
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

F-3DGS: Factorized Coordinates and Representations for 3D
Gaussian Splatting

Anonymous Authors

ABSTRACT
The neural radiance field (NeRF) has made significant strides in
representing 3D scenes and synthesizing novel views. Despite its ad-
vancements, the high computational costs of NeRF have posed chal-
lenges for its deployment in resource-constrained environments
and real-time applications. As an alternative to NeRF-like neural
rendering methods, 3D Gaussian Splatting (3DGS) offers rapid ren-
dering speeds while maintaining excellent image quality. However,
as it represents objects and scenes using a myriad of Gaussians, it
requires substantial storage to achieve high-quality representation.
To mitigate the storage overhead, we propose Factorized 3D Gauss-
ian Splatting (F-3DGS), a novel approach that drastically reduces
storage requirements while preserving image quality. Inspired by
classical matrix and tensor factorization techniques, our method
represents and approximates dense clusters of Gaussians with sig-
nificantly fewer Gaussians through efficient factorization. We aim
to efficiently represent dense 3D Gaussians by approximating them
with a limited amount of information for each axis and their com-
binations. This method allows us to encode a substantially large
number of Gaussians along with their essential attributes—such as
color, scale, and rotation—necessary for rendering using a relatively
small number of elements. Extensive experimental results demon-
strate that F-3DGS achieves a significant reduction in storage costs
while maintaining comparable quality in rendered images.

CCS CONCEPTS
• 3D novel view synthesis→ 3D Gaussian Splatting; • Com-
puter Vision;

KEYWORDS
3D Gaussian Splatting, 3D Reconstruction, Real-Time Rendering,
Tensor Factorization, Compression

1 INTRODUCTION
The Neural Radiance Field (NeRF) [25] has demonstrated substantial
success in representing 3D scenes through its differentiable volu-
metric rendering technique and high representation quality. This
method has foundwidespread application in scenarios ranging from
novel view synthesis [1, 2, 25, 38, 40], 3D object generation [30],
editing [15, 16, 35], segmentation [6, 23], and navigation [36], to
name a few. As this representation method adopts the concept of a

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

‘field’ from physics, in which each point possesses a corresponding
value, it requires sampling and processing values from numerous
points for each pixel to compute the pixel’s color. This can pose sig-
nificant challenges, especially when attempting real-time rendering
on systems with limited resources [10].

Rasterization-based methods, particularly 3D Gaussian Splatting
(3DGS) [17], have emerged as alternatives within the differentiable
rendering frameworks. Distinct from NeRF-like methods using hun-
dreds of samples per pixel for volumetric rendering, 3DGS circum-
vents the need to sample values from empty spaces. This efficiency
stems from its primitive-based rendering approach, enabling it to
achieve extremely high rendering speed without sacrificing image
quality. 3DGS represents a scene with 3D Gaussians as the geo-
metric primitives, learning each Gaussian attribute, such as color,
scale, rotation, and opacity, under a fully differentiable rendering
pipeline. Through millions of Gaussians, the approach has shown
that it can capture detailed textures and nuances, producing excep-
tional quality, while enjoying the lower computational complexity
of rendering via geometric primitives.

Despite the fast rendering speed and quality enhancements
brought by 3DGS, it comes with several significant drawbacks. A
primary challenge is its dependence on an extensive number of 3D
Gaussians to maintain high image fidelity. Rendering a high-quality
image of a detailed real-world scene often involves several million
Gaussians, adding to the system’s spatial complexity. Furthermore,
each Gaussian is characterized by multiple coefficients to ensure
high-quality rendering results. Specifically, it entails 48 spherical
harmonics coefficients for color, one for opacity, three for scale, and
four quaternion coefficients for rotation. Due to the above issues,
3DGS requires large memory and storage footprints, and this lim-
itation is especially evident in complex, unbounded scenes, such
as those in Mip-NeRF360 datasets. In addition, the computational
complexity of the current 3DGS rendering algorithm is proportional
to the number of 3D Gaussians. Thus, a larger number of Gaussian
results in reduced rendering speed.

The aforementioned inefficiency stems from the inherent in-
ability of 3DGS to utilize structural patterns or redundancies. We
observed that 3DGS produces an unnecessarily large number of
Gaussians even for representing simple geometric structures, such
as flat surfaces. Moreover, nearby Gaussians sometimes exhibit
similar attributes, suggesting the potential for enhancing efficiency
by removing the redundant representations.

This paper presents a novel method to overcome the limita-
tions of 3DGS, employing structured coordinates and decomposed
representations of Gaussians through factorization, as shown in
Fig. 1. Our approach took inspiration from classical tensor or matrix
factorization techniques, which have also been extensively investi-
gated in the NeRF literature [7, 9, 11, 13]. We propose a factorized
coordinate scheme in which we maintain 1D or 2D coordinates in
each axis or plane and generate 3D coordinates by a tensor product.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

This approach allows us to generate numerous 3D coordinates of
Gaussians only with a small number of 1D or 2D coordinates, sig-
nificantly improving spatial efficiency for the position parameters.
Furthermore, the proposed factorization method extends beyond
the spatial coordinates to include related attributes, such as color,
scale, rotation, and opacity. By exploiting structural patterns and
redundancies, the factorized Gaussian attributes can efficiently com-
press the model size while preserving each Gaussian’s essential
characteristics.

Based on the factorized coordinates and attributes, some of the ex-
panded Gaussians through de-factorization could be non-essential
for rendering quality (e.g., de-factorized Gaussians in empty spaces).
Motivated by a recent work [21], we use a binarymask for removing
unnecessary Gaussians to accelerate both training and rendering
speed. During training, we update the mask using the straight-
through-estimator technique. Once training is complete, we only
need to keep the binary values. As the mask only requires 1 bit
per value, it incurs negligible storage overhead. Using the binary
mask not only marginally improves representation quality but also
significantly increases rendering speed, nearly doubling the frames
per second (FPS) on the NeRF synthetic dataset.

