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ABSTRACT

Given the rising popularity of AI-generated art and the associated copyright con-
cerns, identifying whether an artwork was used to train a diffusion model is an
important research topic. The work approaches this problem from the membership
inference attack (MIA) perspective. We first identify the limitation of applying
existing MIA methods for proprietary diffusion models: the required access of
internal U-nets. To address the above problem, we introduce a novel member-
ship inference attack method that uses only the image-to-image variation API and
operates without access to the model’s internal U-net. Our method is based on
the intuition that the model can more easily obtain an unbiased noise prediction
estimate for images from the training set. By applying the API multiple times to the
target image, averaging the outputs, and comparing the result to the original image,
our approach can classify whether a sample was part of the training set. We validate
our method using DDIM and Stable Diffusion setups and further extend both our
approach and existing algorithms to the Diffusion Transformer architecture. Our
experimental results consistently outperform previous methods.

1 INTRODUCTION

Recently, there has been a surge in the popularity of generative models, with diffusion models in
particular, gaining huge attention within the AI community (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Song et al., 2020b). These models have demonstrated remarkable capabilities across
various tasks, including unconditional image generation (Ho et al., 2020; Song et al., 2020a), text-to-
image generation (Rombach et al., 2022; Yu et al., 2022; Nichol et al., 2021) and image-to-image
generation (Saharia et al., 2022a). This surge has given rise to powerful AI art models such as
DALL-E 2 (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), and Imagen (Saharia et al.,
2022b). AI-generated art holds a promising future and is expected to have a widespread impact.

Effective training of diffusion models requires high-quality data. It is thus crucial to design an
algorithm that can identify whether a specific artwork has been used during the training of a model,
thereby providing protection for these artworks and detecting misuse of data. This is especially
important due to the rapid growth of generative models, which has raised concerns over intellectual
property (IP) rights, data privacy, and the ethical implications of training on copyrighted or proprietary
content without consent. As these models are increasingly deployed across industries, detecting
whether a specific piece of content was used in training can help prevent unauthorized use of artistic
works, protecting creators’ copyrights and ownership rights. This is a classic problem in the field of
machine learning, first introduced by Shokri et al. (2017) and named “membership inference attack”.

A series of studies have been conducted on membership inference attacks against diffusion models.
Hu & Pang (2023) was the first to examine this issue, utilizing the loss function values of diffusion
models to determine whether an image is in the training set. Duan et al. (2023) and Kong et al. (2023)
extended this work by relaxing the assumptions about model access requirements.

Despite great progress, previous methods are not yet ready for MIA in proprietary diffusion models.
Most existing approaches heavily rely on checking whether the U-net of the model predicts noise
accurately, which is not practical since most commercial diffusion models available today offer only
API access, while the U-net remains hidden.
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To address the above issue, we propose a membership inference attack method that relies on the
variation API and does not require access to the denoise model (e.g., U-net). We observe that if
we alter an image using the target diffusion model’s variation API, the sampling process will be
captured by “a region of attraction” if the model has seen this image during training (illustrated in
Figure 2). Based on the above observation, we propose the REDIFFUSE algorithm for MIA with
image-to-image variation API, and can detect member images without accessing the denoise model.
Our main contributions are listed as follows:

1. We propose a membership inference attack method that does not require access to the
model’s internal structure. Our method only involves using the model’s variation API to
alter an image and compare it with the original one. We name our method REDIFFUSE.

2. We evaluate our method using DDIM (Song et al., 2020a) and Stable Diffusion (Rombach
et al., 2022) models on classical datasets, including CIFAR10/100 (Krizhevsky et al., 2009),
STL10-Unlabeled (Coates et al., 2011), LAION-5B (Schuhmann et al., 2022), etc. Our
method outperforms the previous methods.

3. We extend both existing algorithms and our own algorithm to the Diffusion Transformer (Pee-
bles & Xie, 2023) architecture, implementing the membership inference attack within this
model framework for the first time. Experimental results demonstrate that our algorithm is
consistently effective.

2 RELATED WORKS

Diffusion Model The diffusion model, initially proposed by Sohl-Dickstein et al. (2015), has
achieved remarkable results in producing high-quality samples across a variety of domains. This
ranges from image generation (Song & Ermon, 2019; Song et al., 2020b; Dhariwal & Nichol, 2021),
audio synthesis (Popov et al., 2021; Kong et al., 2020; Huang et al., 2022), and video generation (Ho
et al., 2022a;b; Wu et al., 2023), etc. Among existing diffusion models, the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) is one of the most frequently adopted. This approach
introduces a dual-phase process for image generation: initially, a forward process gradually transforms
training data into pure noise, followed by a reverse process that meticulously reconstructs the original
data from this noise. Building on this model, there have been numerous follow-up studies, such
as Stable Diffusion (Rombach et al., 2022), which compresses images into a latent space and
generates images based on text, and the Denoising Diffusion Implicit Models (DDIM) (Song et al.,
2020a), which removes Gaussian randomness to accelerate the sampling generation process. These
advancements demonstrate the versatility and potential of diffusion models.

