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Abstract
Because of data scarcity in real-world scenar-
ios, obtaining pre-trained representations via self-
supervised learning (SSL) has attracted increas-
ing interest. Although various methods have been
proposed, it is still under-explored what knowl-
edge the networks learn from the pre-training
tasks and how it relates to downstream proper-
ties. In this work, with an emphasis on chemical
molecular graphs, we fill in this gap by devis-
ing a range of node-level, pair-level, and graph-
level probe tasks to analyse the representations
from pre-trained graph neural networks (GNNs).
We empirically show that: 1. Pre-trained models
have better downstream performance compared to
randomly-initialised models due to their improved
the capability of capturing global topology and
recognising substructures. 2. However, randomly
initialised models outperform pre-trained models
in terms of retaining local topology. Such infor-
mation gradually disappears from the early layers
to the last layers for pre-trained models.

1. Introduction
Self-Supervised Learning (SSL) pre-training has opened up
the opportunity to effectively utilise vast amount of unla-
belled data to improve downstream tasks where labels are
limited. In natural language processing, language models
like GPT-3 (Brown et al., 2020), Megatron (Shoeybi et al.,
2019), and Gopher (Rae et al., 2021) can automatically re-
discover the classical NLP pipeline in an interpretable and
localisable way (Tenney et al., 2019). They can also achieve
substantial improvements in a wide range of NLP tasks.
In computer vision, self-supervised learning approaches
such as contrastive learning (Chen et al., 2020b; He et al.,
2020), bootstrapping (Grill et al., 2020) and masking (He
et al., 2022) are shown to obtain competitive performance
on widely-used benchmarks like ImageNet. DINO (Caron
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Figure 1. Overview of GraphEval. Given molecular graphs, we
train GNNs to predict SSL proxy objectives. We then extract
embeddings of (possibly unseen) graphs using pre-trained models,
which form the inputs for probe models, trained and evaluated on
the designed metrics.

et al., 2021a) shows that a self-supervised vision transformer
(ViT) automatically learns class-specific features for unsu-
pervised object segmentation.

Motivated by the successful applications of self-supervised
learning, pre-training GNNs on unlabelled structured data
has attracted increasing interest (Liu et al., 2021a; Xie et al.,
2021). However, it is still under-explored what knowledge
the networks learn during the pre-training and how it relates
to downstream properties. In this work, with an empha-
sis on chemical molecules, we fill in this gap by devising:
(1) a range of {node-, pair-, graph-} level metrics; (2) sub-
structure detection; (3) embedding space characterisation,
to analyse the representations from pre-trained GNNs. Our
main insights are summarised as follows:

• Pre-trained representations are better at capturing global
topological structure while losing the local information;

• Pre-trained models can well recognise molecular substruc-
tures that are correlated with properties;

2. Preliminaries and Settings
We first introduce the basics of graphs and GNNs, then
elaborate on the pre-training and probes.

Graph. A graph G = (V, E) consists of a set of nodes
V and edges E . In molecular graphs, nodes are atoms and
edges are bonds. We use xu and xuv to denote the feature of
node u and of the bond feature between nodes [u, v], respec-
tively. For notation simplicity, we use an adjacency matrix
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Table 1. Performance on molecular property predictions using probes, with (w/) or without (w/o) fine-tuning (FT). For each set of
random/pre-trained embeddings, we report the ROC-AUC scores over 8 datasets consisting of 678 binary tasks, where the score of each
task is averaged over three independent runs. We bold the best and underline the worst performance of each dataset.

FT Random AttrMask GPT-GNN InfoGraph ContextPred G-Contextual G-Motif GraphCL JOAO JOAOv2

w/o 58.85 62.18 61.43 61.94 59.58 64.63 62.59 63.00 60.99 62.31
w/ 67.21 70.16 68.27 70.10 70.89 69.21 70.14 70.64 69.57 70.21

A ∈ R|V|×|V| to represent the graph, where A[u, v] ̸= 0 if
the nodes (u, v) are connected.

