© NePTune: A Neuro-Pythonic Framework for
Tunable Compositional Reasoning on Vision-Language

Danial Kamali Parisa Kordjamshidi
Michigan State University Michigan State University
kamalida@msu.edu kordjams@msu.edu
Abstract

Modern Vision-Language Models (VLMs) have achieved impressive performance
in various tasks, yet they often struggle with compositional reasoning, the
ability to decompose and recombine concepts to solve novel problems. While
neuro-symbolic approaches offer a promising direction, they are typically
constrained by crisp logical execution or predefined predicates, which limit
flexibility. In this work, we introduce NePTune, a neuro-symbolic framework
that overcomes these limitations through a hybrid execution model that integrates
the perception capabilities of foundation vision models with the compositional
expressiveness of symbolic reasoning. NePTune dynamically translates natural
language queries into executable Python programs that blend imperative control
flow with soft logic operators capable of reasoning over VLM-generated uncertainty.
Operating in a training-free manner, NePTune, with a modular design, decouples
perception from reasoning, yet its differentiable operations support fine-tuning. We
evaluate NePTune on multiple visual reasoning benchmarks and various domains,
utilizing adversarial tests, and demonstrate a significant improvement over strong
base models, as well as its effective compositional generalization and adaptation
capabilities in novel environments.

Compositional Reasoning
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Figure 1: A natural language query (“Is there a brown object behind every red sphere?”) is
decomposed into symbolic concepts, such as red, and sphere. These concepts are then composed to
enable explicit reasoning over objects and their relations. This illustrates how complex queries can be
mapped into structured logical forms.

1 Introduction

One key aspect of intelligence is the ability to generalize and compose known basic components
to solve novel, complex problems. In vision-language reasoning, this capacity for compositional
generalization is crucial. Humans easily decompose a complex query like “Is there a brown object
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behind every red sphere?" into its constituent concepts and reason about their relationships [23]], as
illustrated in Figure[I] However, modern vision-language models with transformer-based architectures
often fail at dealing with novel compositions, revealing a gap between their pattern-matching skill
and robust, human-like understanding [35].

Recent studies have demonstrated the superiority of neuro-symbolic (NeSy) methods over end-to-end
neural architectures for reasoning beyond their observed data [[13, 33]. In recent years, methods
such as VisProg [6] and ViperGPT [26] have leveraged Large Language Models (LLMs) to produce
programs from language queries, breaking down complex questions into a sequence of executable
steps. These programs are then run using pre-trained vision models for perceptual grounding.
Although powerful, this paradigm has key shortcomings. First, these systems often rely on a sequence
of crisp, intermediate decisions, creating brittle pipelines that are sensitive to perceptual errors. A
single mistake in an early step (e.g., misidentifying an object) can cause the entire reasoning chain
to fail. Second, these pipelines are inference-only and non-differentiable, which prevents them
from adapting to new domains where pre-trained models may not perform well. On the other hand,
methods such as LEFT [8] and NeSyCoCo [13] employ differentiable declarative symbolic reasoning,
but their predicates are limited to the set of learned predicates from training on the target domain,
which limits their zero-shot applicability. Table [I|summarizes this landscape and highlights where
NePTune differs.

Table 1: Comparison of recent neuro-symbolic frameworks. We analyze the reasoning scope (local
vs global), types of supported predicates, and predicate source. VFM: vision foundation models, e.g.
XVLM; VLM: vision-language models, e.g. Qwen2VL.

Predicate Types Predicates
Model Reasoning Supported Predicates Class Attr. Rel. Spatial Pretrained Trainable
VisProg Local Predefined Modules v v X v Modules X
ViperGPT  Local Dynamic v v X v VEMs X
LEFT Global Limited to Training Data v v v v X v
NeSyCoCo  Global Limited to Similar Data as Training v v v v X v
NAVER Global Dynamic v v v v VEMs X
NePTune Hybrid Dynamic v v v v VLMs v

To address the challenges of expressive compositional inference and domain adaptation, we propose
NePTune, a neuro-symbolic visual reasoning framework. NePTune leverages an LLM to generate
expressive Python programs where its execution does not solely rely on crisp decisions. Instead,
it performs both soft compositional reasoning on the continuous scores provided by a VLM under
uncertainty and imperative sequential reasoning. The result is a framework that decouples reasoning
from the perception of atomic concepts, leading to remarkable generalization.

Contributions.

1. A Hybrid Neuro-Symbolic Execution Model: We propose a novel framework that seamlessly
combines the imperative control flow of Python with soft compositional logic, enabling complex
reasoning under uncertainty.

2. Domain Adaptable Framework: We present a modular system that uses an LLM to generate
programs on the fly, eliminating the need for predefined predicates and enabling zero-shot
generalization as well as neuro-symbolic fine-tuning for domain adaptation.

3. Strong Compositional Generalization: We demonstrate through extensive experiments
that our approach significantly outperforms existing methods, particularly on challenging
domain-shift benchmarks, showing highly robust results for vision-language reasoning.

2 Related Work

NePTune is a framework that integrates multi-modal foundation models and logical reasoning to
achieve compositional vision-language reasoning. Therefore, we focus on the three topics below.



2.1 Compositional Vision-Language Reasoning

Compositional reasoning is central to building reliable vision—language systems [25} [10], enabling
models to represent and execute multi-step, relational structures [21]. While VLMs achieve strong
results across broad tasks [31} 28, |17]], diagnostic evaluations like CLEVR [11] and ReaSCAN [30]
expose persistent gaps in compositional generalization [35]] and brittleness under distribution shift [33}
16] in end-to-end neural methods. Although improved architectures show promise [24]], explicit
and structured neuro-symbolic methods have been particularly effective on these challenges [[13].
Motivated by these findings, we adopt a neuro-symbolic approach that performs explicit compositional
reasoning to achieve more robust and generalizable visual reasoning.

2.2 Neuro-Symbolic Approaches

Neuro-symbolic methods integrate neural perception with symbolic reasoning. Recent approaches
utilize LLMs as semantic parsers to interpret linguistic queries. There are two common strategies for
such methods. One line of work, including VisProg [6] and ViperGPT [26], generates imperative code
for a sequence of local reasoning steps that rely on crisp decisions. While powerful, the sequential
nature of these methods limits global reasoning under the uncertainty of these local decisions. The
second strategy, employed by models such as NSCL [20], LEFT [8]], and NeSyCoCo [13|], focuses on
generating a declarative, symbolic representation of the query to enable global reasoning. However,
these frameworks rely on training data for concept learning and grounding in each domain, and are
therefore constrained by the observed predicates in the training data. While NeSyCoCo improves
concept generalization by utilizing a predicate embedding model and covers the lexical variety of
natural language, it remains limited to concepts similar to those in its training data. NAVER [3]], on the
other hand, emphasizes orchestration through a finite-state controller that manages neural perception
and utilizes ProbLog for global reasoning in referring expression grounding. However, our findings
indicate that generating ProbLog queries is more error-prone for LLMs compared to Python code. Our
aim in this work is to synthesize the advantages of both approaches. NePTune is a neuro-symbolic
framework that performs both imperative and soft compositional reasoning over atomic predicates.
Unlike works like NeSyCoCo and LEFT, the training is not necessary since the concept scores can
be obtained zero-shot by harnessing the power of VLMs. However, with differentiable composition
functions, it offers optional fine-tuning for domain adaptability by providing the capacity for both
compositional inference as well as neuro-symbolic training.