Data Safety and Membership Inference Attack In the era of big data, preserving data privacy
is paramount. The training of diffusion models may involve sensitive datasets like artists’ artworks,
which are protected by copyright laws. Membership inference attacks, initially introduced by Shokri
et al. (2017), serve as an effective means to detect potential misuse of data without proper authorization.
Its objective is to ascertain whether a particular data sample participated in the training phase of
a target model. This approach is instrumental in probing privacy breaches and identifying illicit
data utilization. Researchers primarily focus on membership inference attacks for classification
models (Salem et al., 2018; Yeom et al., 2018; Long et al., 2018; Li & Zhang, 2021), embedding
models (Song & Raghunathan, 2020; Duddu et al., 2020; Mahloujifar et al., 2021), and generative
models (Hayes et al., 2017; Hilprecht et al., 2019; Chen et al., 2020).

In the domain of membership inference attacks against diffusion models, Wu et al. (2022); Hu &
Pang (2023) use a white-box approach, which assumes access to the entire diffusion model and
utilizes loss and likelihood to determine whether a sample is in the training set. Duan et al. (2023);
Kong et al. (2023); Tang et al. (2023) have relaxed these requirements, eliminating the need for the
entire model. They leverage the insight that samples within the training set yield more accurate noise
predictions, thereby achieving high accuracy in membership inference attack tasks. However, they
also require the outputs of the U-net, as it is necessary to obtain the noise predictions of intermediate
steps. Recently, Pang & Wang (2023) proposed a black-box membership inference attack method
against diffusion models. Their method identifies whether a specific image is in a finetuning dataset
of 100 images by calculating the difference between the generated image and the target image, using
the corresponding prompt as input. Their approach leverages the model’s tendency to memorize
finetuning images and generate similar outputs. In contrast, we focus on detecting whether an image
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is in the pretraining dataset, where a pre-trained model often produces diverse outputs for the same
prompt, making detection more challenging.

3 PRELIMINARY

In this section, we begin by introducing the notations used for several popular diffusion models.
We first introduce the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020). Then,
we extend to the Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020a) and Stable
Diffusion (Rombach et al., 2022), which are variants of DDPM used to accelerate image generation or
generate images grounded in text descriptions. Lastly, we discuss Diffusion Transformer (Peebles &
Xie, 2023), a model that replaces the U-net architecture with a transformer and achieves higher-quality
image generation.

Denoising Diffusion Probabilistic Model (DDPM) A diffusion model provides a stochastic path
between an image and noise. The forward process (denoted as q) iteratively incorporates Gaussian
noise into an image, while the reverse process (denoted as pθ) gradually reconstructs the image from
noise.

q(xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
,

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) ,

where µθ(·) and Σθ(·) are the mean and covariance of the denoised image parameterized by the
model parameters θ, and βt is a noise schedule that controls the amount of noise added at each step.

Denoising Diffusion Implicit Model (DDIM) DDIM modifies the sampling process to improve
efficiency while maintaining high-quality image generation. Unlike DDPM, which requires a large
number of denoising steps, DDIM uses a non-Markovian process to accelerate sampling.

xt−1 = ϕθ(xt, t) =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1ϵθ(xt, t) , (1)

where ᾱt =
∏t

k=0 αk, αt + βt = 1 and ϵθ(xt, t) is the noise predicted by the model at step t. This
formulation requires fewer sampling steps without compromising the quality of the generated images.

Stable Diffusion Stable Diffusion leverages a variational autoencoder (VAE) (Kingma & Welling,
2013) to encode images into a latent space and perform diffusion in this compressed space. The
model uses a text encoder to guide the diffusion process, enabling text-to-image generation:

zt−1 ∼ pθ(zt−1 | zt, τθ(y)) , x = Decoder(z0) ,

where x represents the output image, zt represents the latent variable at step t, and the text conditioning
τθ(y) is incorporated into the denoising process to generate the image. This approach significantly
reduces computational costs and allows for high-quality image synthesis from textual descriptions.

Diffusion Transformer Diffusion Transformer leverages the Vision Transformer (Dosovitskiy,
2020) structure to replace the U-net architecture traditionally used in diffusion models for noise
prediction. Its training and sampling methods remain consistent with DDIM, with the only difference
being the replacement of noise prediction network ϵθ with ϵθ̃, where θ̃ represents a Vision Transformer-
based architecture. This approach further enhances the generation quality and ensured that the model
possesses good scalability properties.

4 ALGORITHM DESIGN

In this section, we introduce our algorithm. We begin by discussing the definition of variation API
and the limitations of previous membership inference attack methods. In our formulations, we assume
DDIM as our target model. The formulations for DDPM are highly similar and we omit it for brevity.
We will discuss the generalization to the latent diffusion model in Section 4.3.

4.1 THE VARIATION API FOR DIFFUSION MODELS

Most previous works on membership inference attacks against diffusion models aim to prevent data
leakage and hence rely on thresholding the model’s training loss. For instance, Hu & Pang (2023)
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Figure 1: The overview of REDIFFUSE. We independently input the image to the variation API n times with
diffusion step t. We take the average of the output images and compare them with the original ones. If the
difference is below a certain threshold, we determine that the image is in the training set.

involves a direct comparison of image losses, while Duan et al. (2023); Kong et al. (2023) evaluates
the accuracy of the model’s noise prediction at initial or intermediate steps. However, the required
access to the model’s internal U-net structure prevents applications from copyright protection because
most servers typically provide only black-box API access.

