
Asymptotically Optimal Quantile Pure Exploration
for Infinite-Armed Bandits

Xiao-Yue Gong
Carnegie Mellon University
exiaoyue@andrew.cmu.edu

Mark Sellke
Harvard University

msellke@fas.harvard.edu

Abstract

We study pure exploration with infinitely many bandit arms generated i.i.d. from
an unknown distribution. Our goal is to efficiently select a single high quality
arm whose average reward is, with probability 1 − δ, within ε of being with the
top η-fraction of arms. For fixed confidence, we give an algorithm with expected
sample complexity O

(
log(1/δ) log(1/η)

ηε2

)
which matches a known lower bound up

to the log(1/η) factor. In particular the δ-dependence is optimal and closes a
quadratic gap. For fixed budget, we show the asymptotically optimal sample com-
plexity as δ → 0 is log(1/δ)

(
log log(1/δ)

)2
/c. The value of c depends explicitly

on the problem parameters (including the unknown arm distribution) through a
certain Fisher information distance. Even the strictly super-linear dependence on
log(1/δ) was not known and resolves a question of [GM20].

1 Introduction

In many learning problems, one faces the classical exploration versus exploitation tradeoff. A central
example is the (stochastic) multi-armed bandit [LR85, BF85], where an agent is presented with a set
of arms each of which when played gives a stochastic reward from an unknown and arm-dependent
distribution. The performance of a bandit algorithm is most commonly determined by its regret,
i.e. the difference between its average reward and the expected reward from the best arm. Multi-
armed bandits and extensions have been applied in many settings including medical trials [BE95],
online advertising [LCLS10], cognitive radio [AMTS11], and information retrieval [LPB17]. Opti-
mal algorithms for the multi-armed bandit, including UCB, Thompson sampling, EXP3, and various
forms of mirror descent, all make a principled tradeoff between exploration and exploitation.

In this work we focus on pure exploration bandit problems, a setting motivated by situations where
the learning procedure consists of an initial exploration phase followed by a choice of policy to
deploy. This is the case in hyperparameter optimization [GM20, LJD+17] as well as reinforcement
learning from simulated environments. As there is no longer a competing need to exploit, optimal
algorithms for pure exploration differ from the more common regret setting.

Pure exploration problems were introduced in [EDMM02, MT04, EDMM06] in the probably-
approximately-correct (PAC) model. Here given K arms, one adaptively obtains samples until
choosing one of the arms to output – the goal is to ensure that with probability 1 − δ, this arm
has average reward within ε of the best arm, with minimum possible sample complexity depending
on ε and δ. The early works above focused on the fixed confidence setting in which one aims to
minimize the expected sample complexity. Many subsequent works have also considered the fixed
budget problem where the sample complexity is uniformly bounded.

While sharp results are known for pure exploration and other bandit problems with K arms, for
many applications such as advertising there are far too many arms to explore. This motivated the
study of infinite-armed bandit problems in e.g. [BCZ+97, WAM08]; the pure exploration version

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

was first studied in [AAKA18]. The main contribution of our work is to obtain near-optimal sample
complexity for pure exploration problems with infinitely many arms in both the fixed confidence
and fixed budget settings.

1.1 Problem Formulation

We now precisely formulate the infinite-armed pure exploration setting. Let S = {a1, a2, . . . }
be a countably infinite set of stochastic bandit arms indexed by i = 1, 2, When an arm i is
sampled, it returns a {0, 1}-valued reward with mean pi. The values pi are drawn i.i.d. from an
arbitrary reservoir distribution µ supported in [0, 1] (which is unknown to the player). We define the
cumulative distribution function

Gµ(τ) = Pp∼µ[p ≤ τ]

of µ, and its (left-continuous) inverse

G−1
µ (p) = inf{τ : G(τ) ≥ p}.

Finally let µ∗ = G−1
µ (1) denote the essential supremum of µ, i.e. the maximum of its support.

An algorithm A interacts with S in the following way. At each time step t = 1, 2, . . . , T the
algorithm samples an arm it ∈ S , and observes a corresponding Bernoulli reward rt ∼ Ber(pit).
The reward rt is independent of previous actions and feedback. Eventually at some time T , A
chooses an arm ai∗ to output. If the time-horizon T = N is fixed, we say A has a fixed budget
constraint. If E[T] ≤ N is bounded only in expectation, we say A has a fixed confidence constraint.

For η, ε, δ > 0, we say A is (η, ε, δ)-PAC if

P
[
pi∗ ≥ G−1(1− η)− ε

]
≥ 1− δ (1.1)

and set
α ≡ G−1(1− η)

to be the target quantile value. We emphasize that while η is known, α may not be as it depends on
the unknown µ. The definition (1.1) stems from [AAKA18]. As brief justification for the parameter
η, note that in an infinite-armed setting the reservoir µ could give ε-optimal arms with arbitrarily
small probability. Thus it is impossible to give a non-asymptotic classical (ε, δ)-PAC in our setting
without assumptions on µ. Taking η > 0 as above ensures that a positive fraction of arms are
“good enough” and will enable such guarantees. One also cannot set ε to zero: for example if µ is
supported in [0.5 − e−N4

, 0.5], the quantile value of the output arm will be essentially uniform for
any N -sample algorithm.

The purpose of this paper is to give (η, ε, δ)-PAC algorithms whose sample complexity N is mini-
mal. We can now state our main results. Let us emphasize that unless explicitly stated, no assump-
tions on the reservoir distribution µ are made, nor does the algorithm have any prior knowledge
about µ. Our main result in the fixed confidence case is as follows.
Theorem 1.1. For any (η, ε, δ), there exists a (η, ε, δ)-PAC algorithm with expected sample com-

plexity O
(

log(1/δ) log(1/η)
ηε2

)
.

In the fixed budget setting, our interest is especially in the high-confidence regime δ → 0, where we
obtain the following. The following statement is a slightly informal combination of Theorems 3.1
and 3.2. We note that while the main statement requires α to be given, this is not essential in several
cases as discussed extensively in the Appendix. For example if α ≥ 1+ε

2 then α does not need to be
given.
Theorem 1.2 (Informal). For any fixed (η, ε), let α = G−1(1 − η) be given and set β = α − ε.
Then as δ → 0, the optimal (η, ε, δ)-PAC algorithm under fixed budget has sample complexity

N =
(
c−1
α,β ± oδ→0(1)

)
log(1/δ)

(
log log(1/δ)

)2
;

cα,β ≡
(
arccos(1− 2α)− arccos(1− 2β)

)2
2

(1.2)

=

(∫ α

β
dx√

x(1−x)

)2

2
. (1.3)

2

An equivalent statement is that given exactly N samples, the optimal failure probability δ to have
pi∗ ≥ G−1(1 − η) − ε decays as exp

(
−N(c±o(1))

log2(N)

)
. Indeed once η and ε are fixed, the question

of minimizing the sample complexity N = N(δ) (given a target confidence δ) is equivalent to
minimizing the failure probability δ = δ(N) (given a sample complexity N). These viewpoints are
equivalent in both settings we study, and we switch between them at times.

Interestingly the value η makes no appearance in Theorem 1.2, so it is asymptotically irrelevant for
the δ → 0 regime of fixed budget pure exploration. In fact the value arccos(1− 2α)− arccos(1−
2β) appearing in the definition of cα,β is the Fisher-information distance between α and β in the
exponential family of Bernoulli random variables via the formula (1.3). See just below Theorem 3.1
for a brief explanation of why η does not enter the asymptotic sample complexity.

Remark 1.1. In our problem formulation above we assumed rewards are Bernoulli, i.e. lie in {0, 1}.
In fact as long as the quality of arm i is measured by its mean reward, this assumption loses no
generality and is just a technical convenience: our results extend verbatim to [0, 1]-valued rewards.

Indeed any arm with [0, 1]-valued rewards can be transformed into a Bernoulli arm with {0, 1}-
valued rewards and the same mean: simply turn reward r ∈ [0, 1] into reward 1 with probability r,
and 0 with probability 1 − r. Note that this reduction (used also in Section 1.2 of [AG12]) might
increase the instance-dependent sample complexity of some reservoir distributions, but our results
only refer to the distribution of arm means under the reservoir which is unchanged by the reduction.

1.2 Further Notation

We use the convention that algorithms collect 1 sample per unit time until terminating, so the time
t equivalently denotes the number of total samples collected so far. Denote by ni,t the number of
samples of arm ai collected by time t. The n-th time ai is sampled, its reward is ri,n ∈ [0, 1]. The
total reward of arm i up to time t is

Ri,t =

ni,t∑
n=1

ri,n.

The corresponding average reward is p̂i,t = p̂i(ni,t) =
Ri,t

ni,t
. We use C to indicate a universal

constant independent of all parameters in this paper, and on(1) and oN (1) to denote quantities
tending to 0 as n → ∞ or N → ∞, with other parameters implicitly held constant. However
in Section C we use e.g. Ωα,ϱ to indicate an asymptotic lower bound with implicit constant factor
depending on the values of α, ϱ, which are treated as fixed. In all our uses of these notations it is n
or N which is tending to infinity while other parameters are always treated as fixed.

1.3 Related Work

As discussed above, this work belongs to the area of pure exploration for multi-armed bandit prob-
lems. Unlike ordinary bandit problems where one aims to minimize the regret compared to the best
arm [BCB12, Sli19], in pure exploration all that matters is the final arm selected by the algorithm.
We survey several existing results below, with an emphasis on the high-probability regime of small
δ. See e.g. Chapter 33 of [LS20] for a more detailed survey.

Pure exploration was first studied in [EDMM02, MT04, EDMM06] in the probably-approximately-
correct model. Here given K arms, one adaptively obtains samples until choosing one of the arms to
output – the goal is to ensure that with probability 1− δ, this arm has average reward within ε of the
best arm. These works showed that the optimal fixed confidence sample complexity is Θ

(
K
ε2 log

1
δ

)
.

Later, [BMS09] considered the simple regret of pure exploration problems, namely the regret in-
curred at the final timestep. [ABM10] studied the closely related problem of identifying the best
arm, obtaining nearly tight sample complexity bounds in terms of the the sum of the squared in-
verse suboptimality-gaps H =

∑
i ̸=i∗ ∆

−2
i . Further upper and lower sample complexity bounds

have been obtained in several works. For example [CL15, KCG16] show that for fixed confidence,
the sample complexity scales as Θ(H log(1/δ)) as δ → 0. The fixed budget setting, in which
the number of adaptive samples is upper-bounded almost surely rather than in expectation, turns
out to be more difficult. [CL16] proved that the optimal fixed budget sample complexity can be
Θ(H log(K) log(1/δ)) as δ → 0, i.e. the fixed budget constraint may lead to an additional log(K)

3

factor. However it reverts to Θ(H log(1/δ)) when the value of H is known beforehand. Many re-
cent works have studied other aspects of pure exploration, for example by incorporating structured
feedback; see [JMNB14, CGL+17, KSJ20, KG21, TRMD21, ACD21, ZKSN22, AAJ+22].

Infinite-armed bandits have also much received previous study, e.g. [BCZ+97, WAM08]. Since
near-optimal arms may be arbitrarily rare, it is natural to instead compare with a quantile of the arm
distribution. For example [CK18] aims to minimize regret relative to such a quantile.

The (η, ε, δ)-PAC guarantees we address in this paper were first studied in [AAKA18], for infinitely
many arms in the fixed confidence setting. Their approach was to sample K ≍ log(1/δ)

η arms
and then apply a PAC algorithm for K-armed pure exploration. As discussed at the beginning of
Section 2, the resulting algorithm “pays twice” for the high confidence level 1 − δ which leads to
a suboptimal O(log2(1/δ)) sample complexity upper bound. Top-k extensions were also studied in
[RLS19, CK19]; the log2(1/δ) scaling is still present in their results.

Of particular note is the work [dHCMC21] which considers also both fixed budget and confidence
settings and obtains somewhat similar looking results. However they restrict attention to a special
class of reservoir distributions with supremum achieved by an atom, which must be ∆-larger than
the rest of the support. This structural assumption of a ∆-gap intrinsically reduces fixed budget
sample complexity: their result (see Theorem 4 therein) is actually better than the lower bound we
show in Theorem 3.2 as there is no appearance of log log(1/δ) (i.e. log(T) in their notation).

From their fixed budget estimate, [dHCMC21] deduce (at the end of Section 1 therein) the same
bound as Theorem 1.1 in their setting for the special case ε = ∆. Our Theorem 3.2 shows that
for the general reservoirs we consider, passing from fixed budget to fixed confidence is inherently
suboptimal: the factors of log log(1/δ) would remain, but are extraneous for fixed confidence. This
underscores that Theorem 1.1 is genuinely new despite the superficial similarity with [dHCMC21],
since their proof cannot work in our setting.

