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ABSTRACT

Quantum transport theory describes transport phenomena from first principles,
which is essential for domains such as semiconductor fabrication. As a representa-
tive, the Non-Equilibrium Green Function (NEGF) method achieves superiority
in numerical accuracy. However, its tremendous computational cost makes it un-
bearable for high-throughput simulation tasks such as sensitivity analysis, inverse
design, etc. In this work, we propose AD-NEGF, to the best of our knowledge the
first Automatic Differentiation (AD) based quantum transport simulator. AD-NEGF
calculates gradient information efficiently by utilizing automatic differentiation
and implicit layer techniques, while guaranteeing the correctness of the forward
simulation. Such gradient information enables accurate and efficient calculation of
differential physical quantities and solving inverse problems that are intractable by
traditional optimization methods.

1 INTRODUCTION

The strong and lasting demand for higher computing power and lower energy consumption urges
the downscale of semiconductor devices. Over the last 40 years, the microelectronics industry has
successfully made the transistor feature size scale from 10µm to near 20nm, of which size the
quantum mechanical effect starts to dominate (Anantram et al., 2008; Wang et al., 2008; Datta, 1997).
Therefore, device simulators facing the future need to take a quantum theory oriented formulation,
while NEGF, as a representative, is one of the most rigorous approaches among existing quantum
transport methods (Jacoboni, 2010).

Although NEGF shows superiority in simulation accuracy, it is also extremely time and computation
consuming. Recently, many works successfully integrate machine learning techniques to resolve the
accuracy-efficiency dilemma of scientific simulations. A typical paradigm is to build up learning-
based surrogate models (e.g., a neural network) (Li et al., 2020; Bürkle et al., 2021; Pimachev &
Neogi, 2021). By learning from data generated with highly accurate simulations beforehand, the
surrogate model is expected to maintain first-principle accuracy while performing much faster in
usage. A fatal problem of such methods is that there is no guarantee for prediction accuracy, especially
for input out of the distribution of the training dataset. Such drawback limits the application of
machine learning based surrogates in quantum transport scenarios.

An alternative is to utilize automatic differentiation to make the computation process differentiable. In
quantum transport simulations, practically useful information is often related to calculating derivatives.
For instance, the thermoelectric property measured by the Seebeck coefficient; the sub-threshold
swing of MOSFET that is related to the derivative of the drain current ID with respect to the applied
gate voltage Vg, etc. Compared to traditional numerical differentiation, automatic differentiation
can overcome the trade-off between the round-off error and the truncation error when choosing
the step-size (Gautschi, 1997, Chap. 3), and also can be numerically more efficient when the input
dimension is high. Moreover, in theoretical inverse problems, an end-to-end differentiable solver
is also extremely useful and in fact, critical. The availability of gradients makes it possible to
conduct efficient gradient-based optimization, which can outperform black-box optimization methods
such as Bayesian optimization, genetic algorithm, etc., and can conduct optimization on a scale
that black-box methods cannot. Recent advances have also shown the value to apply differentiable

1



Under review as a conference paper at ICLR 2023

programming in scientific computation scenarios, such as fluid dynamics (Holl et al., 2019), quantum
chemistry (Kasim & Vinko, 2021), molecular dynamics (Schoenholz & Cubuk, 2020), photonic
crystal optimization (Minkov et al., 2020), etc.

In this work, we propose AD-NEGF, to the best of our knowledge the first end-to-end differentiable
quantum transport simulator. The entire numerical process of NEGF and TB modeling is implemented
in PyTorch, including the computation of the self-energy term, the Green function, the electrostatic
potential, the transport properties, as well as an optional Slater-Koster Tight-Binding (SKTB) module
to generate the block tri-diagonal Tight-Binding (TB) Hamiltonian (Klymenko et al., 2021), which
we will introduce in detail in Section 3. The backward pass to compute the gradients is improved by
utilizing the implicit gradient techniques and the adjoint sensitivity method for Partial Differential
Equations (PDE). To efficiently backpropagate through Poisson’s equation in transport, we propose
and implement the image charge gradient method, which can utilize the Fast Multi-pole Method
(FMM) to reduce the backpropagation complexity of Poisson’s equation from O(N3) to O(N4/3).
We demonstrate the capability of AD-NEGF to efficiently and accurately compute differential physical
properties by comparing with numerical differentiation. Also, it is shown that by cooperating AD-
NEGF with the gradient-based optimizer, it can perform high-dimensional optimization at a scale
that is not affordable with conventional optimization approaches. Furthermore, in a more practical
scenario of material doping optimization where we optimize the empirical SK parameters of injected
atoms, our method shows significant advances in convergence speed and optimization solution,
compared with traditional black-box optimization methods.

