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Abstract

Recently, a new class of non-convex optimization problems motivated by the1

statistical problem of learning an acyclic directed graphical model from data2

has attracted significant interest. While existing work uses standard first-order3

optimization schemes to solve this problem, proving the global optimality of such4

approaches has proven elusive. The difficulty lies in the fact that unlike other5

non-convex problems in the literature, this problem is not “benign”, and possesses6

multiple spurious solutions that standard approaches can easily get trapped in. In7

this paper, we prove that a simple path-following optimization scheme globally8

converges to the global minimum of the population loss in the bivariate setting.9

1 Introduction10

Over the past decade, non-convex optimization has become a major topic of research within the11

machine learning community, in part due to the successes of training large-scale models with simple12

first-order methods such as gradient descent—along with their stochastic and accelerated variants—13

in spite of the non-convexity of the loss function. A large part of this research has focused on14

characterizing which problems have benign loss landscapes that are amenable to the use of gradient-15

based methods, i.e., there are no spurious local minima, or they can be easily avoided. By now,16

several theoretical results have shown this property for different non-convex problems such as:17

learning a two hidden unit ReLU network [48], learning (deep) over-parameterized quadratic neural18

networks [43, 27], low-rank matrix recovery [19, 13, 3], learning a two-layer ReLU network with19

a single non-overlapping convolutional filter [6], semidefinite matrix completion [4, 20], learning20

neural networks for binary classification with the addition of a single special neuron [30], and learning21

deep networks with independent ReLU activations [26, 11], to name a few.22

Recently, a new class of non-convex optimization problems due to Zheng et al. [51] have emerged in23

the context of learning the underlying structure of a structural equation model (SEM) or Bayesian24

network. This underlying structure is typically represented by a directed acyclic graph (DAG), which25

makes the learning task highly complex due to its combinatorial nature. In general, learning DAGs is26

well-known to be NP-complete [8, 10]. The key innovation in Zheng et al. [51] was the introduction27

of a differentiable function h, whose level set at zero exactly characterizes DAGs. Thus, replacing the28

challenges of combinatorial optimization by those of non-convex optimization. Mathematically, this29

class of non-convex problems take the following general form:30

min
Θ

f(Θ) subject to h(W (Θ)) = 0, (1)

where Θ ∈ Rl represents the model parameters, f : Rl → R is a (possibly non-convex) smooth loss31

function (sometimes called a score function) that measures the fitness of Θ, and h : Rd×d → [0,∞)32

is a smooth non-convex function that takes the value of zero if and only if the induced weighted33

adjacency matrix of d nodes, W (Θ), corresponds to a DAG.34
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Given the smoothness of f and h, problem (1) can be solved using off-the-shelf nonlinear solvers,35

which has driven a series of remarkable developments in structure learning for DAGs. Multiple36

empirical studies have demonstrated that global or near-global minimizers for (1) can often be found in37

a variety of settings, such as linear models with Gaussian and non-Gaussian noises [e.g., 51, 34, 1], and38

non-linear models, represented by neural networks, with additive Gaussian noises [e.g., 29, 52, 49, 1].39

The empirical success for learning DAGs via (1), which started with the NOTEARS method of Zheng40

et al. [51], bears a resemblance to the success of training deep models, which started with AlexNet41

for image classification.42

Importantly, the reader should note that the majority of applications in ML consist of solving a single43

unconstrained non-convex problem. In contrast, the class of problems (1) contains a non-convex44

constraint. Thus, researchers have considered some type of penalty method such as the augmented45

Lagrangian [51, 52], quadratic penalty [35], and a log-barrier [1]. In all cases, the penalty approach46

consists in solving a sequence of unconstrained non-convex problems, where the constraint is enforced47

progressively [see e.g. 2, for background]. In this work, we will consider the following form of48

penalty:49

min
Θ

gµk
(Θ) := µkf(Θ) + h(W (Θ)). (2)

It was shown by Bello et al. [1] that due to the invexity property of h,1 solutions to (2) will converge50

to a DAG as µk → 0. However, no guarantees on local/global optimality were given.51

With the above considerations in hand, one is inevitably led to ask the following questions:52

(i) Are the loss landscapes gµk
(Θ) benign for different µk?53

(ii) Is there a (tractable) solution path {Θk} that converges to a global minimum of (1)?54

Due to the NP-completeness of learning DAGs, one would expect the answer to (i) to be negative in its55

most general form. Moreover, it is known from the classical theory of constrained optimization [e.g.56

2] that if we can exactly and globally optimize (1) for each µk, then the answer to (ii) is affirmative.57

This is not a practical algorithm, however, since the problem (1) is nonconvex. Thus we seek a58

solution path that can be tractably computed in practice, e.g. by gradient descent.59

In this work, we focus on perhaps the simplest setting where interesting phenomena take place. That60

is, a linear SEM with two nodes (i.e., d = 2), f is the population least squared loss (i.e., f is convex),61

and Θk is defined via gradient flow with warm starts. More specifically, we consider the case where62

Θk is obtained by following the gradient flow of gµk
with initial condition Θk−1.63

Under this setting, to answer (i), it is easy to see that for a large enough µk, the convex function64

f dominates and we can expect a benign landscape, i.e., a (almost) convex landscape. Similarly,65

when µk approaches zero, the invexity of h kicks in and we could expect that all stationary points66

are (near) global minimizers.2 That is, at the extremes µk →∞ and µk → 0, the landscapes seem67

well-behaved, and the reader might wonder if it follows that for any µk ∈ [0,∞) the landscape is68

well-behaved. We answer the latter in the negative and show that there always exists a τ > 0 where69

the landscape of gµk
is non-benign for any µk < τ , namely, there exist three stationary points: i)70

A saddle point, ii) A spurious local minimum, and iii) The global minimum. In addition, each of71

these stationary points have wide basins of attractions, thus making the initialization of the gradient72

flow for gµk
crucial. Finally, we answer (ii) in the affirmative and provide an explicit scheduling for73

µk that guarantees the asymptotic convergence of Θk to the global minimum of (1). Moreover, we74

show that this scheduling cannot be arbitrary as there exists a sequence of {µk} that leads {Θk} to a75

spurious local minimum.76

Overall, we establish the first set of results that study the optimization landscape and global optimality77

for the class of problems (1). We believe that this comprehensive analysis in the bivariate case78

provides a valuable starting point for future research in more complex settings.79

Remark 1. We emphasize that solving (1) in the bivariate case is not an inherently difficult problem.80

Indeed, when there are only two nodes, there are only two DAGs to distinguish and one can simply81

1An invex function is any function where all its stationary points are global minima. It is worth noting that
the composite objective in (2) is not necessarily invex, even when f is convex.

2This transition or path, from an optimizer of a simple function to an optimizer of a function that closely
resembles the original constrained formulation, is also known as a homotopy.
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Figure 1: Visualizing the nonconvex landscape. (a) A contour plot of gµ for a = 0.5 and µ = 0.005
(see Section 2 for definitions). We only show a section of the landscape for better visualization.
The solid lines represent the contours, while the dashed lines represent the vector field −∇gµ. (b)
Stationary points of gµ, r(y;µ) = 0 and r(x;µ) = 0 (see Section 4 for definitions).

fit f under the only two possible DAGs, and select the model with the lowest value for f . However,82

evaluating f for each possible DAG structure clearly cannot scale beyond 10 or 20 nodes, and is83

not a standard algorithm for solving (1). Instead, here our focus is on studying how (1) is actually84

being solved in practice, namely, by solving unconstrained non-convex problems in the form of (2).85

Previous work suggests that such gradient-based approaches indeed scale well to hundreds and even86

thousands of nodes [e.g. 51, 34, 1].87

1.1 Our Contributions88

More specifically, we make the following contributions:89

1. We present a homotopy-based optimization scheme (Algorithm 2) to find global minimizers90

of the program (1) by iteratively decreasing the penalty coefficient according to a given91

schedule. Gradient flow is used to find the stationary points of (2) at each step, starting from92

the previous solution.93

2. We prove that Algorithm 2 converges globally (i.e. regardless of initialization for W ) to the94

global minimum (Theorem 1).95

3. We show that the non-convex program (1) is indeed non-benign, and naïve implementation96

of black-box solvers are likely to get trapped in a bad local minimum. See Figure 1 (a).97

4. Experimental results verify our theory, consistently recovering the global minimum of (1),98

regardless of initialization or initial penalty value. We show that our algorithm converges to99

the global minimum while naïve approaches can get stuck.100

The analysis consists of three main parts: First, we explicitly characterize the trajectory of the101

stationary points of (2). Second, we classify the number and type of all stationary points (Lemma 1)102

and use this to isolate the desired global minimum. Finally, we apply Lyapunov analysis to identify103

the basin of attraction for each stationary point, which suggests a schedule for the penalty coefficient104

that ensures that the gradient flow is initialized within that basin at the previous solution.105

1.2 Related Work106

The class of problems (1) falls under the umbrella of score-based methods, where given a score107

function f , the goal is to identify the DAG structure with the lowest score possible [9, 22]. We shall108

note that learning DAGs is a very popular structure model in a wide range of domains such as biology109

[40], genetics [50], and causal inference [44, 39], to name a few.110

Score-based methods that consider the combinatorial constraint. Given the ample set of score-111

based methods in the literature, we briefly mention some classical works that attempt to optimize f112
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by considering the combinatorial DAG constraint. In particular, we have approximate algorithms113

such as the greedy search method of Chickering et al. [10], order search methods [45, 41, 38], the114

LP-relaxation method of Jaakkola et al. [24], and the dynamic programming approach of Loh and115