In contrast, our method represents a step towards black-box MIA, as we do not directly access the
model’s internal structure. Instead, we rely solely on the variation API, which takes an input image
and returns the corresponding output image. Below, we formalize the definition of the variation API
used in our algorithm.
Definition 1 (The variation API). We define the variation API Vθ(x, t) of a model as follows. Suppose
we have an input image x, and the diffusion step of the API is t. The variation API randomly adds
t-step Gaussian noise ϵ ∼ N (0, I) to the image and denoises it using the DDIM sampling process
ϕθ(xt, t) as described in Equation 1, returning the reconstructed image Vθ(x, t) = x̂. The details are
as follows:

xt =
√
ᾱtx+

√
1− ᾱtϵ , x̂ = Φθ(xt, 0) = ϕθ(· · ·ϕθ(ϕθ(xt, t), t− 1), 0) . (2)

This definition aligns with the image-to-image generation method of the diffusion model, making
access to this API practical in many setups (Lugmayr et al., 2022; Saharia et al., 2022a; Wu & De la
Torre, 2023). Some APIs provide the user with a choice of t, while others do not and use the default
parameter. We will discuss the influence of different diffusion steps in Section 5.5, showing that
the attack performances are relatively stable and not sensitive to the selection of t. We also note
that for the target model, we can substitute ϕθ(xt, 0) with other sampling methods, such as the
Euler-Maruyama Method (Mao, 2015) or Variational Diffusion Models (Kingma et al., 2021).

4.2 ALGORITHM

In this section, we present the intuition of our algorithm. We denote ∥ · ∥ as the L2 operator norm
of a vector and T = {1, 2, . . . , T} as the set of diffusion steps. The key insight is derived from the
training loss function of a fixed sample x0 and a time step t ∈ T :

L(θ) = Eϵ∼N (0,I)

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] .
Denote xt =

√
ᾱtx0 +

√
1− ᾱtϵ, we assume that the denoise model is expressive enough such that

for the input x0 ∈ Rd and time step t ∈ T , the Jacobian matrix ∇θϵθ(xt, t) is full rank (≥ d). This
suggest that the model can adjust the predicted noise ϵθ(xt, t) locally in any direction. Then for a
well trained model, we would have

∇θL(θ) = 0 =⇒ ∇θϵθ(xt, t)
TEϵ∼N (0,I)

[
ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)]
= 0 ,

=⇒ Eϵ∼N (0,I)

[
ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)]
= 0 .

Intuitively, this is because if the noise prediction from the neural network exhibited high bias, the
network could adjust to fit the bias term, further reducing the training loss.

Therefore, for images in the training set, we expect the network to provide an unbiased noise
prediction. Since the noise prediction is typically inaccessible in practical applications, we use the

4
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Figure 2: The intuition of our algorithm design. We denote x as the target image, x̂i as the i-th image
generated by the variation API, and x̂ as the average image of them. For member image x, the difference
v = x− x̂ will be smaller after averaging due to xi being an unbiased estimator.

reconstructed sample x̂ as a proxy. Leveraging the unbiasedness of noise prediction, we demonstrate
that averaging over multiple independent reconstructed samples x̂i significantly reduces estimation
error (see Theorem 1). On the other hand, for images that are not in the training set, the neural
network may not provide an unbiased prediction at these points. We illustrate the intuition in Figure 2.

With the above intuition, we introduce the details of our algorithm. We independently apply the
variation API n times with our target image x as input, average the output images, and then compare
the average result x̂ with the original image. We will discuss the impact of the averaging number n in
Section 5.5. We then evaluate the difference between the images using an indicator function:

f(x) = 1 [D(x, x̂) < τ ] .

Our algorithm classifies a sample as being in the training set if D(x, x̂) is smaller than a threshold τ ,
where D(x, x̂) represents the difference between the two images. It can be calculated using traditional
functions, such as the SSIM metric (Wang et al., 2004). Alternatively, we can train a neural network
as a proxy. In Section 5, we will introduce the details of D(x, x̂) used in our experiment.

Our algorithm is outlined in Algorithm 1, and we name it REDIFFUSE. The key ideas of our algorithm
are illustrated in Figure 1, and we also provide some theoretical analysis in Theorem 1 to support it.

Algorithm 1 MIA through REDIFFUSE

Input: Target image x, diffusion step t, average number n, threshold τ , the variation API of the
target model Vθ, distance function D.
for k = 1, . . . , n do

Use the variation API Vθ to generate the variation image x̂k = Vθ(x, t) according to Equation (2).
end for
Average the reconstructed images from each iteration x̂ = 1

n (x̂1 + x̂2 + . . .+ x̂n).
return ”YES” if the distance between the two images D(x, x̂) is less than τ , otherwise ”NO”.

