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Abstract

Offline Goal-Conditioned Reinforcement Learning (GCRL) holds great promise
for domains such as autonomous navigation and locomotion, where collecting in-
teractive data is costly and unsafe. However, it remains challenging in practice due
to the need to learn from datasets with limited coverage of the state-action space
and to generalize across long-horizon tasks. To improve on these challenges, we
propose a Physics-informed (Pi) regularized loss for value learning, derived from
the Eikonal Partial Differential Equation (PDE) and which induces a geometric in-
ductive bias in the learned value function. Unlike generic gradient penalties that are
primarily used to stabilize training, our formulation is grounded in continuous-time
optimal control and encourages value functions to align with cost-to-go structures.
The proposed regularizer is broadly compatible with temporal-difference-based
value learning and can be integrated into existing Offline GCRL algorithms. When
combined with Hierarchical Implicit Q-Learning (HIQL), the resulting method,
Eikonal-regularized HIQL (Eik-HIQL), yields significant improvements in both
performance and generalization, with pronounced gains in stitching regimes and
large-scale navigation tasks. Code is available at linkﬂ

1 Introduction

In recent years, many of the most effective machine learning paradigms have capitalized on vast
amounts of unlabeled or weakly labeled data. Similarly, in dynamic systems learning, Offline Goal-
Conditioned Reinforcement Learning (GCRL) has emerged as a pivotal framework, enabling the use
of large-scale, multitask datasets without requiring explicit reward annotations. Specifically, Offline
RL [1}12] leverages passively collected trajectories to learn control policies, offering great promise for
applications such as autonomous navigation, locomotion, and manipulation, where interactive training
is usually costly and unsafe. GCRL [3| /4] extends this capability by enabling learning across diverse
datasets without explicit rewards. Despite its potential, Offline GCRL faces significant challenges,
including accurate Goal-Conditioned Value Function (GCVF) estimation from limited data, policy
extraction from imperfect value functions, and generalization to unseen state-goal pairs [S]. Among
these issues, GCVF estimation remains the most fundamental, as improvements in this area can
enhance both policy extraction and generalization, ultimately advancing the entire field of GCRL.

Physics-informed (Pi) inductive biases, defined as structural constraints grounded in physical laws
such as symmetry, conservation principles, or consistency with Partial Differential Equations (PDEs),
provide a promising direction for enhancing GCVF estimation in the offline setting. As demonstrated
in prior work [6]], Pi methods can introduce physically or geometrically meaningful structure into the
learned value function, enhancing both sample efficiency and generalization. In Fig.[1| we illustrate a
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Figure 1: Contour plots of the GCVF for antmaze-giant-navigate-vO0 in [[1]], learned after
100,000 training steps by our Physics-informed algorithm Eik-HIQL, and the standard HIQL. The
plots are generated by varying the agent’s center of mass z-y coordinates while keeping all other
states fixed. Recall that the policy = is trained to move the agent in the direction that maximizes the
GCVE. The effects of the Eikonal regularizer are evident in Fig. [Th, where the contour plot closely
follows the maze structure, in contrast to Fig.m), where the learned GCVF ignores the maze structure.

representative GCRL task in which an agent must navigate from various starting positions in a maze
to a specified goal. Fig.[Tp shows the contour plot of a GCVF learned by a non-Pi state-of-the-art
(SOTA) algorithm. The resulting value function fails to robustly encode obstacle constraints, leading
to suboptimal policies that often fail to reach the goal. These limitations motivate the use of Pi
regularizers as a principled means to incorporate structural priors into value learning, and thus
improve GCVF estimation in complex environments.

The primary contribution of this work is the introduction of an Eikonal regularizer for GCVF
estimation in Offline GCRL tasks. Inspired by the Eikonal PDE [7], this regularizer imposes
a distance-like cost-to-go structure on the learned GCVF, serving as an effective inductive bias
during training. By enforcing this structure, the regularizer improves value estimation accuracy
and promotes generalization to unseen states, while also reducing the number of required training
steps compared to non-Pi approaches (see Fig.[Th). In contrast to Hamilton-Jacobi-Bellman (HJB)
PDE-based methods [6], which require explicit system dynamics and often suffer from numerical
instability [8}, 9], our method is model-free and easy to implement. Empirically, it outperforms both
HIJB-regularized and unregularized baselines while adding only minimal computational overhead.

To validate the effectiveness of our Eikonal regularizer, we integrate it into the Hierarchical Implicit
Q-Learning (HIQL) framework [10]], a SOTA algorithm for Offline GCRL. We refer to this variant
as Eik-HIQL. This choice is motivated by HIQL’s strong baseline performance, making it an ideal
candidate to highlight the benefits of our approach. Importantly, the Eikonal regularizer is broadly
compatible with other temporal-difference-based algorithms, as we further demonstrate empirically
in Appendix [F} Our evaluation, conducted on the challenging OGbench benchmark [11], compares
Eik-HIQL against Quasimetric RL (QRL) [12], Contrastive RL (CRL) [13]], and the standard HIQL
baseline. Eik-HIQL consistently outperforms or matches the baselines, achieving SOTA results in
large-scale navigation and trajectory stitching scenarios. These gains underscore the utility of the
Eikonal regularizer in enhancing GCVF estimation and overall Offline GCRL performance, with
limited exceptions in tasks involving complex object interactions.

2 Related work

To the best of our knowledge, Pi regularization for value estimation has only recently been explored.
Notably, Lien et al. [6] propose an Offline RL objective derived from the HJB equation in continuous-
time optimal control [8, O], aiming to enforce first-order derivative consistency within the critic
network. In contrast, we introduce a simpler, model-free Pi regularizer for GCVF learning, based on
the residual of the Eikonal PDE. We show that this regularizer induces a distance-like structure in the
value function and integrates naturally into standard temporal-difference-based GCRL pipelines.