Bühlmann [31]. There are also exact methods such as GOBNILP [12] and Bene [42], however, these116

algorithms only scale up to ≈ 30 nodes.117

Score-based methods that consider the continuous non-convex constraint h. The following118

works are the closest to ours since they attempt to solve a problem in the form of (1). Most of119

these developments either consider optimizing different score functions f such as ordinary least120

squares [51, 52], the log-likelihood [29, 34], the evidence lower bound [49], a regret function [53];121

or consider different differentiable characterizations of acyclicity h [49, 1]. However, none of the122

aforementioned works provide any type of optimality guarantee. Few studies have examined the123

optimization intricacies of problem (1). Wei et al. [47] investigated the optimality issues and provided124

local optimality guarantees under the assumption of convexity in the score f and linear models. On125

the other hand, Ng et al. [35] analyzed the convergence to (local) DAGs of generic methods for126

solving nonlinear constrained problems, such as the augmented Lagrangian and quadratic penalty127

methods. In contrast to both, our work is the first to study global optimality and the loss landscapes128

of actual methods used in practice for solving (1).129

Bivariate causal discovery. Even though in a two-node model the discrete DAG constraint does130

not pose a major challenge, the bivariate setting has been subject to major research in the area of131

causal discovery. See for instance [36, 16, 32, 25] and references therein.132

Penalty and homotopy methods. There exist classical global optimality guarantees for the penalty133

method if f and h were convex functions, see for instance [2, 5, 37]. However, to our knowledge,134

there are no global optimality guarantees for general classes of non-convex constrained problems,135

let alone for the specific type of non-convex functions h considered in this work. On the other136

hand, homotopy methods (also referred to as continuation or embedding methods) are in many cases137

capable of finding better solutions than standard first-order methods for non-convex problems, albeit138

they typically do not come with global optimality guarantees either. When homotopy methods come139

with global optimality guarantees, they are commonly computationally more intensive as it involves140

discarding solutions, thus, closely resembling simulated annealing methods, see for instance [15].141

Authors in [21] characterize a family of non-convex functions where a homotopy algorithm provably142

converges to a global optimum. However, the conditions for such family of non-convex functions are143

difficult to verify and are very restrictive; moreover, their homotopy algorithm involves Gaussian144

smoothing, making it also computationally more intensive than the procedure we study here. Other145

examples of homotopy methods in machine learning include [7, 18, 46, 17, 23], in all these cases, no146

global optimality guarantees are given.147

2 Preliminaries148

The objective f we consider can be easily written down as follows:149

f(W ) =
1

2
EX

[
∥X −W⊤X∥22

]
, (3)

where X ∈ R2 is a random vector and W ∈ R2×2. Although not strictly necessary for the150

developments that follow, we begin by introducing the necessary background on linear SEM that151

leads to this objective and the resulting optimization problem of interest.152

The bivariate model. Let X = (X1, X2) ∈ R2 denote the random variables in the model, and let153

N = (N1, N2) ∈ R2 denote a vector of independent errors. Then a linear SEM over X is defined as154

X = W⊤
∗ X +N , where W∗ ∈ R2×2 is a weighted adjacency matrix encoding the coefficients in the155

linear model. In order to represent a valid Bayesian network for X [see e.g. 39, 44, for details], the156

matrix W∗ must be acyclic: More formally, the weighted graph induced by the adjacency matrix W∗157

must be a DAG. This (non-convex) acyclicity constraint represents the major computational hurdle158

that must overcome in practice (cf. Remark 1).159

The goal is to recover the matrix W∗ from the random vector X . Since W∗ is acyclic, we can assume160

the diagonal of W∗ is zero (i.e. no self-loops). Thus, under the bivariate linear model, it then suffices161
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to consider two parameters x and y that define the matrix of parameters3162

W = W (x, y) =

(
0 x
y 0

)
(4)

For notational simplicity, we will use f(W ) and f(x, y) interchangeably, similarly for h(W ) and163

h(x, y). Without loss of generality, we write the underlying parameter as164

W∗ =

(
0 a
0 0

)
(5)

which implies165

X = W⊤
∗ X +N =⇒

{
X1 = N1,

X2 = aX1 +N2.

In general, we only require Ni to have finite mean and variance, hence we do not assume Gaussianity.166

We assume that Var[N1] = Var[N2], and for simplicity, we consider E[N ] = 0 and Cov[N ] = I ,167

where I denotes the identity matrix. Finally, in the sequel we assume w.l.o.g. that a > 0.168

The population least squares. In this work, we consider the population squared loss defined by (3).169

If we equivalently write f in terms of x and y, then we have: f(W ) = ((1−ay)2+y2+(a−x)2+1)/2.170

In fact, the population loss can be substituted with empirical loss. In such a case, our algorithm171

can still attain the global minimum, WG, of problem (6). However, the output WG will serve as an172

empirical estimation of W∗. An in-depth discussion on this topic can be found in Appendix B173

The non-convex function h. We use the continuous acyclicity characterization of Yu et al. [49], i.e.,174

h(W ) = Tr((I + 1
dW ◦W )d)− d, where ◦ denotes the Hadamard product. Then, for the bivariate175

case, we have h(W ) = x2y2/2. We note that the analysis presented in this work is not tailored to176

this version of h, that is, we can use the same techniques used throughout this work for other existing177

formulations of h, such as the trace of the matrix exponential [51], and the log-det formulation [1].178

Nonetheless, here we consider that the polynomial formulation of Yu et al. [49] is more amenable for179

the analysis.180

Remark 2. Our restriction to the bivariate case highlights the simplest setting in which this problem181

exhibits nontrivial behaviour. Extending our analysis to higher dimensions remains a challenging182

future direction, however, we emphasize that even in two-dimensions this problem is nontrivial. Our183

approach is similar to that taken in other parts of the literature that started with simple cases (e.g.184

single-neuron models in deep learning).185

Remark 3. It is worth noting that our choice of the population least squares is not arbitrary. Indeed,186

for linear models with identity error covariance, such as the model considered in this work, it is187

known that the global minimizer of the population squared loss is unique and corresponds to the188

underlying matrix W∗. See Theorem 7 in [31].189

Gluing all the pieces together, we arrive to the following version of (1) for the bivariate case:190

min
x,y

f(x, y) :=
1

2
((1− ay)2 + y2 + (a− x)2 + 1) subject to h(x, y) :=

x2y2

2
= 0. (6)

Moreover, for any µ ≥ 0, we have the corresponding version of (2) expressed as:191

min
x,y

gµ(x, y) := µf(x, y) + h(x, y) =
µ

2
((1− ay)2 + y2 + (a− x)2 + 1) +

x2y2

2
. (7)

To conclude this section, we present a visualization of the landscape of gµ(x, y) in Figure 1 (a), for192

a = 0.5 and µ = 0.005. We can clearly observe the non-benign landscape of gµ, i.e., there exists193

a spurious local minimum, a saddle point, and the global minimum. In particular, we can see that194

the basin of attraction of the spurious local minimum is comparable to that of the global minimum,195

which is problematic for a local algorithm such as the gradient flow (or gradient descent) as it can196

easily get trapped in a local minimum if initialized in the wrong basin.197

3Following the notation in (1), for the bivariate model we simply have Θ ≡ (x, y) and W (Θ) ≡
(
0 x
y 0

)
.
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Algorithm 1: GradientFlow(f, z0)
1: set z(0) = z0
2: d

dtz(t) = −∇f(z(t))
3: return limt→∞ z(t)

Algorithm 2: Homotopy algorithm for solving (1).

Input: Initial W0 = W (x0, y0), µ0 ∈
[

a2

4(a2+1)3 ,
a2

4

)
Output: {Wµk

}∞k=0
1 Wµ0

← GradientFlow(gµ0
,W0)

2 for k = 1, 2, . . . do
3 Let µk = (2/a)

2/3
µ
4/3
k−1

4 Wµk
← GradientFlow(gµk

,Wµk−1
)

5 end

3 A Homotopy-Based Approach and Its Convergence to the Global Optimum198

To fix notation, let us write Wk := Wµk
:= (

0 xµk
yµk

0 ). and let WG denote the global minimizer of (6).199

In this section, we present our main result, which provides conditions under which solving a series200

of unconstrained problems (7) with first-order methods will converge to the global optimum WG of201

(6), in spite of facing non-benign landscapes. Recall that from Remark 3, we have that WG = ( 0 a
0 0 ).202

Since we use gradient flow path to connect Wµk
and Wµk+1

, we specify this path in Procedure 1 for203

clarity. Although the theory here assumes continuous-time gradient flow with t→∞, see Section 5204

for an iteration complexity analysis for (discrete-time) gradient descent, which is a straightforward205

consequence of the continuous-time theory.206

In Algorithm 2, we provide an explicit regime of initialization for the homotopy parameter µ0 and207

a specific scheduling for µk such that the solution path found by Algorithm 2 will converge to the208

global optimum of (6). This is formally stated in Theorem 1, whose proof is given in Section 5.209

Theorem 1. For any initialization W0 and a ∈ R, the solution path provided in Algorithm 2 converges210

to the global optimum of (6), i.e.,211

lim
k→∞

Wµk
= WG.

A few observations regarding Algorithm 2: Observe that when the underlying model parameter
a ≫ 0, the regime of initialization for µ0 is wider; on the other hand, if a is closer to zero then
the interval for µ0 is much narrower. As a concrete example, if a = 2 then it suffices to have
µ0 ∈ [0.008, 1); whereas if a = 0.1 then the regime is about µ0 ∈ [0.0089, 0.01). This matches
the intuition that for a “stronger” value of a it should be easier to detect the right direction of the
underlying model. Second, although in Line 3 we set µk in a specific manner, it actually suffices to
have

µk ∈
[
(
µk−1

2
)
2/3(a

1/3 −
√
a2/3 − (4µk−1)

1/3)2, µk−1

)
.

We simply chose a particular expression from this interval for clarity of presentation; see the proof in212

Section 5 for details.213

As presented, Algorithm 2 is of theoretical nature in the sense that the initialization for µ0 and the214

decay rate for µk in Line 3 depend on the underlying parameter a, which in practice is unknown.215

In Algorithm 3, we present a modification that is independent of a and W∗. By assuming instead a216

lower bound on a, which is a standard assumption in the literature, we can prove that Algorithm 3217

also converges to the global minimum:218

Corollary 1. Initialize µ0 = 1
27 . If a >

√
5/27 then for any initialization W0, Algorithm 3 outputs219

the global optimal solution to (6), i.e.220

lim
k→∞

Wµk
= WG.

