 9. Ensembled bifurcation diagrams trained on (a) the
double-well (Section 3.1) and (b) the linear system (Section 4.3).
Each ensemble contains three sub-NODEs trained independently
on bootstrapped datasets with different initializations.

scenarios: one involving a correctly identified bifurcation
(from Section 3.1) and the other involving a hallucinated
one (from earlier results). In Figure 9 (a), the symmetry-
breaking is correctly captured, and the estimated variance
remains minimal, indicating stable detection of the bifurca-
tion. In contrast, the ground true bifurcation in Figure 9 (b)
is a center-to-saddle at q∗ = 0. However, the model incor-
rectly generates two centers of orbits within 0 < µ < 0.5,
representing hallucinated behavior. This results in low vari-
ance (5.343 × 10−3 at µ = 0.2) near the actual transition
but significantly higher variance (0.4605 at µ = 0.2) in the
spurious region, reflecting its structural instability.

5. Applications to Broader Systems
5.1. Identifying the Cusp Catastrophe

Catastrophe theory (Thom, 1977; Zeeman, 1979) describes
how small, continuous changes in parameters can lead to
sudden, discontinuous shifts in system behavior. Among
its five fundamental types (Saunders, 1980), the cusp catas-
trophe is one of the most well-known and extensively stud-
ied. The cusp catastrophe is a codimension-2 bifurcation
system given by ẋ = (q̇, ṗ) = (p, ν + µq − q3 − κp),
with parameters (µ, ν) and fixed damping κ = 0.5. It is
a simple extension of (3), but the inclusion of the ν term
explicitly breaks symmetry, making it a canonical model for
studying hysteresis phenomena. We investigated whether
context-informed NODEs can identify the cusp bifurcation
and hysteresis loop, despite being trained only on the pre-

8
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Figure 10. (a) Bifurcation surface generated by the context-
informed model trained on a cusp bifurcation system. (b) Compar-
ison between the phase portraits of the ground truth (black lines)
and the learned model (red lines) near the catastrophic transition.

bifurcation regime. Specifically, training was conducted
using parameters (µtr

e , ν
tr
e ) ∈ {−2.0,−1.5,−1.0,−0.5}2,

which lie entirely within the monostable region. For each
training parameters, four training trajectories were gener-
ated with (q(0), p(0)) ∼ U([−2.0, 2.0]2), T = 2.0 and
∆t = 0.1. After training, the bifurcation surface was gen-
erated over a mesh grid (µtest

e , νteste ) ∈ [−2.0, 2.0]2, using
the neural-adjoint method. Figures 10 (a) and (b) respec-
tively show the identified bifurcation surface and the phase
portraits of the learned vector fields near the catastrophic
transition (see Appendix G for other cases). These results
demonstrate that the model successfully captures the com-
plicated bifurcation structure without explicitly learning it.

5.2. Identifying the Landau–Khalatnikov Theory

The LK theory (Landau & Khalatnikov, 1954) is a widely
used mathematical framework for describing phase tran-
sition dynamics in various physical systems, particularly
ferroelectric materials (Khan et al., 2015; Lo, 2003; Shi
et al., 2016). The dynamics are governed by the following
second-order ODE ψ̈ + κψ̇ = −∂ψF(ψ), where ψ is an
order parameter characterizes the phase of the system (e.g.,
polarization of ferroelectric materials), κ is a fixed damping
coefficient, and F(ψ) is the free energy expressed as a poly-
nomial expansion F(ψ) = α

2ψ
2 + β

4ψ
4 + γ

6ψ
6 + · · · . The

coefficients α, β, γ, ... are phenomenological parameters
typically expressed as functions of some physical quantities
like temperature, e.g., α = α(T − Tcrit). The phase tran-
sition of ψ occurs as these parameters change with T . The
LK model can be formulated in a Hamiltonian-like form as

(ψ̇, ψ̇′) =
(
ψ′,−κψ′ − αψ − βψ3 − γψ5 + · · ·

)
, (4)

except for the damping term −κψ′: if κ→ 0, then the sys-
tem approaches precise Hamiltonian equations of motion.

The exact form of F , such as how many orders should be
included, is often unknown. However, one essential require-
ment is that F(ψ) must not diverge to negative infinity to
preserve physical consistency. This constraint ensures that
the trajectories of (ψ,ψ′) in (4) remain bounded, forming a
closed outer orbit that encapsulates the system, especially

Figure 11. Consistency scores (σ = 0.5) for learning (4) with (a)
vanilla and (b) regularized models, averaged over five runs.

for κ → 0. In this case, the system must satisfy the con-
ditions stated in Corollary 4.1. For nonzero κ, there is no
strict guarantee that the total Poincaré index will always
be constrained to +1. However, the introduction of a lin-
ear damping does not completely disrupt the overall phase
topology. Consequently, the distribution of Poincaré indices
is expected to be preserved. Inspired by this, we propose
the following Poincaré–Hopf regularization:

RPH(θc,W, ξe) = ∥Ind(f(·; θc +Wξe),ΓPH)− χPH∥22,
(5)

where ΓPH is a proper test contour and χPH is the desired
index (see Appendix H for a detailed description of (5)).

We trained the conventional model and its regularized coun-
terpart with (5) on the system (4). For training data, we simu-
lated (4) over T = 2.0 with ∆t = 0.1, using four initial con-
ditions sampled from (ψ(0), ψ′(0)) ∼ U([−2.0, 2.0]2), for
each combination of (αtr

e , β
tr
e ) ∈ {−0.4,−0.2, 0.2, 0.4}2.