While gradient norm penalties, closely related to the Eikonal PDE residual, have been employed
in generative modeling [14]] and, more recently, in model-based RL to regularize Q-functions
and mitigate overfitting [[15]], their application in GCRL remains, to our knowledge, unexplored.
In contrast to these prior methods, which primarily aim to stabilize training, our regularizer is
designed to inject a structural inductive bias into the GCVF, thereby improving sample efficiency
and generalization. To the best of our knowledge, this work presents the first use of the Eikonal
PDE as a regularization objective in value-based RL, and its first practical deployment in the Offline
GCRL setting. More broadly, there has been a growing interest in incorporating physical priors
and geometric, distance-like structures into RL algorithms, especially in model-based or Koopman-
inspired frameworks [16} [17]. These approaches typically leverage the Koopman operator, which
assumes access to (or approximations of) the underlying system dynamics, and may incorporate
structural information such as reversibility or symmetry of the dynamics. In contrast, our method
operates directly on the GCVF in a fully model-free setting.

In parallel, the use of non-Pi constraints for value learning has been extensively studied in Offline RL.
Many approaches constrain learned policies to remain close to the behavior policy, either through ex-
plicit density modeling [18520] or implicit divergence constraints [21}22]]. Others directly regularize
the Q-function to assign low values to out-of-distribution actions and improve robustness [23} 24].

Our work is also closely related to the literature on GCRL [3, l4]. Eik-HIQL extends HIQL [[10] by
integrating the Eikonal regularizer into the GCVF estimation loss. HIQL itself combines hierarchical
actors [25,26] with Implicit Q-Learning [23]. Other GCRL methods include hindsight relabeling [27],
contrastive representation learning [13], state-occupancy matching [28]], and quasimetric RL [12]].
Offline GCRL has also been studied through the lens of goal-conditioned supervised learning
(GCSL) [29, 130], where goal-reaching policies are trained via conditional imitation or regression.
Recent work has analyzed the out-of-distribution goal generalization problem [31] and addressed
GCSL via self-supervised reward shaping [32]] and occupancy-based score modeling [33]].

Beyond RL, Pi losses and neural networks (NNs) have been widely applied to learn parameterizations
of PDEs such as Burgers, Schrodinger, and Navier—Stokes equations [34}135]]. These methods leverage
automatic differentiation to estimate derivatives with respect to NN inputs and solve high-dimensional
PDEs. The Eikonal PDE, in particular, has been used in seismology [36] and motion planning [37,38],
where distance fields provide essential geometric structure. In this work, we extend the use of the
Eikonal PDE to the Offline GCRL domain, demonstrating how its distance-preserving properties
enhance GCVF estimation, especially in large environments and when data stitching is required.

3 Preliminaries

Offline GCRL We model the decision process as a finite-horizon discounted Markov Decision
Process (MDP) described by the tuple (S, G, A, T, R, Py, po,7y) where S is the set of states, G is the
set of goals, A is the set of actions, T : S x A — P(S) is the transition probability function where
P(S) denotes the space of probability distributions over S, R : S x G — R is a goal-conditioned
reward function defined R(s, g) = —1 when s # g and R(s, g) = 0 otherwise, P, € P(G) is the
goal distribution, py € P(S) is the initial state distribution and v € (0, 1] is the discount factor.
In this work, we assume the goal space G to be equivalent to the state space, i.e., G = S, and
the goal g is sampled according to P, (g ~ P,) at the beginning of each episode. The learning
agent’s objective is to maximize the expected sum of discounted rewards R (s;, g) to successfully

reach g. Formally, this objective is expressed as J(7) = E, () [Z;‘F:O YR (s, g)] where 7:(g) =
(9, 80, a0, 81,01,-..,87) and 7 : S X G — P(A). Additionally, we define the GCVF induced by
the policy 7 as V™ (s, g) = E. (g [ZtT:O YR (st, at, 9)|So = s,G = g] and the goal-conditioned
state-action value function as Q" (s, a, g) = E, (4 [ZtT:O YR (s¢, a8, 9)|S0 = 5,40 = a,G = ¢].
In the offline setting, the learning agent must optimize .J(7) using only a static, offline dataset D,
which comprises trajectories of the form 7 = (so, ag, $1, S2, . - ., 7). Finally, note that we write mg
when a function is parameterized with parameters 8 € © C R,

Hierarchical IQL Our algorithm, Eik-HIQL, extends the Offline GCRL algorithm HIQL, as
introduced by Park et al. [10]. HIQL incorporates two key components: a GCVF estimation process
that is robust to out-of-distribution actions and a hierarchical actor. The hierarchical actor comprises a
high-level policy, ﬂg}ii : S x G — &, which predicts subgoals, and a low-level policy, ﬂé‘jn :SxS —



P(A), which generates actions to achieve those subgoals. Robustness in the GCVF estimation step is
enabled by an action-free variant of implicit )-learning [23]], inspired by [39) 140]:

EV(GV) :]E(s,s’)ND,gN’Pg |:L§ (R(Sa g) + ’VVéV (S/a g) - VBV (Sa g))] ) (1)

where 6y denotes the parameters of the target GCVF network [41] and L5(-) represents the expectile
loss function with ¢ € [0.5,1]: Li(x) = [t—1(z < 0)|2?. In Eq. (I, the expectile regression induced
by L(-) replaces the max operator in the Bellman equation [42] with the goal of avoiding queries of
out-of-distributions actions. The ability to properly handle overestimated values for out-of-distribution
actions is a critical challenge in Offline RL, since, unlike in online RL, erroneous estimates cannot be
corrected through environment interactions. The estimated GCVF is subsequently used to train the
hierarchical actor where 74" (s11x|s¢,9) and 7 (als;, s¢41) aim to maximize Vo, (s;4, g) and
Vo (St+1, Stk ). respectively. It is shown in Park et al. [10] that this hierarchy, compared to the flat
formulation using a single policy mg(alss, g), can better address low signal-to-noise ratios in the
estimated GCVF.