2.3 Predicate Level Concept Understanding

A critical distinction between reasoning frameworks lies in how they derive and utilize concept-level
understanding. General-purpose VLMs [28 [17]] learn concepts implicitly through end-to-end training,
embedding this knowledge directly into the model’s weights. In contrast, neuro-symbolic methods
externalize this process. A program generating framework, such as VisProg [6]], utilizes the concept
grounding through a library of specialized, trained, hard-coded vision APIs, which return discrete
labels or values. Similarly, ViperGPT [26] utilizes foundation vision-language models, such as
XVLM [34], to obtain labels and discrete decisions. Another class of methods, including LEFT
and NeSyCoCo, trains an MLP to generate continuous concept scores, representing the relations or
attributes of an object in the visual regions. Our approach utilizes visual prompting, highlighting
parts of the image via bounding boxes, to elicit referential concept scores from VLMs, which then
serve as scores within our framework for reasoning under uncertainty.

3 Methodology

The NePTune framework performs visual reasoning via three core components, as shown in Figure 2]
The process begins with the LLM-based Program Generator, which translates a natural language
query into both a Python program and a set of relevant object names. These names are passed to the
Perceptual Grounding to detect all relevant candidate objects in the scene. Finally, the Symbolic
Executor runs the generated program. During execution, it interacts with the Grounding Interface to
obtain atomic concept scores and reason over them to get the final answer.
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Figure 2: NePTune overview. Given an image and a query, the (1) LLM-based Program Generation
converts the natural language query to a Pythonic program. Then (2) Perceptual Grounding extracts
the object bounding boxes. The (3) Symbolic Executor then runs the Python code to reason over
extracted from the VLM using both [soft composition| and (imperative logic| to derive the

final answer.

3.1 Component 1: LLM-based Program Generation

The first component of NePTune addresses semantic parsing. We leverage an LLM as a powerful
few-shot parser to convert a natural language query into a formal, executable Python program. Given
a query like “Is there a big brown dog?", the LLM is prompted to decompose it into a multi-step
program that first identifies a set of candidate “dogs", and then reasons over the composition of atomic
concepts such as “big", “dog", and “brown" to get the final answer. In the same LLM call, it also
extracts object names for the region proposals. We chose Python as the target symbolic language for
two key reasons. First, its Turing-complete nature, including rich control flow structures like loops
and conditionals, is essential for expressing complex procedural reasoning. Second, the prevalence of
open-source Python code makes LLMs particularly adept at generating it.

3.2 Component 2: Perceptual Grounding

This component connects the symbolic program to the visual world. It consists of two main parts: an
object proposal module and a concept grounding module.

3.2.1 Object Proposal Generation

To ground objects in the scene to the concepts such as blue in the program, we must first identify all
potentially relevant objects in the scene. We use the object names extracted by the LLM. For example,
from “Are there more cats to the left of the vase or dogs?", the LLM extracts “dog", “vase", and
“cat". We then feed these object names into Grounding DINO [[18], a zero-shot object detection model
that takes the image and the list of object names as input and outputs a set of bounding boxes for all
matching objects. We note that while this textual query-based proposal is chosen for computational
efficiency in real-world applications, our framework can operate with any reasonable region proposal

method.

3.2.2 Concept Grounding Interface

Once a query is translated into a program, we must ground its atomic predicates to the visual content
of the image, such as the objects in the scene. We handle this perceptual grounding using a VLM
through two primary simplified interfaces score and query, where the image and bounding boxes
are abstracted away with global variables for simplicity. The formal definitions of these grounding
functions are as follows:

score(query:str, num_objects:int): This function is the core of our reasoner. It takes a
natural language question, an image, and related bounding boxes, and returns the concept probabilities
for related object bounding boxes. This score is the VLM’s normalized confidence for a "Yes" answer,
computed from the logits of the "Yes" and "No" tokens. Formally, given an image I, set of N detected



objects, a visual prompt v, and atomic query q,, the score s is:
elogit("Yes")
s = p("Yes"|I,v, qa) =

elogit("Yes") + elogit("No")

We treat these outputs as probability scores. To generate an object-centric concept score or answer
via a VLM, we represent a symbolic predicate with a natural language question. For example, for the
symbolic predicate blue, we use “Is the object in the red bounding box blue?". The bounding box b
provided to the functions will be drawn on target objects as a visual prompt, and it is controlled by
the num_objects parameter, which specifies the predicate type:

* num_objects=0: For queries about the entire image (e.g., “Is the photo taken indoors?").
No visual prompt is used, and the output is a scalar probability.

* num_objects=1: For single-object queries, we mark the target object with a red bounding
box around it as a visual prompt (e.g., “Is the object in the red bounding box brown?"). The
output is a vector of size V.

* num_objects=2: For multi-object (relational) queries, we mark the main object with a red
bounding box, and the secondary object with a green bounding box, as the visual prompt
(e.g., “Is the person in the red box talking to the person in the green box?"). The output is
an N x N matrix.

query(query:str, object_id:int): This query function is used for tasks requiring open-ended
answers. It takes a natural language question, an image, and an optional visual prompt, and returns
a natural language string. Formally, given an image I, visual prompt v, and atomic query q,, the
generated answer A:

A = argmax p(response|I, v, g, )
response

The answer A serves two purposes. First, it can provide the final output for questions that ask "what"
or "which" (e.g., ‘return query("What color is the object in the red bounding box?")*). Second, it can
be used as an intermediate variable to enable complex conditional constructs within the generated
Python program, allowing the reasoning path to change based on the VLM’s perception (e.g., ‘if
query("What shape is the object in the red bounding box?") == "cube": ...).

3.3 Component 3: Symbolic Executor

The final component of NePTune is the Symbolic Executor, which runs the LLM-generated program.
A key innovation of our framework is its hybrid execution model, which integrates two distinct
reasoning modes.

1) Soft Compositional Reasoning: To reason about visual concepts themselves, we employ a set
of soft logical operations based on fuzzy logic principles. Instead of operating on binary true/false
values, these operations work directly on the uncertainty scores obtained from the VLM. This is
implemented through our custom data structures, which encapsulate the scores for a given predicate
and overload standard Python operators (& for AND, | for OR) to perform the corresponding logical
operations. Details of these operations are shown in Table [2| For example, when the program
executes brown & dog, our framework takes the element-wise minimum of the scores in the two
corresponding tensors, implementing the fuzzy t-norm for conjunction.