In this study, we conducted extensive experiments to validate
the effectiveness of our approach in reducing the spatial redun-
dancy inherent in 3DGS. These experiments demonstrate that our
factorization method significantly reduces the required storage
by downsizing 3DGS over 90% while achieving comparable image
quality. We also provide qualitative results and analysis to support
our findings and conclusions, helping to provide a comprehensive
understanding of the subject matter. Finally, we prove our approach
as an efficient framework for representing 3D scenes, achieving
high performance, compact storage, and fast rendering.

2 RELATEDWORK
2.1 Neural Rendering
Neural rendering1 is an emerging approach that leverages ma-
chine learning to generate photorealistic visual objects and scenes.
Central to this domain is differentiable rendering, enabling the
end-to-end training and optimization of 3D scene representations
directly from images [20]. Along with differentiable rendering, vol-
umetric rendering has also been an important component in neural
rendering. As addressed in 3DGS [17], the general volumetric ren-
dering equation to calculate the color value 𝐶 of each pixel can be
represented as follows:

𝐶 = Σ𝑁𝑖=1𝑐𝑖𝛼𝑖Π
𝑖−1
𝑗=1 (1 − 𝛼 𝑗), (1)

where 𝑐𝑖 and 𝛼𝑖 represent the color and opacity of each sampled
point, respectively. The specifics of how points are sampled, the
number of samples per pixel 𝑁 , and the method for calculating
opacity 𝛼𝑖 can vary across different rendering methods.

A seminal work in this field is Neural Radiance Fields (NeRF) [25],
which adopts deep neural networks and positional encoding to rep-
resent volumetric scene features for high-fidelity rendering [25].
NeRF interprets objects and scenes as fields where every point in

1We use the "neural rendering" term to refer to a general rendering technique that
exploits differentiable computational pipelines to render images, which includes both
NeRF and 3DGS.

space possesses specific values that are computationally generated
by neural networks. These values are then rendered using the volu-
metric rendering equation (Eq. 1). While NeRF allows for detailed
rendering, it necessitates dense sampling of the entire volume, in-
cluding empty spaces, which markedly increases computational
costs. Several strategies have been proposed to mitigate this limita-
tion [10, 39], yet achieving both high-quality representation and
real-time rendering remains a significant challenge.

Addressing the inefficiencies in NeRF’s approach, 3D Gauss-
ian Splatting (3DGS) focuses on rendering only known primitives
(Gaussians), thereby eliminating the need for sampling in empty
areas and greatly reducing computational costs [17]. However, this
technique requires a substantial number of Gaussians to maintain
high-quality scene representations, leading to increased storage
usage—sometimes more than 1GB for unbounded scenes [17]. Our
research, F-3DGS, builds upon 3DGS, targeting its main drawbacks:
the high memory requirement and the large number of parameters
needed for high-quality rendering. F-3DGS proposes a parameter-
efficient approach that supports fast training and real-time render-
ing capabilities, making high-quality neural renderingmore feasible
for widespread applications.

2.2 Factorization Techniques for Neural
Rendering

To mitigate the heavy computational costs of NeRF, several works
have proposed incorporating additional data structures while re-
taining the volumetric rendering process. Among these, Plenox-
els [12] and Plenoctrees [39] proposed utilizing three-dimensional
data structures. However, these approaches were highly inefficient
in terms of storage requirements, as the number of required pa-
rameters increases cubically with the resolution per axis. To ad-
dress this, various studies have explored more compact and effi-
cient representations by decomposing 3D structures into combina-
tions of lower-dimensional elements. Specifically, TensoRF [9] and
Strivec [13] have implemented the canonical polyadic (CP) decom-
position, which uses one-dimensional lines to approximate higher-
dimensional tensors, thereby enhancing the compactness of 3D
representation. TensoRF further extended this approachwith vector-
matrix (VM) decomposition, while other studies such as EG3D [7],
Hex-Planes [5], and K-Planes [19] have focused on matrix-only
decompositions. Nevertheless, these methods have not achieved
real-time rendering due to the fundamental computational limi-
tations of the NeRF-like rendering process. In contrast, our work
integrates the concept of factorization with 3DGS, thus enjoying
the dual benefits of fast rendering speeds and substantially reduced
storage costs. Our method is closely related to Strivec, as it decom-
poses a scene into a group of small areas, each represented through
efficient decomposition. The principal differences lie in factorizing
irregular point representations rather than using regular grid repre-
sentations, which allows us to leverage the fast rasterization-based
rendering pipeline. Experimental results demonstrate that our pro-
posed method achieves rendering speeds more than five times faster
than Strivec while maintaining similar or superior representation
quality.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Examples of factorized coordinates: (a) 25 normal coordinates, (b) 5 × 5 factorized coordinates. each 𝑥 and 𝑦 axis has
5 points, and both represent 25 (5 × 5) points. (c) two 5 × 5 factorized coordinates and a total of 50 points are represented (2
× 5 × 5), (d) multi-resolution factorized coordinates, where two factorized coordinates have different resolutions (3 × 3 and
5 × 5), represent total 34 points, (e) two 3 × 3 and one 5 × 5 factorized coordinates. A total of 43 points are represented. The
best-viewed in color.

2.3 Lightweighting 3D Gaussian Splatting
Inspired by the real-time rendering and high quality of 3DGS, nu-
merous studies have been conducted to maintain these advantages
while lightweighting the method for broader applications. One of
the key strategies for achieving a lighter-weight 3DGS involves
minimizing the number of Gaussians used. Several studies demon-
strated that techniques such as pruning [21, 28] and the use of
anchors [24, 31] can significantly reduce the number of Gaussians
without degrading image quality.