To ensure the physical relevance of (4), γ = 0.05 and
κ = 0.5 were fixed. After training, we evaluated each
model’s ability to capture the long-term behavior and phase
topology by assessing the consistency between its limit sets
and those of the ground truth dynamics (Göring et al., 2024).
Specifically, 32 trajectories were sampled and simulated
during T = 100.0, for each parameter vector on a mesh grid
over (αtest

e , βtest
e ) ∈ [−0.5, 0.5]2. For each (αtest

e , βtest
e ),

the corresponding ξteste was constructed using linear regres-
sion fitted on (αtr

e , β
tr
e ), and then used as input to the model

to simulate long-term trajectories also. If the ground truth
and model dynamics converge within a distance of σ, we
consider them consistent. Figure 11 confirms (5) enhances
the long-term predictability across the parameter plane. De-
tailed results are in Appendix I, with comprehensive ablation
studies of the proposed regularization in Appendix J.

6. Conclusions and Limitations
We show that NODEs can identify symmetry-breaking bi-
furcations solely from symmetric data, interpreted through
the Poincaré index. We also propose a novel regularization
inspired by the Poincaré–Hopf theorem. While the current
method is limited to 2-dimensional flows with nearly closed
orbits, Theorem 4.1 reveals that the concept can extend to a
broad class of flows, paving the way for further research.
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A. Mathematical Details and Proofs
Assumption A.1. Consider a separable Hamiltonian H : R2 × R → R:

H(q, p;µ) = K(p) + Vµ(q) =
p2

2
− µq2

2
−
∫

P(q)dq + C,

where P : R → R is a smooth function satisfying P(0) = ∂qP(0) = 0. The ground truth vector field f : R2 × R → R2 is
assumed to be a Hamiltonian vector field of H and expressed as

(q̇, ṗ) = f(q, p;µ) =

(
∂H(q, p;µ)

∂p
,−∂H(q, p;µ)

∂q

)
= (p, µq + P(q)),

Remark A.1. The Hamiltonian vector field f defined in Assumption A.1 has an isolated fixed point at (0, 0) because
f(0, 0;µ) = (0,P(0)) = (0, 0). Note that the Jacobian of f at (0, 0) is

Df(q, p;µ) =
(
∂q q̇ ∂pq̇
∂qṗ ∂pṗ

)
=

(
0 1

µ+ ∂qP(q) 0

)
=⇒ Df(0, 0;µ) =

(
0 1
µ 0

)
.

The characteristic polynomial is

χf (λ, µ) = det(Df(0, 0;µ)− λI) = λ2 − µ = 0 =⇒ λ = ±√
µ.

Therefore, the fixed point (0, 0) is a center for µ < 0 (λ = ±i
√
|µ|) and a saddle for µ > 0 (λ = ±

√
|µ|), which means the

local bifurcation is the center-to-saddle type.

Remark A.2. Consider P(q) = 0. It satisfies Assumption A.1. In this case, (0, 0) is the only fixed point. The system exhibits
a center-to-saddle bifurcation at (0, 0) simply.

Remark A.3. Consider P(q) = −q3. It satisfies Assumption A.1. The fixed points of f are determined as follows:

f(q, p;µ) = (p, q(µ− q2)) = (0, 0) =⇒ (q, p) = (0, 0), (±√
µ, 0).

The additional fixed points (q, p) = (±√
µ, 0) exist only for µ > 0. Thus, the system undergoes a 1 7→ 3 bifurcation at

µ = 0, generating two additional fixed points. For these fixed points, the Jacobian is given by

Df(q, p;µ) =
(

0 1
µ− 3q2 0

)
=⇒ Df(±√

µ, 0;µ) =

(
0 1

−2µ 0

)
,

The characteristic polynomial for these fixed points is

χf (λ, µ) = λ2 + 2µ = 0 =⇒ λ = ±
√

−2|µ|,

where µ > 0. Thus, the emerging fixed points are center-like, and the system exhibits a symmetry-breaking bifurcation.

Lemma A.1. Any fixed point of a Hamiltonian system in a 2-dimensional phase space must either be a center of closed
orbits or a saddle point.

Proof. It is a direct application of the volume-preserving property of Hamiltonian dynamics (Arnold, 2013). The divergence
of a Hamiltonian system holds

∇ · f(q, p) = ∂q̇

∂q
+
∂ṗ

∂p
=

∂

∂q

∂H
∂p

− ∂

∂p

∂H
∂q

= 0,

for any (q, p) and µ, regardless of the specific form of H. This implies that the trace of the Jacobian must be zero:

tr(Df(q, p)) = ∇ · f(q, p) = 0.

This ensures that the characteristics equation at (q, p) is given by

χf (λ, µ) = λ2 + det (Df(q, p)).

Consequently, the fixed points (q, p) of a Hamiltonian system must fall into one of the following two categories: a
center when det (Df(q, p)) > 0 or a saddle when det (Df(q, p)) < 0. Moreover, in the case of separable Hamiltonians,
det (Df(q, p)) = ∂2qH(q, p) = ∂2qV (q).

13
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Lemma A.2. Let g : R2 × R → R2 is a smooth vector field, Assume there exists a smooth bijective map ϕ : R → R such
that f and g are δ-close in the C1 sense:

sup
x∈U

∥g(x;ϕ(µ))− f(x;µ)∥2 + sup
x∈U

∥Dg(x;ϕ(µ))−Df(x;µ)∥2 ≤ δ,

in some open interval µ ∈ (−ϵ, ϵ), where f is as defined in Assumption A.1 and U ∈ R2 is some neighborhood of (0, 0).
Then, there exists a fixed point x∗ ≃ (0, 0) which is a near-center when µ < µcrit ≃ 0 and a saddle when µ > µcrit ≃ 0.

Proof. It follows directly from (Crawford, 1991). From the statement, we can rewrite g as

g(x;ϕ(µ)) = f(x;µ) + ∆(x;µ), ∥∆(x;µ)∥ ≤ O(δ).

Similarly, the Jacobians are given by

Dg(x;ϕ(µ)) = Df(x;µ) +D∆(x;µ), ∥D∆(x;µ)∥ ≤ O(δ).