2) Imperative Reasoning: Our symbolic executor leverages a standard Python interpreter to handle
the program’s overall structure and control flow. This is possible since we have defined iteration
and Boolean operations on the concept objects, allowing for complex, procedural logic, including
conditionals (if/else), loops (for), and variable assignments, giving our framework the full expressive
power of a general-purpose programming language. While some of these operations such as counting
over string sets (as shown in Figure[2) can break the computation graph. This hybrid design enables
the system to reason fluidly under uncertainty while fully leveraging the expressive power of a
general-purpose programming language.

4 [Experiments

We structure our experiments around four research questions. RQ1: How does NePTune perform on
zero-shot compositional reasoning on synthetic data? (Experiment 1), RQ2: How does NePTune



Table 2: Mathematical Expressions: Logical Forms, Descriptions, and Differentiable Implementations.
Here « represents an object-centric or scalar probabilistic score, 3 represents a relation probability
score, 7 = 0.25 is a temperature parameter, and v = 0.25 is a margin.

Syntax Logical Form Description Differentiable Implementation
g .exists() Iz oy Existential quantification max(ay)
a.forall() YV oy Universal quantification min (o)

g & oy g Aoy Logical conjunction min (o, o)

0y & Bay g A Bay Relational conjunction Zy Qg Bay

oy | oy Qg V ooy, Logical disjunction max(ag, o)
ag.implies(oy) ap — Logical implication max(1l — ag, ay)
not I Logical negation 1—a,
oz.iota(var) (var, ag) Best match softmax(a,)
a;.count() count(a,) Counting elements dag

81 == 83 51 = 8o Scalar equality o (%1_”‘))
51> 82 51> S Scalar inequality o(r(s1—s2—1+7))

perform on complex human-generated questions? (Experiment 2), RQ3: How does NePTune perform
in grounding referring expressions in natural images? (Experiment 3), and RQ4: How does NePTune
perform under domain shift and adapt to an unseen environment? (Experiment 4). To address these
questions, we evaluate NePTune across a diverse set of datasets covering synthetic, human-annotated,
and realistic environments, spanning both question answering and referring expression grounding
tasks. Details of the datasets and tasks are provided in Appendix [D}

4.1 Experiment 1: Core Compositional Reasoning

Table 3: Accuracy comparison across CLEVR question categories. Results are shown by reasoning
type and model paradigm, including zero-shot, end-to-end, and neuro-symbolic approaches.

InternVL2.5 NePTune ViperGPT \ NeSyCoCo LEFT

Training Zero-Shot Zero-Shot Zero-Shot Trained Trained
Category End-to-End NeSy NeSy NeSy NeSy
Final Accuracy 90.25 92.65 (1 2.40) 36.05 | 99.68 99.50
Exist 87.10 93.19 (1 6.09) 48.75 99.28 98.92
Query Attribute 98.26 96.81 (| 1.45) 29.42 100.00 99.86
Compare Attribute 98.61 91.94 (| 6.67) 53.06 99.44 99.72
Count 74.60 87.10 (1 12.50) 21.37 99.79 98.99
Compare Number 90.86 92.57 (1 1.71) 48.57 100.00 100.00

To evaluate NePTune’s reasoning capabilities, we evaluate its performance on the CLEVR benchmark.
CLEVR is a standard benchmark for compositional reasoning that features synthetic 3D-rendered
images and questions testing compositional visual reasoning. Details of the question categories are
provided in Appendix [D} The results in Table [3] show that, within the family of neuro-symbolic
systems, NePTune establishes itself as the strongest zero-shot method, achieving 92.65% accuracy
compared to only 36.05% for ViperGPT. While trained approaches such as NeSyCoCo and LEFT
nearly saturate CLEVR (99%), NePTune demonstrates that competitive compositional reasoning
can be achieved without dataset-specific supervision. Compared to its backbone VLM, InternVL2.5,
NePTune still yields improvements raising overall accuracy from 90.25% to 92.65% (1 2.40%). The
largest gains appear in quantitative categories where explicit compositional structure is most useful:
Count rises from 74.60% to 87.10% (1 12.50%), and Compare Number increases from 90.86% to
92.57% (1 1.71%). We also see a notable improvement on Exist from 87.10% to 93.19% (1 6.09%),
consistent with the executor reducing spurious correlation when filtering by attributes and relations.
In contrast, attribute-heavy categories regress: Query Attribute drops by | 1.45% points and Compare
Attribute drops by | 6.67% points. A closer look at concept-level accuracy revealed that analogical
concepts such as same color or same shape remain among the most challenging to capture in this
benchmark. More discussion of atomic concept evaluation is provided in Section 5]

In addition to the original CLEVR benchmark, we evaluate our method on various compositional
challenges based on the CLEVR environment introduced in LEFT [8]], including referring expressions



Table 4: Accuracy on CLEVR extension tasks. Methods marked with T use ground-truth programs.
Improvements from the backbone VLM (InternVL2.5) are marked with the arrow sign (7).

| Method Ref(%)  Puzzles(%) RPM(%)
2 | NeSyCoCo' 100.00 95.00 100.00
£ | NeSyCoCo 94.00 94.00 74.00
& | LEFT 94.00 85.00 87.00
Qwen2VL.5-8B 21.00 43.00 53.00
~ | IntenVL25-8B 27.00 52.00 47.00
2 | Ovis1.6-9B 4.00 47.00 49.00
2 | ViperGPT 8.00 34.00 4.00
N | VisProg 35.00 27.00 51.00
NePTune' 99.00 (172)  65.00 (1 13)  99.00 (1 52)
NePTune 91.00 (1 64)  60.00 (1 8)  80.00 (1 33)

CLEVR-Ref, visual puzzles CLEVR-Puzzles, and Raven’s Progressive Matrices CLEVR-RPM.
As shown in Table ] NePTune shows the highest performance among the zero-shot methods and
outperforms the end-to-end VLMs. In addition, compared to NeSyCoCo and LEFT with trained
concepts, we show competitive performance.

4.2 Experiment 2: Complex Human Queries

Here, we evaluate NePTune in a more complex and diverse Table 5: Accuracy on the
human-generated language. We utilize the CLEVR-Humans [12] CLEVR-Humans (CH).
benchmark to evaluate and compare NePTune against other
neuro-symbolic and end-to-end models.  As shown in Table [5 | Method CH (%)

NePTune significantly outperforms prior declarative neuro-symbolic 2 Iﬁ?s:Tc c 22'?3
R = yCoCo .
methods such as LEFT and NeSyCoCo by a large margin of T 30.98% & | MDETR 81.73

even compared to end-to-end methods such as MDETR [14]. It also
surpasses its imperative symbolic backbone, ViperGPT. Furthermore,

Qwen2VL-7B 84.12
InternVL2.5-8B 85.95

shot

. . £ | Ovisl.6-9B 79.96
it improves upon its powerful end-to-end backbone (InternVL2.5-8B) by é V].Vl:;GPT 3105
1 1.72%, demonstrating its effectiveness on complex, human-generated NePTune 87.67

questions.