Our contributions can be summarized as follows:

• We propose and implement AD-NEGF, as far as we know the first end-to-end differentiable
quantum transport simulator, including the NEGF method, the Poisson’s equation module
for self-consistent electrostatic potential computation, and the SKTB module to generate the
tight-binding Hamiltonian from the coordinates and properties of the system atoms.

• The efficiency of the backward gradient computation is improved by applying the implicit
gradient method, the adjoint method for PDEs, as well as our newly proposed gradient
computation for the image charge method.

• We validate the advantages of AD-NEGF in calculating differential transport quantities,
high-dimensional parameter fitting, and device optimization, where AD-NEGF outperforms
numerical differentiation and black-box optimization methods.

2 RELATED WORKS

NEGF. Originating from Keldysh (1964); Kadanoff (2018), NEGF has been a well-received method
in the quantum transport theory, which describes a system with a finite bias voltage and contact
interactions under consideration. Recently, NEGF-based computation methods gain increasing
popularity for the simplicity of the formulation, and the easy implementation in programming (Ferry
& Goodnick, 1999; Taylor et al., 2001; Brandbyge et al., 2002; Fetter & Walecka, 2012), which
makes NEGF one of the most widely applied methods in transport calculation. Several methods
dedicated to improving its numerical stability and computational efficiency are proposed (Sancho
et al., 1985; Krstić et al., 2002; Rungger & Sanvito, 2008), some of which are widely implemented
in modern quantum transport simulation software, including but not limited to Papior et al. (2017);
Smidstrup et al. (2019); Steiger et al. (2011). On the other hand, despite its advantages, the NEGF
method suffers from heavy computational burdens.

AI for Quantum Transport. There have been prior works to apply machine learning techniques
in quantum transport, mostly by training a neural network with data generated from first-principle
simulations, so that the neural network can serve as an efficient surrogate model to predict transport
properties, such as conductance (Bürkle et al., 2021; Pimachev & Neogi, 2021; Li et al., 2020), trans-
port coefficients (Lopez-Bezanilla & von Lilienfeld, 2014), etc. Most existing methods use relatively
simple deep learning models such as multi-layer perceptrons (Župančić et al.) and convolutional
networks (Han et al., 2021; Souma & Ogawa, 2021; 2020), while in some cases more advanced and
specially designed models are utilized (Bürkle et al., 2021). However, as mentioned in Section 1,
a dataset generated with ab-initio simulation is required, which is expensive to obtain. Moreover,
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Figure 1: Workflow of AD-NEGF. Solid lines indicate the forward simulation flow, where loops
denote self-consistent iterations. Dashed lines indicate the gradient backpropagation flow.

limited by the fundamental drawbacks of statistical learning, there is no guarantee for prediction
accuracy, which will limit its application scenarios.

Differentiable Programming. Deep learning has been applied to more and more diverse scenarios,
which requires the network structure to be more and more flexible. One emerging direction is to
embed physical models or numerical computation processes into the model, in order to improve
data efficiency, generalization capability, and interpretability. This is sometimes referred to as
differentiable programming. It requires the automatic differentiation framework to support implicit
numerical operations, such as fixed-point iterations (Bai et al., 2019), optimization (Amos & Kolter,
2017), initial value problems (Chen et al., 2018), etc. Differentiable programming has been widely
applied to physical simulations (Hu et al., 2019; Innes et al., 2019), such as rigid body dynamics
(de Avila Belbute-Peres et al., 2018; Freeman et al., 2021), computational fluid dynamics (Kochkov
et al., 2021; Holl et al., 2019; Schenck & Fox, 2018), ray tracing (Li et al., 2018), etc. More
specifically in ab-initio simulations, there have been works for density functional theory (Li et al.,
2021; Kasim & Vinko, 2021), Hartree–Fock (Tamayo-Mendoza et al., 2018), coupled cluster methods
(Pavošević & Hammes-Schiffer, 2020), and molecular dynamics (Schoenholz & Cubuk, 2020).
However, we have not found any previous works to apply differentiable programming techniques in
the quantum transport domain.