Analysis We give a short analysis to justify why averaging over n samples in REDIFFUSE can
reduce the prediction error for training data. We have the following theorem showing that if we use
the variation API to input a member x ∼ Dtraining, then the error ∥x̂− x∥ from our method will be
small with high probability.
Theorem 1. Suppose the DDIM model can learn a parameter θ such that, for any x ∼ Dtraining

with dimension d, the prediction error ϵ − ϵθ(
√
ᾱtx +

√
1− ᾱtϵ, t) is a random variable X =

(X1, X2, . . . , Xd) with zero expectation and finite cumulant-generating function for each coordi-
nate (Durret, 2010). Suppose the sampling interval k is equal to the variation API diffusion step t.
Let x̂ be the average of n output images of x using the variation API. Then we have

P(∥x̂− x∥ ≥ β) ≤ d exp

(
−nmin

i
Ψ∗

Xi

(
β
√
ᾱt√

d(1− ᾱt)

))
,

where β > 0 and Ψ∗
Xi

is the Fenchel-Legendre dual of the cumulant-generating function ΨXi .
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The theorem suggests that averaging the randomly variational data from a training set will result in a
smaller relative error with high probability when we use a large n. We defer the proof of this theorem
to Appendix C.

We note that the unbiased assumption on predicted noise can be strong in practice. For experiments,
we expect the mean ∥µ∥ of predicted noise for trained data is smaller than the mean ∥µ′∥ from unseen
data. As a result, the empirical best choice of n would be determined by the gap ∥µ′∥ − ∥µ∥.

4.3 MIA ON OTHER DIFFUSION MODELS

In this section, we discuss how we can generalize our algorithm to other diffusion models. We note
that the variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder
process. Again we denote x̂ = Vθ(x, t), and the details are as follows:

z = Encoder(x) , zt =
√
ᾱtz +

√
1− ᾱtϵ , ẑ = Φθ(zt, 0) , x̂ = Decoder(ẑ) . (3)

This definition aligns with the image generation process of the stable diffusion model.

For the Diffusion Transformer, we define the variation API as Vθ̃(x, t), where θ̃ corresponds to
the Vision Transformer architecture instead of the U-net. We repeatedly call the variation API and
calculate the difference between the original image and the reconstructed image, as done in DDIM.

5 EXPERIMENTS

In this section, we evaluate the performance of our methods across various datasets and settings. We
follow the same experiment setup in previous papers (Duan et al., 2023; Kong et al., 2023). The
detailed experimental settings, including datasets, models, and hyper-parameter settings can be found
in Appendix A.

5.1 EVALUATION METRICS

We follow the metrics used in previous papers (Duan et al., 2023; Kong et al., 2023), including Area
Under Receiver Operating Characteristic (AUC), Attack Success Rate (ASR), the True Positive Rate
(TP) when the False Positive Rate is 1%. We also plot the ROC curves.

5.2 MIA WITH DDIM MODELS

We follow the experimental setup of (Duan et al., 2023; Kong et al., 2023). We train a DDIM model
on the CIFAR-10/100 (Krizhevsky et al., 2009) and STL10-Unlabeled datasets (Coates et al., 2011),
using the image generation step T = 1000 and sampling interval k = 100. For all the datasets, we
randomly select 50% of the training samples to train the model and denote them as members. The
remaining 50% are utilized as nonmembers. We use (Matsumoto et al., 2023), (Duan et al., 2023),
(Kong et al., 2023) as our baseline methods. We fix the diffusion step at t = 200, and independently
call the variation API 10 times to take the average of the output images as x̂. We will discuss the
impact of the diffusion step and the average number in Section 5.5.

Table 1: Comparison of different methods on four datasets for the DDIM model. We use AUC, ASR, and TP as
the metrics, TP refers to the True Positive Rate when the False Positive Rate is 1%.

Method CIFAR10 CIFAR100 STL10

Algorithm U-Net AUC ASR TP AUC ASR TP AUC ASR TP

Loss (Matsumoto et al., 2023) □ 0.88 0.82 14.2 0.92 0.84 20.9 0.89 0.82 15.6

SecMI (Duan et al., 2023) □ 0.95 0.90 40.7 0.96 0.90 44.9 0.94 0.88 26.9

PIA (Kong et al., 2023) □ 0.95 0.89 48.7 0.96 0.90 47.0 0.94 0.87 29.8

PIAN (Kong et al., 2023) □ 0.95 0.89 50.4 0.91 0.85 39.2 0.92 0.86 28.5

REDIFFUSE ■ 0.96 0.91 40.7 0.98 0.93 48.2 0.96 0.90 31.9

□: Require the access of U-Net. ■: Do not require the access of U-Net.

For the difference function D(x, x̂), following the setup in (Duan et al., 2023), we take the pixel-
wise absolute value of x− x̂ to obtain a difference vector v for each image. Using the ResNet-18
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network (He et al., 2016) and denoting it as fR, we perform binary classification on these difference
vectors. We use 20% of the data as the training set and obtained the label of each difference vector
being classified as a member or nonmember. The difference function is obtained by the negated value
of the probability outputed by the neural network predicting as member: D(x, x̂) = −fR(v).

The result is shown in Table 1. Our method achieves high performance, surpassing several baseline
algorithms in most setups, and does not require access to the internal structure of the model. This
demonstrates that our algorithm is highly effective and robust.