4.3 Experiment 3: Real-world Images

While various versions of CLEVR used in the aforementioned Table 6: Accuracy on Ref-Adv
experiments are strong testbeds for compositional reasoning, after dataset.
all, these are toy environments with limited diversity. To demonstrate

NePTune’s ability to operate in realistic environments, we evaluate Method Ref-Adv (%)
it on Referring Expression Grounding (REG) of real-world images = Grounding DINO-B 60.85
using the RefCOCO-Adversarial [[1] (Ref-Adv) benchmark. On Florence2-L 71.73
Ref-Adv, NePTune is the strongest zero-shot reasoner among IOVISI'6‘9B 30.70

. . . nternVL2-8B 72.92
symbolic baselines such as ViperGPT and NAVER. To ensure a 1pemvi2.5-8B 76.13

fair comparison with NAVER, we follow its setup and use the same

backbones (Grounding DINO + XVLM + InternVL2-8B), denoted ;Ef,rgRﬂT gggg
as NePTune!. Under this setting, NePTunef reaches 63.71 vs. NAVER 65.13
36.45 for NAVER' (execution only), and with a simple verification ~NePTune! 63.71
(similar to NAVER) attains 71.57 vs. 65.13 for NAVER. Compared = + Verification 75.54
to end-to-end methods, NePTune surpasses all the specialized NePTune 7L57

. . + Verification 78.08
grounding methods, such as Grounding DINO and Florence?2 [31]]. NePTune (1B) 60.69

Additionally, compared to their VLM backbones, both NePTune 4 Fine-tuning 68.06 + 0.56
and NePTune* with verification surpass their respective backbones. -+ Verification 74.59 £ 0.12
Details on verification are available in Appendix




4.4 Experiment 4: Generalization and Adaptation

When using popular benchmarks, as we did in Experiments 1-3, the possible data
contamination makes zero-shot performance less reliable. In this experiment, we test NePTune’s
ability to generalize and adapt to novel environments using a less popular photo-realistic
gaming environment that is Ref-GTA [27] benchmark. Ref-GTA is a challenging REG
benchmark with images from a game simulation, which creates a significant domain shift
from the natural images on which most VLMs are pre-trained. Based on the reports
of Ovisl.6 [19] and InternVL2.5 [4], this source is not included in their training data.

As shown in Table this domain shift causes a significant

performance drop for most methods. The powerful end-to-end 1able 7: Accuracy  on
InternVL2.5-8B model, for example, fails catastrophically, with Ref-GTA benchmark.

its accuracy dropping to 6.95%. In contrast, NePTune, when

paired with the same VLM, achieves a remarkable 69.69% accuracy. Methoé Ref-GTA(%)
This demonstrates that by utilizing our global symbolic reasoner gﬁ‘;ﬁg;‘fglNo'E g;'gg
and atomic-level concept understanding, our framework achieves i 6.98 278
robustness and compositional generalization that monolithic models InternVL2.5-8B 6.95
lack. Furthermore, while NePTune demonstrates strong zero-shot InternVL2.5-1B 1.64
robustness, its soft operations also enable fine-tuning. As shown in ~ * Fine-tuning 32.61+035
Table[7] by fine-tuning a smaller VLM (InternVL2.5-1B) using our ~ ViperGPT 1.40
neuro-symbolic differentiable computations with only 1000 samples, gﬁxgg ggg;‘
we can further improve its performance and obtain 69% accuracy. \.prunet 6273
While fine-tuning VLM using original neural training, it only reaches  NepTune 69.69
32% accuracy. These findings are promising for future research NePTune (1B) 34.92
and using neuro-symbolic reasoning as a source of supervision for ~_+ Fine-tuning 69.90 + 1.16

larger-scale VLM training. More details on fine-tuning are presented
in Appendix [

5 Discussion

VLM for Concept Understanding. A central idea of NePTune is to employ VLMs as underlying
perception modules and concept grounders. The basic assumption here is that while VLMs are
prone to fail at reasoning over complex compositions, they should perform better in perceiving basic
concepts. However, basic perception questions require isolating parts of the visual input, a process
known as visual prompting, which has been shown to be challenging in complex questions [2]]. In this
section, we aim to evaluate the hypothesis that modern VLMs guided by visual prompts are effective
as concept grounders for our purpose. We utilize ground-truth scene graphs from the CLEVR [[11]]
and Visual Genome [15] datasets to automatically generate a set of atomic templated questions. For
CLEVR, we create a benchmark using scene graphs of 200 sampled scenes, and for Visual Genome,
we randomly sample 1000 questions from 200 scene graphs. We generate simple Yes or No questions
about their class, attributes, and relations, such as, “Is the object in the bounding box a bird?". We
then use our score function that employs the underlying VLM to answer these atomic questions.

Table 8: Backbone VLMs performance on CLEVR and VG scene graphs (Micro F1-Score x 100)

Category InternVL2.5-8B Ovis1.6-9B Qwen2VL-7B
CLEVR VG CLEVR VG CLEVR VG
Attribute 97.25 89.37 95.87 86.75 89.27 83.45
Class/Object 90.00 81.76 91.98 80.42 82.21 83.28
Relation 90.94 82.35 87.91 80.00 80.04 83.02
Spatial 89.82 93.42 86.83 93.39 89.53 94.41
Overall 94.54 90.41 90.35 88.19 86.59 90.77

The results are shown in Table[8] Our analysis reveals that VLMs are particularly strong at identifying
object, classes, properties, and spatial relations. However, the performance is weaker on more
complex relational concepts, especially for analogical comparisons such as same size. This problem
is more severe in the Qwen2VL model. Although visual prompting can be problematic for general



VQA [2]], our results show this is not as challenging in our setting for grounding atomic queries. These
results demonstrate that VLMs perform significantly better in answering atomic queries compared to
complex multi-step queries, as reported in Tables[d and[5] For example, there is a performance gap
of up to 67% when comparing CLEVR-Ref (27%) compared to CLEVR average atomic evaluation
(94%) using InternVL2.5. Detailed concept-level results of the experiment are presented in the
Appendix [B] Furthermore, the results in Table [0 demonstrate the end-to-end performance of different
VLMs in NePTune, where backbones show an average improvement of up to 1 29%.

Table 9: Performance of different VLM backbones (end-to-end) and with NePTune across benchmarks.
A values indicate gains or losses relative to the raw VLMs.