Finally [GM20] studied the infinite-arm pure exploration problem where α is given, also focus-
ing on the δ → 0 asymptotics. They proposed an algorithm with fixed budget sample complexity
O
(
log(1/δ)

(
log log(1/δ)

)2)
, and asked whether the log log(1/δ) factors are necessary. Theo-

rem 3.2 shows their bound is optimal up to constant factors in terms of δ and in fact obtains the tight
constant. Interestingly [GM20] were motivated by complexity theoretic applications to amplification
and derandomization, where bandit arms correspond to random seeds.

We remark that the analysis in [GM20] seems to be technically incomplete. In particular in Lemma
4.5 of (the cited, journal version of) the paper, they neglect to take a union bound over sequences
(T1, . . . , Tk) summing to T but only estimate the probability of each fixed sequence (T1, . . . , Tk).
This is a serious gap since the number of such sequences is exponentially large in T . However their
idea to use a moving sequence of rejection thresholds was fundamentally correct. It is similar to the
main phase of our Algorithm 3, for which we give a fully rigorous, supermartingale-based analysis.

2 The Fixed Confidence Setting

Our fixed confidence algorithms proceeds in two phases. The first phase aims to estimate the target
quantile value, which we recall depends on the unknown α. The second phase then aims to find a
single arm which is almost as good as this estimate with high probability.

Focusing on the δ-dependence, a challenge with infinitely many arms is that to succeed with proba-
bility 1− δ, it is necessary both to sample log(1/δ) arms to ensure a good arm is ever observed, and
to sample an arm log(1/δ) times before outputting it as i∗. This is why the approach of [AAKA18]
requires O(log2(1/δ)) samples: they obtain O(log(1/δ)) samples each of O(log(1/δ)) arms. How-
ever in our algorithm, the first phase samples O(log(1/δ)) arms O(1) times each, while the second
phase samples O(1) arms O(log(1/δ)) times each. This allows us to satisfy both necessary condi-
tions above without paying twice for the confidence level.

2.1 The Algorithm for Fixed Confidence

We first give in Alg. 1 a simple procedure to estimate the top η quantile, allowing an ε/3 error as
well as an η/2 error in the quantile itself. Alg. 1 obtains O

(
log(1/η)

ε2

)
samples from each of the

4

Algorithm 1: Output α̂ ∈
[
G−1(1− η)− ε

3 , G
−1
(
1− η

2

)
+ ε

3

]
with probability 1− δ

2

1 input: arm set S = (a1, a2, . . .) and parameters η, ε, δ ∈ (0, 1).
2 initialize: K = C log(1/δ)

η .
3 for i = 1, 2, . . . ,K do
4 Collect n = C log(1/η)

ε2 samples of arm i. Set p̂i = p̂i(n) to be the average observed reward.
5 end
6 Let α̂ be the k-th largest value in {p̂1, . . . , p̂K} for k =

⌈
3Kη
4

⌉
.

7 Return α̂

Algorithm 2: Output ai∗ such that pi∗ ≥ α̂− ε with probability 1− δ.
1 input: arm set S = (a1, a2, . . .) and parameters (η, ε, δ, α̂)
2 for i = K + 1,K + 2, . . . ,K + C log(1/δ)

η do
3 Collect C log(1/ηδ)

ε2 samples of arm i. Set p̂i to be the average reward.
4 if p̂i ≥ α̂− ε

3 then
5 Return ai
6 end
7 end

first K = O
(

log(1/δ)
η

)
arms a1, . . . , aK . The resulting estimator α̂ is the 1 − 3η

4 quantile of the
empirical average rewards p̂1, . . . , p̂k. Its main guarantee is below.

Proposition 2.1. Fix 0 ≤ η, ε, δ ≤ 1. With probability at least 1− δ
2 , the output α̂ of Alg. 1 satisfies

α̂ ∈
[
G−1(1− η)− ε

3
, G−1

(
1− η

2

)
+

ε

3

]
.

Moreover, Alg. 1 has sample complexity

O

(
log(1/η) log(1/δ)

ηε2

)
.

Next Alg. 2 repeatedly chooses a new arm ai and obtains O
(log(1/ηδ)

ε2

)
samples. It accepts if the

sample mean was at least α̂ − ε
3 , and otherwise moves on to the next arm. If C log(1/δ)

η arms have
been tried without success, then Alg. 2 outputs no arm, thus declaring failure. This termination
condition is necessary to avoid incurring huge sample complexity when Alg. 1’s estimate α̂ of α is
inaccurate. Since typically Ω(η) of arms will be good enough to usually succeed, this also preserves
the 1− δ confidence level. We now give the following more detailed restatement of Theorem 1.1.

Theorem 2.1. Apply Algorithm 1 followed by Algorithm 2 using the resulting value α̂. This com-
bined algorithm has expected sample complexity O

(
log(1/η) log(1/δ)

ηε2

)
. Moreover its output ai∗

satisfies
P[pi∗ ≥ G−1(1− η)− ε] ≥ 1− δ.

Proposition 2.1 and Theorem 2.1 are proved in Appendix A. We note that in analyzing Algorithm 2,
typically the returned arm ai has i ≤ K+O(1/η). This is because each arm ai in the top η/2 quan-
tile has a good chance to pass the test of Algorithm 2. In particular, the expected sample complexity
calculation never multiplies two log(1/δ) terms together. However, continuing for K + C log(1/δ)

η

steps is important to ensure a 1−δ success probability. Algorithm 2 stops after O(log(1/δ)/η) arms
instead of continuing forever in order to guard against erroneous estimates from Algorithm 1.

Remark 2.1. Our fixed confidence algorithm, given by combining Alg. 1 with Alg. 2 as above, re-
quires only O(1) batches in expectation. Here a batched algorithm operates in a small number
of batched phases. At the start of each phase, such an algorithm chooses b arms to sample ex-
actly s times each, where b, s can both depend adaptively on the previous feedback, but cannot be

5

changed during the current phase. Minimizing the number of required batches is often desirable,
see e.g. [PRCS16, GHRZ19]. In particular Alg. 1 uses a single batch with s1 = C log(1/η)

ε2 samples
of b1 = C log(1/δ)

η arms. Then Alg. 2 can be implemented in a batched way with s2 = C log(1/ηδ)
ε2

and a sequence of batch sizes b2,i = 2i

η for 1 ≤ i ≤ log2 (C log(1/δ)). (In the latter phase, one
stops after finding an arm to accept.) While this construction uses O(1) batches in expectation, it
could be interesting to explore pure exploration with an exactly fixed number of batches, which is
more analogous to the fixed budget setting.

2.2 Near-Optimality in the Fixed Confidence Regime

Here we explain why the guarantee of Theorem 2.1 is nearly optimal. For comparison, recall from
the important work [MT04] that Θ

(
K log(1/δ)

ε2

)
samples are necessary and sufficient for (ε, δ)-PAC

pure exploration in the K-armed bandit problem with fixed confidence. Intuitively, one expects this
problem to be related to ours via η ≈ 1/K. In fact the following infinite-arm analog was later
shown.1 It follows that the guarantee of Theorem 1.1 is optimal up to the log(1/η) factor.

Proposition 2.2 (Theorem 1 and Remark 2 of [AAKA18]). There exists an absolute constant c > 0
such that the following holds. For any 1/4 ≤ α ≤ 3/4 and η, δ ≤ 1/10 and for any pure exploration
algorithm A with expected sample complexity N ≤ c log(1/δ)

ηε2 , there exists a reservoir distribution
such that A fails to be (η, ε, δ)-PAC.

Letting L = log(1/δ)
ηε2 ≥ 1/η be the lower bound from Proposition 2.2, the expected sample com-

plexity of our algorithm is at most O(L log(1/η)) ≤ O(L logL). Hence Theorem 1.1 is always
nearly optimal compared to the lower bound. Prior to our work there was a quadratic gap as the
best upper bound for general reservoirs (Theorem 6 in [AAKA18]) was proportional to log2(1/δ).
We note also that Theorem 5 of [dHCMC21] showed a similar result to Proposition 2.2.

3 Fixed Budget

Our algorithm and lower bounds for the fixed budget setting are much more technical, with full
details given in the Appendix. Here we carefully state the results and give outlines of the proofs.

3.1 Precise Results for Fixed Budget

We first state the results in the easier case that α is given. Theorems 3.1 and 3.2 below give rigorous
statements of Theorem 1.2. As there, we will write β for the target value α − ε when α is given,
since then the value ε plays no role.

Theorem 3.1. For any fixed 0 < β < α < 1, there is a sequence (AN)N≥1 of N -sample algo-
rithms given explicitly by Algorithm 3 such that for any η ∈ (0, 1) and any sequence of reservoir
distributions µN with G−1

µN
(1− η) ≥ α, with cα,β as in (1.2):

lim sup
N→∞

(− logPµN
[pi∗ < β]) · log2 N

N
≥ cα,β . (3.1)

Conversely, the following lower bound applies for any quantile η ∈ (0, 1), and holds even when α
is known (which only makes pure exploration easier). It implies that η is asymptotically irrelevant
for fixed budget sample complexity, i.e. the sample complexity of approximating the η = 0.01-
quantile and η = 0.99 quantile in fixed budget pure exploration depends only on the quantile values
themselves as δ → 0. Some intuition for this is as follows. To succeed in pure exploration, one
should have sampled the eventually outputted arm at least Ω(log 1/δ) times. The main obstacle to
success in the fixed budget case is that any arm we obtain many samples of might gradually degrade
over time. The probability of this degradation is essentially given by small probabilities coming from
Chernoff-bound type events, which dominate the prior probability that the arm is in a top quantile.

1[AAKA18] states the result more generally. Specializing to P[pi = α] = η and P[pi = α − ε] = 1 − η
for any 1/4 ≤ α ≤ 3/4 recovers the statement of Proposition 2.2.

6

Theorem 3.2. For any 0 < η < 1 and 0 < β < α < 1 there exists a sequence of reservoir
distributions µN with α = G−1

µN
(1− η) such that for any sequence of N -sample algorithms AN ,

lim inf
N→∞

(− log(PµN
[pi∗ < β])) · log2 N

N
≤ cα,β . (3.2)

Remark 3.1. As discussed in the Appendix, the requirement that α be known in Theorem 3.1 is
technically necessary to deal with potential discontinuity of α as η varies, but can be removed under
mild conditions. In Theorems B.1, B.2, and B.3 below we give three concrete formulations under
which the guarantee (3.1) can be achieved without knowledge of α. Informal descriptions (any 1 of
which suffices on its own) are:

1. µN obeys G−1
µN

(1− η) ≥ 1+ε
2 .

2. α is redefined as the average of G−1
µ (η) for η ranging over an interval.

3. µN = µ is independent of N , and the target value is
β = µ∗ − ε1

for fixed ε1 > ε. (Recall µ∗ is the maximum value in the support of µ.)

Remark 3.2. In fact (see Theorem C.9 in the Appendix), Theorem 3.1 holds even if the algorithms
AN must output logN distinct arms i∗1, . . . , i

∗
logN , all of which must satisfy pi∗j ≥ β. I.e. for suitable

(AN)N≥1,

lim sup
N→∞

(− logP
[

min
j∈[logN]

pi∗j < β
]
) · log2 N

N
≥ cα,β .

3.2 Algorithm for Fixed Budget

Here we present our Algorithm 3 for the fixed budget problem. We note that this algorithm is
given as input the value of α. See Appendix C.1 for first-stage algorithms which estimate α with
sufficiently high accuracy and low sample complexity in the three scenarios of Remark 3.1. We
use an explore-and-discard approach: at each time, it is currently exploring some arm i, having
permanently discarded arms 1, 2, . . . , i − 1 and not yet interacted with arms i + 1, i + 2, It
turns out to be very convenient to operate in a “B-batch-compressed” way for an increasing integer
sequence B = (b1, b2, . . .). This means that at all times, the current arm i has been sampled bk
times for some k, and the samples between bk and bk+1 are compressed into a single decision. The
sequence bk increases geometrically at a small rate, i.e. bk+1/bk ≈ 1 + ϱ for small ϱ once k is
mildly large. This batch-compression turns out to be without loss of generality up to a factor 1 + ϱ
in the sample complexity, and helps the analysis operate on the proper geometric time-scales.

We now give a precise description as well as pseudo-code. Let 0 < ϱ ≪ ϱ1 ≪ ϱ2 ≪ 1 be suitably
small constants (i.e. choose ϱ2 sufficiently small, then ϱ1, then ϱ). We define bk and other parameters
as follows:

θ(a) = arccos(1− 2a) ∀ a ∈ [0, 1],

b0 = ⌈ϱ1 log2(N)⌉,
k0 = ⌈log1+ϱ

(
log4(N)/b0

)
⌉

bk = ⌈b0(1 + ϱ)k⌉, k ≤ k0

bk0+j = ⌈(1 + ϱ)jbk0⌉, j ≥ 1

τk = α− ϱ− k√
logN

, k ≤ k0

τk0+j = θ(α− 2ϱ)− j ·
(
θ(α)− θ(β)

)
ϱ(1− ϱ2)

logN
, j ≥ 1.