The Eikonal equation The Eikonal equation is a non-linear first-order PDE that describes wave
propagation in heterogeneous media [7]. It is expressed in its general form as:

1
S(s)2’

where || - || denotes the Euclidean norm, 7' : § X G — R represents the travel-time through the
medium from the state s to a goal location g and V,T'(s, g) is the partial derivative of the travel-time
T with respect to s. The function S : S — R defines the speed profile of the medium in the state
location s. As described in [37], higher values for S(s) lead to a low travel-time T'(s, g) from s to g
and therefore to preferable paths (s, $1 . . ., s7) compared to those with lower S(s). Consequently,
the solution to the Eikonal PDE in (), represented by the travel-time 7'(s, g), reflects a cost-to-go
structure. Minimizing 7T'(s, g) yields the shortest travel time from s to g, as determined by the speed
profile S(s). In other words, T'(s, g) encodes a GCVF for a specific class of optimal control problems.
We formally establish this connection in the next section. In our method, we propose a regularizer,
inspired by the Eikonal PDE in (2)), with the goal of providing an additional distance-like structure
to the learned GCVEF. Under smooth dynamics assumptions, we demonstrate that our regularizer
significantly improves performance over the SOTA baselines while adding minimal complexity.

IVsT(s,9)||* = )

4 Physics-informed Eikonal regularizer

In this section, we first relate the Eikonal PDE in (2)) to the HIB equation [} 9] for continuous-time,
undiscounted optimal control. This connection draws parallels to prior studies such as Lien et al.
[6]], offering additional motivation for our regularizer and insights into its empirical effectiveness.
We then introduce the Eikonal-regularized loss for GCVF learning, which, when combined with
a hierarchical actor, forms the core of our Eik-HIQL algorithm. Finally, we summarize the main
components of Eik-HIQL.

Optimal control perspective on the Eikonal PDE We start our analysis by considering the
following continuous-time dynamical system:

S(t) = f(s(t),a(t)), t >0,
where s(t) denotes the state of the system at time ¢, $(t) its derivative and a(t) the control action.
The function f(-) represents the system dynamics, determining how the state evolves in response
to the control action. As common in the literature, we assume f(-) to be a Lipschitz continuous
function [43]. Given the initial conditions s(0) = so, a(0) = ao and the goal s(T') = g, the
undiscounted optimal control problem seeks to minimize

J= /0 o(s(8), a(t))dt, 3)

where ¢(s(t), a(t)) is the instantaneous cost function. The optimal value function V (s, g) associated

with (3)) is defined as
T

V(s.g)=int [ e(s(t),a(t)it



and satisfies the principle of optimality

Vis,g) = [e(s,a)At + V (s(t + At), g)], 4

inf
acA
where At is a small time step. Note that, unless otherwise specified, throughout this section we
keep the standard continuous-time optimal control theory notation, where V' (s, g) is used in place of
V*(s, g) to denote the optimal value function [44].

Approximating V(s(t + At), g) in (@) with its first-order Taylor expansion, V (s(t + At),g) =
V(s,g) + VsV(s,g)T f(s,a)At + O(At?), and taking the limit At — 0, we derive the following
HJB equation:

Inf [e(s, a) + VsV (s, 9)7f(5,0)] = 0, 5)
which holds true at optimality. Refer to Appendix [C] for the step-by-step derivations. The HIB
equation in (3 encodes the relationship between the system dynamics, the cost function, and the
value function; where the left-hand side H (s, g, VsV (s,9)) = infaealc(s,a) + VsV (s, 9)T f(s,a)]
is referred to as the Hamiltonian. The following proposition establishes the connection between the
Hamiltonian and the Eikonal PDE in (2), highlighting their equivalence under specific conditions.

Proposition 4.1. Given the Hamiltonian H (s, g,VV (s, g)), the following inequality holds

H(s,9,VsV(s,9)) = infle(s,a) + ViV(s, 9)Tf(s,a)] < ¢*(s) + [[VsV (s, 9)lIF" (), (6)
where ¢*(s) = infaeac(s,a) and F*(s) = sup,c4 ||f(s,a)||. In the special case in which
f(s,a) = a, ||a|| = 1 and c(s, a) is constant over ||a|| = 1 the Hamiltonian simplifies to

H(3797VSV(879)) :C*(S)—HVSV(S,Q)H. @)

Proof. The inequality in (6] follows from using the Cauchy-Schwarz inequality on the inner prod-
uct V,V(s,9)Tf(s,a) in (B). Using the definitions F*(s) = sup,c4|/f(s,a)|| and ¢*(s) =
inf,e 4 (s, a), we obtain the upper bound in (6)). For the equality in (7)), when c(s, a) is constant over
[la|| = 1, the inner product VV (s, g)7 f(s, a) attains its minimal value when a points in the direc-
tion opposite to V,V (s, g). Specifically, this occurs when a* = arginf) 4 =1 VsV (s,9)7f(s,a) =
—ViV(s,9)/1IVsV (s, g)||- Substituting f(s,a) = a* into the Hamiltonian in (6) and simplifying
yields the result in (7). Refer to Appendix [C|for the full proof. O

Remark 4.2 (Connection between HIB and Eikonal residuals). Proposition shows that, even
without assumptions on the dynamics, the Hamiltonian H (s, g, VsV (s, ¢)) is upper-bounded by an
Eikonal-like residual, where the ratio F*(s)/c*(s) defines a local speed profile S(s) as in (). In the
special case of isotropic dynamics with f(s,a) = a, ||a|]| = 1, and constant cost, the Hamiltonian
reduces exactly to the Eikonal PDE with S(s) = 1/c¢*(s). Thus, while the HIB PDE formalizes
cost-to-go under known dynamics, the Eikonal PDE captures a related spatial structure through S(s),
making it a natural approximation when dynamics are unknown.