5.3 MIA WITH DIFFUSION TRANSFORMERS

We train a diffusion transformer model on the ImageNet (Deng et al., 2009) dataset following the
setup of (Peebles & Xie, 2023). We randomly select 100,000 images from the ImageNet training set
to train the model with resolutions of either 128× 128 or 256× 256. For the membership inference
attack setup, 1000 images are randomly chosen from our training set as the member set, and another
1000 images are randomly selected from the ImageNet validation set as the non-member set. We fix
the diffusion step at t = 150 and the DDIM step at k = 50, and independently call the variation API
10 times to take the average of the output images as x̂.

We use (Matsumoto et al., 2023), (Duan et al., 2023), (Kong et al., 2023) as our baseline methods.
Since these work did not study the case of Diffusion Transformers, we integrate their algorithms into
the DiT framework for evaluation. For the difference function D(x, x̂), following the setup in (Duan
et al., 2023; Kong et al., 2023), we take the L2 norm of x− x̂ to measure the differences between two
image.The results, presented in Table 2, demonstrate that our method outperforms baseline algorithms
and does not require access to the Vision Transformer.

Table 2: Comparison of different methods for Diffusion Transformer using the same set of metrics as Table 1.
Previous methods require access to the Vision Transformer, whereas our methods do not. We use AUC, ASR,
and TP as the metrics, TP refers to the True Positive Rate when the False Positive Rate is 1%.

Method ImageNet 128 × 128 ImageNet 256 × 256

Algorithm Transformer AUC ASR TP AUC ASR TP

Loss (Matsumoto et al., 2023) □ 0.83 0.76 10.7 0.78 0.70 7.3

SecMI (Duan et al., 2023) □ 0.80 0.73 8.3 0.88 0.80 16.3

PIA (Kong et al., 2023) □ 0.97 0.92 32.1 0.91 0.85 6.8

PIAN (Kong et al., 2023) □ 0.66 0.64 6.2 0.67 0.66 12.8

REDIFFUSE ■ 0.98 0.95 44.1 0.97 0.94 47.3

□: Require the access of Transformer. ■: Do not require the access of Transformer.

We also plot ROC curves for the DDIM train on CIFAR-10 and the Diffusion Transformer train on
ImageNet 256× 256 in Figure 3. The curves further demonstrate the effectiveness of our method.

Figure 3: The ROC curves of various setups. Left: DDIM model on CIFAR-10. Right: Diffusion Transformer
on ImageNet 256× 256. The curves show that our algorithm outperforms the baseline algorithms.
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5.4 MIA WITH THE STABLE DIFFUSION MODEL

We conduct experiments on the original Stable Diffusion model, i.e., stable-diffusion-v1-4 provided
by Huggingface, without further fine-tuning or modifications. We follow the experiment setup
of (Duan et al., 2023; Kong et al., 2023), use the LAION-5B dataset (Schuhmann et al., 2022) as
member and COCO2017-val (Lin et al., 2014) as non-member. We randomly select 2500 images in
each dataset. We test two scenarios: Knowing the ground truth text, which we denote as Laion5; Not
knowing the ground truth text and generating text through BLIP (Li et al., 2022), which we denote as
Laion5 with BLIP.

For the difference function D(x, x̂), since the images in these datasets better correlate with human
visual perception, we directly use the SSIM metric (Wang et al., 2004) to measure the differences
between two images. The results, presented in Table 3, demonstrate that our methods achieve high
accuracy in this setup, outperforming baseline algorithms by approximately 10%. Notably, our
methods do not require access to U-Net.

Table 3: Comparison of different methods for Stable Diffusion using the same set of metrics as Table 1. Again,
previous methods require access to U-Net, whereas our methods do not. We use AUC, ASR and TP as the
metrics, TP refers to the True Positive Rate when the False Positive Rate is 1%.

Method Laion5 Laion5 with BLIP

Algorithm U-Net AUC ASR TP AUC ASR TP

Loss (Matsumoto et al., 2023) □ 0.62 0.61 13.2 0.62 0.62 13.3

SecMI (Duan et al., 2023) □ 0.70 0.65 19.2 0.71 0.66 19.8

PIA (Kong et al., 2023) □ 0.70 0.66 19.7 0.73 0.68 20.2

PIAN (Kong et al., 2023) □ 0.56 0.53 4.8 0.55 0.51 4.4

REDIFFUSE ■ 0.81 0.75 20.6 0.82 0.75 21.7

□: Require the access of U-Net. ■: Do not require the access of U-Net.

5.5 ABLATION STUDIES

In this section, we alter some experimental parameters to test the robustness of our algorithm. We
primarily focus on the ablation study of DDIM and Diffusion Transformer, while the ablation study
related to Stable Diffusion is provided in Appendix B.

The Impact of Average Numbers We test the effect of using different averaging numbers n on the
results, as shown in Figure 4 . It can be observed that averaging the images from multiple independent
samples to generate the output x̂ further improves accuracy. This observation validates the algorithm
design intuition discussed in Section 4.2. Additional figures showing the ASR results are presented
in Appendix B.