For more details on this modification, see Appendix A.221
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Algorithm 3: Practical (i.e. independent of a and W∗) homotopy algorithm for solving (1).
Input: Initial W0 = W (x0, y0)
Output: {Wµk

}∞k=0
1 µ0 ← 1/27
2 Wµ0 ← GradientFlow(gµ0 ,W0)
3 for k = 1, 2, . . . do
4 Let µk =

(
2/
√
5µ0

)2/3
µ
4/3
k−1

5 Wµk
← GradientFlow(gµk

,Wµk−1
)

6 end
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Figure 2: The behavior of r(y;µ) for different µ.

4 A Detailed Analysis of the Evolution of the Stationary Points222

The homotopy approach in Algorithm 2 relies heavily on how the stationary points of (7) behave with223

respect to µk. In this section, we dive deep into the properties of these critical points.224

By analyzing the first-order conditions for gµ, we first narrow our attention to the region A = {0 ≤225

x ≤ a, 0 ≤ y ≤ a
a2+1}. By solving the resulting equations, we obtain an equation that only involves226

the variable y:227

r(y;µ) =
a

y
− µa2

(y2 + µ)2
− (a2 + 1). (8)

Likewise, we can find an equation only involving the variable x:228

t(x;µ) =
a

x
− µa2

(µ(a2 + 1) + x2)2
− 1. (9)

To understand the behavior of the stationary points of gµ(W ), we can examine the characteristics of229

t(x;µ) in the range x ∈ [0, a] and the properties of r(y;µ) in the interval y ∈ [0, a
a2+1 ].230

In Figures 2 and 3, we show the behavior of r(y;µ) and t(x;µ) for a = 1. Theorems 5 and 6 in the231

appendix establish the existence of a τ > 0 with the following useful property:232

Corollary 2. There exists µ < τ such that the equation∇gµ(W ) = 0 has three different solutions,233

denoted as W ∗
µ ,W

∗∗
µ ,W ∗∗∗

µ . Then,234

lim
µ→0

W ∗
µ =

[
0 a
0 0

]
, lim

µ→0
W ∗∗

µ =

[
0 0
0 0

]
, lim

µ→0
W ∗∗∗

µ =

[
0 0
a

a2+1 0

]
Note that the interesting regime takes place when µ < τ . Then, we characterize the stationary points235

as either local minima or saddle points:236

Lemma 1. Let µ < τ , then gµ(W ) has two local minima at W ∗
µ ,W

∗∗∗
µ , and a saddle point at W ∗∗

µ .237

With the above results, it has been established that W ∗
µ converges to the global minimum WG as238

µ→ 0. In the following section for the proof of Theorem 1, we perform a thorough analysis on how239

to track W ∗
µ and avoid the local minimum at W ∗∗

µ by carefully designing the scheduling for µk.240
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Figure 3: The behavior of t(x;µ) for different µ.

5 Convergence Analysis: From continuous to discrete241

We now discuss the iteration complexity of our method when gradient descent is used in place of242

gradient flow. We begin with some preliminaries regarding the continuous-time analysis.243

5.1 Continuous case: Gradient flow244

The key to ensuring the convergence of gradient flow to W ∗
µ is to accurately identify the basin of245

attraction of W ∗
µ . The following lemma provides a region that lies within such basin of attraction.246

Lemma 2. Define Bµ = {(x, y) | x∗∗
µ < x ≤ a, 0 ≤ y < y∗∗µ }. Run Algorithm 1 with input f =247

gµ(x, y), z0 = (x(0), y(0)) where (x(0), y(0)) ∈ Bµ, then ∀t ≥ 0, we have that (x(t), y(t)) ∈ Bµ248

and limt→∞(x(t), y(t)) = (x∗
µ, y

∗
µ).249

In Figure 1 (b), the lower-right rectangle corresponds to Bµ. Lemma 2 implies that the gradient flow250

with any initialization inside Bµk+1
will converge to W ∗

µk+1
at last. Then, by utilizing the previous251

solution W ∗
µk

as the initial point, as long as it lies within region Bµk+1
, the gradient flow can converge252

to W ∗
µk+1

, thereby achieving the goal of tracking W ∗
µk+1

. Following the scheduling for µk prescribed253

in Algorithm 2 provides a sufficient condition to ensure that will happen.254

The following lemma, with proof in the appendix, is used for the Proof of Theorem 1. It provides a255

lower bound for y∗∗µ and upper bound for y∗µ.256

Lemma 3. If µ < τ , then y∗∗µ >
√
µ, and (4µ)1/3

2

(
a1/3 −

√
a2/3 − (4µ)1/3

)
> y∗µ.257

Proof of Theorem 1. Consider that we are at iteration k + 1 of Algorithm 2, then µk+1 < µk. If258

µk > τ and µk+1 > τ , then there is only one stationary point for gµk
(x, y) and gµk+1

(x, y), thus,259

1 will converge to such stationary point. Hence, let us assume µk+1 ≤ τ . From Theorem 6 in the260

appendix, we known that x∗∗
µk+1

< x∗
µk

. Then, the following relations hold:261

y∗∗µk+1

(1)
>
√
µk+1 ≥ 2

(
µ2
k

4a

)1/3 (2)

≥ (4µk)
1/3

2

(
a1/3 −

√
a2/3 − (4µk)1/3

)
(3)
> y∗µk

Here (1) and (3) are due to Lemma 3, and (2) follows from
√
1− x ≥ 1− x for 0 ≤ x ≤ 1. Then it262

implies that (x∗
µk
, y∗µk

) is in the region {(x, y) | x∗∗
µk+1

< x ≤ a, 0 ≤ y < y∗∗µk+1
}. By Lemma 2, the263

1 procedure will converge to (x∗
µk+1

, y∗µk+1
). Finally, from Theorems 5 and 6, if limk→∞ µk = 0,264

then limk→∞ x∗
µk

= a, limk→∞ y∗µk
= 0, thus, converging to the global optimum, i.e.,265

lim
k→∞

Wµk
= WG.

5.2 Discrete case: Gradient Descent266

In Algorithms 2 and 4, gradient flow is employed to locate the next stationary points, which is not267

practically feasible. A viable alternative is to execute Algorithm 2, replacing the gradient flow with268

8



gradient descent. Now, at every iteration k, Algorithm 6 uses gradient descent to output Wµk,ϵk , a269

ϵk stationary point of gµk
, initialized at Wµk−1,ϵk−1

, and a step size of ηk = 1/(µk(a
2 + 1) + 3a2).270

The tolerance parameter ϵk can significantly influence the behavior of the algorithm and must be271

controlled for different iterations. A convergence guarantee is established via a simplified theorem272

presented here. A more formal version of the theorem and a comprehensive description of the273

algorithm (i.e., Algorithm 6) can be found in Appendix C.274

Theorem 2 (Informal). For any εdist > 0, set µ0 satisfy a mild condition, and use updating rule ϵk =275

min{βaµk, µ
3/2
k }, µk+1 = (2µ2

k)
2/3 (a+ϵk/µk)

2/3

(a−ϵk/µk)4/3
, and let K ≡ K(µ0, a, εdist) ∈ O

(
ln µ0

aεdist

)
.276

Then, for any initialization W0, following the updated procedure above for k = 0, . . . ,K, we have:277

∥Wµk,ϵk −WG∥2 ≤ εdist

that is, Wµk,ϵk is εdist-close in Frobenius norm to global optimum WG. Moreover, the total number278

of gradient descent steps is upper bounded by O
((

µ0a
2 + a2 + µ0

) (
1
a6 + 1

εdist6

))
.279

6 Experiments280

We conducted experiments to verify that Algorithms 2 and 4 both converge to the global minimum of281

(7). Our purpose is to illustrate two main points: First, we compare our updating scheme as given in282

Line 3 of Algorithm 2 against a faster-decreasing updating scheme for µk. In Figure 4 we illustrate283

how a naive faster decrease of µ can lead to spurious a local minimum. Second, in Figure 5, we show284

that regardless of the initialization, Algorithms 2 and 4 always return the global minimum. In the285

supplementary material, we provide additional experiments where the gradient flow is replaced with286

gradient descent. For more details, please refer to Appendix F.287

Figure 4: Trajectory of the gradient flow path for two different update rules for µk with same
initialization and µ0. Here, “good scheduling” uses Line 3 of Algorithm 2, while “bad scheduling”
uses a faster decreasing scheme for µk which leads the path to a spurious local minimum.

(a) Random Initialization 1 (b) Random Initialization 2
0 2 4 6 8 10 12

-2.5

-2

-1.5

-1

-0.5

0

0.5
a = 1.00

start

end

(c) Random Initialization 3

Figure 5: Trajectory of the gradient flow path with the different initializations. We observe that under
a proper scheduling for µk, they all converge to the global minimum.
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Algorithm 4: Find a path {Wµk
} via a particular scheduling for µk when a is unknown.

Input: µ0 ∈
[

a2

4(a2+1)3 ,
a2

4

)
, ε > 0

Output: {Wµk
}∞k=0

1 â←
√
4(µ0 + ε) // ∀ε ≥ 0 s.t. â < a

2 Wµ0 ← GradientFlow(gµ0 ,0)
3 for k = 1, 2, . . . do
4 Let µk+1 ∈

[
(2/â)

2/3
µ
4/3
k , µk

)
5 Wµk+1

← GradientFlow(gµk+1
,Wµk

)
6 end
7 return {Wµk

}∞k=0

A Practical Implementation of Algorithm 2408

We present a practical implementation of our homotopy algorithm in Algorithm 4. The updating409

scheme for µk is now independent of the parameter a, but as presented, the initialization for µ0410

still depends on a. This is for the following reason: It is possible to make the updating scheme411

independent of a without imposing any additional assumptions on a, as evidenced by Lemma 4 below.412

The initialization for µ0, however, is trickier, and we must consider two separate cases:413

1. No assumptions on a. In this case, if a is too small, then the problem becomes harder and414

the initial choice of µ0 matters.415

2. Lower bound on a. If we are willing to accept a lower bound on a, then there is an416

initialization for µ0 that does not depend on a.417

In Corollary 1, we illustrate this last point with the additional condition that a >
√
5/27. This418

essentially amounts to an assumption on the minimum signal, and is quite standard in the literature419

on learning SEM.420

Lemma 4. Under the assumption a2

4(a2+1)3 ≤ µ0 < a2

4 , the Algorithm 4 outputs the global optimal421

solution to (6), i.e.422

lim
k→∞

Wµk
= WG.