3 PRELIMINARIES FOR THE NON-EQUILIBRIUM GREEN FUNCTION METHOD

In this section, we give a brief introduction to the NEGF method, while more details can be referred to
in Appendix A. Consider a transport system containing a device region and two semi-infinite contacts
that attach to the left and right sides of the device, as shown in Figure 1. The contacts can also be
referred to as leads or electrodes interchangeably. According to the theory of quantum mechanics,
the whole system, including the device and the contacts, can be fully described by its Hamiltonian
H . In this paper, we consider the Tight-Binding (TB) model (Slater & Koster (1954)), which makes
H block tri-diagonal. We assume a set of basis has been selected so that the full NEGF process
can be expressed in the matrix form. The stationary Schrödinger equation of this open system is
HΨ = EΨ, where Ψ stands for the wave function of electrons, and E is a scalar value corresponding
to the system energy. The characteristics of the system are contained in its Green function

G = [EI −H]−1, (1)

where I is the identity matrix. However, the Hamiltonian H is infinitely large and hence intractable.
This is resolved by computing the Green function only for the device part, and modeling the effect of
two semi-infinite contacts in a term Σ referred to as self-energy. The device Green function GD will
then be used to describe the non-equilibrium charge transport process by solving Poisson’s equation
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in a self-consistent iteration. The output self-consistent potential field V and GD can be used to
compute transport properties, such as transmission, current, etc.

Device Green Function. The device Green function is expressed as a function of the device
Hamiltonian HD and the self-energy Σ:

GD = [EI −HD − Σ]−1. (2)

Directly computing the matrix inversion is with complexityO(N3), which is unbearable as the matrix
size is proportional to the vast amount of atoms. By utilizing the block tri-diagonal form of the
Hamiltonian matrix, an efficient recursive algorithm (Anantram et al., 2008) can be implemented,
which scales linearly with the system size.

Electrode Self-Energy. Self-energy of electrodes is computed from the surface green function gs
of the electrode layer coupled with devices. Under the half-infinite hypothesis, gs is approximated
identically, expressed as a self-consistent equation:

g−1
s = [Al −Al,l−1gsA

†
l−1,l], (3)

where Al,l−1 is blocks of EI −H of coupling between l and l− 1 layer. To speed up, we implement
the Lopez-Sancho algorithm (Sancho et al., 1985), as illustrated in Algorithm 1, which converges
exponentially faster than the conventional self-consistent iteration. Details of the algorithm are
illustrated in Appendix. We also implement a modern method based on the generalized eigenvalue
problem (Wang et al., 2008) as an alternative.

Electrostatic Potential. In NEGF, charge transfer due to the applied bias voltage is modeled
as an external potential, which is attained self-consistently by solving Poisson’s equation for the
electrostatic field: {

∇ · ε(r)∇[∆V (r)] = −[ρ(r; ∆V )− ρ0(r)],

∆V (r)|{zL,zR} = {VL, VR}.
(4)

where VL and VR represent the voltage boundary conditions at electrodes zL and zR, ∆V = V − V0

is the difference between real potential energy with equilibrium one. This equation is solved self-
consistently with updated Hneq. Poisson’s equation can be solved using numerical PDE solvers
with spherical charges. Meanwhile, a computationally more efficient image charge method using the
Fast Multipole Method (FMM) is preferred (Svizhenko & Anantram, 2005; Zahn, 1976). After the
procedure converges to a stable solution, transport properties can be computed accordingly. Once the
convergence is achieved, the Green function computed with Hneq will be used to compute various
transport properties. We refer to Appendix for details of equation solving, and expression of transport
properties.

4 METHOD OF DIFFERENTIATING THE NEGF PROCESS

The differentiable NEGF model is implemented with PyTorch (Paszke et al., 2019). We extend
the autograd function with implicit gradient techniques for backpropagation through self-consistent
iterations, with the adjoint sensitivity method for calculating gradients through Poisson’s equation
(Pontryagin, 1987). Moreover, the efficient gradient formula for the image charge method (Svizhenko
& Anantram, 2005), accelerated by the Fast Multipole Method (FMM) method, is proposed to
speed up the gradient calculation of Poisson’s equation. The derived formula can be regarded as a
summation of point charges produced by the gradients and thus can also be computed with FMM.
Details of the customized backward propagation modules are explained as follows.

4.1 IMPLICIT GRADIENT

The implicit gradient method is implemented when the direct automatic differentiation through
function y = f(x) is unavailable or expensive to compute. Instances often arise when one wants
to calculate gradients through numerical solvers of equilibrium problems or complicated iterative
algorithms. Based on the implicit function theorem (Krantz & Parks, 2002), if there exists such
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constrained function h(y, x) = 0 where y is taken as the converged output of function f , the gradient
dy
dx can be given as dy

dx = −
[
∂h(y,x)
∂y

]−1
∂h(y,x)
∂x .