Figure 4: The impact of average numbers. Left: DDIM model on CIFAR-10. Right: Diffusion Transformer
model on Imagenet. In both cases, averaging multiple independent samples proves to be effective in further
improving the overall performance of our algorithm, which validates the intuition of our algorithm design.
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The Impact of Diffusion Steps We adjust the diffusion step t to examine its impact on the
results. The experiments are conducted using the DDIM model on CIFAR-10 with diffusion steps for
inference. The outcomes are presented in Figure 5. Our findings indicate that as long as a moderate
step is chosen, the attack performance remains excellent, demonstrating that our algorithm is not
sensitive to the choice of t. This further underscores the robustness of our algorithm. We also plot the
change of diffusion step for other diffusion models and datasets in the Appendix B.

Figure 5: The impact of diffusion steps on DDIM. We train a DDIM model on the CIFAR-10 dataset and use
different diffusion steps for inference. We find that high accuracy can be achieved as long as a moderate step
number is chosen. This opens up possibilities for practical applications in real-world scenarios.

The Impact of Sampling Intervals In DDIM and Diffusion Transformer, the model uses a set
of steps denoted by τ1, τ2, . . . , τT . It samples each of these steps to create the image. The spacing
between these steps is referred to as the sampling interval. We change the sampling interval k and
check the influence on the results. As shown in Figure 6, we adjust this parameter for attacks on
both DDIM and Diffusion Transformer. We find that our method achieves high AUC values across
different sampling intervals, demonstrating that our detection capabilities are not significantly limited
by this parameter. Additionally, in Appendix B, we plot the effect of different sampling intervals on
ASR and find that the impact is minimal.

Figure 6: The impact of sampling intervals. Left: DDIM model on CIFAR-10. Right: Stable Diffusion model
on LAION-5. We find that adjusting the sampling interval has a relatively small influence in the first case and
does not affect our method in the latter case. This makes our algorithm applicable to more setups.

6 AN APPLICATION TO DALL-E’S API

In this section, we conduct a small experiment with online API services to test the effectiveness of
our algorithm. We test with the DALL-E 2 (Ramesh et al., 2022) model since DALL-E 2 provides
a variation API service. We select different thresholds and classify an image with a variation error
below the threshold as members and those above the threshold as non-members. We then calculate
metrics such as AUC and ASR. Since the baseline algorithms (Matsumoto et al., 2023; Duan et al.,
2023; Kong et al., 2023) require intermediate results, we are unable to test these algorithms under the
online API setup.

One challenge with MIA for DALL-E 2 is that it does not disclose its training set. However, since
it is adept at generating various famous artworks, we select 30 famous paintings from five famous

9
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artists: Van Gogh, Monet, Da Vinci, Dali, and Rembrandt, to form our member set. We believe that it
is reasonable to hypothesize that these artworks are used in DALL-E 2’s training set. For constructing
the non-member set, we used Stable Diffusion 3 (Esser et al., 2024) to generate images based on
the titles of each painting in the member set. The benefit of constructing non-members in this way
is that it allows for control over the content of the artwork descriptions, reducing bias caused by
content shift. Moreover, these generated images are certainly not in the DALL-E 2’s training set.
Other results of changes to the member and non-member inputs after applying the variation API can
be found in Appendix D.

The results, presented in Table 4, demonstrate that our algorithm achieves a relatively high accuracy
under this evaluation method. Our observation is illustrated in Figure 17. As seen in the figure, for
Monet’s iconic painting ”Water Lily Pond”, the original artwork shows minimal changes when using
DALL-E 2’s variation API, retaining most of its main features. In contrast, the artwork generated by
Stable Diffusion 3 undergoes significant changes, with variations in both the number of flowers and
lily pads. Therefore, we hypothesize that artworks with smaller changes after API usage are more
likely to have appeared in the model’s training set.

Table 4: The results of applying our algorithm
to DALL-E 2’s variation API. We assume some
famous paintings as members and use Stable Dif-
fusion 3 along with the titles of these artworks to
generate corresponding non-members. Our algo-
rithm also achieves high accuracy under this setup.
Since the baseline algorithm requires noise pre-
diction results, we are unable to evaluate it in this
black-box setup.

Metrics L1 distance L2 distance

AUC 76.2 88.3

ASR 74.5 81.4

Figure 7: Main observation of our attack.
DALL-E 2’s variation API makes minimal changes
to famous artworks, while nonmember images with
similar content undergo significant alterations.

The results indicate that we can apply our algorithm with online API services. We acknowledge that
this part of the experimental design has certain limitations. Not every famous painting we selected
may be present in DALL-E 2’s training set, and our construction of non-members may exhibit some
distribution shift relative to the member dataset. Here, we aim to provide a real-world application for
black-box evaluation, leaving a more comprehensive experimental design as future work.

7 CONCLUSION, LIMITATIONS AND FUTURE DIRECTIONS

In this work, we introduce a novel membership inference attack method specifically designed for
diffusion models. Our approach only requires access to the variation API of the model, bypassing
the need for internal network components such as the U-net. This represents an advancement
for commercial diffusion models, which typically restrict internal access. We demonstrate the
effectiveness of our approach across various datasets, showing that it achieves high accuracy in
identifying whether an image was included in the training dataset. Our algorithm can detect data
misuse by the model, representing a step forward in protecting the copyright of artworks.

However, our method has certain limitations, particularly the requirement for a moderate diffusion
step t in the variation API. The algorithm’s accuracy declines when the diffusion step is excessively
high. As such, we propose our method as an initial step towards black-box MIA, with a more
comprehensive solution left for subsequent exploration.

