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Abstract
Pretrained language models (PLMs) achieve state-
of-the-art results but often function as “black
boxes”, hindering interpretability and responsible
deployment. While methods like attention anal-
ysis exist, they often lack clarity and intuitive-
ness. We propose interpreting PLMs through
high-level, human-understandable concepts us-
ing Concept Bottleneck Models (CBMs). This
extended abstract introduces C3M (ChatGPT-
guided Concept augmentation with Concept-level
Mixup), a novel framework for training Concept-
Bottleneck-Enabled PLMs (CBE-PLMs). C3M
leverages Large Language Models (LLMs) like
ChatGPT to augment concept sets and generate
noisy concept labels, combined with a concept-
level MixUp mechanism to enhance robustness
and effectively learn from both human-annotated
and machine-generated concepts. Empirical re-
sults show our approach provides intuitive explana-
tions, aids model diagnosis via test-time interven-
tion, and improves the interpretability-utility trade-
off, even with limited or noisy concept annotations.
Code and data are released at https://github.com/
Zhen-Tan-dmml/CBM NLP.git

1 Introduction
Although Pretrained Language Models (PLMs) like
BERT [Devlin et al., 2018] have achieved remarkable
success in various NLP tasks [Zhu et al., 2020], they are
frequently regarded as black boxes, posing significant obsta-
cles to their responsible deployment in real-world scenarios,
particularly in critical domains such as healthcare [Koh et al.,
2020]. To date, many existing works [Madsen et al., 2022]
leverage attention weights extracted from the self-attention
layers to provide token-level or phrase-level importance.
These low-level explanations are found unfaithful [Yin and
Neubig, 2022] and lack readability and intuitiveness [Losch
et al., 2019], leading to unstable or even unreasonable

∗This is an concise version of [Tan et al., 2024b], recipient of the
Best Paper Award at PAKDD 2024.

Figure 1: The illustration of CBE-PLMs. Through black-box PLMs,
the input text x is mapped into an intermediate layer consisting of
a set of human-comprehensible concepts c, which are then used to
predict the target label y.

explanations. To address these limitations, we seek to
explain via human-comprehensible concepts that use more
abstract features (e.g., general notions) as opposed to raw
input features at the token level [Zarlenga et al., 2022]. The
foundation of this work is the Concept Bottleneck Models
(CBMs) [Koh et al., 2020] that interpret deep models (e.g.,
ResNet [He et al., 2016]) for image classification tasks
using high-level concepts (e.g., shape). For NLP tasks such
as sentiment analysis, concepts can be Food, Ambiance,
and Service as shown in Figure 1, where each concept
corresponds to a neuron in the concept bottleneck layer.
The final decision layer is then a linear function of these
concepts. Using concepts greatly improves the readability
and intuitiveness of the explanations compared to low-level
features such as “lobster”.

We propose to study Concept-Bottleneck-Enabled Pre-
trained Language Models (CBE-PLMs). There are two
key challenges: ❶ First, existing CBMs [Koh et al., 2020;
Zarlenga et al., 2022] require human-annotated concepts.
This can be challenging for natural language since the an-
notator may need to read through the entire text to under-
stand the context and label one concept [Németh et al., 2020].
This limits the practical usage and scalability of CBE-PLMs.
❷ Second, many studies have identified the trade-off between
interpretability and task accuracy using CBMs since the pre-
determined concepts may leave out important information for
target task prediction [Zarlenga et al., 2022]. Therefore, it is
crucial to improve both interpretability and task performance
to achieve optimal interpretability-utility trade-off.

❶ To tackle the first challenge, we propose leveraging
Large Language Models (LLMs) trained on extensive human-
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generated corpora and feedbacks, such as ChatGPT [Ope-
nAI, 2023], to identify novel concepts in text and generate
pseudo-labels (via prompting) for unlabeled concepts. Re-
cent studies [OpenAI, 2023] exhibit that these LLMs encap-
sulate significant amounts of human common sense knowl-
edge. By augmenting the small set of human-specified con-
cepts with machine-generated concepts, we increase con-
cept diversity and useful information for prediction. In ad-
dition, generated pseudo-labels offer us a large set of in-
stances with noisy concept labels, complementing the smaller
set of instances with clean labels. ❷ To further improve
interpretability-utility trade-off (second challenge), we pro-
pose to learn from noisy concept labels and incorporate a
concept-level MixUp mechanism [Zhang et al., 2017] that
allows CBE-PLMs to cooperatively learn from both noisy
and clean concept sets. We name our framework for training
CBE-PLMs as ChatGPT-guided Concept augmentation with
Concept-level Mixup (C3M). In summary, our contributions
include:

• We provide the first investigation of utilizing CBMs for
interpreting PLMs.

• We propose C3M, which leverages LLMs and MixUp to
help PLMs learn from human-annotated and machine-
generated concepts. C3M liberates CBMs from prede-
fined concepts and enhances the interpretability-utility
trade-off.