Remark 4.3 (Why the Eikonal residual helps in Offline GCRL). Temporal-difference learning (e.g.,
(1) is known to converge to the optimal GCVF V* under ideal conditions: namely, on-policy
data and an infinite sample budget [42]. However, these assumptions are often violated in the
offline setting, where biased datasets and long-horizon tasks exacerbate extrapolation error and
limit generalization [10]]. In this context, the Eikonal residual in Eq. (7) can play a crucial role by
introducing a geometric inductive bias that encourages the learned value function to behave like
a distance field, through the constraint ||V;Vg(s, g)|| ~ c(s). This regularization is particularly
effective when the true V'* is Lipschitz continuous, i.e., in environments where the dynamics do not
induce sharp discontinuities [45]]. Under such conditions, the Eikonal residual shapes the gradient
norm of the learned GCVF Vj to match the local structure of V*, up to a scaling factor. This effect
is supported by Rademacher’s theorem [46]], which guarantees that Lipschitz continuous functions
are differentiable almost everywhere, with ||V, V*(s, ¢)|| < L, where L is the minimal Lipschitz
constant. As a result, when V* is Lipschitz continuous, the Eikonal residual in Eq. (/) provides a
principled inductive bias that, as we empirically demonstrate, improves both sample efficiency and
generalization, particularly in long-horizon tasks with smooth dynamics.

Furthermore, in practice, the Eikonal residual offers a tractable alternative to HIB regularization in
model-free settings where the dynamics f (s, a) are unknown. Prior work [6] approximates the HIB



term using finite differences, i.e., f(s,a) ~ s’ — s, but our experiments show no clear advantage
over the simpler Eikonal residual regularization. Moreover, note that, while the HIB equation in
Eq. () holds only at optimality, the inequality in Proposition 4.1 remains valid throughout training,
providing consistent structural guidance even when V' is suboptimal.

Eikonal-regularized implicit V-learning Based on the upper-bound in Proposition[4.Tand the
discussion in Remark [4.3] we propose the following Eikonal-regularized implicit V-learning loss for
GCVF estimation:

[’V(BV) :E(s,s/)ND,gwpg [Lé (R(s,g) + ’Yvév (S/,g) - VBV (579)) (8)
+ (I1V:Vay (5. )l - S(s) = 1)°], ©)

where the term in (8] corresponds to the expectile regression in (I)) (cf. [10]) and (9) is our Eikonal
regularizer. In (9), ||V Ve, (s, g)|| is the Euclidean norm of the GCVF gradient with respect to its
input s and S(s) is a pre-specified speed profile that maps states to scalar values (see Preliminaries
in Section . The term VVy,, (s, g) is computed via automatic differentiation, following standard
approaches in PiNNs (see Algorithmin Appendix @]) The speed profile S(s) is designed such that
it encapsulates additional biases or task-specific information into the Eikonal regularizer [37]]. We
demonstrate in our experiments that the simple choice of S(s) = 1 works best in practice; however,
we believe that more interesting designs might further improve collision avoidance in cluttered
environments and consequently enhance both safety and performance. We defer this direction on Pi
Safe GCRL to future work. Finally, note that in (9), with respect to the upper bound in (6}, we set
¢*(s) = —1 and opt to multiply S(s) with || VsV, (s, g)|| rather than using c*(s) = —1/5(s) as in
(2). This in order to ensure numerical stability.

As discussed in Remark [4.3] the effectiveness of the regularization in Eq. (9) stems from the geometric
structure of the Eikonal PDE, whose solution defines a signed distance field [36, [37]]. In our final
formulation, we uniformly set the speed profile to S(s) = 1, corresponding to the constraint
IVsVe, (s,9)]| & 1 across the feasible state space. By Rademacher’s theorem [46]], this enforces
1-Lipschitz continuity almost everywhere, encouraging smoother and more generalizable value
estimates even under limited offline data coverage. Although the true optimal value function V* may
not be exactly 1-Lipschitz over the entire feasible space, we show in our experiments (Section [5)
that this regularization remains effective in practice. Note that using a different constant S(s) > 0
everywhere in the feasible space would simply uniformly rescale the value function without affecting
its shape. Consequently, since policy gradients are invariant to such rescaling [42, 47, 48], this design
choice has no impact on the induced policy.

Eikonal-regularized HIQL In the following, we provide a brief summary of our algorithm, Eik-
HIQL. During training, Eik-HIQL performs an Eikonal-regularized value estimation step, where the
loss in (8)-(©) is minimized to learn a GCVE. This is followed by a policy extraction step, in which the
hierarchical actor introduced in Park et al. [10] (see Preliminaries in Section[3)) is trained based on the
estimated GCVF. The full pseudo-code for Eik-HIQL as well as a JAX [49] implementation showing
how to compute the gradient VVp,, in (9) are provided in Appendix D} respectively Algorithm T]
and Algorithm 2] For the full implementation of Eik-HIQL refer to our GitHub repository.

5 Experiments

In this section, we analyze the effects of the Eikonal regularizer in (9) on the GCVF estimation
problem. Specifically, we will perform an ablation over different designs of speed profiles S(s),
compare the Eikonal regularizer with an HJB regularizer, and analyze value functions learned with and
without our Eikonal term. Then, we compare the performance obtained by our Eikonal-regularized
algorithm, Eik-HIQL, against the SOTA algorithms for Offline GCRL. Finally, we will also present
the limitations of our approach. The experiments in this section are conducted on the environments in
Fig.2l A table summarizing the most relevant hyperparameter values is provided in Appendix

Speed profiles and HJB regularizer comparison Recall that our algorithm, Eik-HIQL, estimates
the GCVF using the loss defined in Egs. (8)-(9), where the speed profile S(s) encodes task-specific
structure into the Eikonal regularizer. We perform an ablation over different choices of S(s) and
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Figure 2: Environments from OGbench [[11]] used in our experiments. These include a variety of goal-
conditioned tasks spanning navigation and locomotion (e.g., pointmaze, antmaze, humanoidmaze),
contact-rich locomotion (antsoccer), and contact-rich manipulation (cube, scene). The environ-
ments differ significantly in dynamics complexity, dimensionality, and task structure, providing a
comprehensive testbed for evaluating Offline GCRL algorithms.