GNN. There has been emerging research interest in ex-
ploring molecular graph representations (Corso et al., 2020;
Duvenaud et al., 2015; Gilmer et al., 2017; Liu et al., 2018;
Yang et al., 2019). Graph neural networks are widely-
adopted for encoding molecular graphs. A prototypical
GNN uses messaging passing (Gilmer et al., 2017), where
it updates atom-level representations based on their neigh-
bourhoods. More specifically, let h0

u = xu be the input
atom feature, we have:

mt+1
u =

∑
v:A[u,v] ̸=0

Mt(h
t
u,h

t
v,xuv), ht+1

u = Ut(h
t
u,m

t+1
u )

(1)
where Mt and Ut are the message functions and vertex up-
date functions, respectively. By repeating message passing
for T steps, we can encode the information of the T -hop
neighbourhood for each atom. We use a readout function
R to pool node-level representations for graph-level predic-
tion: ŷ = R({hT

u |u ∈ V}). In this work, we follow the
research line of SSL on molecular graphs (Hu et al., 2020a;
Liu et al., 2022; You et al., 2020) and adopt the Graph Iso-
morphism Network (GIN) (Xu et al., 2019) as the backbone
model (modified in (Hu et al., 2020a) as to incorporate edge
features during message passing).

Pre-Training. We use ten methods for Graph SSL, includ-
ing EdgePred (Hamilton et al., 2017), InfoGraph (Sun et al.,
2020), GPT-GNN (Hu et al., 2020b), AttrMask (Hu et al.,
2020a), ContextPred (Hu et al., 2020a), G-{Contextual, Mo-
tif} (Rong et al., 2020), GraphCL (You et al., 2020), JOAO-
{·,v2} (You et al., 2021) for pre-training. We follow the
experimental settings and pre-training recipes reported in the
original literature. For a fair comparison, we pre-train the
same GIN model on the same data splits. Specifically, we
randomly select 50k qualified molecules from the GEOM
dataset (Axelrod & Gomez-Bombarelli, 2020). Once the
pre-training finished, we extract the embeddings based on
the saved weights and pass them to the probe tasks.

Probe. We use probe models (Liu et al., 2019) to study
whether self-supervised learned representations encode help-
ful structural information about graphs. Concretely, we use
a graph neural network to extract graph representations and

train a shallow model to make predictions with these fixed
node and graph embeddings. A common choice of the probe
model (Hewitt & Liang, 2019) is either a linear projection
or a multi-layer perceptron (MLP). We choose an MLP with
one hidden layer to enable capturing the non-linear relations.
We set the hidden size to 300 and apply the ReLU activation.
We use scaffold splitting to split data into 80%/10%/10% for
the training/validation/testing set. The training procedure
runs for 100 epochs with a learning rate of 1e−3. We select
the best model based on the validation set. All the results
are averaged across three independent runs.

As follows, we show the effectiveness of SSL methods in
downstream tasks and systematically study the knowledge
that the networks learn from the pre-training tasks:

• In Sec. 3, we evaluate SSL learned embeddings on molec-
ular biochemical property, demonstrating that such sub-
stantial improvements with linear models and fine-tuning
are not much relevant.

• In Sec. 4, we probe a wide range of structural and topo-
logical metrics based on the embeddings. We find that
pre-trained embeddings are better at capturing global topo-
logical property, and randomised variants surprisingly
outperform restoring local geometry.

• In Sec. 5, we demonstrate that pre-trained embeddings are
better at predicting the counts of molecular substructures,
e.g.allylic and benzene. We hypothesise that the supe-
rior performance of pre-trained embeddings for molecular
biochemical property prediction comes from the fact that
SSL pre-training help better capture the substructure exis-
tence (Alsentzer et al., 2020; Bouritsas et al., 2020).

3. Biochemical Property Measure
We first use probe models to evaluate pre-trained embed-
dings on predicting molecular biochemical properties. Fol-
lowing previous graph SSL work (Hu et al., 2020a; You
et al., 2020), we validate the quality of these embeddings
on eight molecular datasets consisting of 678 binary prop-
erty prediction tasks (Hu et al., 2021; Wu et al., 2018). As
previously described in Sec. 2, for the setting of without
fine-tuning (“w/o FT”), we update the probe models with
fixed embeddings; with fine-tuning (“w FT”), both the pre-
trained GNNs and the randomised probe models will be
updated. We report the results in Table 1.
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Table 2. Performance on the topological metrics predictions. We report the mean square or the cross entropy loss (i.e., the smaller the
better), over all 8 downstream datasets. We bold the best and underline the worst performance of each metric. We have summarised the
percentage where SSL pre-trained embeddings fail to outperform the random embeddings.