We use the implicit gradient techniques to derive the gradient of the surface Green function (Sancho
et al., 1985), where according to the ideal definition of the two semi-infinite leads, the converged
surface Green function gs(θ) must satisfy the self-consistent Equation (3). Hence h(gs, θ) =

[All − All−1gsA
†
l−1l] − gs−1 = 0, where All stands for [ESll − Hll], and θ denotes the input

variables to compute gs. Thus we could write down the gradient of gs with respect to θ explicitly by
dgs
dθ = −

[
∂h(gs,θ)
∂gs

]−1
∂h(gs,θ)
∂θ .

Another scenario that the implicit gradient method can be applied to is to compute gradients through
the self-consistent Poisson’s equation loop, where the system electrostatic potential is updated until
consistent with the bias voltage of contacts and other boundary conditions.

4.2 ADJOINT METHOD FOR PDE

In order to perform backpropagation through the solver for Poisson’s equation, adjoint sensitivity
method (Plessix, 2006; Pontryagin, 1987) for PDE-constrained optimization problems is adopted,
which is widely applied in constrained optimization of inverse problems. Here, the forward process
of the numerical PDE solver is unaltered, which is often denoted as the state equation that links the
controlled parameter and the state of the constrained system. Meanwhile, an adjoint state equation
that connects the perturbation of variables and states is solved by using the same numeral solver.
Then gradients can be evaluated with the adjoint state, and join in the gradient chain of backward
propagation. Since the adjoint state equation is independent of the number of controlled variables,
the total complexity is only proportional to the forward process, which makes it suitable for control
problems with scalar output and high-dimensional input. Recently, the adjoint sensitivity method has
also been applied in designing neural network structures with physics intuitions, including the Neural
ODE (Chen et al., 2018) and Deep Equilibrium Models (Bai et al., 2019), which can be considered as
examples of cooperations of automatic differentiation and adjoint methods.

4.3 GRADIENT OF FMM IMAGE CHARGE METHOD

An alternative approach to solve Poisson’s equation raised in Equation (4), is to apply the point charge
approximation, where the charge density is considered as the linear combination of a series of point
charges as ∆q(r) =

∑
i ∆qiδ(r − ri). Then by employing the linearity of Poisson’s equation, the

original form can be further decomposed into Laplace’s equation with Dirichlet boundary conditions
and Poisson’s equation with zero Dirichlet boundary conditions:{

−∇2(∆V1(r)) = 0,

∆V1(r)|{zL,zR} = {VL, VR}.

{
−∇2(∆V2(r)) = 1

ε∆ρ(r),

∆V2(r)|Σ = 0.
(5)

The first Laplace’s equation can be easily solved by a linear drop potential. The second equation can
be solved by assuming the charge density as a combination of point charges of each atom site. The
closed-form solution can be obtained using the image charge method (Svizhenko & Anantram, 2005;
Harb, 2019), and the second potential can be written as:

V2(ri) =
∑

j∈N,j 6=i

qj
4πε

1√
t2ij + (zi − zj)2

+
∑
j∈N

qj
4πε

∞∑
n=1

 1√
t2ij + ∆2

1

− 1√
t2ij + ∆2

2

+
1√

t2ij + ∆2
3

− 1√
t2ij + ∆2

4

 , (6)

where t2ij = (xi − xj)
2 + (yi − yj)

2, and ∆2 stands for the distance in the transport direction
between central charges and charges from two electrodes. Therefore, the first term here describes
the interactions inside the device, while all the remaining terms simulate the effect of its coupling to
charges outside. The summation of the second term is computed until achieving certain accuracy,
which is empirically hundreds of site numbers. Hence a direct summation is also too expensive to
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Figure 2: Device structures used in the experiments.
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Figure 3: Transmission Quantity Computation with AD-NEGF.

compute. In this case, the Fast Multipole Method (Engheta et al., 1992) is employed to reduce the
computational complexity from O(N3) to O(N4/3).

To perform backward propagation through the fast multipole layer, the gradient of the output potential
to the charges is required. By taking the derivative of a target objective L : Cd −→ R, the derivative of
L with respect to charge qj can be expanded as the image summation form of accumulated gradients
from the last layer, which is:

∂L(V )

∂qj
=
∑
i

∂L

∂Vi

∂Vi
∂qj

(7)

=
∑

i∈N,i6=j

∂L/∂Vi
4πε

1√
t2ij + (zj − zi)2

+
∑
i∈N

∂L/∂Vi
4πε

∞∑
n=1

 1√
t2ij + ∆2

1

− 1√
t2ij + ∆2

2

+
1√

t2ij + ∆2
3

− 1√
t2ij + ∆2

4

 . (8)

Similarly, computing gradients of this form can be accelerated by the Fast Multipole Method, which
is also with complexity O(N4/3) and much faster than solving adjoint Poisson’s equation.