(3.3)

The outer loop dictates the arm i under consideration. While exploring arm i, the main phase (shown
in the last for loop) consists of collecting a new batch of bk0+j − bk0+j−1 ≈ ϱbk0+j−1 samples, and
rejecting if the new empirical mean reward p̂i,bk0+j

drops below

θ−1

(
θ(α− 2ϱ)− j ·

(
θ(α)− θ(β)

)
ϱ(1− ϱ2)

logN

)
.

7

Algorithm 3: Output arm with pi ≥ β using N samples with high probability
1 input: parameters N,α, β, and an infinite sequence of arms i = 1, 2, . . .
2 initialize: parameters from (3.3) and i = 0
3 while fewer than N samples have been collected do
4 i← i+ 1
5 Get b0 samples of arm i.
6 if p̂i,b0 ≤ α− ϱ then
7 Reject arm i
8 end
9 for k = 1, 2, . . . , k0 do

10 Get bk − bk−1 samples of arm i (total bk).
11 if p̂i,bk ≤ α− ϱ− k√

logN
then

12 Reject arm i;
13 end
14 end
15 for j = 1, 2, . . . do
16 Get bk0+j − bk0+j−1 samples of arm i (total bk0+j).

17 if θ(p̂i,bk0+j
) ≤ θ(α− 2ϱ)− j ·

(
θ(α)−θ(β)

)
ϱ(1−ϱ2)

logN then
18 Reject arm i
19 end
20 end
21 end
22 Return arm i.

Let us explain the point of this formula. First ignoring the function θ for now, we see that the
rejection threshold for p̂i,bk steadily decreases with k. This threshold is tuned so that when arm i has
been sampled say Ω(N/ logN) times, we have k ≍ log(N)/ϱ which results in a threshold slightly
larger than β. Thus an arm which survives for such a long time will be prepared for acceptance as a
new-optimal arm.

This strategy can be motivated as follows. The chief worry in fixed budget exploration is that arms
might slowly degrade after many samples have been invested into them, which suggests a gradually
decreasing rejection threshold. We designed this threshold to drop by a constant divided by log(N)
each time the number bk of samples doubles. This ensures that for arm i to be rejected at time bk+1,
the last bk+1−bk samples must have behaved atypically (compared to their past behavior) by roughly√

bk+1

log(N) standard deviations. The probability of this rare event is roughly exp(−Cbk+1/ log
2(N)) for

some constant C by a Chernoff bound. Therefore if all N samples are used on eventually rejected
arms, the product of these rare event probabilities will be roughly exp(−CN/ log2(N)) since each
bk+1 counts the number of samples used on an individual arm.

The use of the non-linear function θ above is essential to achieve the optimal constant cα,β in The-
orem 3.1. At a high-level, θ balances the p(1 − p)-dependence of optimal Chernoff bounds on the
underlying probability p of the Binomial random variable. If the optimal constant is not desired,
then Theorem 3.1 can be simplified somewhat; the nonlinear θ is not needed and one can double the
number of samples at each step rather than multiplying by 1+ ϱ for small ϱ. The earlier for loops in
Algorithm 3 are technically important to handle small sample sizes for each given arm, before the
required Chernoff bounds have kicked in asymptotically.

3.3 Analysis of Algorithm 3

The analysis of Algorithm 3 goes by controlling the tail distribution for the rejection time of a given
arm (this time is taken to be zero if no rejection ever happens). Intuitively, we are most worried
about arms which slowly degrade, thus wasting many samples. The following lemma, proved in the
Appendix by a supermartingale argument, is key to rigorize this idea.

8

Lemma 3. Suppose (Yi)i≥1 are i.i.d. random variables with non-negative integer values, and
E[Y c

i] ≤ 1 holds for some constant c ≥ 0. Then with

M = sup
j≥0

∏
1≤i≤j

Yi

we have P[M ≥ A] ≤ A−c.

We apply Lemma 3 in the following way. Let Xi be the number of samples used by arm ai before
rejection, and Ii ∈ {0, 1} be the indicator of the event that ai is ever rejected (even if Algorithm 3
were to continue past time N and sample arm i an infinite number of times). We set Yi = eXi · Ii.
The bulk of the analysis thus reduces to proving that E[Y c

i] ≤ 1 for a suitable exponent c. Once this
is shown, Lemma 3 ensures that M is small with high probability. Since log(M) is exactly the total
number of samples used on eventually-rejected arms, if say logM ≤ N

(
1− 1

logN

)
then the last

arm i∗ to be selected must have passed enough rejection thresholds to have pi∗ ≥ β with sufficiently
high probability.

The early behavior of Algorithm 3 and bk are specifically designed so that small values of Yi con-
tribute little in expectation. The tail behavior of Yi (corresponding to rejecting arm i after a long
time) is controlled by a technical analysis involving many adjacent time-scales in Subsection C.4 of
the Appendix. Interestingly this tail analysis of Yi never explicitly models the reward probability pi.
This is because we are able to argue that a rejection requires the early and late time behaviors of arm
i to differ from each other, which is unlikely since the rewards form an i.i.d. sequence.

3.4 On the Lower Bound Proof

We consider the lower bound Theorem 3.2 to be the technical highlight of this paper. In it we face the
challenge of proving a very small lower bound on the failure probability of any fixed budget algo-
rithm. To do so we construct an online adversary with bounded probabilistic strength to distort
rewards. The setup follows; recall B-batch-compressed algorithms as defined in Subsection 3.2.
Definition 3.1. An adaptive randomness distorting adversary A interacts with a B-batch-
compressed algorithmA in the following way. SupposeA chooses to increase the number of samples
of arm ai from bk to bk+1. Then A may restrict the set of possible outcomes of these bk+1− bk sam-
ples. Additionally, when A outputs an arm ai∗ , the adversary can restrict the possible values of
pi∗ .

We will refer to adversarial actions as declarations. Thus when A chooses a batch of samples, A
may declare that some property holds for the observed rewards.

As defined above, an adversary A can do anything. We will limit the power of A to make low-
probability declarations. To formalize this, we charge A per “bit” of probabilistic distortion, and
give A a deterministic “budget” for doing so. We measure this budget according to the algorithm’s
filtration which we refer to the “jointly Bayesian” viewpoint. One should think that the reservoir
distribution µN is known to both A and A, but neither has any information on the true reward
probabilities pi beyond the observed rewards. Thus A and A share at any time t the posterior
distribution µt. In particular recalling (B.9), µt determines the distribution for the outcome of the
next batch of bk+1 − bk samples.
Definition 3.2. Suppose that at time t, the declaration of A has probability Pt to hold according to
µt. Let the sum

Costt =
∑
s≤t

log(1/Ps) (3.4)

be the total cost of A up to time t, and CostN the total cost of A. We say strength(A) ≤ Cost holds
for some Cost ∈ R if the bound CostN ≤ Cost almost surely.

The next key lemma shows that to obtain a lower bound for the failure probability of an algorithm,
it suffices to prevent success using a low strength A.
Lemma 4. Suppose there is a randomness distorting adversary A of strength Cost whose declara-
tions ensure that any algorithm A outputs i∗ satisfying pi∗ ≤ β almost surely. Then the true failure
probability of A is

PµN ,A[pi∗ ≤ β] ≥ e−Cost.

9

Proof. At each step t, let the random variable Et denote the minimum possible conditional probabil-
ity of the event pi∗ ≤ β for any algorithm (in the algorithm’s jointly Bayesian filtration). We claim
that conditioned on A’s declarations holding, for any A the quantity Mt ≡ Et

∏
s≤t Ps evolves as

a supermartingale in this filtration. This suffices because it implies E0 = M0 ≥ E[MT] ≥ e−Cost.
(Here T is the random number of total batches used.)

Indeed suppose we are at time t and the next batch has been declared but not sampled. (Identical
arguments apply when the adversary restricts pi∗ in the last stage.) Let the σ-field Ft denote all
information up to this point including the declaration of the next batch. Let E denote an expectation
where the samples from the next batch is distributed according to µt. Let Ẽ denote an expectation
where A’s declaration is conditioned to hold on the next batch. The dynamic programming principle
implies that

E[Et+1 | Ft] ≤ Et

for any A (with equality for the optimal A). Moreover since A’s declaration has µt-probability Pt,

Ẽ[Et+1 | Ft] ≤ E[Et+1 | Ft]/Pt ≤ Et/Pt.

Pt is Ft measurable, so Ẽ[PtEt+1 | Ft] ≤ Et. This establishes the claim and ends the proof.

We prove Theorem 3.2 by constructing a Bayesian adversary who slowly degrades the empirical
performance of each arm ai. This adversary declares for each batch of samples that the empirical
average reward p̂i(ni,t) of arm i will drop by Ω

(
ϱ

log(N)

)
, at least once the sample size ni,t ≥ Nϱ

is large. This degradation schedule ensures that the average reward of any arm is smaller than β
once it has been sampled Ω(N1−ϱ) times. Moreover it follows from reverse Chernoff estimates that
this adversary pays O

(
1

log2(N)

)
cost per sample, leading to a failure probability lower bound of

exp(−O(N/ log2 N)) from Lemma 4. As with the upper bound, sharp constants can be tracked
with more work and indeed our optimal adversary uses the same function θ as in Algorithm 3.

Conclusion Our aim in this paper was to understand the sample complexity of pure exploration
with infinitely many arms. We showed that, surprisingly, the behavior of fixed confidence and fixed
budget problems is provably very different. In the former setting, there is a nearly optimal algorithm
which precisely balances between sampling enough distinct arms (to estimate the quantile) and
obtaining enough samples of a single arm (to be output). In the latter, the optimal algorithm must
repeatedly decide whether to continue with the current arm or switch to a fresh one, via a gradually
decreasing sequence of rejection thresholds.

Several interesting questions remain. One is that our fixed budget analysis is tailored to the δ → 0
setting, and does not apply if ε, η, δ all tend to zero at comparable rates. Hence other behaviors
could be present in such parameter regimes. Additionally, a key conceptual feature of infinite-
armed bandits is the possibility that no “good” arms are among those sampled by the algorithm.
By definition, this simply cannot happen in K-armed bandits. It would be interesting to identify a
natural problem setting that interpolates between them. Finally high probability bounds on the fixed
confidence sample complexity would interpolate between the two settings we studied.

References
[AAJ+22] Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, and

Javed Aslam. Identifying new podcasts with high general appeal using a pure explo-
ration infinitely-armed bandit strategy. In Proceedings of the 16th ACM Conference
on Recommender Systems, pages 134–144, 2022.

[AAKA18] Maryam Aziz, Jesse Anderton, Emilie Kaufmann, and Javed Aslam. Pure exploration
in infinitely-armed bandit models with fixed-confidence. In Algorithmic Learning
Theory, pages 3–24. PMLR, 2018.

[ABM10] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in
multi-armed bandits. In COLT, pages 41–53. Citeseer, 2010.

[ACD21] Ayya Alieva, Ashok Cutkosky, and Abhimanyu Das. Robust pure exploration in linear
bandits with limited budget. In International Conference on Machine Learning, pages
187–195. PMLR, 2021.

10

[AG12] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In Conference on learning theory, pages 39–1. JMLR Workshop and
Conference Proceedings, 2012.

[AMTS11] Animashree Anandkumar, Nithin Michael, Ao Kevin Tang, and Ananthram Swami.
Distributed algorithms for learning and cognitive medium access with logarithmic
regret. IEEE Journal on Selected Areas in Communications, 29(4):731–745, 2011.

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends® in Machine Learn-
ing, 5(1):1–122, 2012.

[BCZ+97] Donald Berry, Robert Chen, Alan Zame, David Heath, and Larry Shepp. Bandit prob-
lems with infinitely many arms. Annals of Statistics, 25(5):2103–2116, 1997.

[BE95] Donald A Berry and Stephen G Eick. Adaptive assignment versus balanced random-
ization in clinical trials: a decision analysis. Statistics in medicine, 14(3):231–246,
1995.

[BF85] Donald Berry and Bert Fristedt. Bandit problems: sequential allocation of experi-
ments. London: Chapman and Hall, 5(71-87):7–7, 1985.

[BMS09] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed
bandits problems. In International conference on Algorithmic learning theory, pages
23–37. Springer, 2009.

[CGL+17] Lijie Chen, Anupam Gupta, Jian Li, Mingda Qiao, and Ruosong Wang. Nearly opti-
mal sampling algorithms for combinatorial pure exploration. In Conference on Learn-
ing Theory, pages 482–534. PMLR, 2017.

[CK18] Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. Quantile-regret minimisation
in infinitely many-armed bandits. In UAI, pages 425–434, 2018.