Beyond simply reducing the number of Gaussians, some stud-
ies aim to minimize the average size required to represent each
Gaussian. This includes employing lower-bit precision, codebooks,
quantization, and compression algorithms like entropy encoding,
which collectively make the overall size compact [14, 21, 27].

Our approach integrates both of these strategies, aiming to re-
duce not only the number of Gaussians needed but also the data size
required for representing each Gaussian. Our research is closely
related to structured 3DGS approaches [24, 31]. We hypothesize
that Gaussians located in proximity can be organized into struc-
tured representations and further compacted via factorization tech-
niques. Our method significantly lowers the storage requirements
for 3DGS, enhancing its applicability in scenarios demanding both
high-quality rendering and storage efficiency.

3 FACTORIZED 3D GAUSSIAN SPLATTING
In this section, we present our method to make the 3D Gaussian
splatting model much lighter through factorization of coordinates
(Sec. 3.2) and features (Sec. 3.3). Our method integrates two distinct
factorization methods: canonical polyadic (CP) and vector-matrix
decompositions [9, 13]. Starting with the background, we delve
into the specifics of each factorization strategy in the subsequent
sections.

3.1 Background: 3D Gaussian Splatting
3D Gaussian splatting is a method that employs 3D Gaussians as
primitives for representing 3D scenes. The differentiability of 3D

Gaussians and their ease of projection onto 2D image planes facili-
tate efficient 𝛼-blending in the rendering process [41]. Each Gauss-
ian has several features, including color (represented by spherical
harmonics (SH) coefficients), scale, rotation, and opacity parame-
ters. The method uses a collection of these Gaussians to represent
the whole scene. The entire rendering pipeline is differentiable,
which allows end-to-end training of all Gaussian features given
only the images from various views.

The initialization process begins with a Structure from Motion
(SfM) algorithm [33] to generate sparse point clouds. These serve
as initial estimates for the Gaussian positions. The densification
stage follows, where the number of Gaussians is incrementally in-
creased through cloning and splitting, enhancing scene details. The
algorithm starts with a coarse global structure and systematically
integrates finer details by adding more Gaussians. Upon reaching a
set number of training iterations, a final fine-tuning phase optimizes
all parameters while maintaining a constant Gaussian count. This
approach has demonstrated state-of-the-art image quality and ex-
ceptional rendering speeds. For further details and comprehensive
information, please refer to the original paper [17].

3.2 Factorized Coordinates
3.2.1 CP Factorized Coordinates. Drawing inspiration from the
canonical polyadic (CP) decomposition method to neural render-
ing [9, 13], we introduce factorization for representing coordinates.
Let 𝑝𝑥 = {𝑥1, . . . , 𝑥𝑁 }, where 𝑥𝑖 ∈ R, be a set of factorized coordi-
nates in 𝑥-axis. 𝑁 is the number of points on the axis (|𝑝𝑥 | = 𝑁).
Similarly, we can define factorized coordinates for the 𝑦 and 𝑧 axes
as 𝑝𝑦 = {𝑦1, . . . , 𝑦𝑁 } and 𝑝𝑧 = {𝑧1, . . . , 𝑧𝑁 }, respectively.

For these factorized coordinates, we can express the entire set
of points in 3D spaces as follows:

𝑝𝑥𝑦𝑧 = 𝑝𝑥 × 𝑝𝑦 × 𝑝𝑧 = {(𝑥1, 𝑦1, 𝑧1), . . . , (𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)}, (2)

where ‘×’ denotes the cartesian product of two sets. Then, the total
number of points in 𝑝𝑥𝑦𝑧 is 𝑁 3, and considering that each point
requires three real numbers to represent its coordinate, it needs a
total of 3𝑁 3 numbers. However, if those points are aligned, we can
compactly represent𝑁 3 points with only 3𝑁 numbers, using only𝑁
points for each axis. That is, for well-aligned coordinates, factorized

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

coordinate representations can reduce the number of parameters
by 1/𝑁 2. This can substantially alleviate the spatial complexity
associated with storing position information. For example, 1,000
points per axis can cover up to 1 billion points using only 3,000
numbers. As illustrated in Fig. 1-(b), however, this approach is only
capable of constructing a very restricted range of structural shapes.

Therefore, we propose a hybrid approach in which we utilize
multiple sets of factorized coordinates with a small 𝑁 instead of
having a single set of factorized coordinates with a large 𝑁 (Fig. 1-
(c)). In this approach, we employ 𝐵 sets of factorized coordinates,
where each set, denoted as 𝑝𝑏𝑥𝑦𝑧 = 𝑝𝑏𝑥 × 𝑝𝑏𝑦 × 𝑝𝑏𝑧 , can represent a
total of 𝑁 3 points, and consequently constructing 𝐵𝑁 3 number of
points with 3𝐵𝑁 number of points. While the compression ratio
remains the same as 1/𝑁 2, this approach demands more param-
eters due to the smaller values for 𝑁 (usually 𝑁 ≤ 10 to obtain
a good rendering quality). Furthermore, each set of factorized co-
ordinates can have varying resolutions, as illustrated in Fig. 1-(d)
and (e), thereby offering more flexibility in the positions, which
increases the expressibility. Considering the multi-set and multi-
resolution factorized coordinates, we can rewrite the set of whole
points constructed by the proposed method as,

𝑝𝑥𝑦𝑧 =

𝐵⋃
𝑏=1

𝑝𝑏𝑥 × 𝑝𝑏𝑦 × 𝑝𝑏𝑧 , (3)

where 𝑝𝑏𝑥 = {𝑝𝑏1 , . . . , 𝑝
𝑏
𝑁𝑏
}, and 𝑁𝑏 denotes the number of point

in each axis of 𝑏-th factorized coordinate set. That is, using only
3
∑
𝑏 𝑁𝑏 numbers, we can represent at maximum

∑
𝑏 𝑁

3
𝑏
three-

dimensional coordinates. As shown in Fig. 1, we can approximate
dense Gaussians with a small number of factorized coordinates.