First, we want to show that for each small µ ̸= 0, there exists a fixed point of g(·, ϕ(µ)) closed to x = (0, 0). Note that

g(0;ϕ(µ)) = f(0;µ) + ∆(0;µ) = ∆(0;µ).

By denoting G(x, µ) = g(x;ϕ(µ)), we have ∥G(0, µ)∥ ≤ Cδ. Consider the Jacobians at x = (0, 0):

Dg(0;ϕ(µ)) = Df(0;µ) +D∆(0;µ).

Because det(Df(0;µ)) = −µ, Df(0;µ) is invertible for all µ ̸= 0. Then, for a sufficiently small δ,

det |Dg(0;ϕ(µ))| = −µ+O(δ) ̸= 0,

thus Dg(x;µ) remains invertible at x = 0 and µ ̸= 0. Therefore, from the given conditions

∥G(0, µ)∥ ≤ Cδ, det(DG(0;µ)) ̸= 0,

the continuity and implicit function theorem imply that for µ ̸= 0 there exists an unique solution G(x(δ, µ), µ) =
g(x(δ, µ), ϕ(µ)) = 0 satisfying x(δ, µ) → (0, 0) as δ → 0. It directly gives g has an isolated fixed point x(δ, µ) close to
(0, 0) whenever µ ̸= 0.

We now show that (x(δ, µ), µ) of g has a unique smooth curve (λ, µ) of eigenvalues near λ0 for µ in a neighborhood of
µ0 ̸= 0. Consider the Jacobian at x(δ, µ):

Dg(x(δ, µ);ϕ(µ)) = Jg(δ, µ) ≃ Df(0;µ) +D∆(x(δ, µ);µ) = Jf (µ) + J∆(δ, µ).

The characteristic polynomial of Jg(δ, µ) is given by

χg(λ, µ, δ) = λ2 − µ− tr(J∆(δ, µ))λ+�
��O(δ2) = χf (λ, µ)− tr(J∆(δ, µ))λ,

where tr(J∆) ≤ O(δ). For (λ, µ) = (λ0, µ0) satisfying χf (λ0, µ0) = 0 and (λ0, µ0) ̸= (0, 0), we have

χg(λ0, µ0, δ) = −tr(J∆(δ, µ0))λ0,

thus |χg(λ0, µ0, δ)| ≤ Cδ. Then, consider the partial derivative of χg with respect to λ at (λ0, µ0)

∂χg
∂λ

(λ0, µ0, δ) = 2λ− tr(J∆(δ, µ)),

which remains nonzero for a sufficiently small δ. Observe the given conditions

|χg(λ0, µ0, δ)| ≤ Cδ,

∣∣∣∣∂χg∂λ
(λ0, µ0, δ)

∣∣∣∣ = 2λ− Cδ > 0.

14
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Again, by the continuity and implicit function theorem, there exists a unique curve (λ(δ), µ(δ)) such that χg(λ(δ), µ(δ)) = 0,
(λ(δ), µ(δ)) → (λ0, µ0) as δ → 0 for µ ̸= 0 and a sufficiently small δ.

Now consider µ = −|µ| < 0 case. From the characteristic equation χg discussed above,

χg(λ, µ, δ) = λ2 + |µ| − tr(J∆(δ, µ))λ =⇒ λ =
tr(J∆(δ, µ))

2
± i

√
|µ|,

thus Re(λ) ≤ O(δ). Therefore, for µ < 0, the fixed point x∗ ≃ 0 of g behaves like a center, although it may exhibit
infinitesimal growth or damping depending on the sign of tr(J∆). Next, for µ = |µ| > 0, we have

χg(λ, µ, δ) = λ2 − |µ| − tr(J∆(δ, µ))λ =⇒ λ =
tr(J∆(δ, µ))

2
±

√
|µ|.

Given that a small perturbation cannot alter the signs of λ, the fixed point x∗ ≃ 0 of g is classified as a saddle point for
µ > 0, though the rate of convergence or divergence may vary slightly along each eigenvector direction.

Corollary A.1. (Poincaré–Hopf for Closed Orbits) Let f : R2 → R2 be a smooth vector field and let Γ be a simple
(non-self-intersecting) closed orbit of the dynamical system ẋ = f(x). Suppose that all fixed points inside Γ are isolated.
Then, the sum of the Poincaré indices of all fixed points inside Γ is equal to +1 (Strogatz, 2018):∑

x∗∈int(Γ)

Ind(f,x∗) = +1.

Proposition A.1. Let f and g satisfy the assumptions stated in Lemma A.2. In addition, suppose that the dynamical system
ẋ = g(x; ξ = ϕ(µ)) admits at least one closed orbit Γ that encloses an isolated fixed point x∗

0 ≃ (0, 0) for a neighborhood
of ϕ(µcrit). Then, g undergoes a (generalized) symmetry-breaking bifurcation, at least locally near ξcrit.

Proof. From Lemma A.2, the system ẋ = g(x, ϕ(µ)) has a fixed point x∗
0(µ) near (0, 0), and undergoes a center-to-saddle

bifurcation. It means that, as µ passes through µcrit ≃ 0, the Poincaré index at x∗
0(µ), Ind(g,x

∗
0(µ)) changes from

Ind(g,x∗
0(µ < µcrit)) = +1 (a center) to Ind(g,x∗

0(µ > µcrit)) = −1 (a saddle), resulting in a net index change of −2.

By assumption, there exists a closed orbit Γ encircling x∗(µ) for a neighborhood of ϕ(µcrit). According to Corollary A.1,
the sum of Poincaré indices of all fixed points enclosed by Γ must be +1 near µ = µcrit. Consequently, to preserve the total
index of +1 within Γ, there must emerge additional fixed points, x∗

1, . . . ,x
∗
k, within Γ, whose combined Poincaré indices

sum to +2:
k∑
i=1

Ind(f,x∗
i ) = +2.