Table 1: Summary of the speed profiles ablation. All agents are trained for 100,000 training steps
using 10 seeds. We report the mean and standard deviation across seeds for the best evaluation
achieved during training. For each seed, evaluations are conducted over 5 different random goals, as
designed in Park et al. [11]], with the learned policy tested for 50 episodes per goal. Results within
95% of the best value are written in bold.

Environment  Dataset Type ~ Maze Dimension  Eik-HIQL  Eik-HIQL Exp (T0)  Eik-HIQL Lin (TT)  HJB-HIQL (12)

medium 94+ 4 95 + 2 93+4 90+ 6
navigate large 83+9 61+8 60 £ 5 53+9
giant 79 £+ 13 38 £ 15 42 +£ 12 9+38
pointmaze teleport 47+ 10 39+7 40+ 6 18 +£5
medium 97 + 2 90+ 9 85 4+ 10 64 + 13
stitch large 73+ 6 33+ 17 41+ 7 6+7
giant 22+ 10 5+8 2+3 0+0
teleport 4419 43+ 5 38+ 7 18+ 8

find the simple constant setting S(s) = 1 to be particularly effective. It outperforms more complex
alternatives that require explicit knowledge of obstacle coordinates, which may not be available in
practice. Specifically, we compare S(s) = 1 against the following two speed profiles:

Sexp(s) :Smin + (1 - Smin) exp (AZIIM)(__Z(S)) ) (10)
Siin(s) =clip (fl(nz j: : 1.0) : (11

where ) is a decay rate, Sp;, represents the minimum tolerable speed, dy;, and dy,.x are respectively
the minimum and maximum tolerable distances of a state s from its nearest obstacle and d(s) is
a function d : § — R describing the Euclidean distance of the state s from its nearest obstacle
(see Appendix [B|for more information). We refer to Sex,(+) in (I0) as the exponential speed profile
(Eik-HIQL Exp 1n Table[1)) and to Sy, (+) in (TI), originally introduced in [37], as the linear speed
profile (Eik-HIQL Lin in Table[T). Both (T0) and (TT)) assign high speed values to states s far from
obstacles, and low speed values to states near obstacles. This encourages the agent to avoid obstacles,
as proximity to them results in longer travel-time from s to g. Moreover, due to the use of the
exp(-) function, when compared to Syin(-); Sexp(-) ensures a smoother decay of the speed value as the
distance from the obstacles decreases [50]. Finally, note that, in both these speed profiles, computing
d(s) requires knowledge of the obstacles’ coordinates which represents a strong assumption in some
settings. In addition to this ablation, we also compare our Eikonal regularization term in (@) with an
HIJB regularizer derived from the HIB PDE in ():

LYP(6v) = E(s o)D gop, [(stev (5,9)7(s' —5) —1)° } (12)

In (I2), the dynamics f(s, a), originally required by the HIB PDE in (§), is replaced by a finite
difference term (s’ — s) as proposed by Lien et al. [6]. The term in (T2) is then used in place of the
Eikonal regularizer in (9 for GCVF estimation in Eik-HIQL. We refer to this approach as H/B-HIQL
in Table[T} The results for these experiments are summarized in Table[T]and all the learning curves
are available in Appendix [E]



Two main observations explain the superior performance of the simple choice S(s) = 1. First,
in Offline GCRL, sampled trajectories are already constrained to the feasible space, and there is
no explicit penalty for colliding with obstacles during learning. As such, complex speed profiles
incorporating obstacle proximity provide limited additional benefit over the uniform case. Second,
the simplicity of S(s) = 1 enables more efficient and stable learning of the GCVF, whereas profiles
requiring privileged information (e.g., obstacle maps) may introduce unnecessary complexity. Our
choice of S(s) = 1 also aligns with standard practice in the literature, which commonly adopts
uniform speed profiles to model wavefront propagation in the feasible state space [37,(51]]. This also
ensures a fair comparison with the Offline GCRL baselines, as none of them leverage privileged
information. Furthermore, we provide visualizations for the learned GCVF in Appendix [B] where
contour plots for pointmaze-giant-stitch-vO0 illustrate that Eik-HIQL with S(s) = 1 learns a
more structured and accurate value function, closely aligning with the maze layout. In contrast, Eik-
HIQL Exp and Eik-HIQL Lin display artifacts even near the goal, while Eik-HIQL HJB fails to recover
the maze geometry altogether. Based on this empirical evidence, and to ensure a fair comparison with
baselines, we adopt the constant speed profile S(s) = 1 in all subsequent experiments. Nonetheless,
we highlight that in the context of Safe GCRL, where value functions must encode both safety and
task performance, investigating how different choices of S(s) influence the shape and behavior of the
GCVF represents an interesting direction for future work.

Eik-HIQL vs HIQL We Table 2: Complete comparison between Eik-HiQRL and the
compare Eik-HIQL with its Offline GCRL baselines. Agents are trained for 100,000 steps
non-regularized counterpart, on pointmaze tasks and 1 million steps on the remaining tasks,
HIQL [10], to isolate the effect each using 10 seeds. The evaluation follows the methodology
of the Eikonal regularizer. This described in Table[I] We report the mean and standard deviation
comparison is conducted under across seeds for the best evaluation achieved during training.
tightly controlled conditions: Results within 95% of the best value are written in bold, and
both methods wuse identical rows are highlighted when the Eikonal regularizer improves
network architectures, hyperpa-
rameters, and training pipelines,
ensuring that the only differ-

ence lies in the presence of Environment  Dataset  Dim Eik-HIQL ~ HIQL QRL CRL
the regularizer. As shown in

performance by 100% or more compared to the non-regularized
HIQL performance.