3.2.2 VM Factorized Coordinates. The recently introduced plane-
based decompositionmethods, such as TensoRF [9] and K-planes [11],
have achieved promising results, offering parameter-efficient rep-
resentations in NeRF. In a similar vein, our approach incorpo-
rates a vector-matrix (VM) factorization [9] for coordinates. Let
𝑝𝑥𝑦 = {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)} (we omitted the superscript 𝑏 for
brevity onwards) be a set of two-dimensional coordinates in the
𝑥𝑦 plane, and 𝑝𝑧 = {𝑧1, . . . , 𝑧𝑁 } is a set of one-dimensional coordi-
nates in the 𝑧 axis (similarly, we can also define 𝑝𝑦𝑧 , 𝑝𝑥 , 𝑝𝑥𝑧 , and
𝑝𝑦). Then, the set of whole points in the VM factorized coordinate
scheme is defined as

𝑝𝑥𝑦𝑧 = (𝑝𝑥𝑦 × 𝑝𝑧) ∪ (𝑝𝑦𝑧 × 𝑝𝑥) ∪ (𝑝𝑥𝑦 × 𝑝𝑦). (4)

The points on the plane, e.g., 𝑝𝑥𝑦 , can move freely without any
constraints, increasing the flexibility of positions at the expense of
the higher spatial complexity required for storing two-dimensional
coordinates.

3.3 Factorized Representations
3.3.1 CP Factorized Representations. The primary factor contribut-
ing to the storage requirements of 3DGS is the rich sets of param-
eters of each 3D Gaussian. In this section, we describe the factor-
ized representation of those attributes for each Gaussian without
compromising the rendered image quality. Similar to the CP factor-
ized coordinate scheme, we hold the features associated with the
factorized coordinates in each axis. For example, the 𝑥 axis scale

Figure 2: Illustration of factorized coordinates and represen-
tations. 𝑝, 𝑠, 𝑞, and 𝑓 denote coordinate, scale, rotation (in
quaternion), and features for color and opacities, respectively.
The lower indices of 𝑠, 𝑞, and 𝑓 are the axis and the indices
of the feature dimension. For element-wise multiplication,
we used the ⊙ notation.

parameters for each Gaussian can be obtained by the element-wise
product of the features in the factorized coordinates. More formally,

𝑠𝑥𝑦𝑧,𝑖 = 𝑠𝑥,𝑖 ◦ 𝑠𝑦,𝑖 ◦ 𝑠𝑧,𝑖 , (5)

where ◦ represents the outer product, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 ∈ R𝑁×3 denotes the
scale parameters for 𝑁 points along the 𝑥,𝑦, 𝑧 axis in the factorized
coordinates respectively, and 𝑠𝑥,𝑖 ∈ R𝑁 indicates the 𝑖-th parame-
ters in the scale parameters. 𝑠𝑥𝑦𝑧 ∈ R𝑁×𝑁×𝑁×3 is the final scale
parameters used in the rendering process, 𝑠𝑥𝑦𝑧,𝑖 ∈ R𝑁×𝑁×𝑁 de-
notes the 𝑖-th parameters. Each element in 𝑠𝑥𝑦𝑧 corresponds to the
scale parameter associated with the point in 𝑝𝑥𝑦𝑧 . We also factorize
rotation parameters 𝑞𝑥𝑦𝑧 ∈ R𝑁×𝑁×𝑁×4 in the same way.

To handle view-dependent color features and opacity, we em-
ploy a Multi-Layer Perceptron (MLP) to generate coefficients for
spherical harmonics and opacity. It takes low-dimensional learnable
features as input, and we factorize these learnable features along
each axis. We maintain a factorized feature vector for colors and
opacity for each axis and compute the input feature for the MLP as
follows.

𝑓𝑥𝑦𝑧,𝑖 = 𝑓𝑥,𝑖 ◦ 𝑓𝑦,𝑖 ◦ 𝑓𝑧,𝑖 , (6)
𝑐𝑥𝑦𝑧 , 𝛼𝑥𝑦𝑧 ← MLP(𝑓𝑥𝑦𝑧 ;𝜃), (7)

where 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 ∈ R𝑁×𝑑 denote the learnable feature vectors for
𝑁 points along the 𝑥,𝑦, 𝑧 axes respectively, and 𝑑 is the learnable
feature dimension. Then, we obtain the features of the whole set
of points 𝑓𝑥𝑦𝑧 ∈ R𝑁×𝑁×𝑁×𝑑 , and the MLP takes the features
𝑓𝑥𝑦𝑧 as a batch and generates color features 𝑐𝑥𝑦𝑧 ∈ R𝑁×𝑁×𝑁×48

(three degrees of spherical harmonics for example), and opacity
𝛼𝑥𝑦𝑧 ∈ [0, 1]𝑁×𝑁×𝑁 .

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(a) Ground truth point clouds (b) Factorized point clouds

Figure 3: Visualization of factorized coordinate sets. The right
figure shows the approximation of 2,488 three-dimensional
coordinates using only 30 factorized coordinate sets with an
𝑁𝑏 of three.