5 APPLICATIONS

In this section, the advantages of AD-NEGF for sensitivity analysis and inverse problems are
demonstrated with three applications. For all experiments, we take graphene as the transport system,
including the Armchair Graphene NanoRibbon (AGNR) and the graphene nano-junction, the basic
device structures of which are displayed in Figure 2. More details of the experimental setup can be
found in Appendix B.
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5.1 DIFFERENTIAL TRANSMISSION QUANTITY COMPUTATION

A direct and major application to perform differentiation on physical models is to evaluate differential
physical quantities. In most cases, the analytical form is difficult to obtain. For numerical differenti-
ation, the trade-off will be encountered between the round-off error and the truncation error when
choosing the step-size (Gautschi, 1997, Chap. 3), and the computation will be unacceptable when the
input dimension is high. On the contrary, automatic differentiation can achieve machine precision
while maintaining O(1) complexity when the output dimension is low and the input dimension is
high (Baydin et al., 2018).

In this experiment, we first validate the correctness of the forward computation of AD-NEGF. As
shown in Figure 3(a), the transmission coefficient and the density of states (DOS) of an AGNR system
with width 7 are computed by AD-NEGF, which perfectly match the results of ASE (Larsen et al.,
2017), an atomistic simulation package including electron transport modules. Based on it, we compute
two differential transmission quantities, the Seebeck coefficient and the differential conductance,
which are shown in Figure 3(b). The Seebeck coefficient is a measure of the magnitude of an
induced thermoelectric voltage in response to a temperature difference across an atomic structure,
mathematically expressed as the derivative of transmission T (E) concerning the chemical potential
E (Reddy et al., 2007):

Sjunction = −π
2k2
BT

3e

∂ln(T (E))

∂E
, (9)

where T stands for the temperature and kB is the Boltzmann constant. The differential conductance
is the gradient of electronic current to voltage: ID = dI

dV .

The singularity of the transmission function leads to peaks in the Seebeck coefficient curve, which
is highly sensitive thus challenging for derivative calculation, as illustrated in Figure 4. To amplify
the phenomenon for clearer demonstration, the output transmission coefficient T (E) of the forward
computation is transformed into half-precision floating-point format for both automatic and numerical
differentiation, before it is used to compute the Seebeck coefficient. It can be seen that, with AD-
NEGF, we can still generate high-quality results. However, for numerical differentiation, the trade-off
between the truncation error and the round-off error is observed by selecting different step-sizes from
1e-2 to 1e-5. With a large step-size, peaks may be skipped or mistakenly generated due to truncation
error. With a small step-size, lacking machine precision causes noises on the curve. Specifically for
step-size 1e-5, the calculated curve becomes totally meaningless. Moreover, even though this is not a
high-dimensional input situation, evaluating the Seebeck coefficient with AD-NEGF can still be faster
than numerical differentiation, since in AD-NEGF the backward pass is improved. According to our
experiments, for a smaller system with 70 carbon atoms, computing the Seebeck coefficient for 400
energy samples costs 71.1 seconds with AD-NEGF and 98.3 seconds with numerical differentiation.
For a larger system with 240 carbon atoms, computing the Seebeck coefficient for 400 energy samples
costs 363.1 seconds with AD-NEGF and 512.6 seconds with numerical differentiation.

To summarize, by conducting the above experiments, the correctness and effectiveness of AD-NEGF
are validated. With AD-NEGF, differential transport quantities can be calculated simply by calling
one backward step. Moreover, the process of computing derivatives is itself differentiable, permitting
the computation of higher-order derivatives, which remains for further discovery.

5.2 TRANSMISSION FITTING

Inverse problems, which require inferring input parameters reversely from the output objectives, are
in general difficult in first-principle simulations. Black-box optimization methods require sampling
a large number of input combinations, the cost of which grows exponentially with the number of
parameters. Based on the efficient and accurate gradient computation capability of AD-NEGF,
performing gradient-based optimization holds the potential to outperform black-box optimization
methods for high dimensional inverse problems.