• We demonstrate the effectiveness and robustness of test-
time concept intervention for the learned CBE-PLMs for
common text classification tasks.

2 Related Work
2.1 Interpreting Pretrained Language Models
PLMs such as Word2Vec [Mikolov et al., 2013], BERT [De-
vlin et al., 2018], and the more recent GPT series [OpenAI,
2023] have demonstrated impressive performance in various
NLP tasks. However, their opaque nature poses a challenge
in comprehending how PLMs work internally [Diao et al.,
2022]. In order to improve the interpretability and trans-
parency of PLMs, researchers have explored different ap-
proaches, such as visualizing attention weights [Galassi et al.,
2020], probing feature representations [Bills et al., 2023], and
using counterfactuals [Ross et al., 2021], among others, to
provide explanations at the local token-level, instance-level,
or neuron-level. However, these methods often lack faith-
fulness and intuitiveness, and are of poor readability, which
undermines their trustworthiness [Madsen et al., 2022].

Recently, researchers have turned to global concept-level
explanations that are naturally understandable to humans. Al-
though this level of interpretability has been less explored
in NLP compared to computer vision [Kim et al., 2018], it
has gained attention. For instance, a study [Vig et al., 2020]
investigates gender classification bias by examining the as-
sociation of occupation words such as “nurse” with gender.
In addition, the CBMs [Koh et al., 2020] have emerged as
novel frameworks for achieving concept-level interpretability
in lightweight image classification systems. CBMs typically
involve a layer preceding the final fully connected classifier,

where each neuron corresponds to a concept that can be in-
terpreted by humans. CBMs also show advantages in improv-
ing accuracy through human intervention during testing. Yet,
the application of CBMs to larger-scale PLMs interpretation
is under-explored. Implementing CBMs necessitates human
involvement in defining the concept set and annotating the
concept labels. Such requirements are challenging for natural
language as humans may need to read through the entire text
to understand the context and label one concept [Németh et
al., 2020].

2.2 Learning from Noisy Labels
Addressing inaccurately labeled or misclassified data in real-
world scenarios is the goal of learning from noisy labels, with
techniques including noise transition matrix estimation [Liu
et al., 2022], robust risk minimization [Englesson and Az-
izpour, 2021], and more. Recently, the resilience of semi-
supervised learning methods like MixMatch [Berthelot et al.,
2019] and FixMatch [Sohn et al., 2020] to label noise has
been discovered by using pseudo-labels for unlabeled data.
Inspired by them, we porpose to utilize an LLM (ChatGPT)
as a fixed-label guesser, generating noisy intermediate con-
cept labels to potentially predict task labels.

Notably, CBMs specialize in the interpretation and in-
teractability of deep models for general classification tasks.
While Multi-Aspect Sentiment Analysis [Zhang et al., 2022]
(MASA) shares similar goals when using aspects as con-
cepts, it differs as concepts are not confined to fine-grained
aspectual features and can be abstract ideas or broader no-
tions throughout entire contexts. Aspect labels in MASA,
primarily used for prediction accuracy, are not always manda-
tory. To summarize, this study pioneers the comprehensive
exploration of utilizing concepts for interpreting large-scale
PLMs, and provids a robust framework for harnessing the
noisy signals from LLMs to achieve interpretable outcomes
from lighter-weight PLMs, which can be easily understood
by users.

3 Concept-Bottleneck-Enabled PLMs
(CBE-PLMs) with C3M

3.1 CBE-PLM Architecture
We adapt CBMs for PLMs by introducing a projector layer
pψ after the PLM encoder fθ. This layer maps the PLM’s
latent representation z = fθ(x) to a concept activation vec-
tor ĉ = pψ(z), where each dimension corresponds to a con-
cept. A final predictor gϕ then maps these concept activa-
tions to the task label ŷ = gϕ(ĉ). The model structure is
x → z → ĉ → ŷ. Concepts can be multi-class (e.g., posi-
tive/negative/unknown).

3.2 The C3M Framework
C3M enables training CBE-PLMs effectively even with lim-
ited human-annotated concepts (Ds) and abundant unlabeled
data (Du). It involves two main stages (illustrated conceptu-
ally in Figure 2 of the original paper [Tan et al., 2024b]):

1. ChatGPT-guided Concept Augmentation:
• Concept Set Augmentation: We prompt ChatGPT, using

human-specified concepts (Cs) as examples (in-context



Figure 2: Illustration of the explainable prediction for a toy example
in restaurant review sentiment analysis.

learning), to generate additional relevant concepts (Ca).
This expands the concept space.

• Noisy Concept Label Annotation: We use ChatGPT with
few-shot prompting to generate pseudo-labels (c̃sa or c̃u)
for all concepts across both Ds and Du. This creates
an augmented dataset D̃ with noisy but comprehensive
concept labels.