Model CLEVR (%) Ref-Adv (%) Ref-GTA (%) Ref (%) Puzzles (%) RPM (%) Avg. (%)
InternVL2.5-8B 90.25 76.13 6.95 27.00 52.00 47.00 49.89

+ NePTune 92.6571240  78.08 17195 69.69162.74 91.00164.00 60.0078.00 80.00133.00 78.57 (1 28.68)
Ovis1.6-9B 85.00 58.47 2.78 4.00 47.00 49.00 41.04

+ NePTune 88.80 13.80  63.2514.78 563215354 75.00171.00 57.00110.00 80.007131.00 70.06 (129.02)
Qwen2VL-7B 93.55 81.07 1.75 21.00 43.00 53.00 48.90

+ NePTune 82551 11.00 80.93 | 0.14 68.877167.12 71.00150.00 53.00710.00 71.00718.00 71.23 (1 22.33)

Ablation Study. Table [I0] presents an ablation study of Table 10: Ablation study on
NePTune on CLEVR-Humans, starting from a declarative CLEVR-Humans (CH).
reasoning backbone. Incorporating InternVL2.5 as the concept

scoring module yields a 1 12.36 improvement, showing that Ablation Setting CH (%)
strong VLMs provide more robust and generalizable concept  Pigfaative ¢ Tuined Concepts 3612,
grounders than trained concept grounders on CLEVR. Building  + tmperative Reasoning 87.67 (1 19.19)

on this, adding NePTune’s imperative reasoning further boosts
accuracy by 1 19.19, closing the gap left by purely declarative systems.

Choice of Symbolic Program. We analyze program execution success rates (no syntax
or runtime errors) on 500 Ref-Adv and CLEVR-Humans using the GPT-40 [22] LLM. As
shown in Table E], frameworks that rely on specialized, non-Pythonic syntax, such as LEFT,
NeSyCoCo, and NAVER (which uses ProbLog), frequently suffer from generation failures.
We found that the LLM often struggles to correctly T . .

. ; . . able 11: Execution
translate natural language into their specific, strict
formalisms. In contrast, methods that utilize Python,
such as ViperGPT and NePTune, demonstrate significantly
higher rates of successful program execution. However,

success rate (%)
of different neuro-symbolic methods
on Ref-Adv and CLEVR-Humans.
Incompatible models are excluded.

our analysis of ViperGPT’s failures reveals that its purely Method Ref-Ady CLEVR
imperative approach, which often relies on selecting NeSyCoCo N/A 70331347
objects by a fixed index, is a primary source of error. LEET N/A 64.33-3.94
The NePTune hybrid reasoner proves to be the most ViperGPT ~ 48.67+1.70  95.42+0.30
robust. Our analysis shows that the main source of NAVER 23.0244.71 N/A

error for NePTune shifts from low-level syntax errors NePTune  98.66+082 97.24+0385

to higher-level logical errors, where the LLM fails to
compose the correct sequence of predicates. Qualitative examples are shown in Appendix [A]

6 Conclusion

In this work, we introduce NePTune, a novel neuro-symbolic framework for compositional
vision-language reasoning. Our approach leverages a novel hybrid reasoner that combines the
imperative control flow of Python with a declarative, probabilistic soft logic that operates directly on
the uncertain outputs of a VLM. This design enables our framework to be both highly expressive and
robust in the face of perceptual uncertainty. Our extensive experiments demonstrate the effectiveness
of this approach. NePTune demonstrates clear improvement over strong baselines, as well as the
underlying VLMs, on complex compositional reasoning benchmarks, in visual question answering,
and referring expression, exhibiting remarkable generalization capabilities. While the performance of
NePTune is dependent on the quality of its underlying components, such as the LLM for program
generation and the VLM for concept grounding, our work demonstrates a flexible and powerful



paradigm for building more robust and generalizable Al systems, leveraging these models to elevate
their capabilities to a comparatively higher level of performance. Future work could explore methods
for more efficient grounding and the integration of our work into visual reasoning orchestration.
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A Qualitative Analysis

A.1 Referring Expressions Grounding

Examples of NePTune on Ref-GTA are shown in Figure 3] Expressions 1 and 2 show the superiority
of compositional reasoning compared to the VLM and object detection backbones. They demonstrate
how the VLM fails to correctly locate the object in the new environments, while atomic concepts are
correctly scored by the VLM.

A.2 Visual Questions Answering

Examples of NePTune on CLEVR-Humans are shown in Figure |4l Example 1 illustrates a case
where reasoning over meta-concepts such as distinct shapes is required. NeSyCoCo is unable to
resolve the query due to this limitation to declarative, while ViperGPT struggles to identify the
correct anchor object because it does not perform global reasoning across the object set. NePTune, by
contrast, is able to provide the correct interpretation. Example 2 presents a more complex scenario
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Expression 1: Man wearing a black suit

] e
0ss
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. Reasoner| > .
- 0.00 »
s p—p

core("Is the main object inside of the red bounding box 2", num_objects=1, type
is_wearing_black = score("Is the man inside of the red bounding box wearing black?", num_objects=1, type="property")
man_wearing_black s_man('x1')

return man_wearing_black.iota('x1')

Expression 2: Man wearing a white jacket with blue stripes and white shorts

—— 099

Iscore('ls the object n the red bounding box a man') |:> 099 4

‘ 099
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 099 0.99

s the man inide o e 4 Bounding box wearing &
withble stripes?) 056 [Reasoner| > 0.46

097 059

is_man = score("Is the main object inside of the red bounding box a man?", num_objects=1, type="class")
is_white_jacket_with_blue_stripes = Is the man inside of the red bounding b ing a white jacket with blue stripes?", num_objects=1, type="property")
is_white_shorts = Is the man e of the red bounding box ng white shor num_objects=1, type="property")

is_walking _sidewalk man inside of the red bounding box walking down the sidewalk?", num_objects=1, type="context")

man_in_whi cket_with_blu ipes_ hite_shorts_walking = (

turn man_in_white_jacket_with_blue_stripes_and_white_shorts_walking.iota('x1')

Figure 3: Qualitative examples of NePTune on the RefGTA dataset. Green boxes indicate objects
detected by Grounding DINO, blue boxes show objects selected by the VLM (InternVL2.5-8B), and
red boxes highlight the final selections made by NePTune.

where reflection reasoning and calibration are critical. Both the sphere and the cylinder are reflected
in the cyan cube, with the cylinder’s reflection being more prominent and thus the more likely
answer. NePTune does not fully capture this subtle distinction and produces an incorrect response.
The competing baselines, however, fail for different and more fundamental reasons: VLM score
calibration issues lead to incorrect selection, and ViperGPT relies on bounding box size comparisons
that ignore perspective, which causes it to treat equally sized cubes as different. In this case, the code
selects the shiny brown cube in the foreground and concludes that there is no reflection. Although
NePTune also errs, this example highlights the inherent difficulty of fine-grained reflection reasoning
and the challenges posed by subtle visual cues.