We conduct a 104 dimensional optimization experiment to fit the transmission curve of one graphene
nano-junction to another. The target system is a 7-4 nano-junction, with 7 graphene rings on the left
and 4 on the right. The fitting system is a 5-2 nano-junction, and the fitting variables are the elements
of its Hamiltonian, including the device, leads, and the corresponding couplings. The dimension
of the optimizing variables is at the level of 104. The transmission curve, as shown in Figure 5,
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consists of 2000 energy points sampled from (-5eV, 5eV). Since directly computing the gradients
of all 2000 points is inefficient for iterations, we apply the stochastic gradient descent algorithm to
conduct mini-batch optimization, which has shown supremacy of efficiency and performance in high
dimensional optimization problems. More specifically speaking, the fitting parameters are optimized
with the Adam optimizer (Kingma & Ba, 2014) built in PyTorch, making the procedure highly similar
to training a neural network.

The results are displayed in Figure 5, where the loss is reduced to a considerably low level, which
means the converged parameters of the 5-2 nano-junction fit nicely to the larger 7-4 nano-junction.
The fitted curve is akin to a smoothed version of the curve of the 7-4 junction, which agrees with
the intuition since a graphene junction of 5-2 is of less freedom than that of a 7-4 nano-junction. On
the other hand, we have also tried traditional black-box methods, such as Bayesian optimization, the
genetic algorithm, and gradient-based optimization with numerical differentiation, but none of them
can even work for this problem because of the curse of dimensionality.

5.3 ON-SITE DOPING OPTIMIZATION

Modern material engineering is capable of manipulating at the atomic level. More specifically
speaking, by performing processes such as deformation, doping, etc., microscopic physical quantities
such as atomic spatial coordinates, bond lengths and doping positions can be changed, which
further modify the macroscopic material properties. The doping process is one of the most common
techniques in material development, which can dramatically change the properties of the original
material, by injecting foreign atoms into specific positions. In this experiment, we further explore the
possibility to solve practical inverse problems with AD-NEGF by performing an end-to-end doping
optimization cooperated with established material models.

In this experiment, we try to reduce the average transmission of an AGNR system in a specified
energy range of (-1eV, 1eV), by injecting other atoms into the center of the AGNR system along the
transmission direction. A reduction of transmission coefficient near zero Energy point would indicate
an increase of the truncation voltage, which changes the semi-conductive properties of the device
(Wu et al., 2013). Doping can be modeled as an effective change in the site and the hopping terms
in the tight-binding Hamiltonian, i.e., the diagonal and off-diagonal elements of the Hamiltonian
matrix. This on-site approximation allows us to treat doping optimization as tuning local terms in the
Hamiltonian influenced by the injected atoms. However, although the process above is applicable,
the tuning terms in the TB Hamiltonian need to be distinguished carefully from those invariant ones.
It will be more convenient to cooperate with an SKTB model, which constructs the TB Hamiltonian
based on strict rules of local dependence of atom identities and their semi-empirical SK parameters.
Besides convenience, it has more concrete physical interpretation than directly optimizing elements
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Figure 6: Comparison between AD-NEGF and conventional black-box optimization methods in the
doping optimization task.

of the Hamiltonian, since it provides guidelines for practitioners to find the possible atom satisfying
the SKTB parameters from the optimization result. In this way, doping optimization is modeled as
an optimization of the SKTB parameters of the doped atoms, which include the orbital energy and
parameters for two center integrals. The total number of optimization variables is 13.

For comparison, we also apply black-box optimization methods including the genetic algorithm and
Bayesian optimization. The results are displayed in Figure 6. In the loss diagram, the gradient-based
method converges significantly faster and better than the other approaches, especially at the beginning
of the training. The loss curves of the genetic optimization and Bayesian optimization are also
dropping, but much slower and less effective, in terms of either the running time or the iteration
step. Moreover, the performances of the genetic / Bayesian optimization are sensitive to preset
hyper-parameters. Corresponding to the loss curves, the results of optimized transmission curves
demonstrate the advantages of AD-NEGF in a more straightforward way, where the gradient-based
optimization gives a much cleaner band with low transmission in the target interval (-1eV, 1eV)
compared to other methods. These results validate the effectiveness of the AD-NEGF method in
conducting practical atomic-level inverse design to optimize transport properties by cooperating with
material models.