Future work could focus on developing more robust algorithms capable of handling a broader range
of diffusion steps. Improving the interpretability of our method and extending it to other generative
models are also valuable directions for further research.
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A DATASETS, MODELS AND HYPERPARAMETERS

We use NVIDIA RTX 6000 graphics cards for all our experiments.

For DDIM, we follow the training hyperparameters of (Duan et al., 2023) to train a DDIM model
on the CIFAR-10/100 (Krizhevsky et al., 2009) and STL10-Unlabeled (Coates et al., 2011) datasets,
using 1000 image generation steps (T = 1000) and a sampling interval of k = 100. The training
iterations are set to 800,000. For all the datasets, we randomly select 50% of the training samples to
train the model and designate them as members. The remaining 50% of the training samples are used
as nonmembers.

We use (Matsumoto et al., 2023; Duan et al., 2023; Kong et al., 2023) as our baseline methods. We
use their official code repositories and apply the optimal hyperparameters from their papers. For our
algorithm, we fix the diffusion step at t = 200 and independently call the variation API 10 times to
average the output images as x̂.

For the Diffusion Transformers, we train the model on the ImageNet (Deng et al., 2009) dataset,
using 1000 image generation steps (T = 1000), while for other training hyperparameters, we follow
the setup of (Peebles & Xie, 2023). We randomly select 100,000 images from the ImageNet training
set to train the model at resolutions of either 128× 128 or 256× 256. For the 128× 128 image size,
we use 160,000 training iterations. For the 256× 256 image size, we use 300,000 training iterations.
These numbers of training iterations are chosen to ensure the generation of high-quality images.

For the membership inference attack setup, 1000 images are randomly selected from our training
set as the member set, and another 1000 images are randomly chosen from the ImageNet validation
set as the non-member set. We fix the diffusion step at t = 150 and the DDIM step at k = 50, and
independently call the variation API 10 times to average the output images as x̂.

We also use (Matsumoto et al., 2023; Duan et al., 2023; Kong et al., 2023) as our baseline methods.
Since these papers do not study Diffusion Transformers, we adapt their algorithms to the DiT
framework for evaluation. We fix the DDIM step at k = 50 and choose diffusion steps t ∈
[50, 100, 150, 200, 250, 300], recording their optimal solutions under these different hyperparameter
settings.

For the Stable Diffusion experiments, we use the original Stable Diffusion model, i.e., stable-
diffusion-v1-4 provided by Huggingface, without further fine-tuning or modifications. We follow
the experimental setup of (Duan et al., 2023; Kong et al., 2023), using an image generation step of
T = 1000 and a sampling interval of k = 10. We use the LAION-5B dataset (Schuhmann et al.,
2022) as the member set and COCO2017-val (Lin et al., 2014) as the non-member set. We randomly
select 2500 images from each dataset. We test two scenarios: knowing the ground truth text, denoted
as Laion; and generating text through BLIP (Li et al., 2022), denoted as Laion with BLIP.

We use the hyperparameters from the papers (Duan et al., 2023; Kong et al., 2023) to run the baseline
methods. For our algorithms REDIFFUSE, we fix the diffusion step at t = 10 to call the variation API
and directly use the SSIM metric (Wang et al., 2004) to measure the differences between two images.
Other hyperparameters remain the same as in the baseline methods.
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B MORE EXPERIMENT RESULTS

In this section, we show other experiment results which is not in our main paper. We conduct more
ablation studies.

The Impact of Average Numbers We use different average numbers n and test the influence on
the results. Besides the figures of AUC in the main paper, the figures of ASR of DDIM and Diffusion
Transformer are also plotted in Figure 8. In addition, we plot the figures of AUC and ASR for Stable
Diffusion in Figure 9. We observe that in the DDIM and Diffusion Transformer setup, averaging the
images from multiple independent samples as the output further improves accuracy. In the stable
diffusion setup, since the image size in the dataset is larger (512x512), the reconstructed images are
more stable and not influenced by perturbations at specific coordinates. Therefore, averaging multiple
images is not necessary.

Figure 8: The impact of average numbers. Left: DDIM model on CIFAR-10. Right: Diffusion Transformer
model on Imagenet. Averaging can further improve the performance of our algorithm.

Figure 9: The impact of average numbers on Stable Diffusion. We plot the AUC and ASR metrics, and
averaging does not improve performance.

The Impact of Diffusion Steps We adjust the diffusion step t to examine its impact on the
results. We train the DDIM model on CIFAR100 (Figure 10), STL10 (Figure 11) dataset, Diffusion
Transformer on the Imagenet 256× 256 (Figure 12)dataset and Stable Diffusion on Laion5 dataset
(Figure 13). From the results, we see that our algorithm can achieve high performance over a wide
range of diffusion steps. This opens up possibilities for practical applications in real-world scenarios.
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Figure 10: The impact of diffusion steps. We train a DDIM model on the CIFAR-100 dataset and use different
diffusion step for inference.

Figure 11: The impact of diffusion steps. We train a DDIM model on the STL-10 dataset and use different
diffusion step for inference.