Metrics Node Pair Graph

Pre-training Degree Centrality Clustering Link Jaccord Katz Diameter Connectivity Cycle Assortativity

– 0.001 1.199 0.297 31.05 1.879 2.828 222.6 0.226 6.351 0.158

AttrMask 0.015 1.307 0.424 32.23 2.029 2.634 164.7 0.178 6.075 0.102
GPT-GNN 3.032 1.380 0.505 41.44 2.541 2.374 178.8 0.247 9.222 0.166
InfoGraph 1.298 1.242 0.296 41.15 2.273 2.238 83.24 0.204 6.169 0.159
ContextPred 5.498 1.626 0.316 37.78 2.286 2.413 183.0 0.194 8.691 0.108
G-Motif 3.085 1.372 0.531 51.83 2.363 2.758 98.21 0.268 7.333 0.182
G-Contextual 0.036 1.242 0.403 33.55 1.773 2.660 113.6 0.170 5.330 0.045
GraphCL 0.854 1.110 0.461 34.97 1.863 2.271 89.79 0.226 6.191 0.152
JOAO 0.637 1.268 0.412 33.67 2.084 2.307 89.38 0.214 5.960 0.142
JOAOv2 0.591 1.272 0.463 32.81 2.054 2.340 88.27 0.217 5.964 0.148

SSL Worse 100% 89% 89% 100% 78% 0% 0% 0% 0% 0%

Results and Findings. As shown in Table 1, most of SSL
pre-trained embeddings outperform the randomised peers
both under fixed and non-fixed settings. Compared with
fixed embeddings, tuning the pre-trained model weights will
bring more substantial performance gains due to introducing
more flexibility. However, in general, better performance at
fixed embeddings does not accompany higher fine-tuning
scores. For instance, embeddings pre-trained with “Con-
textPred” have the second-lowest score with fixed scenarios
while perform the best after end-to-end fine-tuning. The
correlation between the two sets of score rankings is 0.25,
which questions the conventional approach’s rationale for
evaluating the quality of learned embedding with linear
models (He et al., 2022).

4. Topological Property Measure
We evaluate the pre-trained embeddings on metrics em-
phasising topological properties at multiple scales, which
are based on the {node-, pair-, and graph-} level statistics.
Many of these metrics are used as features in traditional
machine learning pipelines on graphs prior to the advent of
deep learning (Hamilton, 2020). We first provide descrip-
tions of these metrics, then present results and findings.

Results and Findings. We report the results in Table 2.
We observe that the randomised embeddings retain the lo-
cal structural information well and outperform all the pre-
trained embeddings. On the other hand, the pre-trained
embeddings perform well when performing metrics related
to the graph’s global topology. For pair-level statistics, ran-
domised embeddings perform better when the metric itself
is more about local structure, e.g.link prediction, and vice

versa. We do not observe that there exists a dominant pre-
training method that perform universally well w.r.t. other
methods. There are some connections between the pre-
training tasks and the performance on different metrics:

• Contextual proxy (i.e., G-Contextual) is particularly help-
ful for Jaccard coefficient prediction because of the sim-
ilarity of the pre-training objective and metric measure
(neighbourhood overlap);

• Complicated design of augmentations (used in contrastive-
based SSL, i.e.JOAO) do not bring substantial improve-
ments in storing graph-level topological information.

5. Substructure Awareness Measure
Certain substructures usually reflect some properties at node
and graph levels (Girvan & Newman, 2002). For instance,
molecules containing benzene rings usually have similar
physical (e.g.solvent) and chemical (e.g.aromaticity) proper-
ties (McMurry, 2014). On this basis, prediction (Alsentzer
et al., 2020) and modelling (Bouritsas et al., 2020) of sub-
structures have been proven effective for improving model
expressiveness and downstream performance.