[CK19] Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. PAC Identification of Many
Good Arms in Stochastic Multi-Armed Bandits. In International Conference on Ma-
chine Learning, pages 991–1000. PMLR, 2019.

[CL15] Lijie Chen and Jian Li. On the optimal sample complexity for best arm identification.
arXiv preprint arXiv:1511.03774, 2015.

[CL16] Alexandra Carpentier and Andrea Locatelli. Tight (Lower) Bounds for the Fixed Bud-
get Best Arm Identification Bandit Problem. In Conference on Learning Theory, pages
590–604, 2016.

[DA92] Alejandro De Acosta. Moderate deviations and associated Laplace approximations
for sums of independent random vectors. Transactions of the American Mathematical
Society, 329(1):357–375, 1992.

[dHCMC21] Rianne de Heide, James Cheshire, Pierre Ménard, and Alexandra Carpentier. Ban-
dits with many optimal arms. Advances in Neural Information Processing Systems,
34:22457–22469, 2021.

[EDMM02] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed
bandit and Markov decision processes. In International Conference on Computational
Learning Theory, pages 255–270. Springer, 2002.

[EDMM06] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action Elimination and Stop-
ping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems.
Journal of machine learning research, 7(6), 2006.

[GHRZ19] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched Multi-Armed
Bandits Problem. Advances in Neural Information Processing Systems, 32, 2019.

[GM14] Spencer Greenberg and Mehryar Mohri. Tight Lower Bound on the Probability of a
Binomial Exceeding its Expectation. Statistics & Probability Letters, 86:91–98, 2014.

[GM20] Ofer Grossman and Dana Moshkovitz. Amplification and Derandomization without
Slowdown. SIAM Journal on Computing, 49(5):959–998, 2020.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In
The collected works of Wassily Hoeffding, pages 409–426. Springer, 1994.

11

[JMNB14] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’UCB: An
Optimal Exploration Algorithm for Multi-Armed Bandits. In Conference on Learning
Theory, pages 423–439. PMLR, 2014.

[KCG16] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-
arm identification in multi-armed bandit models. The Journal of Machine Learning
Research, 17(1):1–42, 2016.

[KG21] Tomás Kocák and Aurélien Garivier. Epsilon best arm identification in spectral ban-
dits. In IJCAI, pages 2636–2642, 2021.

[KSJ20] Julian Katz-Samuels and Kevin Jamieson. The true sample complexity of identifying
good arms. In International Conference on Artificial Intelligence and Statistics, pages
1781–1791. PMLR, 2020.

[LCLS10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit
approach to personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pages 661–670, 2010.

[LJD+17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[LP14] Kyle Luh and Nicholas Pippenger. Large-deviation bounds for sampling without re-
placement. The American Mathematical Monthly, 121(5):449–454, 2014.

[LPB17] David E Losada, Javier Parapar, and Alvaro Barreiro. Multi-armed bandits for ad-
judicating documents in pooling-based evaluation of information retrieval systems.
Information Processing & Management, 53(5):1005–1025, 2017.

[LR85] Tze Leung Lai and Herbert Robbins. Asymptotically efficient Adaptive Allocation
Rules. Advances in Applied Mathematics, 6:4–22, 1985.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press,
2020.

[MNS16] Amit Moscovich, Boaz Nadler, and Clifford Spiegelman. On the exact Berk-Jones
statistics and their p-value calculation. Electronic Journal of Statistics, 10(2):2329–
2354, 2016.

[MT04] Shie Mannor and John N Tsitsiklis. The Sample Complexity of Exploration in the
Multi-Armed Bandit Problem. Journal of Machine Learning Research, 5(Jun):623–
648, 2004.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

[Nie20] Frank Nielsen. An Elementary Introduction to Information Geometry. Entropy,
22(10):1100, 2020.

[PRCS16] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched
Bandit Problems. The Annals of Statistics, pages 660–681, 2016.

[RLS19] Wenbo Ren, Jia Liu, and Ness B Shroff. Exploring k out of Top ρ Fraction of Arms
in Stochastic Bandits. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 2820–2828. PMLR, 2019.

[Sli19] Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. Foundations and Trends®
in Machine Learning, 12(1-2):1–286, 2019.

[TRMD21] Parth K Thaker, Nikhil Rao, Mohit Malu, and Gautam Dasarathy. Pure Exploration in
Multi-armed Bandits with Graph Side Information. arXiv:2108.01152, 2021.

[WAM08] Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for infinitely many-
armed bandits. Advances in Neural Information Processing Systems, 21, 2008.

[ZKSN22] Yinglun Zhu, Julian Katz-Samuels, and Robert Nowak. Near instance optimal model
selection for pure exploration linear bandits. In International Conference on Artificial
Intelligence and Statistics, pages 6735–6769. PMLR, 2022.

12

A Proofs from Section 2

Algorithm 4: Output α̂ ∈
[
G−1(1− η1)− ε

3 , G
−1 (1− η1 + η2) +

ε
3

]
with probability 1− δ

2

1 input: arm set S = (a1, a2, . . .) and parameters (η1, η2, ε, δ) ∈ (0, 1) with η2 < η1.
2 initialize: K = Cη1 log(1/δ)

η2
2

.
3 for i = 1, 2, . . . ,K do
4 Collect n = C log(1/η2)

ε2 samples of arm i. Set p̂i = p̂i(n) to be the average observed reward.
5 end
6 Let α̂ be the k-th largest value in {p̂1, . . . , p̂K} for k =

⌈
K
(
η1 − η2

2

)⌉
.

7 Return α̂

We show the following generalization of Proposition 2.1.

Proposition A.1. Fix 0 ≤ η1, η2, ε, δ ≤ 1 with η2 ≤ η1. With probability at least 1− δ
2 , the output

α̂ of Alg. 4 satisfies

α̂ ∈
[
G−1(1− η1)−

ε

3
, G−1 (1− η1 + η2) +

ε

3

]
.

Moreover, Alg. 4 has sample complexity

O

(
η1 log(1/η2) log(1/δ)

η22ε
2

)
.

Proof. The sample complexity is clear so we focus on the first statement. First observe that by a
Chernoff estimate, for each i ∈ [K],

P
[
|pi − p̂i| ≥

ε

3

]
≤ η2

8
. (A.1)

Let N(ε) be the number of i ∈ [K] such that |pi − p̂i| ≥ ε
3 . Applying a second Chernoff estimate

(of multiplicative form, see e.g. Theorem 4.5 in [MU17]) on these events as i varies and noting that
Kη2 ≥ C log(1/δ), (A.1) implies

P
[
N(ε) ≤ Kη2

6

]
≥ 1− δ

8
. (A.2)

We next show that with probability at least 1− δ
4 ,

α̂ ≤ α+
ε

3
≡ G−1 (1− η1 + η2) +

ε

3
. (A.3)

With pi the (true) mean reward from arm ai, let

Nα ≡ |{i ∈ [K] : pi > α}|
denote the number of the K tested arms which satisfy pi > α. By definition, Nα is stochastically
dominated by a Bin

(
K, η1 − 9η2

10

)
random variable, and η1 − 3η2

4 = Θ(η1) since η2 ≤ η1. Note
that

η1 −
9η2
10
≍ η1 −

3η2
4
≍ η1,

η1 − 9η2

10

η1 − 3η2

4

≥ 1 +
η2
20η1

.

Therefore another multiplicative Chernoff estimate implies

P
[
Nα ≤ K

(
η1 −

3η2
4

)]
≥ e−Ω(Kη2

2/η1) ≥ 1− δ

8
.

When both N(ε) ≤ Kη2

6 and Nα ≤ K
(
η1 − 3η2

4

)
hold, it follows by definition that α̂ ≤ α + ε

3 .
Hence recalling (A.2) above, we conclude that

P
[
α̂ ≤ α+

ε

3

]
≥ 1− δ

4
,

13

establishing (A.3). The other direction is similar. With α = G−1(1− η1) as usual, we set

Nα ≡ |{i ∈ [K] : pi ≥ α}| . (A.4)

This time, Nα stochastically dominates a Bin(K, η1) random variable. Yet another Chernoff esti-
mate yields

P
[
Nα ≥ K

(
η1 −

η2
4

)]
≥ 1− δ

8
.

Using (A.2) in the same way as above, we find

P
[
α̂ ≥ α− ε

3

]
≥ 1− δ

4
.

This concludes the proof.

Proof of Theorem 2.1. First we analyze the expected sample complexity. On the event that

α̂ ∈
[
G−1(1− η)− ε

3
, G−1

(
1− η

2

)
+

ε

3

]
(A.5)

we claim that Alg. 2 terminates with probability η/4 for each ai. Indeed, if

p̂i ≥ G−1
(
1− η

2

)
then termination always happens by definition. This has probability at least 1/4 if pi ≥ G−1

(
1− η

2

)
by Theorem 1 in [GM14], and the latter condition holds with probability at least η/2 by definition.
It follows that when (A.5) holds, the expected sample complexity of Alg. 2 is O

(
log(1/ηδ)

ηε2

)
. On

the other hand, (A.5) fails to hold with probability less than δ. Because of the explicit termina-
tion condition in Alg. 2, this yields a additional sample complexity contribution of smaller order
O
(
δ log(1/δ) log(1/ηδ)ηε2

)
. Finally Alg. 4 has sample complexity

O

(
log(1/η) log(1/δ)

ηε2

)
which clearly forms the dominant contribution. This completes the proof of the sample complexity
bound and we now turn to proving correctness with probability 1 − δ. First, it is easy to see that
Alg. 4 outputs some arm ai with probability at least 1 − δ

2 . It therefore suffices to show that for
any fixed α̂ satisfying (A.5), conditioned on the event p̂i ≥ α̂ − ε

3 , the conditional probability that
pi ≥ α− ε is at least 1− δ

2 .

We do this using Bayes’ rule. If pi ≥ G−1(1− η
2), then as above Theorem 1 in [GM14] implies

P
[
p̂i ≥ α̂− ε

3

]
≥ P[p̂i ≥ pi] ≥ 1/4.

This event hence contributes probability at least η/4 to the event pi ≥ G−1(1 − η). On the other
hand, if pi ≤ G−1(1− η)− ε ≤ α̂− 2ε

3 , then

P
[
p̂i ≥ α̂− ε

3

]
≤ P

[
p̂i ≥ pi +

ε

3

]
≤ ηδ/8

for an absolute constant C. Combining these via Bayes’ rule implies the desired result.

B Lower Bound for Fixed Budget

Fixed Budget with Unknown α

Before giving the proof, we give some qualitative discussion of the role of unknown α. We consider
Theorem 3.2 to be a definitive lower bound, since e.g. being given the value of α only makes the
result stronger. When α is unknown, it is possible to give an essentially matching algorithm, but
more care is required when stating the result. This is inherent and stems from the fact that the value
α = G−1

µ (1− η) can be difficult or even impossible to estimate, yet determines the constant cα,β in
the desired rate.

14

Let us illustrate the issue by a counterexample. Consider µN defined by:

Pp∼µN [p = 0.4] =
1

2
+ e−10N ,

Pp∼µN [p = 0.2] =
1

2
− e−10N .

(B.1)

Similarly define µ̃N by:

Pp∼µ̃N [p = 0.4] =
1

2
− e−10N ,

Pp∼µ̃N [p = 0.3] = 2e−10N ,

Pp∼µ̃N [p = 0.2] =
1

2
− e−10N .

(B.2)

Then µN and µ̃N are not distinguishable using N samples, yet G−1
µ (1/2) = 0.4 while G−1

µ̃ (1/2) =
0.3. Using non-distinguishability it follows that the lower bound of Theorem 3.2 applies to µ̃N with
threshold α = G−1

µN
(1/2) = 0.4, as opposed to the direct application using G−1

µ̃N
(1/2) = 0.3. It is

not hard to show using monotonicity of 1√
x(1−x)

that

c0.4,0.4−ε < c0.3,0.3−ε

for all ε ≤ 0.3. As a result, it is information-theoretically impossible to achieve the rate (3.1) for
µ̃N if the target quantile value α is not given. The core reason is that the value G−1

µ̃ (1/2) = 0.3 is
too sensitive to the choice η = 1/2 of quantile.