As established in Lemma A.1, f is a Hamiltonian system, thus its divergence ∇ · f(x;µ) = 0 for all x and µ. This implies
that the trace of the Jacobian tr(Df(x;µ)) = 0 for all x and µ. This constraint ensures that the eigenvalues and accordingly
the types of fixed points must fall into one of the following two categories: (1) purely imaginary (a center) or (2) real with
opposite signs (a saddle).

Then, as established in Lemma A.2, because g is δ-close to f in the C1 sense, it ensures ∥∇ · g(x;µ)∥ = |tr(Dg(x;µ))| ≤
O(δ) within U . For sufficiently small δ, this ensures that no fixed points with large real parts in their eigenvalues can
spontaneously arise. Consequently, any non-saddle fixed points of g in U must be near-centers, retaining a Poincaré index of
+1 by continuity. Thus, under a generic scenario, the newly created fixed points x∗

1, . . . ,x
∗
k are two centers, contributing a

total index of +2.

Definition A.1. (Parameter OOD) Let P ⊂ Rn be a parameter space and let B ⊂ P be a bifurcation set. The complement
P \ B admits a decomposition into L disjoint connected components: P \ B =

⋃L
i=1 Pi, where each Pi is a maximal

connected subdomain. Intuitively, each Pi is one qualitatively uniform parameter regime. Then, a parameter OOD condition
in learning dynamics arises when the support of training distribution is supp(ptre (µ)) ⊆ Pl, but the support of the test
distribution supp(pteste (µ)) ⊆ Pi ̸=l. Equivalently, there exists no continuous path γ : [0, 1] → P \ B connecting µtr

e and
µtest
e without crossing B.
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Figure 12. Examples of training trajectories from the experiment described in Section 3.1.

B. Automatic Generation of Bifurcation Diagrams
To automatically generate the bifurcation diagram, the fixed points of the learned context-informed NODE must be
determined for each variable ξ. This corresponds exactly to solving the inverse problem of f(x; ξ) = 0 given by

x∗ = f−1(0; ξ),

for a given ξ. Because f is fully differentiable, the neural-adjoint method (Ren et al., 2020) provides one of the simplest
solutions to this inverse problem. The neural-adjoint method employs gradient descent to iteratively update the candidate xi

over K iterations, aiming to satisfy f(xK ; ξ) = 0:

xi+1 = xi − η∇xL(f(xi; ξ),0) = xi − η∇x∥f(xi; ξ)∥22,

where η is a learning rate and L(f(x),y) is a conventional loss function, such as MSE, designed for inverse problems
of the form f−1(y) = x. In this case, since we aim to find fixed points, y = 0 and the loss function simplifies to the
squared L2 norm. This procedure is performed on a batch of size N with initial values {x0

j}Nj=1,x
0 ∼ p(x0), where p is a

prior distribution, typically defined as a uniform distribution U(N ) over an initial domain N . In our experiment, we set
K = 1, 000, η = 10−2, N = 100, and p(x0) = U([−2.0, 2.0]× [−2.0, 2.0]).

After completing the iteration procedure (i = K), we discard points where the squared L2 norm ∥f(xK ; ξ)∥22 exceeds a
threshold ϵ. For the remaining candidates xK , we compute the Jacobians Df(xK ; ξ). Using the eigenvalues of Df(xK ; ξ),
we classify the fixed point candidates based on linearization theory (Strogatz, 2018). Specifically, if the eigenvalues λ1 and
λ2 are both real with opposite signs, the fixed point is classified as a saddle point. If λ1 and λ2 are purely imaginary and
have opposite signs, the fixed point is classified as a center of orbits4, and so on. For further details on the classification rule,
refer to (Strogatz, 2018). After classifying all found fixed points, if any two points within a distance of δ have the same
classification label, then they are merged by averaging. We used ϵ = 10−8 and δ = 10−2 for the experiments.

C. Experiment Details: Section 3.1
Data preparation. We trained the context-informed NODEs (2) on the Hamiltonian system described in Remark A.3 under
the pre-bifurcation regime exclusively. Specifically, we randomly sampled four initial conditions from the uniform distribu-
tion (q(0), p(0)) ∼ U([−2.0, 2.0]× [−2.0, 2.0]) for each of the eight parameter values µtr

e ∈ {−2.0,−1.75,−1.5,−1.25,
−1.0,−0.75,−0.5,−0.25}. For each sampled initial condition, we simulated the dynamics with a time horizon T = 2.0
and a time step ∆t = 0.1. This results in |De| = 4 trajectories per value of µtr

e , yielding a total of |De| × 8 = 32 training

4In practice, a fixed point with complex eigenvalues dominated by imaginary parts of opposite signs is regarded as center-like.
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Figure 13. Predicted phase portraits of the (a) vanilla NODE and (b) context-informed NODE models for the right well adaptation scenario.
Predicted phase portraits of the (c) vanilla NODE and (d) context-informed NODE models for the outer orbit adaptation scenario.

Figure 14. Phase portraits constructed in a zero-shot manner by linearly extrapolating the context vector ξe based on pre-bifurcation
training data, corresponding to different values of µe: (a) µe = 0.1, (b) µe = 1.0, (c) µe = 1.5, and (d) µe = 2.0.

trajectories. It is important to note that all training data consists solely of single-orbit trajectories from the pre-bifurcation
symmetric regime. The phase portraits of the training trajectories are visualized in Figure 12.

Architecture. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
employed 4-layer multi-layer perceptrons (MLPs) with hidden layers of width 64 and swish activation functions (Ra-
machandran et al., 2017). We used the fourth-order Runge-Kutta (RK) method as an ODE solver.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer (Kingma & Ba, 2015) with default settings for 50,000
epochs, using a learning rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled
sampling for teacher forcing (Lamb et al., 2016), starting with an initial probability of 0.99 and applying a decay rate of 0.99
every 30 epochs. λξ = 10−4 and λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2).