3.3.2 VM Factorized Representations. We also introduce VM fea-
ture decomposition for the VM factorized coordinates. The gener-
ated color features and opacity are written as follows.

𝑓𝑥𝑦𝑧,𝑖 = 𝑓𝑥𝑦,𝑖 ◦ 𝑓𝑧,𝑖 + 𝑓𝑦𝑧,𝑖 ◦ 𝑓𝑥,𝑖 + 𝑓𝑥𝑧,𝑖 ◦ 𝑓𝑦,𝑖 , (8)
𝑐𝑥𝑦𝑧 , 𝛼𝑥𝑦𝑧 ← MLP(𝑓𝑥𝑦𝑧 ;𝜃), (9)

where 𝑓𝑥𝑦, 𝑓𝑦𝑧 , 𝑓𝑥𝑧 ∈ R𝑁×𝑁×𝑑 are the feature matrices associ-
ated with the VM factorized coordinates 𝑝𝑥𝑦, 𝑝𝑦𝑧 , 𝑝𝑥𝑧 . In addition,
𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 ∈ R𝑁×𝑑 represent the feature vectors associated with
𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 , respectively.

3.4 Initialization
The initialization scheme plays a pivotal role in achieving high
rendering quality in 3D Gaussian Splatting (3DGS), especially for
complex objects and scenes [17]. The original 3DGS leverages a
structure from motion technique [33], to initialize 3D Gaussian
points at the onset of training.

In our proposed method, we observed a similar initialization
effect on the resulting models, particularly for the factorized coordi-
nates. To address this, we propose a heuristic method to effectively
determine the initial positions of 3D Gaussians. Our approach be-
gins by generating point clouds from a pre-trained 3DGS model of
a target scene.

First, we identify the boundary values of the point cloud as 𝑥𝑚𝑎𝑥 ,
𝑥𝑚𝑖𝑛 ,𝑦𝑚𝑎𝑥 ,𝑦𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 . Aftermultiplying the bound value
by 1.2, we divide it into multiple sets of bins by average interval. For
example, we set 0.026 in the nerf-synthetic dataset, and the number
of bins along the x-axis will be 1.2 ∗ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)/0.026. After
calculating a 3D histogram from the point cloud coordinates for the
set of bins, we construct a set of factorized coordinates (each set of
factorized coordinates has 𝑁 3 points, 𝑁 points along each axis, we
omitted the superscript ’𝑏’) in the histogram bin which contains
several points exceeding the threshold 𝜆. For example, we set 5
for synthetic-NeRF dataset [25], and discard the bins that have no
more than 5 points. Furthermore, for bins that have more than 𝑁 3

points, more factorized coordinates are required, so we introduce
an additional set of factorized coordinates for every additional 𝑁 3

points.

This heuristic method has proven effective in practice. We will
present a comparison of our initialization scheme with random
initialization in Tab. 4, highlighting its practical efficacy.

3.5 Masking
As addressed in Sec. 3.2.1 and 3.3.2, factorized coordinates and repre-
sentations can be highly efficient in terms of compactness. However,
using all 𝑁 3 is computationally expensive since the current rasteri-
zation pipeline in 3DGS involves linear sorting and 𝛼-blending to
render an image; hence, the computational complexity is propor-
tional to the number of Gaussians. Furthermore, we also observed
many Gaussians in the factorized coordinates do not contribute
to the final rendering results (e.g., when the opacity 𝛼 < 0.001).
Therefore, pruning the less important 3D Gaussians can readily
accelerate both training and rendering processes. Inspired by the
recent works [21, 32] in compact representations for NeRFs and 3D
Gaussian Splatting, we adopt binary masks to prune out non-used
coordinates while exploiting the compactness of factorized repre-
sentations. To train binary masks, we used the straight-through-
estimator method [4] to update mask values. Having a trainable
mask for each coordinate requires total 𝑁 3 values. However, once
the binary mask is trained, a single bit per coordinate is sufficient.
Therefore, the spatial overhead of using binary masks is negligible.

We applied masks to variables that are directly related to vis-
ibility: both colors 𝑐𝑥𝑦𝑧 and opacities 𝛼𝑥𝑦𝑧 . Since there are total
𝑁 3 points that can be represented using factorized coordinates
(Sec. 3.2.1), we also need 𝑁 3 binary masksM ∈ R𝑁×𝑁×𝑁 for each
coordinate set (To avoid the notational clutter, we omitted the su-
perscript ‘𝑏’, which denotes a set of factorized coordinates.). During
training, we use floating points for masks, as we cannot properly cal-
culate gradients for binary variables. We use the following equation
for the binarized masks M̄ during training:

M̄ = sg
(
H(M − 𝜏) − 𝜎 (M)

)
+ 𝜎 (M), (10)

where sg,H , 𝜏 , and 𝜎 denote the stop gradient function, Heaviside
function, the threshold, and the element-wise sigmoid function, re-
spectively. Then, we element-wisely multiplied this binarized mask
M̄ to scales 𝑠𝑥𝑦𝑧,𝑖 ∈ R𝑁×𝑁×𝑁 and opacities 𝛼𝑥𝑦𝑧 ∈ [0, 1]𝑁×𝑁×𝑁 .
To increase the sparsity of the mask for more efficient representa-
tions, we add a regularizing loss term to the objective function so
that mask values lean towards being zeroed out. The loss is defined
as follows:

L𝑚 =
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

𝜎 (M𝑖 𝑗𝑘), (11)

whereM𝑖 𝑗𝑘 ∈ R denotes an element of the mask.