A.3 Failure Example.

Example shown in Figure []illustrates an error caused by an incorrect LLM-generated program in
NePTune. Two issues occur simultaneously:

1. Incorrect predicate arity: The program invokes the function is_baby_giraffe with
num_object=2 instead of 1. This leads to a dimensional mismatch when the resulting score
tensor is composed with variable x2, causing execution failure.

2. Incorrect bounding box reference: The program refers to the bounding box with the color
green instead of red, which is the intended single-object reference.

While errors such as incorrect bounding box colors can be alleviated to a certain extent with
regex-based matching, the dimensional inconsistency in predicate scoring is unrecoverable without
regeneration.
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Example 1 Example 2

(How many shapes have the same material as the only brown shape?) ( What shape is reflecting in the large cube? )

GT:3 GT: Cylinder

NePTune

IR - > "\ O reflection
pe_patch = brown_shape_patches(c]

material = brown_shape_patch ¥ shape?"

cannot

# Find all shape: determine
shape_p s i atch. f.

count

e same material

“What material is the shape?"

tr(count:

Figure 4: Qualitative examples of NePTune compared to ViperGPT and NeSyCoCo on
CLEVR-Humans.

is_adult_giraffe = score("Is the main object inside of the red boundina box an adult giraf nun_objects=1, type="class
is_baby_giraffe e("Is the main object inside of the green bounding box a baby gira , num_objects=2, type="class")

licking = score("Is the adult giraffe inside of the red bounding box licking the baby giraffe inside of the green bounding box?", num_objects=2, type="relation")

final_predicate _adult_giraffe('x1') & is_baby_giraffe('x2') & licking('x1', 'x2')
turn final_predicate.iota('x1')

Figure 5: Qualitative example of wrong NePTune program generation. Mistakes are highlighted with
red boxes.

B VLM Concept Analysis

B.1 Concept-Level Performance

An analysis of the atomic concept grounding performance on the CLEVR dataset shown in Table[T2]
reveals clear patterns of weakness, primarily centered around analogical and complex relational
concepts.

B.1.1 Analogical Relations

The most significant challenge for the VLMs concept is abstract, analogical comparisons. The concept
same size is a clear example, yielding the lowest F1 score in the entire table for Qwen2VL-7B at
0.604. Ovisl.6-9B also struggles significantly with it, scoring just 0.794. While InternVL2.5-8B
performs better, same color is a notable weak point for it at 0.840. This indicates a systemic difficulty
in performing comparative judgments with visual prompting compared to simple identification.
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Table 12: F1 Scores for atomic concept grounding on CLEVR using visual prompting.

Concept Ovisl.6 Qwen2VL InternVL2.5

blue 0.972 0.806 0.986
brown 0.989 0.921 0.989
cube 0.915 0.952 0.991
cyan 0.961 0.805 1.000
cylinder 0.964 0.960 1.000
gray 0.958 0911 0.980
green 0.989 0.838 0.988
large 0.956 0.975 1.000
metal 0.961 0.965 0.997
purple 0.988 0.927 1.000
red 0.973 0.829 1.000
rubber 0.980 0.924 1.000
small 0.976 0.868 1.000
sphere 0.980 0.980 0.996
yellow 0.974 0.871 0.982
behind 0.836 0.877 0.868
front 0.890 0.850 0.850
left 0.919 0.885 0.943
right 0.934 0.863 0.930
same_color 0.982 0.957 0.840
same_shape 0.862 0.855 0.936
same_size 0.794 0.604 0.951
Macro F1 ~ 0.943 0.874 0.964
Micro F1 0.903 0.866 0.945

B.1.2 3D Spatial Relations are a Close Second

The next most difficult category is 3D spatial relationships. Concepts like behind and front consistently
score lower than basic attributes across all models. For instance, the F1 scores for behind are 0.836
(Ovisl.6), 0.877 (Qwen2VL), and 0.868 (InternVL2.5). This demonstrates a weaker understanding
of object relations in three-dimensional space compared to intrinsic properties like shape or material.

B.1.3 Color Confusion

Certain colors also pose challenges, particularly for the Qwen2VL model. The color cyan shows a
notable performance dip for Qwen2VL (0.805). Further analysis suggests this is due to confusion
with visually similar colors like blue (0.806) and green (0.838). This pattern highlights that while
models can identify common colors well, they are less robust with more specific shades and can
struggle to differentiate them.

B.1.4 Real-World Image Challenges in Visual Genome

Transitioning from the synthetic CLEVR environment to the complex, real-world images of the
Visual Genome [15]] dataset reveals a notable shift in performance dynamics. We evaluate our models
on atomic queries generated from the cleaned VG scene graphs in GQA [9]] using these templates:

¢ Relation Prompt:
Is the {class;/object; } in the red bounding box {classa/objects } the {relation} in the green
bounding box?

¢ Class Prompt:
Is the object {inside of/in} the red bounding box {article} {class}?

¢ Attribute Prompt:
Is the {class} in the red bounding box {attribute }?
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As shown in Table [T3] a key challenge emerges in fundamental object identification. While the
models remain highly proficient at identifying spatial relations and attributes, their performance in
the "Class/Object" category is consistently lower than CLEVR. Ovis1.6-9B drops to an F1-score of
0.804, with InternVL2.5-8B and Qwen2VL-7B at 0.818 and 0.833, respectively. This suggests that
the visual complexity, clutter, and vast number of fine-grained categories in real-world images make
the foundational task of object recognition a more significant hurdle than in the controlled CLEVR
environment.

Table 13: Top 20 common concepts F1-Score comparison on real-world scene graphs.

Concept Ovisl.6-9B Qwen2VL-7B InternVL2.5

right of 0.940 0.971 0.962
left of 0.951 0.970 0.980
man 0.906 0.914 0.892
shirt 0.840 0.893 0.963
person 0.821 0.792 0.824
window 0.857 0.894 0.957
pole 0.842 0.900 0.927
building 0.621 0.839 0.889
tree 0.750 0.833 0.839
wall 0.815 0.857 0.800
on 0.636 0.727 0.696
sign 0.800 0.815 0.833
car 0.870 0.960 1.000
hand 0.929 0.929 0.923
in 0.444 0.421 0.500
white 0.750 0.889 0.846
near 0.923 0.880 0.923
sky 0.500 0.667 0.800
ear 0.818 0.800 0.909
woman 0.952 0.952 0.952

B.2 End-to-End Performance

These findings align with the paper’s broader conclusion that errors in the final reasoning pipeline
often originate from the VLM’s poor performance on these specific types of relational and analogical
concepts. Based on the results of this analysis, in addition to the score perceptual interface, we
generate a set of the most common spatial predicates, such as left, right, behind, front, etc., using the
position and depth estimation of bounding boxes for the sake of efficiency and accuracy.