2. Concept-level MixUp (CM): Directly training on D̃
treats clean and noisy labels equally, potentially harming per-
formance. CM addresses this by encouraging linear behavior
between examples. It interpolates latent representations, con-
cept labels, and task labels between pairs of instances sam-
pled from D̃sa (containing original human labels cs) and the
shuffled full dataset W = Shuffle(D̃). The interpolated val-
ues (ẑ(i,j), ĉ(i,j), ŷ(i,j)) are calculated using a mixing coeffi-
cient λ̂ = max(λ, 1 − λ) where λ ∼ Beta(α, α). This gen-
erates mixed instances for training. The final loss LjointMixUp
combines the standard joint CBM loss applied to these mixed
instances, weighted by a factor τ . This allows the model to
learn robustly from the noisy signals provided by the LLM
while leveraging high-quality human annotations.

4 Experimental Highlights
We evaluated CBE-PLMs trained with C3M on sentiment
classification tasks using the CEBAB dataset and a curated
IMDB-C dataset (based on IMDB), using PLM backbones
like BERT, RoBERTa, and GPT2. We compared against stan-
dard PLMs and baseline CBE-PLMs trained without CM.

Key findings (conceptualized in Table 1 based on [Tan et
al., 2024b]):

• Interpretability with High Utility: CBE-PLMs pro-
vide concept-level interpretability with competitive task
performance compared to standard PLMs. Smaller mod-
els like LSTM even showed improved task accuracy,
suggesting the trade-off is not necessary.

• Effectiveness of C3M : Our framework (CBE-PLM-
CM) consistently achieved the best concept prediction
accuracy (interpretability). It significantly boosted per-
formance, especially on the small IMDB-C dataset, by
leveraging noisy labels effectively. C3M maintained
or improved task accuracy compared to standard PLMs,

Table 1: Representative Results Summary (Conceptual - Adapted
from Table 1 in [Tan et al., 2024b]). Comparing standard PLM,
baseline CBE-PLM, and our CBE-PLM-CM (C3M ). Metrics: Task
Acc/F1, Concept Acc/F1 (higher is better). C3M improves con-
cept accuracy (interpretability) significantly while maintaining or
improving task accuracy.

Dataset Model Type CEBAB (D̃) IMDB-C (D̃)

Concept Task Concept Task
Acc/F1 ↑ Acc/F1 ↑ Acc/F1 ↑ Acc/F1 ↑

CEBAB PLM (BERT) - / - 80.5 / 78.4 - / - 98.9 / 98.7
CBE-PLM (BERT) 68.2 / 78.1 77.4 / 74.6 67.3 / 79.2 97.6 / 97.6
CBE-PLM-CM (BERT) 70.6 / 80.1 94.4 / 93.3 70.1 / 79.9 98.2 / 98.1

IMDB-C PLM (RoBERTa) - / - 84.1 / 82.5 - / - 99.1 / 99.1
CBE-PLM (RoBERTa) 69.9 / 79.3 82.3 / 80.1 71.0 / 79.9 98.5 / 98.1
CBE-PLM-CM (RoBERTa) 72.9 / 81.9 96.3 / 98.5 72.9 / 81.9 99.7 / 99.7
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Figure 3: The results of Test-time Intervention. “NI” denotes “no in-
tervention”, “RI (W/O CM)” denotes “random intervention on CBE-
PLMs without the concept-level MixUp”, “RI” denotes “random in-
tervention on CBE-PLMs”, and “OI” denotes “oracle intervention”.

demonstrating an excellent interpretability-utility trade-
off. Concept-level MixUp (CM) proved essential for
robustness against noisy labels, preventing performance
degradation seen when naively using augmented data.

• Explainable Predictions: CBE-PLMs allow visualiz-
ing concept contributions to the final prediction, offering
intuitive insights as shown in Figure 2).

• Test-time Intervention: Users can correct mispredicted
concept activations at test time to potentially improve
task accuracy. C3M significantly enhanced the effec-
tiveness and robustness of this intervention, mitigating
negative impacts from potential incorrect human correc-
tions (see Figure 3).

5 Conclusion
This work introduce Concept-Bottleneck-Enabled PLMs
(CBE-PLMs) as a way to bring concept-level interpretability
to complex language models. We propose the C3M frame-
work to effectively train these models by leveraging LLMs for
concept augmentation and pseudo-labeling, combined with
a concept-level MixUp strategy for noise robustness. Our
approach yields models that are not only more interpretable
through concept activations and visualizations but also main-
tain high task performance and benefit from test-time inter-
vention. Our follow-up works include discussions on provid-
ing both local and global explanations [Tan et al., 2024a], en-
abling autonomous test-time interventions [Tan et al., 2025a],
the faithfulness of post-hoc explanations [Tan et al., 2025b],
and the intrinsic barriers to explanations [Tan and Liu, 2025].
We hope our methods offer a practical path towards building



more transparent, trustworthy, and interactive PLMs by effec-
tively utilizing both limited human knowledge and large-scale
AI capabilities.
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