medium 93 £ 5 92 + 2 83+ 3 54+19
Table 2] Eik-HIQL consistently navigate lar€e 83 L9 49+13  90+5  56+9
L. g giant 79+13 7+38 247 37+ 17
outperforms HIQL on navigation teleport 47 +10 2947 34+7 50+ 5
k h h 1 f . pointmaze
Fas s, W ere.t ¢ value u.nctlon medium 96 + 3 76+ 8 804+10 345
is typically Lipschitz continuous. . large | 73£6 19+7 85+11 4+6
stitch . + + +
The benefits are particularly e o te 3R
elepor
pronour.lcec! in la}rge mazes medium 954 1 96+1 875 94+ 2
and stitching regimes, with . large 8642 90+6 80+5  86+3
. di 100% navigate o, ont 67+5 69+3 14+6 18+4
improvements exceeding 4 teleport 52 4 4 43+ 3 39+4 55+ 4
in 7 out of 31 evaluated tasks. — modien 9442 95114 65416  siis
. . . large 84+ 3 74+ 6 24+5 13+4
Given the magnitude of these Stitch  giant 4811 343 242 040
gains relative to the standard de- telepors 472 35+3 2 2046 3444
viations across 10 random seeds, y flﬂedi“m ‘llg i 15 23;715 g i 3 g i (2)
. explore arge
the improvements are both prac- teleport 15+10 45+5 242 2245
tically meaningful and statisti- medium 86 + 2 90+3 2242 61+ 4
Cally Signiﬁcant. Full learn- navigate large 6417 50 + 4 7T+3 22+9
. . . giant 68 +5 18+ 5 1+1 442
ing curves for these experiments ~ humanoidmaze
. . . medium 79+ 2 88+ 3 22+ 4 40+ 7
are provided in Appendix @ stitch  large 2947 28+ 2 3+1 442
These results highlight the ro- giant | 195 341 0£0 0£0
bustness of the Eikonal regu- avigate 2FORa 1942 60+t4  10+£3  24%2
. . . & mediun 3+ 2 1343 242 4+2
larizer in smooth environments  antsoccer
: 13 . arena 240 17+ 3 2+1 1+1
';11nd demonstr?te its ablllty to en- stitch e T 541 0To 0xo
ance genera 1Zation 1 Settlngs cube-single-play 25+1 3114 11+3 3242

where HIQL struggles to scale.  meripulation
As illustrated in Fig. [T] for the scenepley
antmaze-navigate-giant-vO0 task, Eik-HIQL produces a GCVF that reflects the underlying maze
geometry, whereas HIQL fails to capture this structure, leading to poor goal-directed performance.

5247 5243 8+2 35+6




By contrast, in interactive, contact-rich domains such as antsoccer and manipulation, where the
dynamics (and consequently the value function) exhibit discontinuities, Eik-HIQL offers limited
advantage. We defer a detailed discussion of these cases to the Limitations section below.

Offline GCRL We extend our comparison to state-of-the-art Offline GCRL algorithms, including
QRL [12]] and CRL [13]], alongside HIQL. Results across all 31 tasks are summarized in Table 2]
with full learning curves in Appendix [E] Eik-HIQL consistently outperforms all baselines in the
most challenging settings, most notably in the antmaze-stitch tasks, which combine complex
locomotion with, composite datasets, and in humanoidmaze, where high-dimensional states and
unstable control amplify learning difficulty.

QRL performs well in simpler domains such as pointmaze, where its quasimetric structure aids
goal-conditioned estimation. CRL is competitive on several navigate variants, but struggles in
high-dimensional and stitched tasks such as humanoidmaze. In contrast, Eik-HIQL demonstrates
strong generalization and planning performance in both long-horizon and large-scale environments.

In antsoccer and manipulation, however, Eik-HIQL performs comparably to the baselines. As
mentioned, these domains involve discontinuous or contact-rich dynamics, and we do not observe
consistent benefits from the Eikonal regularizer due to the fact that the imposed gradient condition
does not hold globally at optimality throughout the entire state space.

Limitations We conclude by discussing some
limitations of our approach, particularly in

contact-rich tasks that involve interactions with -20
external objects. In the antsoccer domain, for

instance, an ant agent must not only navigate 40
but also interact with a soccer ball to reach a 60

specified goal. Similarly, in manipulation tasks
such as cube-single-play, the agent must co-
ordinate precise contact interactions with ob-
jects in the scene. These tasks introduce hybrid, (2) Eik-HIQL (b) HIQL

non-Lipschitz dynamics due to discontinuities in Figure 3: Countour plots of the GCVF on

CE?tact states, often modelefd as categorical }\l/al;l— antsoccer-medium-navigate-vO [11], learned
ables (e.g., in-contact vs. free motion), which  ,¢er 1 mijtion steps by Eik-HIQL and HIQL re-

pose a challenge fpr reg_ularizefs g_rounded in spectively. These plots are generated following the
smoothness and Lipschitz continuity assump- o o0 gy in Fig.[T

tions [43]], such as our Eikonal term. As visu-
alized in Fig. 3| for the antsoccer experiments, Eik-HIQL learns a GCVF that aligns well with
the environment geometry, particularly for the navigational components. However, this structured
value function does not consistently yield better performance (cf. Table[2) as these tasks also require
complex interactions with objects in the environment. Similar trends are observed in manipulation
tasks, where Eik-HIQL performs comparably to the baselines but does not show marked gains.
These experiments are included for completeness and highlight that, while Eik-HIQL excels in
navigation-dominated domains, additional mechanisms, such as task-adaptive speed profiles or repre-
sentation learning tailored to contact dynamics, may be necessary to extend its benefits to interactive,
contact-rich environments. We leave this direction for future work.

6 Conclusion

We introduced Eik-HIQL, a novel approach to Offline GCRL that integrates an Eikonal PDE-based
regularizer for GCVF estimation. Our analysis demonstrated that the Eikonal regularizer effectively
introduces a useful distance-like inductive bias, which promotes consistent gradient magnitudes
and improves value estimation in high-dimensional spaces (cf. Fig.[T). This property mitigates
irregularities from the limited coverage of offline datasets, resulting in robust, globally consistent
GCVFs that accurately capture the underlying structure of the environment. Consequently, Eik-HIQL
outperformed SOTA baselines across diverse tasks, excelling in complex scenarios such as large-scale
mazes and trajectory stitching, where traditional methods often fail to generalize.