For the one-shot adaptation, We adapted the context-informed NODEs using the Adam optimizer with default settings for
1,000 epochs, using a learning rate of 10−3 and a full-batch size. We employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.95 and applying a decay rate of 0.95 every 30 epochs. In comparison, the
vanilla counterpart was trained for 3,000 epochs under the same settings.

One-shot adaptation. After training the model with pre-bifurcation data, we adapted it using a single trajectory for
µ = 0.5, representing post-bifurcation data. We considered the following four broken symmetry scenarios, namely
adaptations using (i) a trajectory confined to the left well, (ii) a trajectory confined to the right well, and (iii) a trajectory
outside the separatrix, traversing the outer orbit. These scenarios limit the model’s exposure to the global structure of
the phase space during adaptation, reflecting the spontaneous symmetry breaking observed in real-world situations. For
comparison, we also trained vanilla neural ODE models (1) under each scenario. Figure 13 compares the phase portraits of
vanilla NODEs and context-informed NODEs: (a–b) for the right well adaptation scenario and (c–d) for the outer orbit
adaptation scenario (see Figure 2 for the left well scenario). The context-informed NODEs successfully reconstruct the
entire phase topology across all scenarios.

Zero-shot exploration. We extrapolated the context values for post-bifurcation cases with µe = 0.1, µe = 1.0, µe = 1.5,
and µe = 2.0 using a linear regression model fitted to the relationship between pre-bifurcation ξe and µe (see Figure 3
(a)). Figure 14 illustrates the resultant phase portraits obtained in a zero-shot manner, showing that this method effectively
reproduces the ground truth phase portraits with reasonable accuracy.
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Figure 15. Examples of training trajectories from the experiment described in Section 3.2.

Figure 16. Examples of training trajectories from the experiment described in Section 4.3.

D. Experiment Details: Section 3.2
Data preparation. We trained the context-informed NODEs (2) on the Hamiltonian system described in Remark A.3
under the pre-bifurcation regime with a restricted training domain. Specifically, we randomly sampled four initial conditions
from the uniform distribution (q(0), p(0)) ∼ U([−0.5, 0.5] × [−0.5, 0.5]) for each of the eight parameter values µtr

e ∈
{−2.0,−1.75,−1.5,−1.25,−1.0,−0.75,−0.5,−0.25}. For each sampled initial condition, we simulated the dynamics
with a time horizon T = 2.0 and a time step ∆t = 0.1. This results in |De| = 4 trajectories per value of µtr

e , yielding a total
of |De| × 8 = 32 training trajectories. It is important to note that all training data consists solely of single-orbit trajectories
from the pre-bifurcation symmetric regime. The phase portraits of the training trajectories are visualized in Figure 15.

Architecture. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
employed 4-layer MLPs with hidden layers of width 64 and swish activation functions. We used the fourth-order RK
method as an ODE solver.
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Figure 17. Examples of training trajectories from the experiment described in Appendix F.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer with default settings for 10,000 epochs, using a learning
rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.99 and applying a decay rate of 0.99 every 30 epochs. λξ = 10−4 and
λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2).

E. Experiment Details: Section 4.3
Data preparation. We trained the context-informed NODEs (2) and their Hamiltonian version (Greydanus et al.,
2019) on the Hamiltonian system described in Remark A.2 considering both pre- and post-bifurcation regimes
within a restricted training domain. Specifically, we randomly sampled four initial conditions from the uni-
form distribution (q(0), p(0)) ∼ U([−0.3, 0.3] × [−0.3, 0.3]) for each of the eight parameter values µtr

e ∈
{−0.35,−0.25,−0.15,−0.05, 0.05, 0.15, 0.25, 0.35}. For each sampled initial condition, we simulated the dynamics
with a time horizon T = 2.0 and a time step ∆t = 0.1. This results in |De| = 4 trajectories per value of µtr

e , yielding a total
of |De| × 8 = 32 training trajectories. The phase portraits of the training trajectories are visualized in Figure 16.

Architecture. Note that for the Hamiltonian context-informed NODEs, a neural scalar Hamiltonian function H is
parameterized in the context-informed sense:

ẋ = (q̇, ṗ) = f(x, θe = θc +Wξe) = (∂pH(x; θc +Wξe),−∂qH(x; θc +Wξe)) .

Then, this model is trained using (2) in the same manner as described in Section 2. We employed 4-layer MLPs with hidden
layers of width 64 and tanh activation functions. We used the fourth-order RK method as an ODE solver.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer with default settings for 10,000 epochs, using a learning
rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.99 and applying a decay rate of 0.99 every 30 epochs. λξ = 10−4 and
λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2).

F. Linear System Identification with the Standard Pre-Bifurcation Training Setting
Data preparation. We trained the context-informed NODEs (2) and their Hamiltonian version (Greydanus et al., 2019)
on the Hamiltonian system described in Remark A.2 under the pre-bifurcation regime with a restricted training domain.
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Figure 18. Phase portraits of (a) free-form and (b) Hamiltonian models trained with (q̇, ṗ) = (p, µq), and constructed in a zero-shot
manner by linearly extrapolating ξe, correspond to µe = 0.1. Bifurcation diagrams of (c) free-form and (d) Hamiltonian models.

Specifically, we randomly sampled four initial conditions from the uniform distribution (q(0), p(0)) ∼ U([−0.3, 0.3] ×
[−0.3, 0.3]) for each of the eight parameter values µtr

e ∈ {−2.0,−1.75,−1.5,−1.25,−1.0,−0.75,−0.5,−0.25}. For each
sampled initial condition, we simulated the dynamics with a time horizon T = 2.0 and a time step ∆t = 0.1. This results in
|De| = 4 trajectories per value of µtr

e , yielding a total of |De| × 8 = 32 training trajectories. It is important to note that all
training data consists solely of single-orbit trajectories from the pre-bifurcation symmetric regime. The phase portraits of
the training trajectories are visualized in Figure 17.