It turns out that the assumption in Lemma 4 is not overly restrictive, as there exist pre-determined423

sequences of {µk}∞k=0 that can ensure the effectiveness of Algorithm 4 for any values of a greater424

than a certain threshold.425

B From Population Loss to Empirical Loss426

The transformation from population loss to empirical can be thought from two components. First,427

with a given empirical loss, Algorithms 2 and 3 still achieve the global minimum, WG, of problem428

6, but now the output from the Algorithm is an empirical estimator â, rather than ground truth a,429

Theorem 1 and Corollary 1 would continue to be valid. Second, the global optimum, WG, of the430

empirical loss possess the same DAG structure as the underlying W∗. The finite-sample findings431

in Section 5 (specifically, Lemmas 18 and 19) of Loh and Bühlmann [31], which offer sufficient432

conditions on the sample size to ensure that the DAG structures of WG and W∗ are identical.433

C From Continuous to Discrete: Gradient Descent434

Previously, gradient flow was employed to address the intermediate problem (7), a method that435

poses implementation challenges in a computational setting. In this section, we introduce Algorithm436

6 that leverages gradient descent to solve (7) in each iteration. This adjustment serves practical437

considerations. We start with the convergence results of Gradient Descent.438

Definition 1. f is L-smooth, if f is differentiable and ∀x, y ∈ dom(f) such that ∥∇f(x) −439

∇f(y)∥2 ≤ L∥x− y∥2.440
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Algorithm 5: Gradient Descent(f, η,W0, ϵ)
Input: function f , step size η, initial point W0, tolerance ϵ
Output: Wt

1 t← 0
2 while ∥∇f(Wt)∥2 > ϵ do
3 Wt+1 ←Wt − η∇f(Wt)
4 t← t+ 1
5 end

Algorithm 6: Homotopy algorithm using gradient descent for solving (1).

Input: Initial W−1 = W (x−1, y−1), µ0 ∈
[

a2

4(a2+1)3
(1+β)4

(1−β)2 ,
a2

4
(1−δ)3(1−β)4

(1+β)2

)
,

η0 = 1
µ0(a2+1)+3a2 , ϵ0 = min{βaµ0, µ

3/2
0 }

Output: {Wµk
}∞k=0

1 Wµ0,ϵ0 ← Gradient Descent(gµ0 , η0,W−1, ϵ0)
2 for k = 1, 2, . . . do
3 Let µk = (2µ2

k−1)
2/3 (a+ϵk−1/µk−1)

2/3

(a−ϵk−1/µk−1)4/3

4 Let ηk = 1
µk(a2+1)+3a2

5 Let ϵk = min{βaµk, µ
3/2
k }

6 Wµk,ϵk ← Gradient Descent(gµk
, ηk,Wµk−1

, ϵk)
7 end

Theorem 3 (Nesterov et al. 33). If function f is L-smooth, then Gradient Descent (Algorithm 5) with441

step size η = 1/L, finds an ϵ-first-order stationary point (i.e. ∥∇f(x)∥2 ≤ ϵ) in 2L(f(x0)− f∗)/ϵ2442

iterations.443

One of the pivotal factors influencing the convergence of gradient descent is the selection of the step444

size. Theorem 3 select a step size η = 1
L . Therefore, our initial step is to determine the smoothness445

of gµ(W ) within our region of interest, A = {0 ≤ x ≤ a, 0 ≤ y ≤ a
a2+1}.446

Lemma 5. Consider the function gµ(W ) as defined in Equation 7 within the region A = {0 ≤ x ≤447

a, 0 ≤ y ≤ a
a2+1}. It follows that for all µ ≥ 0, the function gµ(W ) is µ(a2 + 1) + 3a2-smooth.448

Since gradient descent is limited to identifying the ϵ stationary point of the function. Thus, we study449

the gradient of gµ(W ) = µf(W ) + h(W ), i.e. ∇gµ(W ) has the following form450

∇gµ(W ) =

(
µ(x− a) + y2x

µ(a2 + 1)y − aµ+ yx2

)
As gradient descent is limited to identifying the ϵ stationary point of the function, we, therefore, focus451

on ∥gµ(W )∥2 ≤ ϵ. This can be expressed in the subsequent manner:452

∥∇gµ(W )∥2 ≤ ϵ⇒ −ϵ ≤ µ(x− a) + y2x < ϵ and − ϵ ≤ µ(a2 + 1)y − aµ+ yx2 ≤ ϵ

As a result,453

{(x, y) | ∥∇gµ(W )∥2 ≤ ϵ} ⊆ {(x, y) | µa− ϵ

µ+ y2
≤ x ≤ µa+ ϵ

µ+ y2
,

µa− ϵ

x2 + µ(a2 + 1)
≤ y ≤ µa+ ϵ

x2 + µ(a2 + 1)
}

Here we denote such region as Aµ,ϵ454

Aµ,ϵ = {(x, y) |
µa− ϵ

µ+ y2
≤ x ≤ µa+ ϵ

µ+ y2
,

µa− ϵ

x2 + µ(a2 + 1)
≤ y ≤ µa+ ϵ

x2 + µ(a2 + 1)
} (10)

Figure 6 and 7 illustrate the region Aµ,ϵ.455
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Figure 6: An example of Aµ,ϵ is depicted for a = 0.6, µ = 0.009, and ϵ = 0.00055. The yellow
region signifies ϵ stationary points, denoted as Aµ,ϵ and defined by Equation (10). Aµ,ϵ is the disjoint
union of A1

µ,ϵ and A2
µ,ϵ, which are defined by Equations (21) and (22), respectively.

456

0.45 0.50 0.55 0.60 0.65 0.70
x

0.00

0.02

0.04

0.06

0.08

0.10

y

Plot a =0.6,  = 0.009,  =0.00055

(x * , y * )
(x *

, , y *
, )

(x *
, _, , y *

, _)

y = (a
x 1)

y = a
x2 + (a2 + 1)

y = (a
x 1) + x

y = (a
x 1) x

y = a +
x2 + (a2 + 1)

y = a
x2 + (a2 + 1)

Figure 7: Here is a localized illustration of Aµ,ϵ that includes the point (x∗
µ, y

∗
µ). This region, referred

to as A1
µ,ϵ, is defined in Equation (21).

457

Given that the gradient descent can only locate ϵ stationary points within the region Aµ,ϵ during458

each iteration, the boundary of Aµ,ϵ becomes a critical component of our analysis. To facilitate clear459

presentation, it is essential to establish some pertinent notations.460
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• 
x =

µa

µ+ y2
(11a)

y =
µa

µ(a2 + 1) + x2
(11b)

If the system of equations yields only a single solution, we denote this solution as (x∗
µ, y

∗
µ).461

If it yields two solutions, these solutions are denoted as (x∗
µ, y

∗
µ), (x

∗∗
µ , y∗∗µ ), with x∗∗

µ < x∗
µ.462

In the event that there are three distinct solutions to the system of equations, these solutions463

are denoted as (x∗
µ, y

∗
µ), (x

∗∗
µ , y∗∗µ ), (x∗∗∗

µ , y∗∗∗µ ), where x∗∗∗
µ < x∗∗

µ < x∗
µ.464

• 
x =

µa− ϵ

µ+ y2
(12a)

y =
µa+ ϵ

µ(a2 + 1) + x2
(12b)

If the system of equations yields only a single solution, we denote this solution as (x∗
µ,ϵ, y

∗
µ,ϵ).465

If it yields two solutions, these solutions are denoted as (x∗
µ,ϵ, y

∗
µ,ϵ), (x

∗∗
µ,ϵ, y

∗∗
µ,ϵ), with x∗∗

µ,ϵ <466

x∗
µ,ϵ. In the event that there are three distinct solutions to the system of equations, these467

solutions are denoted as (x∗
µ,ϵ, y

∗
µ,ϵ), (x

∗∗
µ,ϵ, y

∗∗
µ,ϵ), (x

∗∗∗
µ,ϵ , y

∗∗∗
µ,ϵ ), where x∗∗∗

µ,ϵ < x∗∗
µ,ϵ < x∗

µ,ϵ.468

• 
x =

µa+ ϵ

µ+ y2
(13a)

y =
µa− ϵ

µ(a2 + 1) + x2
(13b)

If the system of equations yields only a single solution, we denote this solu-469

tion as (x∗
µ,ϵ_, y

∗
µ,ϵ_). If it yields two solutions, these solutions are denoted470

as (x∗
µ,ϵ_, y

∗
µ,ϵ_), (x

∗∗
µ,ϵ_, y

∗∗
µ,ϵ_), with x∗∗

µ,ϵ_ < x∗
µ,ϵ_. In the event that there are471

three distinct solutions to the system of equations, these solutions are denoted as472

(x∗
µ,ϵ_, y

∗
µ,ϵ_), (x

∗∗
µ,ϵ_, y

∗∗
µ,ϵ_), (x

∗∗∗
µ,ϵ_, y

∗∗∗
µ,ϵ_), where x∗∗∗

µ,ϵ_ < x∗∗
µ,ϵ_ < x∗

µ,ϵ_.473

Remark 4. There always exists at least one solution to the above system of equations. When µ is474

sufficiently small, the above system of equations always yields three solutions, as demonstrated in475

Theorem 5, and Theorem 9.476

The parameter ϵ can substantially influence the behavior of the systems of equations (12a),(12b) and477

(13a),(13b). A crucial consideration is to ensure that ϵ remains adequately small. To facilitate this,478

we introduce a new parameter, β, whose specific value will be determined later. At this stage, we479

merely require that β should lie within the interval (0, 1). We further impose a constraint on ϵ to480

satisfy the following inequality:481

ϵ ≤ βaµ (14)

Following the same procedure when we deal with ϵ = 0. Let us substitute (12a) into (12b), then we482

obtain an equation that only involves the variable y483

rϵ(y;µ) =
a+ ϵ/µ

y
− (a2 + 1)− (µa− ϵ)2/µ

(y2 + µ)2
(15)

Let us substitute (12b) into (12a), then we obtain an equation that only involves the variable x484

tϵ(x;µ) =
a− ϵ/µ

x
− 1− (µa+ ϵ)2/µ

(µ(a2 + 1) + x2)2
(16)