However, our experiments also highlighted limitations in interactive tasks. We discuss how our
Eikonal regularizer induces excessive smoothness in the learned GCVFs which does hinder perfor-



mance in interactive tasks where non-smoothness, or at least non-global smoothness, is required.
These findings suggest that, while the Eikonal regularizer significantly enhances navigation tasks,
future work should incorporate mechanisms that better capture task-specific dynamics, such as object
interaction, to improve applicability across diverse domains.

Overall, this work underscores the potential of Pi methods to address fundamental challenges
in Offline GCRL. By enhancing scalability and generalization of value estimation, the Eikonal
regularizer provides a foundation for leveraging domain knowledge in RL. Future research could
expand on this foundation by exploring multi-agents settings and integrating task-specific biases for
interactive environments.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we have a limitations paragraph.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14



Justification: the proof is included in the main text.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the details are reported between main text and the appendix. Furthermore,
we have released the code.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code has been released.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

[Yes]

Justification: The most important details are available in the main text and the rest is reported
in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: yes, we report the standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Impact Statement

This paper aims to advance the field of machine learning for autonomous decision-making and control
in robotic systems. We achieved this goal through the development of physics-informed methods for
offline goal-conditioned reinforcement learning. While our work has potential societal implications,
we do not identify any that require specific emphasis here.

B Speed profiles and HJB comparison: additional details and contour plots

In this section, we provide additional details related to the Speed Profiles and HJB Regularizer
Comparison paragraph in Section Specifically, we illustrate how the distance function d(s), used
to define the speed profiles in and (T1)), is computed in Fig.[d]

Additionally, Fig. [5] presents contour plots of the GCVFs learned by the algorithms evaluated in
Table [T] These visualizations provide qualitative support for the quantitative results in Table [T]
showing that higher returns tend to correlate with smoother, artifact-free value functions that more
closely follow the structure of the underlying maze.

() d(s). (b) Siin(s) in (TT).
Figure 4: Fig.[4a|illustrates the computation of the distance function d(s) used in (T0) and (TT). Let
the state be represented by its spatial coordinates s = (z,y) € R?, and let O = {01, ..., 0xr} denote

the set of obstacle coordinates in the maze. We define d(s) = min,co ||s — o||2, i.e., the Euclidean
distance from s to the nearest obstacle. Fig. @b|reports the resulting speed profile obtained using
Siin(s) in (TT) for the pointmaze-medium-navigate-v0 dataset.

(a) Eik-HIQL (b) Eik-HIQL Exp (T0) (c) Eik-HIQL Lin (TT)  (d) HIB-HIQL

Figure 5: Contour plots of the GCVF on pointmaze-giant-stitch-vO0 L1}, learned after 100,000
training steps by the algorithms in Table[T} We observe that Eik-HIQL with constant speed profile
S(s) = 1 provides the most accurate GCVF estimation, resulting in the highest score for this
task. In contrast, the contour plot for HIB-HIQL in (d) fails to effectively capture the maze layout.
Furthermore, in (b) and (c) we annotate, with red circles, examples of artifacts arising in Eik-
HIQL Exp and Eik-HIQL Lin, respectively.

C HJB PDE step-by-step derivations and Proof of Proposition 4.1

In the following we provide the step-by-step derivations for the HIB PDE in (3)) and the full proof for
Proposition 4.1}
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C.1 HJB PDE derivations

The optimal value function V (s, ¢) associated with the undiscounted optimal control problem in (3),
satisfies the following principle of optimality

Vis,g) = [e(s,a)At + V (s(t + At), g)], (13)

B
where At is a small time step. By substituting the Taylor expansion

V(s(t+At),g) = V(s,9) + VV(s,9) " f(5,a)At + O(AL?)
into (T3), we obtain

Vi(s,g) = igg[c(s, a)At +V(s,g) + V. V(s,g)" f(s,a)At + O(AL?)].
a
Subtracting V (s, g) on both sides and dividing by At gives:

0= inf [c(s,a) + VsV (s, 9) " f(s,a) + O(AD)].

ac

Taking the limit At — 0, we recover Eq. (3):

ing[c(s, a) +V.V(s,9)" f(s,a)] = 0.

ac

C.2 Proof of Proposition 4.1

Proof. Consider the HIB PDE in (5). By applying the Cauchy-Schwarz inequality to the argument of
the minimization we obtain

c(s,a) + ViV (s,9) " f(s,a) < e(s,a) + VsV (s, 9) Il f (5, a)].
Then, by defining
F*(s) = sup || f(s, a)l,
acA
we can further upper bound the right-hand-side and obtain:
c(s,a) + VsV (s,9) " f(s,a) < c(s,a) + VsV (s, g)[|F*(s).
Finally, applying the infimum over a € A on both sides yields:

inf [c(s,a) + ViV (s,9)" f(5,0)] < inf [c(s,a) +[IVsV (s, g)1F™(s)];

acA
where the result in Eq. (6) is obtained by defining ¢*(s) = inf,c 4 ¢(s, a).