Architecture. We employed 4-layer MLPs with hidden layers of width 64 and tanh activation functions, following
Appendix E. We used the fourth-order RK method as an ODE solver.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer with default settings for 10,000 epochs, using a learning
rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.99 and applying a decay rate of 0.99 every 30 epochs. λξ = 10−4 and
λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2).

Figure 19. The triple-well phase por-
trait of the Hamiltonian NODE model,
correspond to µe = 0.01.

Hallucinated broken symmetry. Figure 18 (a–b) illustrates the phase portraits
explored by context-informed models trained on the linear system under the setting
described in Appendix F. As shown, both the free-form and Hamiltonian NODEs
misinterpret the bifurcation, incorrectly identifying it as a symmetry-breaking tran-
sition, resulting in a spurious double-well structure. The double-well structure in the
free-form model collapses with a moderately large ξ, reverting to a typical saddle
point (Figure 18 (c)). The Hamiltonian model retains the misidentified double-well
structure persistently (Figure 18 (d)). In addition, interestingly, the Hamiltonian
model locally exhibits a triple-well structure at ξ = ξcrit (that corresponds to µe ∼ 0,
see Figure 19), though it collapses very rapidly. It can be understood in a similar way
that, if the model locally generates two saddle points incorrectly, with their Poincaré
indices summing to −2, while (0, 0) remains a center with an index of +1 and the
outer orbit structure is preserved, the model must generate two additional centers
with a total index of +2 to offset the discrepancy, ensuring that the overall index sums to −2 + 1 + 2 = +1 on the outer
orbit. However, as the model correctly transitions the center at (0, 0) into a saddle point, this structure quickly collapses,
giving way to a (still spurious) double-well structure to maintain a total index of +1.

G. Experiment Details: Section 5.1
Data preparation. We trained the context-informed NODEs (2) on the cusp bifurcating system under the pre-bifurcation
regime exclusively. Specifically, we randomly sampled four initial conditions from the uniform distribution (q(0), p(0)) ∼
U([−2.0, 2.0]×[−2.0, 2.0]) for each of the 16 parameter vectors (µtr

e , ν
tr
e ) ∈ {−2.0,−1.5,−1.0,−0.5}2. For each sampled

initial condition, we simulated the dynamics with a time horizon T = 2.0 and a time step ∆t = 0.1. This results in |De| = 4
trajectories per vector of (µtr

e , ν
tr
e ), yielding a total of |De| × 16 = 64 training trajectories. It is important to note that all

training data consists solely of monostable trajectories from the pre-bifurcation regime.
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Figure 20. Phase portraits constructed in a zero-shot manner by linearly extrapolating the context vector ξe based on pre-bifurcation
training data, corresponding to different values of (µe, νe).

Architecture. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
employed 4-layer MLPs with hidden layers of width 64 and swish activation functions. We used the fourth-order RK
method as an ODE solver.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer with default settings for 50,000 epochs, using a learning
rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.99 and applying a decay rate of 0.99 every 30 epochs. λξ = 10−4 and
λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2).

Evaluation details. After training the model, we constructed a mesh grid over (µtest
e , νteste ) ∈ [−2.0, 2.0]2 with intervals

of ∆µtest
e = 0.1 and ∆βtest

e = 0.1, resulting in a total of 41×41 = 1681 parameter combinations. For each parameter vector
(µtest
e , νteste ), the vector field of the learned context-informed NODE model was obtained by inputting the corresponding

context vector ξteste , which was estimated using a linear regression model fitted on the relationship between the training
parameters (µtr

e , ν
tr
e ) and their associated context vectors ξtre . Then, the bifurcation surface shown in Figure 10 (a) was

generated by identifying the fixed points of the modeled vector field at each ξteste , using the neural-adjoint method described
in Appendix B. Figure 10 (b) directly compares the ground truth and the modeled vector fields for some selected parameter
vectors near the catastrophic transition. In addition, an extended comparison over a broader range of parameters (µe, νe) is
presented in Figure 20.
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H. Poincaré–Hopf Regularization
The Poincaré–Hopf regularization is formulated to minimize the following topological discrepancy by guiding the model’s
Poincaré indices toward the desired values:

RPH(θc,W, ξ) =
∑
i

EΓ∼pΓ(Γ|χi) [D(Ind(f(·; θc +Wξ),Γ)∥χi)] ,

where D(·∥·) represents a distance function, χi is the i-th desired index value, ξ is the context vector, and pΓ is a distribution
over the test contours Γ. Because the appropriate test contour depends on the desired index, pΓ is conditioned on χ (e.g., +1
for a global test contour or −1 for a local test contour in the case of double-well potentials). The model’s index Ind(f,Γ) is
computed by numerically evaluating the two-dimensional contour integral described in Remark 4.1:

Ind(f,Γ) =
1

2π

M−1∑
i=0

−fp,i∆fq,i + fq,i∆fp,i
∥fi∥2 + ϵ

,

where M is the number of segments used to discretize Γ and fi = (fq,i, fp,i)
T denotes the vector field at the i-th segment

of Γ. The terms ∆fq(p),i = fq(p),(i+1)modM − fq(p),i represent the finite differences of the field components. The small
constant ϵ = 10−4 is added to avoid division by zero when ∥fi∥ → 0.