Proceed similarly for equations (13a) and (13b).485

rϵ_(y;µ) =
a− ϵ/µ

y
− (a2 + 1)− (µa+ ϵ)2/µ

(y2 + µ)2
(17)
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486

tϵ_(x;µ) =
a+ ϵ/µ

x
− 1− (µa− ϵ)2/µ

(µ(a2 + 1) + x2)2
(18)

Given the substantial role that the system of equations 12a and 12b play in our analysis, the existence487

of ϵ in these equations complicates the analysis, this can be avoided by considering the worst-case488

scenario, i.e., when ϵ = βaµ. With this particular choice of ϵ, we can reformulate (15) and (16) as489

follows, denoting them as rβ(y; ϵ) and rβ(x; ϵ) respectively.490

rβ(y;µ) =
a(1 + β)

y
− (a2 + 1)− µa2(1− β)2

(y2 + µ)2
(19)

491

tβ(x;µ) =
a(1− β)

x
− 1− µa2(1 + β)2

(µ(a2 + 1) + x2)2
(20)

The functions rϵ(y;µ), rϵ_(y;µ), and rβ(y;µ) possess similar properties to r(y;µ) as defined in492

Equation (8), with more details available in Theorem 7 and 8. Additionally, the functions tϵ(x;µ),493

tϵ_(x;µ), and tβ(x;µ) share similar characteristics with t(x;µ) as defined in Equation (9), with more494

details provided in Theorem 9.495

As illustrated in Figure 6, the ϵ-stationary point region Aµ,ϵ can be partitioned into two distinct areas,496

of which only the lower-right one contains (x∗
µ, y

∗
µ) and it is of interest to our analysis. Moreover,497

(x∗
µ,ϵ, y

∗
µ,ϵ) and (x∗∗

µ,ϵ, y
∗∗
µ,ϵ) are extremal point of two distinct regions. The upcoming corollary498

substantiates this intuition.499

Corollary 3. If µ < τ (τ is defined in Theorem 5(v)), assume ϵ satisfies (14), β satisfies
(

1+β
1−β

)2
≤500

a2 + 1, systems of equations (12a),(12b) at least have two solutions. Moreover, Aµ,ϵ = A1
µ,ϵ ∪A2

µ,ϵ501

A1
µ,ϵ = Aµ,ϵ ∩ {(x, y) | x ≥ x∗

µ,ϵ, y ≤ y∗µ,ϵ} (21)
502

A2
µ,ϵ = Aµ,ϵ ∩ {(x, y) | x ≤ x∗∗

µ,ϵ, y ≥ y∗∗µ,ϵ} (22)

Corollary 3 suggests that Aµ,ϵ can be partitioned into two distinct regions, namely A1
µ,ϵ and A2

µ,ϵ.503

Furthermore, for every (x, y) belonging to A1
µ,ϵ, it follows that x ≥ x∗

µ,ϵ and y ≤ y∗µ,ϵ. Similarly,504

for every (x, y) that lies within A2
µ,ϵ, the condition x ≤ x∗∗

µ,ϵ and y ≥ y∗∗µ,ϵ holds. The region A1
µ,ϵ505

represents the “correct" region that gradient descent should identify. In this context, identifying the506

region equates to pinpointing the extremal points of the region. As a result, our focus should be on507

the extremal points of A1
µ,ϵ and A2

µ,ϵ, specifically at (x∗
µ,ϵ, y

∗
µ,ϵ) and (x∗∗

µ,ϵ, y
∗∗
µ,ϵ). Furthermore, the508

key to ensuring the convergence of the gradient descent to the A1
µ,ϵ is to accurately identify the “basin509

of attraction” of the region A1
µ,ϵ. The following lemma provides a region within which, regardless of510

the initialization point of the gradient descent, it converges inside A1
µ,ϵ.511

Lemma 6. Assume µ < τ (τ is defined in Theorem 5(v)),
(

1+β
1−β

)2
≤ a2+1. Define Bµ,ϵ = {(x, y) |512

x∗∗
µ,ϵ < x ≤ a, 0 ≤ y < y∗∗µ,ϵ}. Run Algorithm 5 with input f = gµ(x, y), η = 1

µ(a2+1)+3a2 ,W0 =513

(x(0), y(0)), where (x(0), y(0)) ∈ Bµ,ϵ, then after at most
2(µ(a2+1)+3a2)(gµ(x(0),y(0))−gµ(x

∗
µ,y

∗
µ))

ϵ2514

iterations, (xt, yt) ∈ A1
µ,ϵ.515

Lemma 6 can be considered the gradient descent analogue of Lemma 2. It plays a pivotal role in the516

proof of Theorem 4. In Figure 6, the lower-right rectangle corresponds to Bµ,ϵ. Lemma 6 implies517

that the gradient descent with any initialization inside Bµk+1,ϵk+1
will converge to A1

µk+1,ϵk+1
at last.518

Then, by utilizing the previous solution Wµk,ϵk as the initial point, as long as it lies within region519

Bµk+1,ϵk+1
, the gradient descent can converge to A1

µk+1,ϵk+1
which is ϵ stationary points region that520

contains W ∗
µk+1

, thereby achieving the goal of tracking W ∗
µk+1

. Following the scheduling for µk521

prescribed in Algorithm 6 provides a sufficient condition to ensure that will happen.522

We now proceed to present the theorem which guarantees the global convergence of Algorithm 6.523
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Theorem 4. If δ ∈ (0, 1), β ∈ (0, 1),
(

1+β
1−β

)2
≤ (1− δ)(a2 + 1), and µ0 satisfies524

a2

4(a2 + 1)3
≤ a2

4(a2 + 1)3
(1 + β)4

(1− β)2
≤ µ0 ≤

a2

4

(1− δ)3(1− β)4

(1 + β)2
≤ a2

4

Set the updating rule525

ϵk =min{βaµk, µ
3/2
k }

µk+1 =(2µ2
k)

2/3 (a+ ϵk/µk)
2/3

(a− ϵk/µk)4/3

Then µk+1 ≤ (1− δ)µk. Moreover, for any εdist > 0, running Algorithm 6 after K(µ0, a, δ, εdist)526

outer iteration527

∥Wµk,ϵk −WG∥2 ≤ εdist (23)

where528

K(µ0, a, δ, εdist) ≥
1

ln(1/(1− δ))
max

{
ln

µ0

β2a2
, ln

72µ0

a2(1− (1/2)1/4)
, ln(

3(4− δ)µ0

εdist2
),
1

2
ln(

46656µ2
0

a2εdist2
),
1

3
ln(

46656µ3
0

a4εdist2
)

}

The total gradient descent steps are529

K(µ0,a,δ,εdist)∑
k=0

2(µk(a
2 + 1) + 3a2)(gµk+1(Wµk,ϵk )− gµk+1(Wµk+1,ϵk+1))

ϵ2k

≤2(µ0(a
2 + 1) + 3a2)

(
1

β6a6
+

(
max{3(4− δ)

εdist2
,

216

aεdist
,

(
216

aεdist

)2/3

,
1

β2a2
,

72

(1− (1/2)1/4)a2
}

)3)
gµ0(W

ϵ0
µ0
)

≲O
(
µ0a

2 + a2 + µ0

)( 1

β6a6
+

1

εdist6
+

1

a3εdist3
+

1

a2εdist2
+

1

a6

)
Proof. Upon substituting gradient flow with gradient descent, it becomes possible to only identify an530

ϵ-stationary point for gµ(W ). This modification necessitates specifying the stepsize η for gradient531

descent, as well as an updating rule for µ. The adjustment procedure used can substantially influence532

the result of Algorithm 6. In this proof, we will impose limitations on the update scheme µk, the533

stepsize ηk, and the tolerance ϵk to ensure their effective operation within Algorithm 6. The approach534

employed for this proof closely mirrors that of the proof for Theorem 1 albeit with more careful535

scrutiny. In this proof, we will work out all the requirements for µ, ϵ, η. Subsequently, we will verify536

that our selection in Theorem 4 conforms to these requirements.537

In the proof, we occasionally use µ, ϵ or µk, ϵk. When we employ µ, ϵ, it signifies that the given538

inequality or equality holds for any µ, ϵ. Conversely, when we use µk, ϵk, it indicates we are539

examining how to set these parameters for distinct iterations.540

Establish the Bound y∗∗µ,ϵ ≥
√
µ First, let us consider rϵ(

√
µ;µ) ≤ 0, i.e.541

rϵ(
√
µ;µ) =

a+ ϵ/µ
√
µ
− (a2 + 1)− µ(a− ϵ/µ)2

4µ2
≤ 0

This is always true when µ > 4/a2, and we require542

ϵ ≤ 2µ3/2 + aµ− 2
√
2aµ5/2 − µ3a2 when µ ≤ 4

a2

Now we name it condition 1.543

Condition 1.

ϵ ≤ 2µ3/2 + aµ− 2
√
2aµ5/2 − µ3a2 when µ ≤ 4

a2

Under the assumption that Condition 1 is satisfied. Since rϵ(y;µ) is increasing function with544

interval y ∈ [ylb,ϵ, yub,ϵ], and we know ylb,ϵ ≤
√
µ ≤ yub,ϵ and based on Theorem 7(ii), we have545

ylb,ϵ ≤ y∗∗µ,ϵ ≤ yub,ϵ, rϵ(
√
µ;µ) ≤ rϵ(y

∗∗
µ,ϵ;µ) = 0. Therefore, y∗∗µ,ϵ ≥

√
µ.546
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Ensuring the Correct Solution Path via Gradient Descent Following the argument when we547

prove Theorem 1, we strive to ensure that the gradient descent, when initiated at (xµk,ϵk , yµk,ϵk), will548

converge within the "correct" ϵk+1-stationary point region (namely, ∥∇gµk+1
(W )∥2 < ϵk+1) which549

includes (x∗
µk+1

, y∗µk+1
). For this to occur, we necessitate that:550

yµk+1,ϵk+1

(1)
> yµk+1,ϵk+1

∗∗ (2)
>
√
µk+1

(3)

≥ (2µ2
k)

1/3 (a+ ϵk/µk)
1/3

(a− ϵk/µk)2/3
(4)
> yµk,ϵk

∗ (5)
> yµk,ϵk (24)

Here (1), (5) are due to Corollary 3; (2) comes from the boundary we established earlier; (3) is551

based on the constraints we have placed on µk and µk+1, which we will present as Condition 2552

subsequently; (4) is from the Theorem 7(ii) and relationship y∗µk,ϵk
< ylb,µk,ϵk . Also, from the553

Lemma 9, maxµ≤τ x
∗∗
µ,ϵ ≤ minµ>0 x

∗
µ,ϵ. Hence, by invoking Lemma 6, we can affirm that our554

gradient descent consistently traces the correct stationary point. Now we state condition to make it555

happen,556

Condition 2.