For the equality in (7)), note that for the isotropic dynamics f(s,a) = a and given c(s, a) constant
over ||a|| = 1, the inner product V,V (s, g)7 f(s, a) attains its minimal value when a points in the
direction opposite to VV (s, g). Specifically, this occurs when

VsV (s,9)

a* =arg inf V,V(s,9)Ta = 0"
A A O]

Substituting f(s,a) = a* into
H(s,9,VsV(s,9)) = inf[c(s,a) + VsV(s,9)" f(s,a)]

and simplifying yields
H(Sa 9, VSV(Sv g)) = C*(S) - ||VSV(S, g)H
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D Psuedocode and Hyperparameters

During training, Eik-HIQL performs an Eikonal-regularized value estimation step followed by a
hierarchical policy extraction step. During the value estimation step, the following loss, as provided
in @)-(@©), is minimized:

Ly (0v) =E(s, s\ 1)~D,goP, [Lé (R(st,9) + Vg, (st41,9) — Vay (5, 9))

. (14)
+ (IIVsVay (51, 9)l| - S(s1) — 1) }

The hierarchical policy extraction step follows Park et al. [10] and leverages, for both 773; and 7'('19(;0,
an advantage-weighted regression-style objective:

Jrni (Oni) = E(s, 504 1)~Dg~P, [eXp(ﬁ - AM (84, 814k, 9)) log ngi(5t+k|5t,9)}, (15)

J7rl°<6l0) = E(st,at,st+1,st+k,)~D [exp(ﬁ : Alo(st, Qt, St+k)) log Wfa(fo (at|5t7 3t+k)]; (16)

where 3 is an inverse temperature hyperparameter and A" (st, St+k,g) and Al"(st, A, Sty)) are
respectively approximated as Vi, (st4%,9) — Vo, (st, 9) and Vi, (S¢41, St4+k) — Vo (St, St4k). The
full pseudocode for Eik-HIQL is provided in Algorithm[I} Furthermore, a function written in JAX on
how to compute the gradient V Vg, in (T4) is summarized in Algorithm 2] Finally, Table [3|reports
the hyperparameter values most commonly used in our experiments. For more implementation details,
refer to our GitHub repositoryﬂ

Algorithm 1 Eikonal-regularized Hierarchical Implicit Q-Learning (Eik-HIQL)

Input: Offline dataset D, value function Vp,,, target value function ng , high-level policy 77{,}:;1, .

low-level policy 7'('[9(;0, speed profile .S, expectile factor ¢, discount factor ~y, inverse temperature
parameter (3, learning rates oy, ay;, 0, target update rate 7
while not converged do
(st,8t41,9) ~D
Update Vp,, minimizing Ly (6y) in with learning rate ay/
0\/ — (1—T)0V—|-7'0V
end while
while not converged do
(8¢, 8t+k,9) ~D
Update ngi maximizing J,n: (0p;) in (I3) with learning rate v
end while
while not converged do
(st,at, S¢41,514%) ~ D
Update ﬂé‘l’o maximizing J0(6;,) in (16) with learning rate v,
end while

Algorithm 2 Compute V,Vp,,

Input: states s, goals g, network parameters 0y
Define FORWARD(s, g, Oy ):
return NETWORK.SELECT(Vp,, )(s, g, params = Oy/)
grad_s < JAX.VMAP(JAX.GRAD(FORWARD, argnums = 0), in_axes = (0, 0, None))(s, g, 0v)
return grad_s

*https://github.com/VittorioGiammarino/Eik-HIQL
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Figure 6: Learning curves for the speed profile ablation and the comparison with an HIB regularizer
in Table[I] Plots show the average success percentage per evaluation across seeds as a function of
training steps.

Table 3: Hyperparameter values for Eik-HIQL.

Hyperparameter Name Value
Decay rate (\) 1.0
Minimum speed (Spin) 0.1
Discount factor (vy) 0.99
Batch size (B) 1024
Optimizer Adam
Learning rates ay:, o, Qo 3-1074
Target update rate (7) 0.005
Expectile factor (¢) 0.7
Inverse temperature parameter (£3) 3.0

E Learning Curves

Fig. [6] shows the complete learning curves, plotted as a function of training steps, for the experiments
reported in Table[T} Figs.[7[8[9} [I0} and[TT|display the learning curves for the pointmaze, antmaze,
humanoidmaze, antsoccer, and manipulation experiments in Table 2] respectively.

All experiments were conducted on a single NVIDIA RTX 3090 GPU (24 GB VRAM)), using a local
server equipped with a 12th Gen Intel i7-12700F CPU, 32 GB RAM. No cloud services or compute
clusters were used. Each individual experimental run required approximately 4 hours of compute
time on the GPU.

F Additional Experiments

In the following, we present additional experiments demonstrating that our Eikonal regularizer can
be seamlessly integrated with a broad range of temporal-difference (TD)-based GCRL algorithms.
In particular, we apply it to Goal-Conditioned variants of IQL [23] and IVL [39] 40], yielding
Eik-GCIQL and Eik-GCIVL, respectively. The corresponding results are summarized in Table 4}
with learning curves provided in Fig.[I2]and[I3] These experiments confirm the same conclusions
drawn in the main paper from the comparison between Eik-HIQL and HIQL (Table[2), and further
support our claim that the Eikonal regularizer can be successfully combined with diverse TD-based
algorithms.
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Figure 7: Learning curves for the pointmaze experiments in Table|2] Plots show the average success
percentage per evaluation across seeds as a function of training steps.
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Figure 8: Learning curves for the antmaze experiments in Table Plots show the average success
percentage per evaluation across seeds as a function of training steps.
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Figure 9: Learning curves for the humanoidmaze experiments in Table [2| Plots show the average
success percentage per evaluation across seeds as a function of training steps.
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Figure 10: Learning curves for the antsoccer experiments in Table [2| Plots show the average
success percentage per evaluation across seeds as a function of training steps.
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Figure 11: Learning curves for the manipulation experiments in Table |2} Plots show the average
success percentage per evaluation across seeds as a function of training steps.
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Table 4: Summary of the experiments with different TD-based GCRL algorithms. All agents are
trained for 100,000 training steps using 10 seeds. We report the mean and standard deviation across
seeds for the best evaluation achieved during training. For each seed, evaluations are conducted over
5 different random goals, as designed in Park et al. [[1L1]], with the learned policy tested for 50 episodes
per goal. Results within 95% of the best value are written in bold.
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Figure 12: Learning curves for the pointmaze experiments in Table 4, Plots show the average
success percentage per evaluation across seeds as a function of training steps.
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Figure 13: Learning curves for the antmaze experiments in Table Plots show the average success
percentage per evaluation across seeds as a function of training steps.
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