In the experiment described in Section 5.2 (and detailed in Appendix I), we used a simplified version of the regularizer by
fixing ξ to ξe, e ∈ Etr and setting Γ to predetermined global and local test contours as follows:

RPH(θc,W, ξe) = λPH

[
Rg

PH(θc,W, ξe) +Rl
PH(θc,W, ξe)

]
, (6)

where Rg
PH(θc,W, ξe) and Rl

PH(θc,W, ξe) respectively measure the global and local index mismatches, defined as

Rg
PH =

1

|Etr|
∑
e∈Etr

∥Ind(f(·; θc +Wξe),Γ
g
PH)− 1∥22,

Rl
PH =

1

|{e|α < 0}|
∑
e|α<0

∥Ind(f(·; θc +Wξe),Γ
l
PH) + 1∥22 +

1

|{e|α > 0}|
∑
e|α>0

∥Ind(f(·; θc +Wξe),Γ
l
PH)− 1∥22.

Here, ΓgPH represents a global contour centered at (0, 0), with a major axis length of rψ = 4.0 and a minor axis length of
rψ′ = 0.5. Meanwhile, ΓlPH defines a local contour as a circle with a radius of 0.5. Note that the desired index for the
global regularization Rg

PH is fixed at +1, following the Poincaré–Hopf theorem. For the local regularization Rl
PH, the

desired index is set to +1 for α > 0 (i.e., the single- and triple-well cases) and to −1 for α < 0 (i.e., the double-well
dynamics), which requires more specific prior knowledge. In Appendix J, we compare the full regularizer defined in (6), i.e.,
RPH = λPH[Rg

PH +Rl
PH], and its global-only variant, where RPH = λPHRg

PH. The hyperparameter λPH is set to 10−3.

I. Experiment Details: Section 5.2
Data preparation. We trained the conventional context-informed NODEs and their topologically regularized counterpart
with (6) on the Landau–Khalatnikov (LK) system (4). For training, we randomly sampled 4 initial conditions from the
uniform distribution (ψ(0), ψ′(0)) ∼ U([−2.0, 2.0] × [−2.0, 2.0]) for each combination of αtr

e ∈ {−0.4,−0.2, 0.2, 0.4}
and βtr

e ∈ {−0.4,−0.2, 0.2, 0.4}, resulting in 16 different parameter vectors. To ensure the physical relevance of (4),
γ = 0.05 and κ = 0.5 were fixed. For each sampled initial condition, we simulated the dynamics over T = 2.0 with
∆t = 0.1. This results in |De| = 4 trajectories per value of µtr

e , yielding a total of |De| × 16 = 64 training trajectories.

Architecture. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
employed 4-layer MLPs with hidden layers of width 64 and swish activation functions. We used the fourth-order RK
method as an ODE solver.

Training details. We basically followed the settings outlined in the original CoDA paper (Kirchmeyer et al., 2022). We
trained the context-informed NODEs using the Adam optimizer with default settings for 50,000 epochs, using a learning
rate of 10−3 and a full-batch size. To improve training stability, we employed exponential scheduled sampling for teacher
forcing, starting with an initial probability of 0.99 and applying a decay rate of 0.99 every 30 epochs. λξ = 10−4 and
λΩ = 10−6 were used for the sparsity regularizer R(W, ξe) in (2). The regularizer (6) described in Appendix H is added to
(2) for the topologically regularized models. We repeated the experiment five times using different random initializations.
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(i) σ = 0.2 (ii) σ = 0.5

(iii) σ = 0.7 (iv) σ = 1.0

Figure 21. Contour plots of the mean consistency scores for (a) the conventional model and (b) the fully regularized model using (6).

Evaluation details. After training the models, we evaluated the models’ ability to capture the long-term behavior and
phase topology of the dynamical system by computing the L2 distance between the limit sets of the ground truth and those
generated by each model. We constructed a mesh grid over (αtest

e , βtest
e ) ∈ [−0.5, 0.5]2 with intervals of ∆αtest

e = 0.05
and ∆βtest

e = 0.05, resulting in a total of 21× 21 = 441 parameter combinations. For each parameter vector (αtest
e , βtest

e ),
we randomly sampled N = 32 initial conditions from the uniform distribution (ψ(0), ψ′(0)) ∼ U([−2.0, 2.0]× [−2.0, 2.0])
and simulated long-term trajectories with T = 100.0 and ∆t = 0.1. Context-informed NODE models and their regularized
counterparts were simulated under the same T and ∆t. These simulations utilized 441 context vectors, constructed using
linear regression fitted on the relationships between the training parameters (αtr

e , β
tr
e ) and the corresponding context vectors

ξtre . The limit set for each dynamics model is defined as the converged attractors (ψ∗, ψ′∗) = x∗ ≃ x(T ). We empirically
found that T = 100.0 is sufficient to approximate the limit sets accurately. After obtaining x(T ) for both the ground truth
and the tested NODE models, the topological consistency score of e-th test parameter vector (αtr

e , β
tr
e ) is calculated as

se =
1
N

∑N
i=1 1(∥xie(T )− x̂ie(T )∥2 < σ), where σ is a threshold distance, and xie(T ) and x̂ie(T ) represent the state vectors

at T of the ground truth dynamics and the NODE models, respectively, starting from the i-th test initial condition for the
e-th parameter vector.

Figure 22. Contour plots of the MAPEs for (a) the conventional
model and (b) the fully regularized model using (6).

Figure 21 presents contour plots of the topological consis-
tency scores as the threshold σ varies. As shown, the con-
sistency scores of conventional context-informed NODE
models show a limited improvement despite increasing
σ, particularly in the triple-well regions (α > 0, β < 0).
This suggests that the vanilla context-informed NODE
struggles to capture the correct topology, leading to di-
verging behavior. On the other hand, the topologically
regularized model demonstrates enhanced long-term pre-
dictability. We also report the Mean Absolute Percentage
Error (MAPE), which provides a more reliable basis for
performance comparison across different parameters than MSE (Kirchmeyer et al., 2022), as shown in Figure 22. This
further validates the effectiveness of the proposed Poincaré–Hopf regularization.