Fortunately, this issue is more of an annoyance than a real difficulty. It can be fixed in several ways.
In Theorems B.1, B.2, and B.3 below we give three concrete formulations under which the guarantee
(3.1) can be achieved, as mentioned in the main body.
Theorem B.1. For fixed η1, η2, ε, there is a sequence (AN)N≥1 of N -sample algorithms outputting
ai∗ such that the following holds for any sequence (µN)N≥1 of reservoir distributions. Letting

αN =
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

be a quantile average of µN , we have

lim sup
N→∞

(− logP[pi∗ < αN − ε]) · log2 N
cαN ,αN−ε N

≥ 1. (B.3)

Theorem B.2. For fixed η, ε, there is a sequence (AN)N≥1 of N -sample algorithms outputting ai∗
such that for any sequence of reservoir distributions µN satisfying

αN ≡ G−1
µN

(1− η) ≥ 1 + ε

2
,

we have

lim sup
N→∞

(− logP[pi∗ < G−1
µN

(1− η)− ε]) · log2 N
cαN ,αN−ε N

≥ 1. (B.4)

Theorem B.3. For any fixed ε1 > ε, there is a sequence (AN)N≥1 of N -sample algorithms out-
putting ai∗ such that for any fixed reservoir distribution µ with µ∗ > ε,

lim sup
N→∞

(− logP[pi∗ < µ∗ − ε1) · log2 N
N

≥ cµ∗,µ∗−ε. (B.5)

We emphasize that the rate (3.1) is optimal in all cases since the lower bound of Theorem 3.2 is
for an easier problem. The first formulation above may be the most principled choice. The idea
is that an averaged quantile depends continuously on µ, and can in fact be estimated by applying
Proposition A.1 for several pairs (η1, η2) and computing a Riemann sum. The second formulation
requires only the mild condition that α ≥ 1+ε

2 and uses monotonicity of cα,α−ε on this set. (In other
words, if the average reward values p appearing in (B.1), (B.2) were larger than 0.5, there would be
no counterexample.) The third formulation allows us to almost send η all the way down to 0. It uses
the fact that

µ∗ − (ε1 − ε) ≤ G−1
µ (1− η′)

for some η′ = η′(µ, ε1, ε) > 0. These results show that (3.1) is achievable even without knowledge
of α, up to a choice of technical modification to sidestep the counterexample discussed above.

15

Remark B.1. In fact uniformity in (α, β) holds in the following sense. For any sequence
(αN , βN)N≥1 of pairs with min

(
βN , αN − βN , 1 − αN

)
uniformly bounded below, there is a

sequence (AN)N≥1 of N -sample algorithms such that for any η ∈ (0, 1) and any sequence of
reservoir distributions µN with G−1

µN
(1− η) ≥ αN ,

lim sup
N→∞

(− logP[pi∗ < βN]) · log2 N
cαN ,βN

N
≤ 1. (B.6)

This can be shown identically to Theorem 3.1, though we don’t give the proof in this generality. It is
useful for the reduction arguments in Theorems B.1, B.2, and B.3.

B.1 Preparation for the Proof

Here we prove Theorem 3.2. For any α, β, η, ϱ > 0 we construct a reservoir µ = µα,β,η,ϱ such that

lim inf
N→∞

(− logPµ[pi∗ < β]) · log2 N
N

≤ cα,β + λ(ϱ) (B.7)

holds for any sequence of N -sample algorithms AN , and where limϱ→0 λ(ϱ) = 0 for fixed α, β, η.

B.2 Admissible Reservoirs and Bayesian Perspective

In proving Theorem 3.2, we will use reservoir distributions µ of a specific form. Namely, we require
each µ to be supported on an interval [γ, γ], where

0 < β − ϱ < γ < β < α < γ < α+ ϱ < 1.

In fact we define γ, γ explicitly (recall that ϱ > 0 is a small constant which we eventually send to 0)
by

θ(γ) = θ(β)− ϱ2;

θ(γ) = θ(α) + ϱ2.
(B.8)

We say µ is (γ, γ, f , f) admissible if µ has density µ(dx) = f(x)dx for a Borel measurable function
f and satisfies for constants 0 < f < f <∞,

f(x) ∈ [f, f], ∀x ∈ [γ, γ].

Towards proving Theorem 3.2, we fix throughout this section some (γ, γ, f , f) admissible µ such
that G−1

µ (α) = η holds, for appropriate constants (f, f) depending only on (η, ε, α, β, γ, γ). It is
easy to see that this is always possible.

An admissible µ is roughly comparable to the uniform distribution on an interval. Using admissible
reservoirs gives each ai the potential to slowly degrade in observed quality over time. We remark
that while it is more convenient to work with reservoirs supported away from the boundaries, i.e. in
[γ, γ] ⊆ (0, 1), we do not expect this to be essential.

It will be helpful throughout this section to take a Bayesian point of view. We treat µN as known
to AN , since AN is in fact allowed to depend on µN . Thus at each time t, each pi has a posterior
probability distribution which we denote by µi,t. Note that each µi,t depends only on (ni,t, p̂i,t) and
is initialized at µi,0 = µ. We denote by

µt = (µ1,t, µ2,t, . . .) (B.9)

the sequence of posterior distributions µi,t. Since arms are independent, µt is the full time-t poste-
rior of the algorithm.

B.3 Batched Algorithms and Adversaries

In pure exploration problems, it is possible to significantly simplify the structure of any algorithm
at the cost of a small multiplicative increase in the sample complexity. We carry this out using the
notion of a batch-compressed algorithm.

16

Definition B.1. Given an increasing sequence B = (b1, b2, . . .) of positive integers, an algorithm
A is B-batch-compressed if A can only act by increasing the number of times ni that ai has been
sampled from bk to bk+1, so that ni ∈ B holds at all times. B is ϱ-slowly increasing if

bk+1

bk + 1
≤ 1 + ϱ, ∀k ≥ 1.

Finally if A is B-batch-compressed and B is ϱ-slowly increasing, we say that A is ϱ-batch-
compressed.

Unlike the batched algorithms studied in [PRCS16, GHRZ19], batch-compression is only important
for us as an analysis technique. Indeed the following proposition shows that it does not fundamen-
tally affect pure exploration algorithms.

Proposition B.2. If B is ϱ-slowly increasing, then for any N -sample algorithm A, there exists an
B-batch-compressed ⌊N(1 + ϱ)⌋ algorithm A′ with the same output.

Proof. We show how to simulate A using the B-batch-compressed A′, assuming that the sequence
of rewards for each ai is fixed. Each time A samples arm i for the ni = (ak + 1)-st time for
ak ∈ A, A′ samples arm i until ni = ak+1. Then A′ has all the information of A at all times, hence
can simulate the behavior and output of A. Moreover by the definition of ϱ-slowly increasing, the
sample complexity of A′ is larger than that of A by at most a factor (1 + ϱ).

We will use the above with ϱ → 0 slowly as N → ∞. Then the sample complexity increase 1 + ϱ
is absorbed into the 1 + o(1) factor in Theorem 3.2. As a result it suffices to establish (B.7) under
the additional assumption that AN is ϱ-batch-compressed.

B.4 Fisher Information Distance

Determining the tight constant cα,β requires significant care. In particular the adversary must de-
crease the empirical average rewards p̂i,t at a precise rate depending on ni,t. This rate turns out to
involve the Fisher information distance. For a, b ∈ [0, 1] we define the Fisher information distance
dF (a, b) between a and b to be

dF (a, b) =

∣∣∣∣∣
∫ b

a

dx√
x(1− x)

∣∣∣∣∣ .
This agrees with the more general Fisher information metric when each a ∈ [0, 1] is identified with
the corresponding Bernoulli distribution. We refer the reader to [Nie20] for a survey on informa-
tion geometry. In short, the Fisher information yields a natural Riemannian metric on families of
probability distributions which are parametrized by smooth manifolds. However we will use only
elementary properties of dF .

We parametrize [0, 1] using the function θ : [0, 1]→ [0, π] defined by

θ(a) = dF (0, a) =

∫ a

0

dx√
x(1− x)

= arccos(1− 2a). (B.10)

In particular,
dF (a, b) = | arccos(1− 2a)− arccos(1− 2b)| ≥ 2|a− b|

and so dF (0, 1) = π. The main property of θ that we will use is the resulting differential equation

θ′(a) =
1√

θ(a)(1− θ(a))
. (B.11)

In our case, θ−1 parametrizes a “constant speed” path through the space of Bernoulli variables, view-
ing the Fisher information. Correspondingly, our adversary will ensure that θ(p̂i(ni,t)) decreases
linearly in log(ni,t).

17

B.5 Preliminary Lemmas from Moderate Deviations

Recall that for positive integers a and b, the Beta(a, b) distribution has probability density function

(a+ b− 1)!

(a− 1)!(b− 1)!
xa−1(1− x)b−1

for x ∈ [0, 1]. We now recall a moderate deviations principle for the binomial distribution and a
central limit theorem for the beta distribution.

Lemma 4 (Theorem 2.2 in [DA92]). For any 0 < q < q < 1 and constant ϱ > 0 there exists
∆0(q, q, ϱ) and M0(q, q, ϱ) such that the following holds for all p ∈ [q, q]. For n ≥ n0(q, q, ϱ)

sufficiently large and any 1
∆0

√
n
≤ ∆ ≤ ∆0 we have

e

(
− ∆2

2p(1−p)
−ϱ

)
n ≤ P

[
Bin(n, p)

n
≤ p− δ

]
≤ e

(
− ∆2

2p(1−p)
+ϱ

)
n
.

Lemma 5 (Lemma A.1 in [MNS16]). Let {an}n≥n0
be a sequence satisfying

γ ≤ an
n
≤ γ.

Then the Beta(n−an+1, an+1) distribution on [0, 1] obeys a central limit theorem with mean an

n

and standard deviation
√

(an/n)(1−(an/n))
n in the sense that for any bounded sequence (wn)n≥n0

of real numbers and with Φ the normal CDF,

lim
n→∞

∣∣∣∣Φ(wn)− Px∼Beta(n−an+1,an+1)

[(
x− (an/n)

)
·
√

n

(an/n)(1− (an/n))
≤ wn

]∣∣∣∣ = 0.

In the next two lemmas, we lower bound the probability that p̂i,t changes significantly when the
number ni,t of samples for ai increases by a factor (1 + ϱ).

Lemma 6. Assume µ is (γ, γ, f , f)-admissible. Suppose that arm i’s average reward p̂i,t after
n = ni,t samples satisfies

p̂i,t ∈ [β, γ]. (B.12)

Then for n ≥ C(γ, γ, f , f , β) sufficiently large,

Px∼µi,n
[
x ≤ p̂i,t

]
≥

f

3f
. (B.13)

Proof. Let Ri,t = np̂i,t be the total reward from arm i so far. The posterior distribution µi,t for pi
takes the form

µi,t(dx) =
xRi,t(1− x)n−Ri,tf(x)dx∫ γ

γ
xRi,t(1− x)n−Ri,tf(x)dx

.

For x ∈ [γ, γ] we estimate

xRi,t(1− x)n−Ri,tf(x)∫ γ

γ
xRi,t(1− x)n−Ri,tf(x)dx

≥ (f/f) · xRi,t(1− x)n−Ri,t∫ 1

0
xRi,t(1− x)n−Ri,tdx

.

The right-hand side is the density of a beta variable with parameters (Ri,t + 1, n − Ri,t + 1). We
conclude that

Px∼µi,t
[
x ∈ [γ, p̂i,t]

]
≥ (f/f) · Pz∼Beta(n−Ri,t+1,Ri,t+1)

[
z ∈ [γ, p̂i,t]

]
For n sufficiently large, it follows from Lemma 5 and (B.12) that

Pz∼Beta(n−Ri,t+1,Ri,t+1)
[
z ∈ [γ, p̂i,t]

]
≥ 1

3
.

Therefore Pµi,t [pi ≤ p̂i,t] ≥ 1
3 , proving (B.13).

18

Lemma 7. Assume µ is (γ, γ, f , f)-admissible and that (B.12) holds. For n = ni,t, let ñ ≥ 1
satisfy |ñ− ϱn| ≤ 2. Let

p̃i =
Ri,n+ñ −Ri,n

ñ

be the average reward from the (n + 1)-th through (n + ñ)-th samples of arm i. Then as n → ∞,
for any sequence ∆n = Θ(1/ log n),

Pt[p̃i ≤ θ−1(θ(p̂i,t)−∆n)] ≥ exp

(
−nϱ∆2

n(1 + on(1))

2

)
. (B.14)

Proof. Stochastic monotonicity implies that

P
[
Bin(ñ, p)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
is a decreasing function of p ∈ [0, 1]. Combining with Lemma 6, it follows that

Pt[p̃i ≤ θ−1(θ(p̂i,t)−∆n)] =

∫
P
[
Bin(ñ, x)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
dµi,t(x)

≥ Pµi,t [pi ≤ p̂i,t] · P
[
Bin(ñ, p̂i,t)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
≥

f

3f
· P
[
Bin(ñ, p̂i,t)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
.

Since θ is smooth with smooth inverse on [γ, γ] and ∆n ≤ on(1), we have

p̂i,t − θ−1
(
θ(p̂i,t)−∆n

)
= (1± on(1))∆n · (θ−1)′

(
θ(p̂i,t)

)
=

(1± on(1)) ·∆n

θ′(θ−1(p̂i,t))

= (1± on(1)) ·∆n

√
p̂i,t(1− p̂i,t).