Table 14: Comparison of model accuracies across various categories. Maximum values for each
NePTune and end-to-end are bolded. Changes compared to normal models are marked with colors
and arrows.

Metric Qwen2VL  Ovisl.6 InternVL2.5 | Qwen-NeSy Ovis-Nesy Intern-Nesy

Final Accuracy (%) 93.55 85.00 90.25 | 82.55 (L 11.00) 88.80 (13.80)  92.65 (1 2.40)
Exist (%) 98.21 86.74 87.10 84.59 (] 13.62)  88.53 (1 1.79)  93.19 (1 6.09)
Query Attribute (%) 93.77 90.14 98.26 91.30 (] 2.47)  96.23 (1 6.09)  96.81 (| 1.45)
Compare Attribute (%) 99.44 90.28 98.61 78.33 (} 21.11)  88.33 (] 1.95)  91.94 (| 6.67)
Count (%) 87.50 75.40 74.60 70.16 (| 17.34)  78.83 (13.43)  87.10 (1 12.50)
Compare Number (%) 90.29 78.29 90.86 88.57 (L 1.72)  89.14 (1 10.85)  92.57 (1 1.71)

The results in Table[T4]clearly show that NePTune enhances the compositional reasoning abilities of
strong base VLMs such as Ovis1.6 and InternVL2.5. The most significant gains are on quantitative
compositional tasks, with accuracy on counting questions improving by over 12% for InternVL2.5
and counting comparison questions by nearly 11% for Ovisl.6. This highlights the value of our
structured, programmatic approach for tasks that end-to-end models find challenging. Conversely,
our framework degrades the performance of the already accurate model Qwen2VL. A deeper look
reveals that the primary source of this degradation is the analogical questions, which are the most
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apparent in the "Compare Attribute" task, where performance drops by 21%. This aligns perfectly
with our findings in Experiment 1, which showed that this specific VLM struggles with analogical
reasoning (e.g., same color, same shape). This demonstrates both the power of our framework when
paired with a reliable grounding VLM and its sensitivity to the underlying VLM’s weaknesses, as
errors in perception are propagated by the logical executor.

C Experimental Setup

All experiments were conducted on a server running Ubuntu OS, equipped with an AMD EPYC
7413 24-core CPU, 700GB of system RAM, and an NVIDIA A6000 GPU (48GB). Unless specified
otherwise, our core models included DeepSeekV3 [5] as the backbone LLM, GroundingDINO-B
for object detection, and DepthAnythingV?2 [32] for depth estimation. We utilized the Hugging Face
Transformers library [29]] for VLM interaction and the InternVL-2.5 codebase for ﬁnetuninﬂ To
supplement the LLM’s output, we also used spaCy [7]] Named Entity Recognition to extract keywords
from the query.

D Datasets

Here, we provide a detailed breakdown of the datasets used to evaluate the NePTune framework
across a range of visual reasoning challenges.

D.1 CLEVR

We evaluate core compositional reasoning using the CLEVR (Compositional Language and
Elementary Visual Reasoning) dataset [11]]. It contains 3D-rendered synthetic images of simple
objects and is used for the task of Visual Question Answering (VQA), where the model must answer
complex, programmatically generated questions about object attributes, counts, and relations. We
measure performance using Accuracy (%) and, for answers requiring semantic equivalence matching
(e.g., matching “2” with “two”). For CLEVR dataset benchmarks where a deterministic evaluation
did not capture the correctness of the answer, such as matching "2" with "two", we use GPT-40 as an
Al judge for evaluation. The prompt used for this evaluation is shown in Figure[/| Since the CLVER
evaluation set was large (700K), we used the first 2000 samples for evaluating our method.

D.1.1 CLEVR Query Categories

Our fine-grained analysis on CLEVR, presented in Table [3] breaks down performance across the
following five distinct types of reasoning skills using the programs in the dataset:

Exist These questions test for the presence of an object with specific properties, requiring a “Yes/No”
answer. For example, “Is there a large green cube behind the small red sphere?”

Query Attribute These questions ask for a specific property (e.g., color, material) of a uniquely
identified object, such as, “What color is the small shiny cylinder?”

Compare Attribute This category involves “Yes/No” questions that compare a single property
between two objects. For example, “Does the large sphere have the same material as the
small cube?”

Count These questions require the model to return the total number of objects matching a description,
such as, “How many red metallic objects are there?”

Compare Number These questions involve comparing the quantities of two different sets of objects,
also resulting in a “Yes/No” answer. For example, “Are there more spheres than cubes?”

D.2 CLEVR-Humans

The CLEVR-Humans dataset [12] allows us to evaluate performance on more natural language.
It uses the same synthetic images as CLEVR but features more complex and linguistically diverse
questions written by humans. Similar to CLVER, performance is measured by Accuracy (%).

"https://internvl.readthedocs.io/en/latest/internv12.5/finetune.html
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D.3 CLEVR Extensions

To probe a wider range of reasoning skills, we use a collection of compositional challenges from
Hsu et al., 2024, built on the CLEVR environment [8]]. Each task tests a unique aspect of complex
reasoning:

CLEVR-Ref This task tests referring expression grounding, where the model must identify a target
object based on its relationship to other objects. The evaluation is conducted by measuring
the IOU value greater than 0.5.

Example: “There is a sphere that is front the gray cylinder, find the small cylinder
that is left of it.”

CLEVR-Puzzles This benchmark evaluates the model’s ability to solve visual constraint satisfaction
problems by finding a set of objects that simultaneously satisfy multiple attribute and
relational constraints.

Example: “Can you find four objects from the image such that: object 1 is a large
metal object; object 2 is a metal object; object 3 is a small rubber cylinder; object
4 is a small yellow metal cylinder; object 1 is front object 2; object 1 is behind
object 4; object 1 is behind object 3.”

CLEVR-RPM This task tests abstract relational reasoning by mimicking Raven’s Progressive
Matrices. The model is presented with objects in a grid that follow a pattern and must
identify a candidate object from the scene that correctly completes that pattern.

Example: “There are 9 objects, ordered in a 3x3 grid: row 1 col 1 is a small
rubber object; row 1 col 2 is a small rubber object; row I col 3 is a large rubber
object; row 2 col 1 is a small metal object; row 2 col 2 is a small metal object;
row 2 col 3 is a large metal object; row 3 col 1 is a small metal object; row 3 col
2 is a small metal object; I am missing one object at row 2 col 2. Can you find an
object in the scene that can fit there?”