(1− δ)µk ≥ µk+1 ≥ (2µ2
k)

2/3 (a+ ϵk/µk)
2/3

(a− ϵk/µk)4/3

In this context, our requirement extends beyond merely ensuring that µk decreases. We further557

stipulate that it should decrease by a factor of 1− δ. Next, we impose another important constraint558

Condition 3.
ϵk ≤ µ

3/2
k

Updating Rules Now we are ready to check our updating rules satisfy the conditions above559

ϵk =min{βaµk, µ
3/2
k }

µk+1 =(2µ2
k)

2/3 (a+ ϵk/µk)
2/3

(a− ϵk/µk)4/3

Check for Conditions First, we check the condition 2. condition 2 requires560

(1− δ)µk ≥ (2µ2
k)

2/3 (a+ ϵk/µk)
2/3

(a− ϵk/µk)4/3
⇒ µk

(a+ ϵk/µk)
2

(a− ϵk/µk)4
≤ (1− δ)3

4

Note that ϵk ≤ βaµk < aµk561

µk
(a+ ϵk/µk)

2

(a− ϵk/µk)4
≤ µk

(1 + β)2

(1− β)4
1

a2

Therefore, once the following inequality is true, Condition 2 is satisfied.562

µk
(1 + β)2

(1− β)4
1

a2
≤ (1− δ)3

4
⇒ µk ≤

a2

4

(1− δ)3(1− β)4

(1 + β)2

Because µk ≤ µ0 ≤ a2

4
(1−δ)3(1−β)4

(1+β)2 from the condition we impose for µ0. Consequently, Condition563

2 is satisfied under our choice of ϵk.564

Now we focus on the Condition 1. Because ϵk ≤ aβµk, if we can ensure aβµk ≤ 2µ
3/2
k + aµk −565

2

√
2aµ

5/2
k − µ3

ka
2 holds, then we can show Condition 1 is always satisfied.566

aβµk ≤2µ3/2
k + aµk − 2

√
2aµ

5/2
k − µ3

ka
2

2

√
2aµ

5/2
k − µ3

ka
2 ≤2µ3/2

k + (1− β)aµk

4(2aµ
5/2
k − µ3

ka
2) ≤4µ3

k + (1− β)2a2µ2
k + 4(1− β)aµ

5/2
k

0 ≤4(a2 + 1)µ3
k + (1− β)2a2µ2

k − 4(1 + β)aµ
5/2
k

0 ≤4(a2 + 1)µk − 4(1 + β)aµ
1/2
k + (1− β)2a2 when 0 ≤ µk ≤ 4/a2

0 ≤µk −
(1 + β)a

(a2 + 1)
µ
1/2
k +

(1− β)2a2

4(a2 + 1)

19



We also notice that567

(1 + β)2a2

(a2 + 1)2
− 4

(1− β)2a2

4(a2 + 1)
≤ 0⇔

(
1 + β

1− β

)2

≤ a2 + 1

Because
(

1+β
1−β

)2
≤ (1− δ)(a2 + 1), the inequality above always holds and this inequality implies568

that for any µk ≥ 0569

0 ≤ µk −
(1 + β)a

(a2 + 1)
µ
1/2
k +

(1− β)2a2

4(a2 + 1)

Therefore, Condition 2 holds. Condition 3 also holds because of the choice of ϵk.570

Bound the Distance Let c = 72/a2, and assume that µ satisfies the following571

µ ≤min{1
c

(
1− (1/2)1/4

)
, β2a2} (25)

Note that when µ satisfies (25), then µ3/2 ≤ βaµ, so ϵ = µ3/2.

µ ≤ 1

c

(
1− (1/2)1/4

)
=

a2

72

(
1− (1/2)1/4

)
≤ a2

4
572

ϵ/µ =
√
µ ≤ a

2
(26)

Then573

tϵ((a− ϵ/µ)(1− cµ);µ) =
1

1− cµ
− 1− µ(a+ ϵ/µ)2

(µ(a2 + 1) + (a− ϵ/µ)2(1− cµ)2)2

=
cµ

1− cµ
− µ(a+ ϵ/µ)2

(µ(a2 + 1) + (a− ϵ/µ)2(1− cµ)2)2

≥cµ− µ
(a+ ϵ/µ)2

(a− ϵ/µ)4(1− cµ)4

≥cµ− µ
(a+ a/2)2

(a− a/2)4(1− cµ)4

=µ

(
c− 36

a2(1− cµ)4

)
=µ

(
72

a2
− 36

a2(1− cµ)4

)
> 0

Then we know (a − ϵ/µ)(1 − cµ) < x∗
µ,ϵ. Now we can bound the distance ∥Wµk,ϵk −WG∥, it is574

important to note that575

∥Wµk,ϵk −WG∥ =
√

(xµk,ϵk − a)2 + (yµk,ϵk)
2

≤max
{√

(x∗
µk,ϵk

− a)2 + (y∗µk,ϵk
)2,
√

(x∗
µk,ϵk_ − a)2 + (y∗µk,ϵk

)2
}

We use the fact that x∗
µk,ϵk

< xµk,ϵk < a, xµk,ϵk < x∗
µk,ϵk_ and yµk,ϵk < y∗µk,ϵk

. Next, we can576

separately establish bounds for these two terms. Due to (24), y∗µk,ϵk
< (2µ2

k)
1/3 (a+ϵk/µk)

1/3

(a−ϵk/µk)2/3
=577

√
µk+1 and (a− ϵk/µk)(1− cµk) < x∗

µk,ϵk
578

√
(x∗

µk,ϵk
− a)2 + (y∗µk,ϵk

)2 ≤
√
µk+1 + (a− (a− ϵk/µk)(1− cµk))2

Given that if x∗
µk,ϵk_ ≤ a, then

√
(x∗

µk,ϵk
− a)2 + (y∗µk,ϵk

)2 ≥
√
(x∗

µk,ϵk_ − a)2 + (y∗µk,ϵk
)2. There-579

fore, if x∗
µk,ϵk_ ≥ a, we can use the fact that x∗

µk,ϵk_ ≤ a+ ϵk
µk

. In this case,580 √
(x∗

µk,ϵk_ − a)2 + (y∗µk,ϵk
)2 ≤

√
µk+1 + (ϵk/µk)2 =

√
µk+1 + µk ≤

√
(2− δ)µk
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As a result, we have581

∥Wµk,ϵk −WG∥ ≤ max{
√
µk+1 + (a− (a− ϵk/µk)(1− cµk))2,

√
(2− δ)µk}

582

µk+1 + (a− (a− ϵk/µk)(1− cµk))
2 ≤(1− δ)µk + (acµk +

√
µk − cµ

3/2
k )2

≤(1− δ)µk + 3(a2c2µ2
k + µk + c2µ3

k)

=(4− δ)µk + 3a2c2µ2
k + 3c2µ3

k

583

∥Wµk,ϵk −WG∥ ≤max{
√

µk+1 + (a− (a− ϵk/µk)(1− cµk))2,
√
(2− δ)µk}

≤max{
√
(4− δ)µk + 3a2c2µ2

k + 3c2µ3
k,
√

(2− δ)µk}

=
√
(4− δ)µk + 3a2c2µ2

k + 3c2µ3
k

Just let584

(4− δ)µk ≤ (4− δ)(1− δ)kµ0 ≤
εdist

2

3
⇒ k ≥ ln(3(4− δ)µ0/εdist

2)

ln(1/(1− δ))
(27)

3a2c2µ2
k ≤ 3a2c2(1− δ)2kµ2

0 ≤
εdist

2

3
⇒ k ≥ ln(46656µ2

0/(a
2εdist

2))

2 ln(1/(1− δ))
(28)

3c2µ3
k ≤ 3c2(1− δ)3kµ3

0 ≤
εdist

2

3
⇒ k ≥ ln(46656µ3

0/(a
4εdist

2))

3 ln(1/(1− δ))
(29)

We use the fact that µk ≤ (1− δ)kµ0. In order to satisfy (25).585

µk ≤ µ0(1− δ)k ≤ a2

72
(1− (1/2)1/4)⇒ k ≥

ln 72µ0

a2(1−(1/2)1/4)

ln 1
1−δ

(30)

µk ≤ µ0(1− δ)k ≤ β2a2 ⇒ k ≥ ln (µ0/(β
2a2))

ln 1
1−δ

(31)

Consequently, running Algorithm 6 after K(µ0, a, δ, εdist) outer iteration586

∥Wµk,ϵk −WG∥2 ≤ εdist

where587

K(µ0, a, δ, εdist) ≥
1

ln(1/(1− δ))
max

{
ln

µ0

β2a2
, ln

72µ0

a2(1− (1/2)1/4)
, ln(

3(4− δ)µ0

ε2
),
1

2
ln(

46656µ2
0

a2ε2
),
1

3
ln(

46656µ3
0

a4ε2
)

}

By Lemma 6, k iteration of Algorithm 6 need the following step of gradient descent588

2(µk(a
2 + 1) + 3a2)(gµk+1

(Wµk,ϵk)− gµk+1
(Wµk+1,ϵk+1

))

ϵ2k
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Let K̂(µ0, a, δ, εdist) satisfy µK̂(µ0,a,δ,εdist)
≤ β2a2 < µK̂(µ0,a,δ,εdist)−1. Hence, the total number589

of gradient steps required by Algorithm 6 can be expressed as follows:590

K(µ0,a,δ,εdist)∑
k=0

2(µk(a
2 + 1) + 3a2)(gµk+1

(Wµk,ϵk
) − gµk+1

(Wµk+1,ϵk+1
))