The result now follows from Lemma 4, where we absorb the factor f/(3f) into the on(1).

B.6 Proof of Theorem 3.2

Recall the definition (B.8) of γ and γ. We require A to be B-batch-compressed for B = B(N, ϱ)
containing:

1. All positive integers at most N2ϱ.
2. All positive multiples of ⌊Nϱ⌋ at most N6ϱ.
3. Integers of the form ⌊N6ϱ(1 + ϱ)j⌋ for j ≥ 0.

It is easy to see that B thus defined is ϱ-slowly increasing for any ϱ > 0 and N sufficiently large.
We denote bk = ⌊N6ϱ(1 + ϱ)k⌋ so that |bk+1 − (1 + ϱ)bk| ≤ 2. (This choice of indexing differs
from that of Definition B.1, which will not be used in the sequel.)

We next construct our randomness distorting adversary A = A(N, ϱ). For each arm i, the adversary
A acts as follows depending on the current number of samples ni,t.

1. If ni,t ≤ N2ϱ, then A does nothing.

2. When N2ϱ ≤ ni,t < N6ϱ increases by Nϱ, A declares that the average reward of this batch
of Nϱ samples is at most γ −N−ϱ.

3. When ni,t increases from bk ≥ N6ϱ to bk+1:
(a) If p̂i(bk) > β holds, then A declares that

θ(p̂i(bk+1)) ≤ θ(p̂i(bk))−
ϱ(1 + 10ϱ)dF (α, β)

logN
. (B.15)

19

(b) If p̂i(bk) ≤ β holds, then A declares that

p̂i(bk+1) ≤ β.

4. When the A chooses the arm ai∗ to output, A declares that pi∗ < β.

Due to step 4, the declarations made by A ensure that pi∗ < β. Recalling Lemma 4 and Proposi-
tion B.2, it remains to show the upper bound

strength(A) ≤ (cα,β + C∗ϱ)N

log2(N)

for a constant C∗ = C∗(γ, γ, f , f , β, α) independent of ϱ (and N). We show this bound in several
parts. Recalling (3.4), we refer to the cost of a step above as the contribution to Cost from the
corresponding declarations by A. The most important parts are Lemmas 10 and 11, which bound
the cost of the main step 3a and form the dominant contribution to Cost. Note that throughout the
analysis below, all cost upper bounds hold almost surely and we assume that all of A’s declarations
hold true.
Lemma 8. The total cost from step 2 is at most C∗N

1−ϱ, for N ≥ C(γ, γ, f , f , β, α, ϱ) sufficiently
large.

Proof. The probability for each such declaration by A is at least

P[Bin(N2ϱ, γ) ≤ γN2ϱ −Nϱ] (B.16)

since pi ≤ γ almost surely. Recall that a Bin(N2ϱ, γ) random variable obeys a central limit theorem
centered at γN2ϱ with standard deviation at least C(γ)Nϱ. Therefore the probability in (B.16) is
at least 1

3 for N is sufficiently large depending on ϱ. Hence each such declaration costs at most
C∗ for N sufficiently large. Moreover such declarations can occur only N1−ϱ times because each
one involves Nϱ samples, and the base algorithm A is an N -sample algorithm. This completes the
proof.

Lemma 9. The total cost from step 3b is at most C∗N
1−6ϱ as long as N ≥ C(γ, γ, f , f , ϱ).

Proof. It suffices to show that the cost per step 3b declaration is at most C∗. This follows from
(B.13) and stochastic monotonicity.

Lemma 10. The total cost from step 3a is at most

N

log2(N)
· (cα,β + C∗ϱ+ oN (1)).

Proof. We claim that the cost from a single instance of step 3a when increasing from bk to bk+1

samples is at most (
(bk+1 − bk)

log2(N)

)
(cα,β + C∗ϱ+ oN (1)).

This implies the desired result since AN is an N -sample algorithm. Taking ∆ = (1 +
10ϱ)dF (α, β)/ log(N) in Lemma 7, we find that the declared event has probability at least

exp

(
− (bk+1 − bk)(1 + 10ϱ)2dF (α, β)

2(1 + oN (1))

2 log2(N)

)
≥ exp

(
− (bk+1 − bk)

log2(N)

(
cα,β + C∗ϱ+ oN (1)

))
.

This implies the desired claim and completes the proof.

Lemma 11. For any ai sampled b0 = ⌊N6ϱ⌋ times, p̂i(b0) ≤ γ.

Proof. By definition of A,

p̂i(b0) ≤
N2ϱ + (N6ϱ −N2ϱ)(γ −N−ϱ)

N6ϱ

= γ − 1

Nϱ
+

(1− γ)

N4ϱ
+

1

N5ϱ

≤ γ.

20

In the last step we used the fact that

1

Nϱ
≥ (1− γ)

N4ϱ
+

1

N5ϱ

for any ϱ > 0 if N is sufficiently large.

Lemma 12. For ϱ ∈ (0, 1/100), if ni,t ≥ N1−ϱ and the declarations of A hold, then p̂i,t ≤ β.

Proof. We analyze the rate at which the adversary forces θ(p̂i(bk)) to decrease. From (B.15) and
(11) it follows that for k with bk ≥ N1−ϱ, we have

θ(p̂i(bk)) ≤ θ(γ)−
ϱ(1 + 10ϱ)dF (α, β) log1+ϱ(N

1−8ϱ)

logN

= θ(γ)− ϱ(1 + 10ϱ)(1− 8ϱ)dF (α, β)

log(1 + ϱ)

≤ θ(γ)− (1 + ϱ)dF (α, β)

(B.8)
< θ(β).

Here we used the fact that log(1 + ϱ) ≤ ϱ and (1 + 10ϱ)(1 − 8ϱ) ≥ 1 for ϱ ∈ (0, 1/100). Since θ
is increasing, this shows that p̂i,t = p̂i(bk) < β for bk ≥ N1−ϱ, completing the proof.

Lemma 13. The cost from step 4 is at most C∗
(
N1−ϱ + 1

)
.

Proof. First, if p̂i∗,N ≤ β then the cost from step 4 is at most C∗. On the other hand if p̂i∗,N > β,
then Lemma 11 implies ni∗,N ≤ N1−ϱ. Since the prior µ is supported in [γ, γ], the likelihood ratio
of updates from N1−ϱ samples is almost surely bounded by eC∗N

1−ϱ

. Therefore

Px∼µi,N [x < β] ≥ e−C∗N
1−ϱ

Px∼µ[x < β]

≥ e−C∗N
1−ϱ (β − γ)f

f
.

This completes the proof.

We now combine the lemmas above to conclude Theorem 3.1 via (B.7).

Proof of Theorem 3.1. Let C ′
∗ be a larger constant depending on the same parameters. Then by

Lemmas 8, 9, and 13, the total cost from Steps 2, 3b, 4 combines to C ′
∗N

1−ϱ) ≤ oN (N/ log2 N).
The main cost contribution of

N

log2 N
(cα,β + C∗ϱ+ oN (1)).

comes from Lemma 10, and all other terms are of strictly smaller order. We have thus constructed a
reservoir sequence (µN (ϱ))N≥1 satisfying (B.7) for arbitrary ϱ > 0, completing the proof.

C An Optimal Algorithm with Fixed Budget

Here we provide an asymptotically optimal algorithm which establishes Theorems B.1, B.2, and B.3.
In the next subsection in which we show how to reduce the other results mentioned to Theorem 3.1
(in which α is given) using Proposition A.1. Our main focus will then be to prove Theorem 3.1.

We will fix ϱ > 0 small and construct a sequence of N -sample algorithms (A(N, ϱ)) satisfying the
slightly relaxed guarantee

lim inf
N→∞

(− log(PµN (ϱ)[pi∗ < β])) · log2 N
N

≥ cα,β − λ(ϱ) (C.1)

for a (possibly different) function λ satisfying limϱ→0 λ(ϱ) = 0 (for fixed α, β, η). Here (µN)N≥1 is
any sequence of reservoir distributions satisfying G−1

µN
(1− η) = α. An elementary diagonalization

argument then implies Theorem 3.1. Thus it suffices to construct algorithms satisfying (C.1) for any
desired ϱ > 0.

21

C.1 Reduction to Known α

We explain why Theorems B.1, B.2, and B.3 all follow from Theorem 3.1 (more precisely, the
uniform statement given in Remark B.1). We begin with Theorem B.1, where

αN =
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx.

Let J = ⌈ 6
ε(η1−η2)

⌉ and define

η(j) =
(J − j)η1 + jη2

J
, j ∈ [J].

It is easy to see that η(j+1)−η(j) ≤ η(j) for all j. We next apply Alg. 4 on (η(j), η(j+1)−η(j), ε′, δ′)
for 0 ≤ j ≤ J − 1, with:

ε′ = log−1/3(N),

δ′ = e
− 10N

log2(N) /J.

This requires sample complexity

NA ≤
C(η1, η2)N log log(N)

log(N)
≤ oN (N). (C.2)

Let α̂j be the resulting output. With probability 1− Jδ, we have for each 0 ≤ j ≤ J − 1,

α̂j ∈
[
G−1(1− η(j))− ε

3
, G−1

(
1− η(j+1)

)
+

ε

3

]
. (C.3)

Note that the function G−1
µ is increasing and [0, 1]-valued. Therefore if (C.3) holds for each j, then∣∣∣∣∣∣ 1J ·
J−1∑
j=0

α̂j −
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

∣∣∣∣∣∣ ≤ ε

3
+

1

J
≤ ε

2
.

Therefore the estimator

α̂A =
1

J
·
J−1∑
j=0

α̂j

satisfies

P
[∣∣∣∣α̂A −

1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

∣∣∣∣ ≤ ε/2

]
≥ 1− Jδ′ = 1− e

− 10N
log2(N) .

Finally, cα,α−ε ≤ π < 10 for any α, ε ∈ [0, 1] (see (B.10)). Therefore the δ′ = e
− 10N

log2(N) failure
probability above has a negligible contribution in Theorem B.1. It follows that applying Theorem 3.1
with α = α̂A as above and N ′ = N −NA implies Theorem B.1.

We now turn to Theorem B.2, where µN is required to satisfy G−1
µN

(1 − η) ≥ 1+ε
2 . We run Alg. 4

with parameters

η1 = η,

η2 = log−1/3(N),

ε′ = log−1/3(N),

δ′ = e
− 10N

log2(N) .

The sample complexity NB again satisfies NB ≤ o(N) exactly as in (C.2). Let α̂B + ε′ be the

resulting output. Then with probability at least 1− e
− 10N

log2(N) ,

α̂B ≥ G−1
µN

(1− η)− 2ε′

and so with ε′′ = ε− 2ε′, we have

α̂B − ε′′ ≥ G−1
µN

(1− η)− ε.

22

Moreover, also with probability at least 1− e
− 10N

log2(N) ,

α̂B ≤ G−1
µN

(1− η + η2).

It follows that applying the algorithm of Theorem 3.1 with

(N,α, η, ε) = (N −NB , α̂B , η − η2, ε− 2ε′)

suffices to recover Theorem B.2, since η2 and ε′ tend to 0 as N → ∞. As in our discussion of
Theorem B.1 above, the failure probability e

− 10N
log2(N) is negligible compared to the relevant rate in

Theorem B.2.

Finally, Theorem B.3 relies on the simple fact

lim
η→0

G−1
µ (1− η) = µ. (C.4)

Recall that µ∗ ∈ [0, 1] denotes the maximum value in the support of µ. We run Alg. 4 on
(η1, η2, ε

′, δ′) where:

η1 = log−1/3(N),

η2 = η1/2,

ε′ = ε1 − ε,

δ′ = e
− 10N

log2(N) .

It follows from Proposition A.1 that the resulting output α̂C + ε1−ε
2 is computed using

O
(

N log log(N)
log(N)

)
≤ o(N) samples as in the previous cases. Moreover for N sufficiently large:

P
[
α̂C +

ε1 − ε

2
≥ µ∗ − ε′

3
− oN (1)

]
(C.4)
≥ P

[
α̂C +

ε1 − ε

2
≥ G−1

µ (1− η1)−
ε′

3

]
≥ 1− δ′

= 1− e
− 10N

log2(N) .

Since ε1 > ε, this means for N ≥ N0(µ, c
′, . . .) large enough,

P [α̂C ≥ µ∗ − (ε1 − ε)] ≥ 1− e
− 10N

log2(N) .

Note that Alg. 4 also ensures that with probability 1− e
− 10N

log2(N) ,

α̂C ≤ µ∗ +
ε′

3
− ε1 − ε

2
= µ∗ − ε1 − ε

6

≤ G−1
µ (1− η′)

for some η′(µ, ε1, ε) > 0. It follows that applying Theorem 3.1 with

(N,α, η, ε) = (N −N ′, α̂C , η
′, ε)

implies Theorem B.3.