4 EXPERIMENT
4.1 Proof-of-Concept Experiment
In this section, we introduce a proof-of-concept experiment de-
signed to demonstrate the feasibility of our method using point
clouds. The experiment involves initializing sets of factorized coor-
dinates and optimizing them using the Chamfer distance function.
The primary objective here is to showcase the effectiveness and
efficiency of factorized coordinates in approximating ground truth
point clouds. For this experiment, we selected a sample point cloud
of an object from ShapeNetCorev2 [8].

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison of our method with the previous and concurrent novel view synthesis methods on synthetic-NeRF
dataset [25]. All scores for the baseline methods are directly taken from their respective published papers, whenever available.
We show the training time, model size, PSNR, and rendering FPS (Frames per second).

Method Steps Time Size (MB) PSNR ↑ SSIM ↑ LPIPS ↓ FPS

NeRF [25] 300k 35.0h 1.25 31.01 0.947 0.081 -
Plenoxels [12] 128k 11.4m 194.50 31.71 0.958 0.049 -

PlenOctrees [39] 200k 15.0h 1976.30 31.71 0.958 - -
DVGO [34] 30k 15.0m 153.00 31.95 0.960 0.053 -

Point-NeRF [37] 200k 5.5h 27.74 33.31 0.962 0.049 -
InstantNGP [26] 30k 3.9m 11.64 32.59 0.960 - -
TensoRF-CP [9] 30k 25.2m 0.98 31.56 0.949 0.076 <30
TensoRF-VM [9] 30k 17.4m 71.80 33.14 0.963 0.047 <30

3D GS [17] 30k 6.1m 68.88 33.31 0.966 - 345.8
Strivec [13] 30k 34.4m 28.28 33.24 0.963 0.046 <30

Ours-CP-16 30k 15.0m 6.06 32.42 0.964 0.040 237.4
Ours-VM-16 30k 30.0m 28.75 33.24 0.967 0.034 275.5

As illustrated in Fig. 3, utilizing factorized coordinates led to
a significant reduction in the number of parameters required for
representing 3D coordinates. Remarkably, it requires less than 10%
of the original point cloud parameters to depict the contour of the
object. However, this method introduced a certain level of blocki-
ness in the approximation, which is inherent to the approach. To
address this, we suggest the integration of learnable opacities (Secs.
3.3.1 and 3.3.2) and masks (Sec. 3.5), which could effectively mitigate
this blockiness.

4.2 Experimental Settings
We implemented our F-3DGS model in PyTorch [29] framework
with the original 3DGS [17] CUDA kernels for rasterization. In
experiments, we used the default training hyperparameters of
3DGS [17] and added additional hyperparameters required for the
F-3DGS model. To achieve the coarse-to-fine scene geometry re-
construction, we first jointly train factorized coordinates and repre-
sentations. However, we found that joint training often leads to un-
stable optimization after a certain number of iterations. Therefore,
after 20K iterations, we fixed the coordinates and only optimized
the factorized attributes of Gaussians. For CP decomposition, we
employed MLPs with a single hidden layer consisting of 128 hidden
units. For VM decomposition, we utilized MLPs with two hidden
layers. We used the Adam optimizer with initial learning rates of
0.02 for 3D Gaussians’ tensor factors and 0.001 for the MLP decoder.
As for scale coefficients, we did not use any activation function.

4.3 Comparison
In this subsection, we evaluated F-3DGS using two real-world
datasets (objects from Tanks&Temples [18] and indoor scenes from
Mip-NeRF 360 [3]) as well as one synthetic dataset (synthetic-
NeRF [25]).

Qualitative Result. For a qualitative evaluation, we selected two
distinct scenes from the synthetic-NeRF dataset. As Fig. 5 shows,
we obtain similar visual quality on the Ship object only with 4-
7MB. Similarly, for the Mic object, our VM-48 model requires 16MB
storage, while the original 3DGS costs 40-50MB storage.

Table 2: Performance comparison on the Tanks&Temples
dataset.

Size(MB) PSNR ↑ SSIM ↑ LPIPS ↓ FPS

NeRF[25] - 25.78 0.864 0.198 -
NSVF[22] - 28.40 0.900 0.153 -

TensoRF-CP[9] 3.9 27.59 0.897 0.144 <20
TensoRF-VM[9] 71.8 28.56 0.920 0.125 <20
Strivec-48[13] 54.08 28.70 0.924 0.113 <20
3DGS[17] 105.15 30.88 - - 170.8

Ours-CP-16 10.94 30.29 0.957 0.061 138.8

Table 3: Performance comparison on Mip-360 indoor scenes.

room kitchen counter bonsai Model size (avg)

Strivec [13] 28.11 - - - 12.6MB
DVGO [34] 28.35 - - - 5.1GB
3DGS [17] 31.7 30.32 28.70 31.98 334.75MB

Ours 30.84 30.14 28.14 31.23 70.50MB

To analyzemore deeply, we selected six objects from the synthetic-
NeRF dataset to illustrate the distribution of Gaussians and rendered
images using both our method and the original 3DGS (Fig. 4). Our
F-3DGS only requires 10% of storage while performing accurate re-
construction. For example, on the Drum surface, our F-3DGS points
distribute an aligned axis in each set of factorization coordinates,
while the original 3DGS points are unordered. This comparison
reveals that our factorized representation enables an aligned and
denser Gaussian distribution. By employing the factorization of 3D
Gaussians, our model captures and represents the flat surfaces of
objects such as the Hotdog and Drums efficiently, thereby achieving
compact model sizes without compromising on fidelity. Attributing
to the learnable scale parameters of Gaussian points, our model
can also obtain high fidelity on smooth surfaces, such as the Ship
object. The density of F-3DGS can reconstruct more detailed ob-
jects without increasing the number of parameters, showcasing the

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: Visualiztion of F-3DGS and 3DGS. These visualize Gaussian points, ellipsoids, and rendered images of six objects. We
present the storage requirements for our CP-16 F-3DGS.

efficacy of our method in achieving high-quality renderings with a
reduced storage requirement.