Molecular substructure. Instead of defining in an im-
plicit or handcrafted manner, as in previous studies, a
natural definition of substructure in molecules is the sub-
stituent or moiety that performs certain functions in chem-
ical/biological reactions. Here we investigate 24 substruc-
tures which can be divided into three groups:

• Rings: Benzene, Beta lactams, Epoxdie, Furan, Imida-
zole, Morpholine, Oxazole, Piperdine, Piperdine, Pyri-
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Table 3. Cramér’s V between molecular substructure counts and
biochemical properties, averaged over 678 property prediction
tasks (i.e., “Avg(Task)”) or eight datasets (i.e., “Avg(Data)”). We
also calculate the Pearson rank correlation (ρ) between the perfor-
mance on recognising the substructure and predicting properties.

Name Type Avg (Task) Avg (Data) ρ

allylic Site 0.1144 0.1024 0.709
benzene Ring 0.1630 0.1227 0.576
amide Group 0.0881 0.1336 0.468
ether Group 0.1034 0.1083 0.552
halogen Group 0.1721 0.1086 0.515

dine, Tetrazole, Thiazole, Thiophene

• Functional Groups: Amides, Amidine, Azo, Ether
Guanidine, Halogens, Hydroxylamine, Imide, Oxygens
(including phenoxy), Urea

• Redox Active Sites: Allylic (excluding steroid dienone)

Each substructure might have unique effect on the down-
stream properties. For instance, forming with a simple cycle
of atoms and bonds, a ring might lock particular atoms with
distinct 3D structure therefore some of its stereochemistry
properties such as chirality are determined, and chirality-
aware modelling is proven beneficent in predicting molecu-
lar properties (Adams et al., 2022). We first apply “Cramér’s
V” to measure how significant the substructures affect the
molecular properties.

Cramér’s V quantifies the strength of the association be-
tween the molecular substructure counts (i.e., chemical frag-
ments) and their biochemical properties. It is defined as:

V =
√

χ2/ (n ·min(k − 1, r − 1)) =
√
χ2/n (r ≡ 2)

(2)
where n is the sample size, k and r are the total number
of substructure counts and property categories (binary), re-
spectively. The Chi-squared statistics χ2 is then calculated
as:

χ2 =
∑
i,j

(
n(i,j) − n(i,·) · n(·,j)/n

)2/(
n(i,·) · n(·,j)/n

)
(3)

where n(i,j) is the total occurrence for the pair of (i, j).
Here i is the specific count of a certain substructure, and j
represents the certain outcome of a molecular biochemical
property. Cramér’s V value ranges from 0 to 1, representing
the associated strength between two categorical variables.

Results and Findings. We calculate the Cramér’s V, and
report the five substructures that are mostly correlated with
downstream properties in Table 3. We observe that cer-
tain molecular substructures are good indicators of their

Table 4. Performance on substructure detection. We bold the best
and underline the worst performance of each substructure. It is
clear to see that contrastive based method (GraphCL, JOAOv2)
perform quite well in recognising these substructures.

Pre-training allylic amide benzene ether halogen

– 3.516 18.948 3.964 6.071 3.652

AttrMask 3.371 12.932 2.860 4.958 1.192
GPT-GNN 2.808 15.736 2.938 5.932 2.912
InfoGraph 2.577 5.535 1.959 3.657 2.819
ContextPred 4.386 18.251 3.583 7.045 2.908
G-Motif 2.452 4.015 2.116 3.507 1.125
G-Contextual 2.196 5.938 1.926 2.900 0.759
GraphCL 2.088 3.922 1.722 3.766 0.798
JOAO 2.385 4.030 1.746 3.376 0.694
JOAOv2 2.122 3.865 1.773 3.388 0.695

SSL Worse 11% 0 0 11% 0

biochemical properties. Based on such facts, we train the
probe models to predict the counts of substructures for all
the molecules from the eight datasets. We report the test
scores in Table 4. As noticed, all the pre-trained embed-
dings outperform random variants in terms of detecting the
existence of substructures.