C.2 The Fixed Budget Algorithm

We now present Algorithm 3 for the fixed budget problem (recall the informal discussion in Sec-
tion 3). Algorithm 3 studies one arm ai at a time, moving to ai+1 if ai is rejected. Similarly to the
previous section, some details are needed while nt,i is small, since large deviation asymptotics may
not have kicked in yet. As explained at the start of the section, we choose a small constant ϱ > 0.
In fact, we will eventually choose small constants

0 < ϱ≪ ϱ1 ≪ ϱ2 ≪ ϱ3 ≪ ϱ4 ≪ ϱ5 ≪ 1

which all tend to 0 as ϱ→ 0. These constants will be defined throughout the proof. More formally,
these values can be obtained by choosing ϱ5 > 0 arbitrarily small, then ϱ4 > 0 sufficiently small
depending on ϱ5, and so on.

23

Algorithm 3 operates in a batch-compressed way, for a sequence (b1, b2, . . .) defined as follows:

b0 = ⌈ϱ1 log2(N)⌉,
k0 = ⌈log1+ϱ

(
log4(N)/b0

)
⌉

bk = b0(1 + ϱ)k, k ≤ k0

bk0+j = ⌈(1 + ϱ)jbk0⌉, j ≥ 1

τk = α− ϱ− k√
logN

, k ≤ k0

τk0+j = θ(α− 2ϱ)− j · dF (α, β)ϱ(1− ϱ2)

logN
, j ≥ 1.

Note in particular that bk0
≥ log4(N). We denote by p̂i,t the empirical average reward collected by

ai from its first t samples.

Algorithm 5: Output arm with pi ≥ β using N samples with high probability
1 input: an infinite sequence of arms i = 1, 2, . . .
2 initialize: i = 0
3 while fewer than N samples have been collected do
4 i← i+ 1
5 Collect b0 samples of arm i.
6 if p̂i,b0 ≤ α− ϱ then
7 Reject arm i
8 end
9 for k = 1, 2, . . . , k0 do

10 Collect bk − bk−1 samples of arm i for a total of bk samples.
11 if p̂i,bk ≤ α− ϱ− k√

logN
then

12 Reject arm i;
13 end
14 end
15 for j = 1, 2, . . . do
16 Collect bk0+j − bk0+j−1 samples of arm i for a total of bk0+j .
17 if θ(p̂i,bk0+j

) ≤ θ(α− 2ϱ)− j · dF (α,β)ϱ(1−ϱ2)
logN then

18 Reject arm i
19 end
20 end
21 end
22 Return arm i.

The role of the values bj is as follows. When an arm ai reaches bk samples for some k ≥ 0,
it is checked for possible rejection by comparing its empirical average reward to the threshold τk.
Algorithm 3 rejects arm i and moves to arm ai+1 if the empirical average p̂i,bk of arm ai drops below
a moving threshold τk. The threshold τk begins close to α and gradually decreases until reaching
β + ϱ by the time τk ≥ Ω(N).

So for, our informal description of Alg. 3 also applies to the algorithm proposed in [GM20]. We now
highlight two important differences. The first is that our algorithm is defined more carefully during
the “early” phases when an arm has been sampled at most NO(ϱ) times. This is crucial for carrying
out a rigorous analysis. The second difference is that in the main phase, we increase the sample size
for a given arm in powers of 1+ϱ rather than powers of 2, and also move the rejection thresholds τk
based on the Fisher information distance via the function θ. The latter ingredients allow us to obtain
the optimal constant factor.

We begin the analysis of Alg 3 by proving Lemma 3.

Proof of Lemma 3. Let Mj =
∏

1≤i≤j Yi and observe that M c
j is a positive supermartingale with

M0 = 0. The result follows by Doob’s maximal inequality.

24

We will apply Lemma 3 in the following way. Let Xi be the number of samples used by arm
ai before rejection, and Ii ∈ {0, 1} be the indicator of the event that ai is ever rejected, even if
Algorithm 3 were to continue past time N and sample arm i an infinite number of times. We set

Yi = eXi · Ii,

With M defined from (Yi)i≥1 as in Lemma 3, it follows that log(M) is at most the amount of
time spent on eventual rejections before the first eventually accepted arm. Therefore if log(M) ≤
N(1 − ϱ), we conclude that the last arm to be studied was sampled at least Nϱ times. Since it was
not rejected during that time, we can conclude this arm has pi ≥ β with probability 1 − e−Ωϱ(N).
The main contribution to the failure probability of Algorithm 3 comes from the event {M ≥ A}
above, for suitable A. Correspondingly, the main work will be to verify E[Y c

i] ≤ 1 for suitable c.

Note that Yi ∈ {0} ∪ [1,∞) almost surely for each i. Therefore a necessary first step in showing
E[Y c

i] ≤ 1 is to lower bound P[Yi = 0], the probability that Algorithm 3 never rejects ai. We now
give a sufficient lower bound from the event pi ≥ α.

Proposition C.1. Let x1, x2, . . . be an i.i.d. Bernoulli(p) sequence for p ≥ α, and let Sk =
∑k

i=1 xi

and set
S = inf

k≥1
Sk/k.

Then S ≥ α− ϱ holds with probability at least c(α, ϱ) > 0. Thus E[Ii] ≤ 1− c(α, ϱ).

Proof. Since the probability that S ≥ α − ϱ is increasing in p it suffices to take p = α and show
the probability is positive for any ϱ > 0. Assume not. Then by restarting the indexing every time
Sk ≤ k(α− ϱ) holds, we find that

lim inf
n→∞

Sn/n ≤ α− ϱ.

This contradicts the strong law of large numbers, thus completing the proof of the first assertion.
The second assertion follows since if Sk/k ≥ α − ϱ for all k where x1, . . . are the rewards of arm
i, then arm i will never be rejected by Algorithm 3.

Based on Proposition C.1 above, to show

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ii
]
≤ 1

(which is essentially what we want in light of Lemma 3), it suffices to show that

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ii
]
≤ c(α, ϱ). (C.5)

We let Iti = Ii · 1Xi=t be the event that arm i was rejected after exactly t steps. Since Alg 3 can
only reject after bj samples, we have

Ii =

∞∑
j=0

I
bj
i

We use this to break the left-hand side of (C.5) into three separate parts and estimate the parts
separately. The parts correspond to b0, b1 through bk0 , and bk0+1 onward. The first two parts are
easier and handled in Subsection C.3 below. The final term is the main contribution and is handled
in Subsection C.4.

C.3 Analysis of Algorithm 3 in the Small and Medium Sample Phases

Proposition C.2 bounds the contribution to (C.5) from the small sample phase, i.e. the first rejection
condition in line 7 of Alg 3.
Proposition C.2. For any α, ϱ there is ϱ1 > 0 sufficiently small that with b0 as defined above, and
with N sufficiently large,

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ib0i

]
≤ c(α, ϱ)/4

25

Proof. It suffices to observe that for fixed α, ϱ and ϱ1 small and N sufficiently large, we have

e
b0·

cα,β−ϱ3

log2 N − 1 ≤ eϱ1 − 1 ≤ 2ϱ1.

Proposition C.3 bounds the contribution to (C.5) from the medium sample phase, i.e. the second
rejection condition in line 12 of Alg 3.

Proposition C.3. For any α, ϱ, ϱ1 and for N sufficiently large,

k0∑
k=1

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ibki

]
≤ c(α, ϱ)/4

Proof. The event Ibki requires |p̂i,bk − p̂i,bk−1
| ≥ 1√

logN
. Hence by a standard Chernoff estimate,

regardless of the true reward probability pi,

E[Ibki] ≤ e−Ωα,ϱ,ϱ1
(bk/ logN).

Since by construction b0 ≥ ϱ1 log
2 N , we have

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ibki

]
≤ e

bk
cα,β−ϱ3

log2 N
−Ωα,ϱ,ϱ1 (bk/ logN)

≤ e−Ωα,ϱ,ϱ1
(logN)

= N−Ωα,ϱ,ϱ1
(1).

Since k0 ≤ O(logN), summing gives the desired conclusion.

Propositions C.2 and C.3 imply that the total contribution from rejections in the small and medium
sample phases is at most c(α, ϱ)/2. It remains to analyze the large sample phase in the following
subsection.

C.4 Analysis of Algorithm 3 in the Large Sample Phase

Similarly to the previous section, the main part of the analysis concerns the large sample phases
bk0+j for j ≥ 1. Our goal is to precisely estimate the rejection probability at each time bk0+j . Note
that these estimates should not depend on the true average rewards pi.

Our approach is based on exchangeability and avoids any consideration of pi. For a given value j
and a large constant L = L(ϱ), consider the sequence of times

bk0+j−L, bk0+j−L+1, . . . , bk0+j

and the associated sequence of empirical average rewards

p̂i,bk0+j−L
, p̂i,bk0+j−L+1

, . . . , p̂i,bk0+j
. (C.6)

It follows from the algorithm description that for Ibk0+j

i to occur, we must have

p̂i,bk0+j
− p̂i,bk0+j−ℓ

≥ ℓ · dF (α, β)ϱ(1− ϱ2)

logN
, ∀ 1 ≤ ℓ ≤ L. (C.7)

This is clear for j > L, but it holds also for 0 ≤ j ≤ L as for N sufficiently large,

α− ϱ− k0√
logN

− L · dF (α, β)ϱ(1− ϱ2)

logN
≥ α− 2ϱ.

By exchangeability, conditioned on the future values p̂i,bk0+j
, . . . , p̂i,bk0+j−ℓ

the law of p̂i,bk0+j−ℓ−1

depends only on p̂i,bk0+j−ℓ
and is given explicitly by a hypergeometric variable. Recalling that

26

Ri,t = ni,tp̂i,t is the total reward from the first ni,t samples of arm i, Ri,bk0+j−ℓ−1
has hypergeo-

metric conditional law given by:

P
[
Ri,bk0+j−ℓ−1

= k
∣∣ (p̂i,bk0+j

, . . . , p̂i,bk0+j−ℓ

)]
= P

[
Ri,bk0+j−ℓ−1

= k | p̂i,bk0+j−ℓ

]
=

(bk0+j−ℓ−1

k

)(bk0+j−ℓ−bk0+j−ℓ−1

Rk0+j−ℓ−k

)
(bk0+j−ℓ

Rk0+j−ℓ

) . (C.8)

We will refer to this as the HyperGeom
(
bk0+j−ℓ, bk0+j−ℓ−1, Rk0+j−ℓ

)
distribution. Importantly,

this distribution is independent of µ. We exploit this below to control the probability of a given
sequence

(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
of empirical average rewards. The following

useful result states that hypergeometric variables automatically inherit tail bounds from the corre-
sponding binomial random variables.

Lemma 1 ([LP14, Hoe94]). Fix non-negative integers A ≥ B,C and let X ∼
HyperGeom(A,B,C) and Y ∼ Bin(B,C/A). Then for any convex function f : R→ R,

E[f(X)] ≤ E[f(Y)].

Lemma 2. For any 0 < q < q < 1 and constants ϱ > 0 there exists ∆0(q, q, ϱ) and N0(q, q, ϱ)

such that the following holds for all p ∈ [q, q]. For n ≥ n0 sufficiently large and 1
∆0

√
n
≤ ∆ ≤ ∆0,

P
[
HyperGeom(n(1 + ϱ), n, np(1 + ϱ))

n
≤ p−∆

]
≤ e

(
− ∆2

2p(1−p)
+ϱ

)
n
.

Proof. The corresponding binomial result Lemma 4 is proved in Theorem 2.2 in [DA92] by upper
bounding an exponential moment. The same proof applies here by Lemma 1.

It will be convenient to define a restricted set of good sequences (qL, qL−1, . . . , q0). These satisfy
the key properties of empirical average reward sequences (C.6) for which I

bk0+j

i holds. We say such
a length L+ 1 sequence is good if the following conditions are satisfied:

1. q0 ∈ [q, q] ⊆ (0, 1) for constants 0 < q < q < 1 depending only on ϱ, L.

2.
max
ℓ1,ℓ2

|qℓ1 − qℓ2 | ≤ O
(
1/
√
logN

)
. (C.9)

3. For each 1 ≤ ℓ ≤ L:

θ(q0) ≤ θ(α− 2ϱ)− j · dF (α, β)ϱ(1− ϱ2)

logN

≤ θ(α− 2ϱ)− (j − ℓ) · dF (α, β)ϱ(1− ϱ2)

logN

≤ θ(qℓ).