6 CONCLUSION

In this paper, we have proposed AD-NEGF, the first end-to-end differentiable quantum transport
simulator to the best of our knowledge. It guarantees the correctness of the forward simulation
without the need for data or training, while providing gradient information based on differentiable
programming. Compared with numerical differentiation, gradients can be computed more efficiently
and accurately. Moreover, it accelerates parameter fitting and parameter optimization with gradient-
based optimization. The results are validated in applications such as differential physical quantity
computation, transmission curve fitting, and device doping optimization.
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A ADDITIONAL DETAILS ON THE NEGF METHOD

A.1 COMPUTATION OF THE SELF-CONSISTENT SURFACE GREEN FUNCTION

Since the system is made up of a device and two semi-infinite contacts on the side, Equation (1) can
be expanded in the following form:[

AL ALD 0
ADL AD ADR

0 ARD AR

][
GL GLD GLR
GDL GD GDR
GRL GRD GR

]
= I, (10)

where A = [EI −H], and the subscripts are used to distinguish the matrix elements corresponding
to the left lead (L), the device (D), the right lead (R), and their interactions. Thanks to its block
tri-diagonal form, the device Green function GD satisfies

[AD −ADLA−1
L ALD −ADRA−1

R ARD]GD = I. (11)

Since AD = [EI −HD], compared with Equation (2), we have

ΣL = ADLA
−1
L ALD, (12)

ΣR = ADRA
−1
R ARD, (13)

Σ = ΣL + ΣR. (14)

Here we assume only the neighbouring layers have interactions with each other, and denote the
left lead layer connected to the device by l. Then the left self-energy can be simplified as ΣL =
ADlA

−1
l AlD. The coupling matrix AlD is given as input of NEGF. What remains unclear is A−1

l ,
the bottom-right block of A−1

L . This is known as the surface green function, denoted as gs. By
utilizing the ideal lead assumption that removing one layer of the lead will not change gs, we obtain
a self-consistent form as 3, where Lopez-Sancho algorithm (Sancho et al., 1985) can be applied to
accelerate the convergence, here we display the detailed algorithm below:

Algorithm 1 Lopez-Sancho algorithm for surface Green function
set εs0 = h0,0, ε0 = h0,0, α0 = h0,1 − ES0,1, β0 = h1,0 − ES1,0

repeat
εsi = εsi−1 + αi−1(ES − εi−1)−1βi−1,
εi = εi−1 + βi−1(ES − εi−1)−1αi−1 + αi−1(ES − εi−1)−1βi−1

αi = αi−1(ES − εi−1)−1αi−1

βi = βi−1(ES − εi−1)−1βi−1

until converge
g0,0 = (ES − εsm)−1

A.2 COMPUTATION OF THE SELF-CONSISTENT ELECTROSTATIC POTENTIAL

Denote the charge densities in the equilibrium and non-equilibrium states as ρ0 and ρ, and the
potential fields from the original neutral and redistributed charges as V0 and V . The equilibrium and
non-equilibrium Hamiltonian can be expressed as H0 = T + V0, Hneq = T + V , where T is the
kinetic energy. Poisson’s equation relates potentials to the corresponding charge densities:
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{
∇ · ε(r)∇V (r) = −ρ(r),

∇ · ε(r)∇V0(r) = −ρ0(r).
(15)

Therefore we have ∇ · ε(r)∇[∆V (r)] = −[ρ(r)− ρ0(r)], where ∆V = V − V0 is used to correct
the Hamiltonian by Hneq = H0 + ∆V . The updated Hneq will again be used to update ∆V . Hence
a self-consistent iteration is constructed:{

∇ · ε(r)∇[∆V (r)] = −[ρ(r; ∆V )− ρ0(r)],

∆V (r)|{zL,zR} = {VL, VR}.
(16)

Charge densities are necessary input for the above equation. Denote potentials in left and right
electrodes as ul and ur (assume ul < ur), then the charge density ρ(r) = − i

2π

∫ +∞
−∞ dEG(E),

which can be decomposed into equilibrium and non-equilibrium terms:

ρ(r) = ρeq(r) + ρneq(r) (17)

=
1

π
Im

[∫ ul

−∞
dEGD(E)

]
+

1

2π

∫ ur

ul

dEGD(E). (18)

The first integration up to infinity can be computed efficiently using contour integration with the
residue theorem. It is achieved by expanding the Fermi-Dirac function (Ozaki, 2007; Areshkin &
Nikolić, 2010). On the other hand, the non-equilibrium charge density ρneq is computed directly by
numerical integration. The density of neutral charges ρ0 can be computed by setting ul = ur = 0.

A.3 EXPRESSIONS OF TRANSPORT PROPERTIES

With the NEGF theory, electronic transport properties can be derived, such as the transmission
probability (T (E)), the density of states (DOS), the electronic current (I), the equilibrium and
non-equilibrium electronic densities (ρeq and ρneq), etc. Here we list some of the expressions:

T (E) = Trace[ΓL(E)GD(E)ΓR(E)G†D(E)], (19)

DOS(E) = − 1

π
Trace[Im(GD(E))], (20)

I =
2e

h̄

∫ +∞

−∞

dE

2π
T (E)[f(E − ul)− f(E − ur)], (21)

ρ(r) =
1

π
Im

[∫ ul

−∞
dEGD(E)

]
+

1

2π

∫ ur

ul

dEGD(E). (22)

For Equation (21), the integral range of the current is decided by the subtraction of the Fermi-Dirac
function, which is a little wider than (ul, ur).

B ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

The experiments are run on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz CPU, and an NVIDIA
Tesla P40 GPU. We implemented our method in PyTorch 1.9.1. We validated the correctness of our
simulation results by comparing with ASE of version 3.22.0.

In the experiments, we set the learning rate of the Adam optimizer as 0.001, and the batch size as
64. Bayesian optimization is implemented based on Nogueira (2014–), and the genetic algorithm is
implemented based on Solgi (2020–). The bounds of the optimization variables for the black-box
optimizers are (θ0−0.3, θ0 +0.3), where θ0 is the initial value, namely the original 5-2 nano-junction
TB Hamiltonian for the transmission curve fitting experiment, and undoped SKTB parameters for the
device doping optimization experiment.

The hyper-parameters of the genetic algorithm are:

{
” m a x n u m i t e r a t i o n ” : None ,
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Figure 7: Runtime cost of forward and backward computation.

” p o p u l a t i o n s i z e ” : 20 ,
” m u t a t i o n p r o b a b i l i t y ” : 0 . 1 ,
” e l i t r a t i o ” : 0 . 0 1 ,
” c r o s s o v e r p r o b a b i l i t y ” : 0 . 5 ,
” p a r e n t s p o r t i o n ” : 0 . 3 ,
” c r o s s o v e r t y p e ” : ’ uni form ’ ,
” m a x i t e r a t i o n w i t h o u t i m p r o v ” : None

}

The hyper-parameters of the Bayesian Optimization algorithm are:

{
” r a n d o m s t a t e ” : 3 ,
” v e r b o s e ” : 2 ,
” k ind ” : ” ucb ” ,
” kappa ” : 2 . 5
” x i ” : 0 . 0

}

We have uploaded our source code in the supplementary materials for cross-checking. The code will
also be released and maintained as an open-source repository in the future.

C SCALABILITY AND RUNTIME ANALYSIS OF AD AND FD

In this section, we present the test results and analysis of the scalability and runtime for both the
forward simulation and the backward gradient calculation of AD-NEGF, compared against traditional
numerical differentiation. The test system we use is AGNR. By controlling the length of AGNR, the
number of atoms contained in the system changes accordingly, so that we can test the performances
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with respect to the system scale. The time cost is measured by the CPU time with functions provided
by the python standard library.

In the forward simulation test, we compute the transmission function T (E) the same as in Section 5.
Since a differentiable solver requires tracking each conducted operation in the automatic differenti-
ation tool, which brings extra computational cost compared to conventional simulation programs,
and turning off such operation tracking functionality will make the differentiable solver behave just
like a traditional solver in forward simulation, we compare the CPU time cost for AGNR systems in
different sizes, with both the operation tracking functionality turned on, and with the functionality
turned off. The results are displayed in Figure 7(a), from which we can conclude that, the CPU time
cost scales linearly with the system size, and the additional computational cost brought by operation
tracking is almost negligible.

In the backpropagation test, we compare the runtime cost of calculating derivatives for both 1-
dimensional variables (the Seebeck coefficient) and multi-dimensional variables (device Hamilto-
nians). The results for both cases are shown in Figure 7(b) and 7(c) respectively. In the Seebeck
coefficient calculation experiment, the derivative is computed as ∂T (E)/∂E, where we sample 100
energy points in each run. We can see the computational cost of both FD and AD scales linearly
with the system size. Since the backpropagation computation is more complex than the forward
computation, the slope of AD is a bit larger than FD. However, in such cases, efficiency will not be
the bottleneck anyway, while as demonstrated in Section 5, AD can achieve higher precision than FD.
For the high-dimensional variable gradient computation, as shown in Figure 7(c), we can see AD
significantly outperforms FD in computing gradients for the device Hamiltonians of dimension N2

A,
where NA is the number of atom orbitals. This is because, FD can only compute the derivative for
one dimension of the input variable each time, making its complexity grow in O(N2

A). On the other
hand, the complexity to compute gradients by backward-mode AD depends only on the complexity
of the forward simulation, regardless of the increasing input variable dimensions.

In conclusion, by utilizing differentiable programming techniques, AD-NEGF, as an end-to-end differ-
entiable quantum transport simulator, computes gradients for high-dimensional variables significantly
faster than FD, while merely increasing the forward simulation cost.
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