We also calculate the Pearson rank correlation ρ between the
performance on downstream tasks and the performance on
substructure detection of the SSL pre-trained embeddings.
A strong positive correlation indicate that embeddings that
are with better capability of detecting these substructures .
Based on the observations of (1) molecular substructures are
highly related with downstream biochemical properties; (2)
embeddings that perform better in property predictions are
usually with better substructure awareness; we conjecture
that the performance gains from SSL pre-training might be
from their capabilities of identifying graph substructures.

We find that: 1) substructure counts is highly correlated with
the molecular properties; 2) the pre-trained embeddings
are good at counting the substructures and predicting the
properties. Consequently, we would like to measure that
how well we can infer the properties solely based on the
substructure counts (in Appendix).

6. Discussion
In this work, we conduct a collection of probe tasks and
analysis on evaluating the self-supervised learned graph em-
beddings. We conclude the performance gains introduced
by the SSL pre-training come from a better awareness of
global topology and substructures. The pre-trained message
passing weights, help capture the hierarchical while hur-
dle the local information. A better design on the message
passing module remains an open problem.
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Bombarelli, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular fin-
gerprints. In NeurIPS, 2015.

Elnaggar, A., Heinzinger, M., Dallago, C., Rihawi, G., Wang, Y.,
Jones, L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., et al.
Prottrans: towards cracking the language of life’s code through
self-supervised deep learning and high performance computing.
IEEE PAMI, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,
G. E. Neural message passing for quantum chemistry. In ICML,
2017.

Girvan, M. and Newman, M. Community structure in social and
biological networks. PNAS, 2002.
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A. Related Work
Graph SSL. Self-supervised learning methods for graphs are roughly categorised into contrastive and generative
venues (Liu et al., 2021a;b; Wu et al., 2021; Xie et al., 2021). Contrastive graph SSL (Hu et al., 2020a; Sun et al.,
2020; You et al., 2020) applies contrastive learning to maximise the mutual information between augmented instances
constructed from the same graph. Generative graph SSL (Hamilton et al., 2017; Hu et al., 2020a;b; Liu et al., 2018) forms
the pretext task by reconstructing original graphs. A more recent trend in Graph SSL (Liu et al., 2022; Stärk et al., 2021)
is to utilise domain knowledge, e.g., 3D information of molecular conformations, to help enhance the expressiveness of
GNN. In this work, we focus on studying the transferable knowledge stored in the self-supervised learned molecular graph
representations.

Probing Pre-trained Embeddings. Using probe models to study learned representations is a common practice to evaluate
its quality. Probe models capture the intuition that good features should perform competitively in transfer tasks even with a
shallow architecture. We review the related work applying probe models for natural language processing (Conneau & Kiela,
2018; Hendricks et al., 2021; Hewitt & Manning, 2019; Jawahar et al., 2019; Kassner & Schütze, 2020; Liu et al., 2019;
Tenney et al., 2019; Wang et al., 2019), computer vision (Alain & Bengio, 2017; Caron et al., 2021b; Chen et al., 2020a;
2021; He et al., 2022; Li et al., 2021; Resnick et al., 2019; Wang et al., 2021), and biomedical science (Dohan et al., 2021;
Elnaggar et al., 2021; Rao et al., 2019; Rives et al., 2021; Villegas-Morcillo et al., 2021). In natural language processing,
pre-trained embeddings are shown to achieve competitive results on a wide range of tasks such as token labelling and parsing.
In computer vision, self-supervised learned presentations can not only improve accuracy on downstream benchmarks such
as ImageNet and CIFAR10, but also contain explicit semantic information (Caron et al., 2021b). In bioinformatics and
biomedical science, self-supervised learning is able to learn biological structures and functions from massive unlabelled
data. It has been shown that such learned embeddings are organised at a multi-scale level and can capture the information
ranging from biochemical properties of amino acids to remote homological protein structures (Rives et al., 2021).

B. Description on the Topological Property Measure
Node-level statistics focus on local topological measures of a graph, where each node is accompanied with a metric value.
They could be used as features in a node classification model (Hamilton, 2020).