J. Ablation Study of Poincaré–Hopf Regularization
Topological regularization without a local prior. The proposed regularization (6) requires prior knowledge at both
global (Rg

PH) and local (Rl
PH) levels. Local regularization typically demands more detailed, system-specific information.

For example, computing Rl
PH in (6) necessitates prior knowledge about the transition behavior of the local index from −1
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(i) σ = 0.2 (ii) σ = 0.5

(iii) σ = 0.7 (iv) σ = 1.0

Figure 23. Contour plots of the mean consistency scores for (a) the conventional context-informed NODE and (b) the regularized version
with only the global constraint.

to +1 as a function of α. In contrast, applying only global constraints requires significantly less prior information. As stated
in Theorem 4.1, the global regularization term Rg

PH relies only on coarse-grained knowledge about the phase manifold
where the ODE is defined; for instance, in the LK experiment, Rg

PH only requires that the global index constraint equals +1,
regardless of parameters. Despite its simplicity, this type of global information can be especially valuable when detailed
prior knowledge about the target system is limited.

Figure 24. Contour plots of the MAPEs for (a) the conventional
model and (b) the regularized version with only the global constraint.

To evaluate the effectiveness of topological regularization
under such minimal assumptions, we revisited the LK
experiment discussed in Appendix I using only the global
term, i.e., RPH(θc,W, ξe) = λPHRg

PH(θc,W, ξe). All
other experimental settings remained unchanged. Figure
23 compares the mean consistency scores between the
vanilla model and the globally regularized model across
different values of σ, following the evaluation protocol
described earlier. The results show that the globally reg-
ularized model (Figure 23 (b)) significantly outperforms
the vanilla model (Figure 23 (a), identical to Figure 21
(a)), even when relying solely on global information. While its performance is slightly lower than that of the fully regularized
model with both local and global constraints (Figure 21 (b)), this reflects a trade-off between the cost of incorporating prior
knowledge and achieving optimal performance. We also report the MAPE profiles in Figure 24, which lead to similar results.
These findings suggest that imposing global topological constraints via the Poincaré–Hopf theorem provides a cost-effective
and robust form of topology-aware regularization, particularly in settings with limited prior knowledge.

Training Dynamics Analysis. The proposed Poincaré–Hopf regularization described in Appendix H is based on a finite
difference method, resulting in computational overhead proportional to the number of discretized points M . In all our
experiments, we discretized the test contours using M = 128 points, which led to a moderate increase in runtime under
identical computational environments (vanilla: 52.9 ± 5.5 ms/epoch; global-only regularized: 65.7 ± 5.1 ms/epoch; fully
regularized: 77.6 ± 4.7 ms/epoch). Despite this additional cost, the regularized model demonstrates faster convergence in
practice and significantly improves test accuracy, thanks to the guidance provided by topological regularization.

Figure 25 compares the vanilla, globally regularized, and fully regularized models in terms of the following metrics, all
plotted over normalized wall-clock time: (a) the global regularization value Rg

PH; (b) the local regularization value Rl
PH; (c)

the test MSE on a linear time axis, and (d) the test MSE on a logarithmic time axis. As defined in (6), the regularization
values directly reflect index mismatches between the model and the ground truth, making them useful for evaluating whether
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Figure 25. Comparison between the vanilla and regularized models in terms of (a) the global regularization value Rg
PH, (b) the local

regularization value Rl
PH, (c) the test MSE on a linear time axis, and (d) the test MSE on a logarithmic time axis. In (a) and (b), the black

dashed line indicates the discretization error limit corresponding to the ground truth dynamics.

the model adheres to the ground truth topology. Note that while all models compute both Rg
PH and Rl

PH, only the fully
regularized model is explicitly trained to minimize both terms. The vanilla model does not use any form of regularization,
whereas the globally regularized model is constrained solely by the global term Rg

PH. The test MSE was computed in the
same way as the training MSE loss, but using 32 trajectories per parameter that were different from those used during
training. All of these loss profiles are from the previously discussed LK experiment.

As shown in Figure 25 (a), both the globally and fully regularized models maintain a low and stable global index mismatch,
converging to 4× 10−3 with minimal variance, as they jointly minimize data loss and the global topological loss. It is worth
noting that even the ground truth vector field incurs a nonzero global topological loss of 4× 10−3 due to discretization error
introduced by the finite approximation of the contour integral. In contrast, the vanilla model, which lacks any topological
constraints, exhibits a significantly higher global topological error exceeding 10−2, along with substantial variance. These
results suggest that the vanilla model fails to reliably capture the correct global topological structure, highlighting the
importance of incorporating topological regularization.

In Figure 25 (b), the fully regularized model, which explicitly minimizes the local regularization term, exhibits a sharp
decline in this value and maintains it at a consistently low level of 2× 10−4, which corresponds to the discretization limit
of the ground truth. Meanwhile, the vanilla model shows a gradual decrease, as it implicitly captures certain topological
features from the data, but its learning efficiency is significantly lower than that of the regularized model. Interestingly, the
global-only model, despite lacking the local regularizer, also achieves a noticeable and consistent reduction in the local index
discrepancy, though less effectively than the fully regularized model. This phenomenon can be attributed to the discussion in
Section 4: the global topological constraint—the total Poincaré index of +1—naturally encourages the model to learn the
correct local topological structure that governs bifurcation, in accordance with the Poincaré–Hopf theorem.

This difference in topological learning leads to faster convergence and better predictive accuracy in the regularized cases,
as illustrated in Figure 25 (c–d). Between the globally and fully regularized models, the latter demonstrates superior
performance, consistent with the earlier discussion of the trade-off between incorporating prior knowledge and achieving
optimal performance. Overall, these findings underscore the effectiveness and efficiency of topology-aware regularization.
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