The third condition above is necessary for Ibk0+j ,i

i = 1, and these together imply the first condition.
Indeed for fixed q, q and small ϱ ∈ (0, 1/10) one always has

p̂i,bk0+j−1

p̂i,bk0+j

,
1− p̂i,bk0+j−1

1− p̂i,bk0+j

∈
[
1− 2ϱ, (1− 2ϱ)−1

]
for large enough N and any j. Hence it suffices to take q = β(1−2ϱ)L and q = 1−(1−α)(1−2ϱ)L.
With this choice, if

p̂i,bk0+j−L
, p̂i,bk0+j−L+1

, . . . , p̂i,bk0+j
.

is not good and I
bk0+j

i = 1, then the second condition must be the only violated one. The fol-
lowing easy lemma controls the failure probability of the second condition. Recall from (C.8) that
conditioning on p̂i,bk0+j

determines the joint conditional law of the previous conditional rewards,
regardless of µ.

27

Lemma 3. All sequences violating only the second condition (C.9) above have probability at most

e−ΩL,ϱ(bk0+j/ logN),

even after conditioning on an arbitrary value for p̂i,bk0+j
.

Proof. The claim follows by an elementary Chernoff estimate for hypergeometric variables, which
hold just as for binomial variables by Lemma 1. Indeed the assumption implies that some adjacent
difference |p̂i,bk0+j−ℓ

− p̂i,bk0+j−ℓ+1
| has size Ω(1/

√
logN). (Note for applying the Chernoff bound

that L is a constant independent of N , and so bk0+j−L ≥ ΩL,ϱ(bk0+j).)

We now focus on upper-bounding the probability of any good sequence (qL, . . . , q0) appearing,
conditionally on q0.

Lemma 4. For any good sequence (qL, qL−1, . . . , q0) and j ≥ 0,

P
[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

) ∣∣ pi,bk0+j
= q0

]
≤ exp

(
− (1−O(ϱ))

2q0(1− q0)ϱ

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2

)
.

Proof. It suffices to show that

P[p̂i,bk0+j−ℓ−1
= qℓ+1 | qℓ] ≤ exp

(
− (1−O(ϱ))

2q0(1− q0)ϱ
bk0+j−ℓ(qℓ − qℓ+1)

2

)
This follows by applying Lemma 2 to the hypergeometric random variable

p̂i,bk0+j−ℓ
· bk0+j−ℓ − p̂i,bk0+j−ℓ−1

· bk0+j−ℓ−1 = Rbk0+j−ℓ
−Rbk0+j−ℓ−1

.

The fact that
bk0+j−ℓ+1 − bk0+j−ℓ = ϱ · bk0+j−ℓ ±O(1)

leads to the factor of ϱ in the denominator of the desired result.

Lemma 5. For fixed problem parameters and N large, any good sequence (qL, . . . , q0) satisfies

qℓ ≥ q0 +
ℓ · dF (α, β)ϱ(1− 2ϱ2) ·

√
q0(1− q0)

(logN)

Proof. Recall that θ′(q) = 1√
q(1−q)

and that θ is smooth on [q, q] ⊆ (0, 1). By Item 2 above, all qℓ

are within oN (1) of each other, so the result follows from the inverse function theorem. (Notice that
the factor (1− ϱ2) changed to (1− 2ϱ2) above.)

Lemma 6. For 1 ≤ m ≤ L and any good sequence (qL, . . . , q0), we have

m−1∑
ℓ=0

(qℓ − qℓ+1)
2 ≥ m · dF (α, β)2ϱ2(1− 4ϱ2) · q0(1− q0)

log2 N
.

Proof. The result follows from Lemma 5 and Cauchy-Schwarz in the form

m−1∑
ℓ=0

(qℓ − qℓ+1)
2 ≥ m−1

(
m−1∑
ℓ=0

|qℓ − qℓ+1|

)2

.

Lemma 7. For any good sequence (qL, . . . , q0) and j ≥ 0, we have

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2 ≥ (1−O(ϱ2)) ·

bk0+jϱ dF (α, β)
2 · q0(1− q0)

log2 N
.

28

Proof. We break the sum into parts and apply Lemma 6 to each one. We have:

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2 = bk0+j−L+1

L−1∑
ℓ=0

(qℓ − qℓ+1)
2 +

L−1∑
m=1

(bk0+j−m+1 − bk0+j−m)

m−1∑
ℓ=0

(qℓ − qℓ+1)
2

≥
L−1∑
m=1

bk0+j ·
ϱ

(1 + ϱ)m+10
· (1− 4ϱ2)

mϱ2dF (α, β)
2 · q0(1− q0)

log2 N

≥ (1−O(ϱ+ ϱ2)) · bk0+j ·
ϱ3dF (α, β)

2 · q0(1− q0)

log2 N
·
L−1∑
m=1

m

(1 + ϱ)m
.

For L = L(ϱ) = O
(
ϱ−1 log(ϱ−1)

)
sufficiently large,

L−1∑
m=1

mϱ

(1 + ϱ)m
≥ (1− ϱ)

∞∑
m=1

m

(1 + ϱ)m
.

= (1− ϱ)

(∞∑
m=1

1

(1 + ϱ)m

)2

=
1− ϱ

ϱ2
.

Substituting and recalling that ϱ≪ ϱ2 completes the proof.

Combining with Lemma 4 yields the second inequality below (the first is trivial).

Corollary C.4. For any µ and q0, we have

Ppi∼µ
[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

)]
≤ P

[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

) ∣∣ pi,bk0+j
= q0

]
≤ exp

(
−
(
1−O(ϱ2)

)bk0+jdF (α, β)
2

2 log2 N

)
.

Lemma 8. Let j0 be the largest j such that bk0+j ≤ N . Then for N sufficiently large,

j0∑
j=1

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ibk0+j

i

]
≤ c(α, ϱ)/4.

Proof. Recall that cα,β = dF (α,β)2

2 , and observe that the number of total sequences (qL, . . . , q0) ∈
[0, 1]L+1 with bk0+j+ℓqℓ ∈ Z is at most NL+1 for each j ≤ j0. Combining Lemma 3 and Corol-
lary C.4 and noting that the latter always gives the main contribution, we find for each j ≤ j0,

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ibk0+j

i

]
≤ NL+1 exp

(
bk0+j

log2 N
·
(
(cα,β − ϱ3)− (1−O(ϱ2))cα,β

))
≤ exp

(
−Ω

(
ϱ3bk0+j

log2 N

))
so long as ϱ3 is chosen so that ϱ3 ≫ max(ϱ, ϱ2). In the last line we used the fact that bk0+j ≥
bk0
≥ log4 N to absorb the factor NL+1 ≤ eϱ log3/2 N for large N . Summing over j gives the

29

desired result, since for ϱ4 = Ω(ϱ3) and N sufficiently large,

∞∑
j=1

e
−Ω

(
ϱ3bk0+j

log2 N

)
≤

∞∑
m=1

e
−

ϱ4(m+bk0
)

log2 N

= e−ϱ4 log2 N
∞∑

m=1

e
− ϱ4m

log2 N

≤ e−ϱ4 log2 N ·O
(
log2 N

ϱ4

)
≤ e−

ϱ4 log2 N
2

≤ c(α, ϱ)/4.

We now use Lemma 3 to conclude.

Proof that Algorithm 3 achieves the guarantee of Theorem 3.1. By combining Lemma 8 with the
previous Propositions C.2 and C.3, it follows that

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ii
]
≤ 1.

Lemma 3 now implies that the total amount of time spent on eventually rejected arms is at most
N(1− ϱ) with probability

e
−

(cα,β−ϱ3)(1−ϱ)N

log2 N .

On this event, the output arm i∗ satisfies ni∗,N ≥ ϱN by definition. Since i∗ was not rejected, for
j1 be the largest value such bk0+j1 ≤ ϱN we have

p̂i∗,bk0+j1
≥ β + ϱ.

The probability for this to hold if pi ≤ β is at most e−Ωϱ(N). Altogether we find that

P[pi∗ ≥ β] ≥ 1− exp

(
− (cα,β − ϱ5)N

log2 N

)
− e−Ωϱ(N) (C.10)

for ϱ5 arbitrarily small. This concludes the analysis of Algorithm 3 (since the last error term is
negligible).

C.5 Finding Many Good Arms with a Fixed Budget

In this final subsection we observe that Algorithm 3 can be modified to output as many as logN
distinct arms each of which satisfies the same (η, ε, δ)-PAC guarantee2, with no degradation in the
asymptotic failure probability. With other parameters fixed, we denote the N -sample version of
Algorithm 3 by AN to emphasize the dependence on N . In particular, N both equals the number of
steps in AN and appears (via its logarithm) in the description of AN ’s individual steps.

Let Ñ = N + ⌈ 2N
log1/2(N)

⌉. We consider a modified algorithm ÃÑ which mimicks the behavior of
AN with two changes:

1. ÃÑ is a Ñ -sample algorithm.

2. If an arm ai has not yet been rejected after M = ⌈N/ log3/2(N)⌉ samples, then ÃÑ

accepts ai and continues to ai+1. In particular, ÃÑ may accept several arms instead of just
one.

Theorem C.9. With probability 1−exp
(
− (cα,β−ϱ5−oN (1))N

log2 N

)
, ÃÑ accepts at least log(N) distinct

arms ai, all of which satisfy pi ≥ β.

2In fact logN can be replaced by anything oN (log2 N) by more precisely defining M and Ñ .

30

The change from N to Ñ is almost irrelevant in the actual statement of Theorem C.9 since log(N) ≥
log(Ñ)−oN (1). In particular, ÃÑ is a Ñ -sample algorithm which outputs at least log(Ñ)−1 arms

with probability 1− exp
(
− (cα,β−ϱ5−oÑ (1))Ñ

log2 Ñ

)
. It is certainly not really necessary to use the value

log(N) rather than log(Ñ) to describe the individual steps taken by ÃÑ . However introducing Ñ
streamlines the proof below by letting us treat AN as a blackbox.

Proof. To show that all accepted arms ai satisfy pi ≥ β with sufficiently high probability, it suffices
to consider (C.10) with the final term replaced by e−Ωϱ(N/ log3/2(N)). In particular, observe that the
main term does not change, even after multiplying the failure probability by O

(
log3/2(N)

)
(the

maximum possible number of arms accepted by ÃÑ . Thus we focus on showing that ÃÑ outputs at
least log(N) arms with high probability.

Consider yet another N -sample algorithm ÂN which deletes each arm independently with probabil-
ity 1/N and followsAN on the set of non-deleted arms in order of increasing index. (LikeAN , ÂN

never accepts arms before time N .) We simulate ÃÑ and ÂN on the same reward sequences, i.e. we
couple them so that the t-th sample of arm ai always gives the same result for each (t, i). We claim
that in this coupling, conditioned on ÃÑ failing to accept log(N) arms within the first Ñ samples,
ÂN has probability Ω(N− log(N)) to fail (i.e. output ai with pi < β) when run for N samples.

First let us assume the claim and deduce Theorem C.9. Denote by p(N) the probability for AN to
fail. Note that ÂN has the same failure probability p(N), having in fact the same behavior as AN

in distribution (as the set of deleted arms is independent of everything else). Moreover let p̃(Ñ , k)

denote the probability that ÃÑ fails to accept at least k arms. The claim above implies that

p̃(Ñ , logN) ≤ O
(
N logN

)
· p(N, 1)

≤ eoN (N/ log2 N) · p(N, 1)

≤ exp

(
− (cα,β − ϱ5 − oN (1))N

log2 N

)
.

It remains to prove the above claim. Let us say the infinite i.i.d. reward sequence (ri,n)n≥1 of arm
ai is acceptable if AN would not reject ai within M samples, i.e. ÃÑ will either accept ai or run
out of samples before doing so. We take the point of view that each ai is either acceptable or not (by
randomly fixing the reward sequences at the start). Then with probability Ω(N− log(N)), the first
log(N) acceptable arms are skipped by Â, and the first N̂ unacceptable arms are not skipped. On
this event, the first N̂ −M ≥ N samples obtained by ÂN , i.e. all N of its samples, are drawn from
unacceptable arms. On this event, ÂN fails with constant probability, which establishes the claim
and completes the proof.

31

	Introduction
	Problem Formulation
	Further Notation
	Related Work

	The Fixed Confidence Setting
	The Algorithm for Fixed Confidence
	Near-Optimality in the Fixed Confidence Regime

	Fixed Budget
	Precise Results for Fixed Budget
	Algorithm for Fixed Budget
	Analysis of Algorithm 3
	On the Lower Bound Proof

	Proofs from Section 2
	Lower Bound for Fixed Budget
	Preparation for the Proof
	Admissible Reservoirs and Bayesian Perspective
	Batched Algorithms and Adversaries
	Fisher Information Distance
	Preliminary Lemmas from Moderate Deviations
	Proof of Theorem 3.2

	An Optimal Algorithm with Fixed Budget
	Reduction to Known
	The Fixed Budget Algorithm
	Analysis of Algorithm 3 in the Small and Medium Sample Phases
	Analysis of Algorithm 3 in the Large Sample Phase
	Finding Many Good Arms with a Fixed Budget