ϵ2
k

≤2(µ0(a
2
+ 1) + 3a

2
)

K̂(µ0,a,δ,εdist)−1∑
k=0

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

ϵ2
k

+

K(µ0,a,δ,εdist)∑
k=K̂(µ0,a,δ,εdist)

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

ϵ2
k



=2(µ0(a
2
+ 1) + 3a

2
)

K̂(µ0,a,δ,εdist)−1∑
k=0

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

β2a2µ2
k

+

K(µ0,a,δ,εdist)∑
k=K̂(µ0,a,δ,εdist)

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

µ3
k



≤2(µ0(a
2
+ 1) + 3a

2
)

K̂(µ0,a,δ,εdist)−1∑
k=0

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

β6a6
+

K(µ0,a,δ,εdist)∑
k=K̂(µ0,a,δ,εdist)

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

µ3
k



≤2(µ0(a
2
+ 1) + 3a

2
)

K(µ0,a,δ,εdist)∑
k=0

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

β6a6
+

K(µ0,a,δ,εdist)∑
k=0

(gµk+1
(Wµk,ϵk

) − gµk+1
(Wµk+1,ϵk+1

))

µ3
K(µ0,a,δ,εdist)



=2(µ0(a
2
+ 1) + 3a

2
)

 1

β6a6
+

1

µ3
K(µ0,a,δ,εdist)

K(µ0,a,δ,εdist)∑
k=0

(
(gµk+1

(Wµk,ϵk
) − gµk+1

(Wµk+1,ϵk+1
))
)

≤2(µ0(a
2
+ 1) + 3a

2
)

 1

β6a6
+

1

µ3
K(µ0,a,δ,εdist)

K(µ0,a,δ,εdist)∑
k=0

(
(gµk

(W
ϵk
µk

) − gµk+1
(W

ϵk+1
µk+1

))
)

=2(µ0(a
2
+ 1) + 3a

2
)

 1

β6a6
+

1

µ3
K(µ0,a,δ,εdist)

(
(gµ0 (Wµ0,ϵ0 ) − gµK(µ0,a,δ,εdist)+1

(W
ϵK(µ0,a,δ,εdist)+1
µK(µ0,a,δ,εdist)+1

)

)

≤2(µ0(a
2
+ 1) + 3a

2
)

 1

β6a6
+

1

µ3
K(µ0,a,δ,εdist)

 gµ0
(Wµ0,ϵ0

)

Note from (27) and (30), the following should holds591

µK(µ0,a,δ,εdist) = min{ εdist
2

3(4− δ)
,
aεdist
216

,
(aεdist

216

)2/3
, β2a2,

a2

72
(1− (1/2)1/4)}

Therefore,592

K(µ0,a,δ,εdist)∑
k=0

2(µk(a
2 + 1) + 3a2)(gµk+1

(Wµk,ϵk)− gµk+1
(Wµk+1,ϵk+1

))

ϵ2k

≤2(µ0(a
2 + 1) + 3a2)

 1

β6a6
+

(
max{3(4− δ)

εdist2
,
216

aεdist
,

(
216

aεdist

)2/3

,
1

β2a2
,

72

(1− (1/2)1/4)a2
}

)3
 gµ0

(W ϵ0
µ0
)

22
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D Additional Theorems and Lemmas594

Theorem 5 (Detailed Property of r(y;µ)). For r(y;µ) in (8), then595

(i) For µ > 0, limy→0+ r(y;µ) =∞, r( a
a2+1 , µ) < 0596

(ii) For µ > 0, r(
√
µ, µ) < 0.597

(iii) For µ > a2

4598

dr(y;µ)

dy
< 0

For 0 < µ ≤ a2

4 
dr(y;µ)

dy
> 0 ylb < y < yub (32a)

dr(y;µ)

dy
≤ 0 Otherwise (32b)

where599

ylb =
(4µ)1/3

2
(a1/3 −

√
a2/3 − (4µ)1/3) yub =

(4µ)1/3

2
(a1/3 +

√
a2/3 − (4µ)1/3)

Moreover,600

ylb ≤
√
µ ≤ yub

(iv) For 0 < µ < a2

4 , let p(µ) = r(yub, µ), then p′(µ) < 0 and there exist a unique solution to601

p(µ) = 0, denoted as τ . Additionally, τ < a2

4 .602

(v) There exists a τ > 0 such that, ∀µ > τ , the equation r(y;µ) = 0 has only one solution. At603

µ = τ , the equation r(y;µ) = 0 has two solutions, and ∀µ < τ , the equation r(y;µ) = 0604

has three solutions. Moreover, µ < a2

4 .605

(vi) ∀µ < τ , the equation r(y;µ) = 0 has three solution, i.e. y∗µ < y∗∗µ < y∗∗∗µ .606

dy∗µ
dµ

> 0
dy∗∗µ
dµ

> 0
dy∗∗∗µ

dµ
< 0 and lim

µ→0
y∗µ = 0, lim

µ→0
y∗∗µ = 0, lim

µ→0
y∗∗∗µ =

a

a2 + 1

Moreover,607

y∗µ < ylb <
√
µ < y∗∗µ < yub < y∗∗∗µ

Theorem 6 (Detailed Property of t(x;µ)). For t(x;µ) in (9), then608

(i) For µ > 0, limx→0+ t(x;µ) =∞, t(a, µ) < 0609

(ii) If µ <
(

a(
√
a2+1−a)

2(a2+1)

)2
or µ >

(
a(

√
a2+1+a)

2(a2+1)

)2
, then t(

√
µ(a2 + 1), µ) < 0.610

(iii) For µ > a2

4(a2+1)3611

dt(x;µ)

dx
< 0

For 0 < µ ≤ a2

4(a2+1)3 
dt(x;µ)

dx
> 0 xlb < x < xub (33a)

dt(x;µ)

dx
≤ 0 Otherwise (33b)
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where612

xlb =
(4µa)1/3(1−

√
1− (4µ)1/3(a2+1)

a2/3 )

2
xub =

(4µa)1/3(1 +
√
1− (4µ)1/3(a2+1)

a2/3 )

2

Moreover,613

xlb ≤
√
µ(a2 + 1) ≤ xub

(iv) For 0 < µ < a2

4(a2+1)3 and let q(µ) = t(xlb, µ), then q′(µ) > 0 and there exist a unique614

solution to q(µ) = 0, denoted as τ and τ < a2

4(a2+1)3 ≤
1
27 .615

(v) There exists a τ > 0 such that, ∀µ > τ , the equation t(x;µ) = 0 has only one solution. At616

µ = τ , the equation t(x;µ) = 0 has two solutions, and ∀µ < τ , the equation t(x;µ) = 0617

has three solutions. Moreover, τ < a2

4(a2+1)3 ≤
1
27618

(vi) ∀µ < τ , t(x;µ) = 0 has three stationary points, i.e. x∗∗∗
µ < x∗∗

µ < x∗
µ.619

dx∗
µ

dµ
< 0

dx∗∗∗
µ

dµ
> 0 and lim

µ→0
x∗
µ = a, lim

µ→0
x∗∗
µ = 0, lim

µ→0
x∗∗∗
µ = 0

Besides,620

max
µ≤τ

x∗∗
µ ≤

a(
√
a2 + 1− a)

2
√
a2 + 1

and
a(
√
a2 + 1 + a)

2
√
a2 + 1

≤ min
µ>0

x∗
µ

It also implies that t(a(
√
a2+1−a)

2
√
a2+1

;µ) ≥ 0 and maxµ≤µ0
x∗∗
µ < minµ>0 x

∗
µ621

Lemma 7. Algorithm 1 with input f = gµ(x, y), z0 = (x(0), y(0)) where (x(0), y(0)) ∈ Cµ3 in622

(41), then ∀t ≥ 0, (x(t), y(t)) ∈ Cµ3. Moreover, limt→∞(x(t), y(t)) = (x∗
µ, y

∗
µ)623

Lemma 8. For any (x, y) ∈ Cµ3 in (41), and (x, y) ̸= (x∗
µ, y

∗
µ)624

gµ(x, y) > gµ(x
∗
µ, y

∗
µ)

Theorem 7 (Detailed Property of rϵ(y;µ)). For rϵ(y;µ) in (15), then625

(i) For µ > 0, ϵ > 0, limy→0+ rϵ(y;µ) =∞, y( a
a2+1 , µ) < 0626

(ii) For µ > (a−ϵ/µ)4

4(a+ϵ/µ)2 , then drϵ(y;µ)
dy < 0. For 0 < µ ≤ (a−ϵ/µ)4

4(a+ϵ/µ)2
drϵ(y;µ)

dy
> 0 ylb,µ,ϵ < y < yub,µ,ϵ (34a)

drϵ(y;µ)

dy
≤ 0 Otherwise (34b)

where627

ylb,µ,ϵ =
(4µ)1/3

2

( (a− ϵ/µ)2

a− ϵ/µ

)1/3

−

√(
(a− ϵ/µ)2

a− ϵ/µ

)2/3

− (4µ)1/3


yub,µ,ϵ =

(4µ)1/3

2

( (a− ϵ/µ)2

a− ϵ/µ

)1/3

+

√(
(a− ϵ/µ)2

a− ϵ/µ

)2/3

− (4µ)1/3


Also,628

ylb,µ,ϵ ≤ (2µ2)1/3
(a+ ϵ/µ)1/3

(a− ϵ/µ)2/3
629

ylb,µ,ϵ ≤
√
µ ≤ yub,µ,ϵ

Theorem 8 (Detailed Property of rβ(y;µ)). For rβ(y;µ) in (19), then630

24



(i) For µ > 0, ϵ > 0, limy→0+ rβ(y;µ) =∞631

(ii) For µ > a2(1−β)4

4(1+β)2 , then drβ(y;µ)
dy < 0. For 0 < µ ≤ a2(1−β)4

4(1+β)2
drβ(y;µ)

dy
> 0 ylb,µ,β < y < yub,µ,β (35a)

drβ(y;µ)

dy
≤ 0 Otherwise (35b)