Quantitative Result. Tab. 1 shows the quantitative results evaluated
on the synthetic-NeRF dataset. Our approach consistently reduces
the storage requirements while maintaining fast rendering speed.
In particular, the approach obtained the equivalent standard or
even surpassed TensoRF [9] and Strivec [13]. With 6.06 MB storage
costs, our CP model can achieve 32.42 on PSNR for synthetic-NeRF
dataset [25].

In addition, further experiments are conducted using Tanks&Temples
and 360 indoor scenes datasets. Note that we achieve a 10× com-
pression ratio and the same rendering speed on the Tanks&Temples

dataset in Tab.2. And Tab.3 shows our quantitative result on 360
indoor scenes.

4.4 Ablation Study
Initialization. As addressed in Sec. 3.4, the initialization is an impor-
tant factor in achieving high rendering quality in both 3D Gaussian
Splatting (3DGS) and our proposed method. As shown in Tab. 4,
using random initialization significantly deters the quality down
to 26.06, which demonstrates the significance of our initialization
method.

Factorization of Non-coordinate Attributes. The original 3DGS pro-
duces a significant amount of Gaussians, andmoreover, some nearby

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Qualitative results. For our method, we used CP with a 𝑑 of 16 in the case of our model, which is about 4–7 MB. For
TensoRF, we visualized VM-48, which is about 16 MB. For 3DGS, we used the original 3DGS of 40–50 MB.

Table 4: Ablation study results using CP-based F-3DGS with a 𝑑 of 48.

lego chair drums ficus hotdog materials average / storage / FPS

random initialization 28.32 27.64 21.32 19.68 32.98 24.45 26.06 / 14MB / -
w/o color,opacity 33.34 34.47 26.13 35.31 37.29 30.07 32.84 / 105MB / -
w/o scale,rotation 35.05 29.66 25.90 34.89 36.94 29.66 32.85 / 30MB / -

w/o masking 35.12 30.09 26.01 34.72 37.12 30.09 32.90 / 14MB / 125.6
Full 35.14 30.13 25.99 34.87 37.12 30.13 32.93 / 14MB / 237.4

Gaussians share similar attributes. To address this problem, the pro-
posed factorization of color and opacity achieves a reduction in
storage requirements by approximately 70%, and factorization of
scale and rotation by 25% while maintaining the rendered quality.
As Tab. 4 shows the storage could be compressed to 14MB with our
F-3DGS.

LearnableMasking. It is crucial that densification scheme in 3DGS [17]
is not feasible in our structured factorization coordinates approach.
However, the redundant Gaussians in our factorized coordinates
also need to be eliminated. Considering real-time rendering and
training speed, we utilize the binary mask to prune out redundant
and unessential 3D Gaussians to accelerate while only increasing
a little storage to store mask parameters. The rendering speed is
nearly 90% increase than the method without masking in Tab. 4.

Table 5: Comparison of the model sizes (in MBs) and aver-
age PSNRs of CP and VM decomposition on synthetic-NeRF
dataset [25] with different numbers of components, opti-
mized for 40k steps.

𝑑 Size (MB) PSNR

Factorize-CP

16 6.06 32.42
24 8.10 32.56
48 13.97 32.88
96 25.83 33.13

Factorize-VM

8 16.20 32.80
16 28.75 33.14
24 42.13 33.21
48 81.46 33.33

The Size of Learnable Feature Vectors. As mentioned in Secs. 3.3.1
and 3.3.2, our method introduces a hyperparameter 𝑑 that con-
trols the number of learnable feature dimensions. We evaluate our
Factorize-3DGS on the synthetic-NeRF dataset [25] using both CP
and VM decompositions with different numbers of 𝑑 .

As shown in Tab. 5, the larger 𝑑 enhances the 3D reconstruction
performance, simultaneously increasing the overall storage require-
ments. Both Factorize-CP and Factorize-VM achieve consistently
better rendering quality with more feature dimensions. Factorize-
CP achieves a more compact model with high performance by using
our factorized method. Ours-CP-16 achieves 32.43 PSNR with 6.06
MB, outperforming TensoRF-CP (see Tab. 1). Also, F-3DGS using
VM-16 achieves the visual quality of TensoRF-VM (33.14 PSNR) but
requires significantly less storage only 28.75 MB, compared to 71.80
MB needed by TensoRF-VM.

5 CONCLUSION
In this paper, we have proposed a novel Factorized 3D Gaussian
Splatting (F-3DGS), effectively addressing the computational and
resource constraints in neural rendering applications. Our method
integrates tensor factorization techniques, significantly reducing
the storage requirements while maintaining image quality com-
pared to 3DGS, as evidenced by our extensive experiments across
various datasets. We believe this newly introduced representation
opens a new direction for further research. Compared to traditional
matrix and tensor factorization, the proposed approach does not
involve any pre-defined grid representations. This will enable us to
model very large and unbounded scenes more efficiently since we
can ignore large empty parts in the scene, as opposed to grid-based
approaches that require additional sparsification techniques.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Yanqi Bao, Yuxin Li, Jing Huo, Tianyu Ding, Xinyue Liang, Wenbin Li, and

Yang Gao. 2023. Where and how: Mitigating confusion in neural radiance fields
from sparse inputs. In Proceedings of the 31st ACM International Conference on
Multimedia. 2180–2188.

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Represen-
tation for Anti-Aliasing Neural Radiance Fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Pe-
ter Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance
Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5470–5479.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[5] Ang Cao and Justin Johnson. 2023. Hexplane: A fast representation for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 130–141.