D.4 RefCOCO-Adversarial (Ref-Adv)

To test performance in real-world scenarios, we use the RefCOCO-Adversarial benchmark [1]].
This dataset consists of real-world images with visually similar distractor objects, making the task
of Referring Expression Grounding particularly challenging. REG requires the model to locate the
specific object corresponding to a text description, and we evaluate the model using Grounding
Accuracy (%), where a prediction is considered correct if the Intersection over Union (IoU) with the
ground-truth bounding box is 0.5 or greater.

D.5 Ref-GTA

To measure generalization under a significant domain shift, we use the Ref-GTA benchmark [27]].
This is a REG benchmark where images are sourced from a photo-realistic game simulation, creating
an out-of-distribution challenge for models pre-trained on natural images. Performance is measured
by Grounding Accuracy (%), defined by an Intersection over Union (IoU) threshold of 0.5 between
the predicted and ground-truth bounding boxes.

E Verification

To recover from occasional symbolic execution failures, we add a lightweight verification stage that
operates after reasoning has produced a candidate answer. We explore two simple strategies:

1. Pairwise Arbiter: The model is presented with two candidates, the backbone prediction and
the symbolic reasoning output, along with the query. It acts as an arbiter, directly judging
which option better satisfies the description. Our prompt, similar to the one used by NAVER
for this process, is shown in Figure[6]

2. Confidence Gating: We compute a softmax distribution over the symbolic executor’s
scores with temperature 7', and use a threshold 7 to decide whether to trust the executor.
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You’re an image analyst designed to check if the highlighted objects in the image meets the
query description, and which one is more likely to meet the query description.

The query is: "{query}"

Please check the highlighted object "0" [in the red bounding box] and "1" [in the green bounding
box] in the image and answer the question: Which object is more likely to meet the query
description? Your answer should be "0", "1". Answer with one word or phrase.

Figure 6: Prompt used for the Pairwise Arbiter verification strategy.

If max(softmax) < 7, we fallback to the backbone prediction; otherwise, we keep the
executor’s output. Both 7 and 7" are tuned on a 500-example held-out set for each backbone.

Table [T5] summarizes the performance of both light-weight verification strategies across different
backbones. Overall, we observe that the Pairwise Arbiter tends to outperform the Confidence Gating
method, highlighting the benefit of leveraging a VLM to arbitrate between backbone and symbolic
predictions.

Table 15: Post-verification accuracy on Ref-Adv.

Backbone VLM  Verification Accuracy (%) T T Symbolic Share(%)
Confidence Gating 80.91 0.70 040 73.59
Qwen2VL-TB i rwise Arbiter 80.93 N/A  N/A 80.23
. Confidence Gating 60.49 0.30 0.10 86.79
Ovis1.6-9B Pairwise Arbiter 63.25 N/A  N/A 29.73
Confidence Gating 76.65 0.60 0.50 71.06

InternVL2.5-8B  pirwise Arbiter 78.08 N/A  N/A 77.86

You are an automatic answer checker! I will give you a question and answer, and a generated
response, and you will tell me if the response is correct given the ground truth answer. If the
response is correct, you will say <Yes>, otherwise you will say <No>. Rubber and Matte are
the same. Shiny and Metal or Metallic are the same. Square and Cube are the same. Yellow
and Golden colors are similar in the images, too. Balls and spheres are similar. Check if the
response is correct given the questions and the ground truth answer, deeply thinking about the
context. Answer with <Yes> or <No> and don’t mention them other than for the final answer.
Important! Ignore the red bounding box reference in the generated response.

Question: “{Question}”

Ground Truth Answer: “{ Answer}”

Generated Response: “{Prediction}”

Figure 7: Visual Question Answering judge LLM prompt.

F Hyperparameters

The fine-tuning hyperparameters for our experiments are detailed in Table These settings are
based on the configurations defined in our training script.

During our experiments, we found that applying LoRA fine-tuning to the vision backbone, in addition
to the language model, was highly effective for domain adaptation. To illustrate, without any
neuro-symbolic fine-tuning, the base NePTune framework achieved 56.49% accuracy on Ref-GTA.
In contrast, a standard fine-tuning approach on the base VLM only reached 4.19% accuracy. This
performance gap underscores the effectiveness of our neuro-symbolic method and justifies fine-tuning
the vision components to achieve optimal results in novel environments.
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Table 16: Hyperparameters for Fine-Tuning Experiments

H Standard NePTune Neuro-Symbolic Fine-Tuning
yperparameter

Fine-Tuning on RefCOCO-Adv on Ref-GTA
General Training
Learning Rate (Ir) 4x107° 4 %1075 4x107°
Batch Size 1 1 1
Gradient Accumulation 4 4 4
Weight Decay 0.01 0.01 0.01
LR Scheduler Cosine Cosine Cosine
Warmup Ratio 0.03 0.03 0.03
Loss Function Cross-Entropy Binary Cross-Entropy Binary Cross-Entropy
LoRA Configuration
Rank (r) 16 (LM), 8 (Vision) 16 (LM) 16 (LM), 8 (Vision)
Alpha («) 32 (LM), 16 (Vision) 32 (LM) 32 (LM), 16 (Vision)
Dropout 0.05 0.05 0.05

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims are supported by extensive experiments presented in the paper. For
instance, the results in Table 8 show strong generalization on a challenging domain-shift
benchmark, directly validating the contributions outlined in our abstract and introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in Section 5 ("Discussion"). We address
the framework’s sensitivity to the choice of VLM, its computational cost.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
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their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

Answer: [NA]
Justification: There is no theory assumptions in our work.
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient detail for our results to be reproduced. Our
methodology is described in Section 3, and full details regarding the experimental setup and
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
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the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]
Justification: Inlcuded in the submission
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: specify all necessary training and test details for our experiments. A
complete account of the hardware, software, data splits, and hyperparameters is provided in
Appendices B and C.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the compute resources used. The
hardware is detailed in Appendix B, and execution time metrics are provided in the
"Computational Cost" discussion in Section 5.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Justification: To the best of our knowledge, our research conforms to the NeurIPS Code
of Ethics. We use standard public datasets and our work does not involve sensitive data
collection or human subject research.
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* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our paper does not contain a dedicated discussion of broader societal impacts.
We have focused on the technical contributions of our work rather than potential negative
applications.
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This question is not applicable to our work. We introduce a framework rather
than a new high-risk model or dataset that would require specific release safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have credited the creators of all existing assets via citation.
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* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This question is not applicable, as we do not introduce or release any new
assets such as datasets or models in this paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is not applicable to our research. We did not conduct any new
crowdsourcing or experiments involving human subjects, relying instead on existing public
datasets.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is not applicable. Our research did not involve human subjects and
therefore did not require IRB approval.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our paper describes using an LLM as a functional component within our
methodology (Section 3.1) and as a tool for evaluation (Section 4.3). We do not, however,

declare any use of LLMs for the ideation or generation of the core research concepts
themselves.
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* The answer NA means that the core method development in this research does not
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¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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