Figure 12: The impact of diffusion steps. We train a Diffusion Transformer model on the Imagenet 256× 256
dataset and use different diffusion step for inference. The robust results imply that our algorithm is also not very
sensitive to the choice of t in this setup.

Figure 13: The impact of diffusion steps. We use the Stable Diffusion model with the Laion5 dataset for
evaluation and test different diffusion steps for inference. Specifically, using relatively small diffusion steps
results in better performance.
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The Impact of Sampling Intervals We change the sampling intervals to see if there is any influence
on the results. In addition to the AUC figures in the main paper, the ASR figures of DDIM and
Diffusion Transformer are also plotted in Figure 14. We also plot the AUC and ASR for Stable
Diffusion in Figure 15. From the results, we observe that our algorithm consistently performs well
across different sampling intervals.

Figure 14: The impact of sampling intervals. Left: DDIM model on CIFAR-10. Right: Diffusion Transformer
on Imagenet. We find that adjusting the sampling interval does not significantly affect of the accuracy.

Figure 15: The impact of sampling intervals on Stable Diffusion. We plot the AUC and ASR metrics, observe
that different sampling intervals have minimal impact on it.

The ROC curves Besides the ROC curves in the main paper, we also plot ROC curves for the
Diffusion Transformer train on ImageNet 128 × 128 and the Stable Diffusion train on Laion5 in
Figure 16. The curves further demonstrate the effectiveness of our method.

Figure 16: The ROC curves of various setups. Left: Diffusion Transformer on ImageNet 128× 128. Right:
The Stable Diffusion on Laion5. The curves show that our algorithm outperforms the baseline algorithms.
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C PROOF

In this section, we implement the proof of the theorem.
Theorem 1. Suppose the DDIM model can learn a parameter θ such that, for any x ∼ Dtraining

with dimension d, the prediction error ϵ − ϵθ(
√
ᾱtx +

√
1− ᾱtϵ, t) is a random variable X =

(X1, X2, . . . , Xd) with zero expectation and finite cumulant-generating function for each coordi-
nate (Durret, 2010). Suppose the sampling interval k is equal to the variation API diffusion step t.
Let x̂ be the average of n output images of x using the variation API. Then we have

P(∥x̂− x∥ ≥ β) ≤ d exp

(
−nmin

i
Ψ∗

Xi

(
β
√
ᾱt√

d(1− ᾱt)

))
,

where β > 0 and Ψ∗
Xi

is the Fenchel-Legendre dual of the cumulant-generating function ΨXi
.

Proof. We denote xi as the i-th output image of x using the variation API. We denote the i-th
Gaussian noise as ϵi and the forward process incur xi

t =
√
ᾱtx+

√
1− ᾱtϵ

i.

As the sampling interval is equal to the variation API diffusion step t, we have

xi − x =
xi
t −

√
1− ᾱtϵθ(

√
ᾱtx+

√
1− ᾱtϵ

i, t)√
ᾱt

− x ,

=

√
ᾱtx+

√
1− ᾱtϵ

i −
√
1− ᾱtϵθ(

√
ᾱtx+

√
1− ᾱtϵ

i, t)√
ᾱt

− x ,

=

√
1− ᾱt√
ᾱt

(ϵi − ϵθ(
√
ᾱtx+

√
1− ᾱtϵ

i, t)) .

If we denote the random variable Xi = (Xi
1, X

i
2, . . . , X

i
d) represents ϵi − ϵθ(

√
ᾱtx+

√
1− ᾱtϵ

i, t),
then we consider Si

n =
∑n

j=1 X
i
j . From the assumption we know that all the Xi

j are random variables
with zero expectation and finite cumulant-generating function ΨX(s) = logE[esX ] < +∞. Using
the theorem of Chernoff-Cramer method for sums of IID RV (Durret, 2010), we get the following
probability inequality for any β > 0:

P(|Si
n| ≥ β) ≤ exp(−nΨ∗

Xi
(
β

n
)) ,

where β > 0 and Ψ∗
X(y) = sups>0(sy − ΨX(s)) is the Fenchel-Legendre dual of the cumulant-

generating function ΨX .

Therefore, denote Sn = (S1
n, S

2
n, . . . , S

d
n), taking the definition of ∥x̂− x∥ = ∥ 1

n

∑n
i=1(x

i − x)∥ =
√
1−ᾱt

n
√
ᾱt

∥Sn∥, we get the following bound of the reconstruction error:

P(∥x̂− x∥ ≥ β) ≤
d∑

i=1

P (|Si
n| ≥

nβ
√
ᾱt√

d(1− ᾱt)
) ≤ d exp(−nmin

i
Ψ∗

Xi
(

β
√
ᾱt√

d(1− ᾱt)
)) ,

So averaging the randomly reconstructed data from a training set will result in a smaller reconstruction
error with high probability of Θ(1− exp(−n)) when we use a large n.
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D MORE RESULTS OF VARIATION IMAGES

In this section, we provide more results of the variation of member and nonmember image when
applying to DALL-E 2’s variation API. The experimental results are recorded in Figure 17, from
which we can see that the variation in the member inputs after applying the DALL-E 2’s variation
API is relatively small than non-member inputs.

Figure 17: More results of the variation images. From the figures we can see that DALL-E 2’s variation API
makes less changes to images in member set than non-member set.
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