[6] Jiazhong Cen, Zanwei Zhou, Jiemin Fang, chen yang, Wei Shen, Lingxi Xie,
Dongsheng Jiang, XIAOPENG ZHANG, and Qi Tian. 2023. Segment Anything in
3D with NeRFs. In Thirty-seventh Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=2NkGfA66Ne

[7] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini
De Mello, Orazio Gallo, Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis,
Tero Karras, and Gordon Wetzstein. 2022. Efficient Geometry-Aware 3D Genera-
tive Adversarial Networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 16123–16133.

[8] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University —
Princeton University — Toyota Technological Institute at Chicago.

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision.

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi.
2023. MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient
Neural Field Rendering on Mobile Architectures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 16569–16578.

[11] Sara Fridovich-Keil, GiacomoMeanti, Frederik RahbækWarburg, Benjamin Recht,
and Angjoo Kanazawa. 2023. K-Planes: Explicit Radiance Fields in Space, Time,
and Appearance. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 12479–12488.

[12] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5501–5510.

[13] Quankai Gao, Qiangeng Xu, Hao Su, Ulrich Neumann, and Zexiang Xu. 2023.
Strivec: Sparse Tri-Vector Radiance Fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). 17569–17579.

[14] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. 2023. Eagles: Effi-
cient accelerated 3d gaussians with lightweight encodings. arXiv preprint
arXiv:2312.04564 (2023).

[15] Bingchen Gong, Yuehao Wang, Xiaoguang Han, and Qi Dou. 2023. RecolorNeRF:
Layer decomposed radiance fields for efficient color editing of 3D scenes. In
Proceedings of the 31st ACM International Conference on Multimedia. 8004–8015.

[16] AyaanHaque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
19740–19750.

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transac-
tions on Graphics (ToG) 42, 4 (2023), 1–14.

[18] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on
Graphics 36, 4 (2017).

[19] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis.
2021. Point-Based Neural Rendering with Per-View Optimization. In Computer
Graphics Forum, Vol. 40. 29–43.

[20] Christoph Lassner and Michael Zollhofer. 2021. Pulsar: Efficient Sphere-Based
Neural Rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 1440–1449.

[21] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park.
2023. Compact 3d gaussian representation for radiance field. arXiv preprint
arXiv:2311.13681 (2023).

[22] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural sparse voxel fields. Advances in Neural Information Processing

Systems (2020), 15651–15663.
[23] Yichen Liu, Benran Hu, Junkai Huang, Yu-Wing Tai, and Chi-Keung Tang. 2023.

Instance Neural Radiance Field. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 787–796.

[24] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and
Bo Dai. 2023. Scaffold-gs: Structured 3d gaussians for view-adaptive rendering.
arXiv preprint arXiv:2312.00109 (2023).

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In European Conference on Computer Vision. 405–421.

[26] ThomasMüller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4 (2022).

[27] Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2023. Com-
pressed 3d gaussian splatting for accelerated novel view synthesis. arXiv preprint
arXiv:2401.02436 (2023).

[28] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle,
Daniel Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser,
and Federico Tombari. 2024. RadSplat: Radiance Field-Informed Gaussian Splat-
ting for Robust Real-Time Rendering with 900+ FPS. arXiv.org (2024).

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems 32 (2019).

[30] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2023. DreamFu-
sion: Text-to-3D using 2D Diffusion. In The Eleventh International Conference on
Learning Representations. https://openreview.net/forum?id=FjNys5c7VyY

[31] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai.
2024. Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured
3D Gaussians. arXiv preprint arXiv:2403.17898 (2024).

[32] Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko,
and Eunbyung Park. 2023. Masked Wavelet Representation for Compact Neural
Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 20680–20690.

[33] Johannes L. Schonberger and Jan-Michael Frahm. 2016. Structure-From-Motion
Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[34] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimiza-
tion: Super-Fast Convergence for Radiance Fields Reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459–
5469.

[35] Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. 2022.
CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 3835–3844.

[36] Yuanze Wang, Yichao Yan, Dianxi Shi, Wenhan Zhu, Jianqiang Xia, Tan Jeff,
Songchang Jin, KE GAO, XIAOBO LI, and Xiaokang Yang. 2023. NeRF-IBVS:
Visual Servo Based on NeRF for Visual Localization and Navigation. In Thirty-
seventh Conference on Neural Information Processing Systems. https://openreview.
net/forum?id=9pLaDXX8m3

[37] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli,
and Ulrich Neumann. 2022. Point-NeRF: Point-Based Neural Radiance Fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 5438–5448.

[38] Jiawei Yang, Marco Pavone, and Yue Wang. 2023. FreeNeRF: Improving Few-shot
Neural Rendering with Free Frequency Regularization. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

[39] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. Plenoctrees for real-time rendering of neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 5752–5761.

[40] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelnerf:
Neural radiance fields from one or few images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4578–4587.

[41] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. 2001.
Surface Splatting. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing
Machinery, New York, NY, USA, 371–378. https://doi.org/10.1145/383259.383300

https://openreview.net/forum?id=2NkGfA66Ne
https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=9pLaDXX8m3
https://openreview.net/forum?id=9pLaDXX8m3
https://doi.org/10.1145/383259.383300

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Rendering
	2.2 Factorization Techniques for Neural Rendering
	2.3 Lightweighting 3D Gaussian Splatting

	3 Factorized 3D Gaussian Splatting
	3.1 Background: 3D Gaussian Splatting
	3.2 Factorized Coordinates
	3.3 Factorized Representations
	3.4 Initialization
	3.5 Masking

	4 Experiment
	4.1 Proof-of-Concept Experiment
	4.2 Experimental Settings
	4.3 Comparison
	4.4 Ablation Study

	5 Conclusion
	References