• Node Degree (du) counts the number of edges incident to node u: du =
∑

v∈V A[u, v]

• Node Centrality (eu) represents a node’s importance, it is defined as a recurrence relation that is proportional to the
average centrality of its neighbours:

eu =

(∑
v∈V

A[u, v]ev

)
/λ, ∀u ∈ V (4)

• Clustering Coefficient (cu) measures how tightly clustered a node’s neighbourhood is:

cu = (|(v1, v2) ∈ E : v1, v2 ∈ N (u)|) /d2u (5)

i.e.the proportion of closed triangles in neighbourhood (Watts & Strogatz, 1998).

We use all the nodes from eight datasets, report the scores over eight test splits across multiple runs.

Graph-level statistics summarise global topology information and are helpful for tasks like graph classifications. We
briefly describe their meanings and refer the formal definitions to (Hamilton, 2020).

• Diameter: maximum distance between the pair of nodes
• Cycle Basis: a set of simple cycles that forms a basis of the graph cycle space. It is a minimal set that allows every

even-degree subgraph to be expressed as a symmetric difference of basis cycles.
• Connectivity: minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes

into two or more isolated subgraphs.
• Assortativity: similarity of connections in the graph w.r.t the node degree, it is essentially the Pearson correlation

coefficient of degree between pairs of linked nodes.

We use all the graphs from eight datasets, report the scores over eight test splits across multiple runs.
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Table 5. Common classifiers trained based on the substructure counts for predicting molecular properties (ROC-AOC scores averaged
over eight datasets). We utilised the conventional experimental setup in the sci-kit learn module. “Rand” and “SSL” represent the probe
models trained on the randomised and GraphCL pre-trained embeddings, respectively.

Linear RF XGBoost Probe (Rand) Probe (SSL)

59.91 61.95 62.31 58.85 63.00

Pair-level statistics quantify the relationships between nodes. Since node and graph level statistics are not very useful for
the tasks relied on relation modelling, we are interested in how well the pre-trained embeddings can capture the following
pair-level metrics:

• Link Prediction tests whether two nodes are connected or not, given their embeddings and inner products. Based on the
principle of homophily, it is expected that embeddings of connected nodes are more similar compared to disconnected
pairs: SLink[u, v,x

T
uxv] = 1N (u)(v).

• Jaccard Coefficient seeks to quantify the overlap between neighbourhoods while minimising the biases induced by node
degrees (Lü & Zhou, 2011): SJaccard [u, v] = |N (u) ∩N (v)|/|N (u) ∪N (v)|

• Katz Index is a global overlap statistic, defined by the number of paths of all lengths between a pair of nodes: SKatz[u, v] =∑∞
i=1 β

iAi[u, v], where β ∈ R+ is a pre-defined parameter controlling how much weight is given to short vs long paths.
A small value (β < 1) down-weights the importance of long paths. Here we set β = 1, giving the paths of all lengths
equal importance.

In experiments, we bootstrapped a fixed number of the node pairs (10k) from each dataset, report the test scores average
over eight test splits across three runs.

C. How powerful are molecular substructure counters?
In question-answering systems, it has been found that the knowledge-aware graph modules may only carry out some simple
reasoning such as counting (Wang et al., 2022). In GraphEval, we are interested in how the molecular substructure counters
perform on the biochemical property predictions. We take the substructure counts as molecular descriptors to feed into
classic methods, e.g., linear classifier, random forest (RF), and XGBoost, which have been found (Jiang et al., 2021; Liu
et al., 2018) to be effective in predicting molecular propderties.

We report the averaged test ROC-AUC scores in Table 5. Interestingly, these simple models trained on substructure counts
achieve on par performance with SOTA 2D graph pre-trained embeddings. However, with more flexibility introduced by the
end-to-end fine-tuning, the graph neural nets still maintain a margin of improvements (∼7.7%). In retrospect to Table 1, we
observe:

• with fixed pre-trained representation, GNN is comparative with substructure count descriptors + simple (linear) models;
• with fine-tuned representation, GNN perform much better than substructure counts.

Combining these two, we conjecture that GNN SSL pre-training strategies, especially contrastive-based, e.g.GraphCL and
JOAO, are conducting something similar to substructure extraction/counting. However, it is not clear how fine-tuning pre-
trained GNNs bring substantial improvements, we conjecture it might due to: (1) fine-tuning incorporate more information
beyond substructure counting, such as pair/global topology; (2) GNN has larger model capacity which is born with more
expressiveness.