where632

ylb,µ,β =
(4µ)1/3

2

(
a(1− β)2

1 + β

)1/3
1−

√
1− (4µ)1/3

a2/3

(
1 + β

(1− β)2

)2/3


yub,µ,β =
(4µ)1/3

2

(
a(1− β)2

1 + β

)1/3
1 +

√
1− (4µ)1/3

a2/3

(
1 + β

(1− β)2

)2/3


Also,633

ylb,µ,β ≤
(4µ)2/3

2a1/3
(1 + β)1/3

(1− β)2/3
634

ylb,µ,β ≤
√
µ ≤ yub,µ,β

Theorem 9 (Detailed Property of tβ(x;µ)). For tβ(x;µ) in (20), then635

(i) For µ > 0, limx→0+ tβ(x;µ) =∞, tβ(a;µ) < 0636

(ii) For µ > a2

4(a2+1)3
(β+1)4

(β−1)2637

dtβ(x;µ)

dx
< 0

For 0 < µ ≤ a2

4(a2+1)3
(β+1)4

(β−1)2
dtβ(x;µ)

dx
> 0 xlb,µ,β < x < xub,µ,β (36a)

dtβ(x;µ)

dx
≤ 0 Otherwise (36b)

where638

xlb,µ,β =
1

2

(
4aµ(1 + β)2

1− β

)1/3
1−

√
1− (4µ)1/3(a2 + 1)

a2/3

(
1− β

(1 + β)2

)2/3


xub,µ,β =
1

2

(
4aµ(1 + β)2

1− β

)1/3
1 +

√
1− (4µ)1/3(a2 + 1)

a2/3

(
1− β

(1 + β)2

)2/3


(iii) If 0 < β <

√
(a2+1)−1√
(a2+1)+1

, then there exists a τβ > 0 such that, ∀µ > τβ , the equation639

rβ(x;µ) = 0 has only one solution. At µ = τβ , the equation rβ(x;µ) = 0 has two640

solutions, and ∀µ < τβ , the equation rβ(x;µ) = 0 has three solutions. Moreover, µ <641

a2

4(a2+1)3
(β+1)4

(β−1)2 .642

(iv) If 0 < β <

√
(a2+1)−1√
(a2+1)+1

, then ∀µ < τβ , tβ(x;µ) = 0 has three stationary points, i.e.643

x∗∗∗
µ,β < x∗∗

µ,β < x∗
µ,β . Besides,644

max
µ≤τβ

x∗∗
µ,β ≤

a((1− β)
√
a2 + 1−

√
(1− β)2(a2 + 1)− (β + 1)2)

2
√
a2 + 1

a((1− β)
√
a2 + 1 +

√
(1− β)2(a2 + 1)− (β + 1)2)

2
√
a2 + 1

≤ min
µ>0

x∗
µ,β
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It implies that645

max
µ≤τβ

x∗∗
µ,β < min

µ>0
x∗
µ,β

Lemma 9. Under the same setting as Corollary 3,646

max
µ≤τ

x∗∗
µ,ϵ < min

µ>0
x∗
µ,ϵ

E Technical Proofs647

E.1 Proof of Theorem 3648

Proof. For the sake of completeness, we have included the proof here. Please note that this proof can649

also be found in [33].650

Proof. We use the fact that f is L-smooth function if and only if for any W,Y ∈ dom(f)651

f(W ) ≤ f(Y ) + ⟨∇f(Y ), Y −W ⟩+ L

2
∥Y −W∥22

Let W = W t+1 and Y = W t, then using the updating rule W t+1 = W t − 1
L∇f(W

t)652

f(W t+1) ≤f(W t) + ⟨∇f(W t),W t+1 −W t⟩+ L

2
∥W t+1 −W t∥22

=f(W t)− 1

L
∥∇f(W t)∥22 +

1

2L
∥∇f(W t)∥22

=f(W t)− 1

2L
∥∇f(W t)∥22

Therefore,653

min
0≤t≤n−1

∥∇f(W t)∥22 ≤
1

n

n−1∑
t=0

∥∇f(W t)∥22 ≤
2L(f(W 0)− f(Wn))

n
≤ 2L(f(W 0)− f(W ∗))

n

654

min
0≤t≤n−1

∥∇f(W t)∥22 ≤
2L(f(W 0)− f(W ∗))

n
≤ ϵ2 ⇒ n ≥ 2L(f(W 0)− f(W ∗))

ϵ2

655

656

E.2 Proof of Theorem 5657

Proof. (i) For any µ > 0,658

lim
y→0+

r(y;µ) = lim
y→0+

a

y
− a2

µ
− (a2 + 1) =∞

r(
a

a2 + 1
) = − µa2

( a
a2+1 )

2 + µ
< 0.

(ii)

r(
√
µ, µ) =

a
√
µ
− a2

4µ
− (a2 + 1)

=− a2

4
(
1
√
µ
− 2

a
)2 − a2 < 0
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(iii)

dr(y;µ)

dy
=− a

y2
+

4a2µy

(y2 + µ)3

=
4a2µy3 − a(y2 + µ)3

y2(y2 + µ)3

=
a((4aµ)2/3y2 + (4aµ)1/3y(y2 + µ) + (y2 + µ)2)((4aµ)1/3y − y2 − µ)

y2(y2 + µ)3

For µ ≥ a2

4 , ((4aµ)1/3y − y2 − µ) < 0⇔ dr(y;µ)
dy < 0.659

For µ < a2

4 , ylb < y < yub, ((4aµ)
1/3y − y2 − µ) > 0 ⇔ dr(y;µ)

dy > 0. For µ < a2

4 ,660

y < ylb or yub < y, ((4aµ)1/3y − y2 − µ) ≤ 0⇔ dr(y;µ)
dy ≤ 0.661

Note that
dr(y;µ)

dµ
= 0⇔ ((4aµ)1/3y − y2 − µ) = 0⇔ (4aµ)1/3 = y +

µ

y

The intersection between line (4aµ)1/3 and function y + µ
y are exactly ylb and yub, and662

ylb <
√
µ < yub.663

(iv) Note that for 0 < µ < a2

4 ,664

∂r

∂µ
= −a2 y2 − µ

(µ+ y2)3
and ylb <

√
µ < yub

then ∂r
∂µ

∣∣∣
y=yub

< 0. Let p(µ) = r(yub, µ), because ∂r
∂y |y=yub

= 0, then665

dp(µ)

dµ
=
dr(yub, µ)

dµ
=

∂r

∂y

∣∣∣∣
y=yub

dyub
dµ

+
∂r

∂µ

∣∣∣∣
y=yub

=
∂r

∂µ

∣∣∣∣
y=yub

< 0

Also note that when µ = a2

4 , yub =
√
µ, p(µ) = r(yub, µ) = r(

√
µ, µ) < 0, and also if666

µ < a2

4 , then667

yub <
(4µ)1/3

2
2a1/3 = (4µa)1/3

Thus,668

r((4µa)1/3, µ) =
a

(4µa)1/3
− µa2

((4µa)2/3 + µ)2
− (a2 + 1)

=
a

(4µa)1/3
− a2

(µ)1/3((4a)2/3 + µ1/3)2
− (a2 + 1)

>
1

µ1/3
(

a

(4a)1/3
− a2

(4a)4/3
)− (a2 + 1)

Because a
(4a)1/3

> a2

(4a)4/3
, it is easy to see when µ→ 0, r((4µa)1/3, µ)→∞. We know669

r(yub, µ) > r((4µa)1/3, µ) → ∞ as µ → 0 because of the monotonicity of r(y;µ) in670

Theorem 5(iii). Combining all of these, i.e.671

dp(µ)

dµ
< 0, lim

µ→0+
p(µ) =∞, p(

a2

4
) < 0

There exists a τ < a2

4 such that p(τ) = 0672

(v) From Theorem 5(iv), for µ > τ , then p(µ) = r(yub, µ) > 0, and for µ = τ , then673

p(µ) = r(yub, µ) = 0. For µ < τ , then p(µ) = r(yub, µ) < 0, combining Theorem674

5(i),5(iii), we get the conclusions.675
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(vi) By Theorem 5(v), ∀µ < τ , there exists three stationary points such that 0 < y∗µ < ylb <676

√
µ < y∗∗µ < yub < y∗∗∗µ . Because dr(y;µ)

dy

∣∣∣
y=ylb

= dr(y;µ)
dy

∣∣∣
y=yub

= 0, then677

dr(y;µ)

dy

∣∣∣∣
y=y∗

µ

̸= 0,
dr(y;µ)

dy

∣∣∣∣
y=y∗∗

µ

̸= 0,
dr(y;µ)

dy

∣∣∣∣
y=y∗∗∗

µ

̸= 0

By implicit function theorem [14], for solution to equation r(y;µ) = 0, there exists a678

unique continuously differentiable function such that y = y(µ) and satisfies r(y(µ), µ) = 0.679

Therefore,680

∂r

∂µ
=− a2

y2 − µ

(µ+ y2)3
,

∂r

∂y
= − a

y2
+

4a2µy

(y2 + µ)3
,

dy(µ)

dµ
= −∂r/∂µ

∂r/∂y

Therefore by Theorem 5(iii),681

dy

dµ

∣∣∣∣
y=y∗

µ

> 0
dy

dµ

∣∣∣∣
y=y∗∗

µ

> 0
dy

dµ

∣∣∣∣
y=y∗∗∗

µ

< 0

Because limµ→0+ ylb = limµ→0+ yub = 0, then limµ→0+ y∗µ = limµ→0+ y∗∗µ = 0. Let us682

consider r( a
a2+1 (1− cµ), µ) where c = 32 (a2+1)3

a2 and µ < 1
2c683

r(
a

a2 + 1
(1− cµ), µ)

=
a

a
a2+1 (1− cµ)

− µa2

( a2

(a2+1)2 (1− cµ)2 + µ)2
− (a2 + 1)

=(a2 + 1)(
cµ

1− cµ
)− µa2

( a2

(a2+1)2 (1− cµ)2 + µ)2

≥c(a2 + 1)µ− µa2

( a2

(a2+1)2 (1− cµ)2)2

=c(a2 + 1)µ− 16(a2 + 1)4

a2
µ

=
16(a2 + 1)4

a2
µ > 0

By Theorem 5(iii), then a
a2+1 (1− cµ) < y∗∗∗µ , then684

a

a2 + 1
= lim

µ→0+

a

a2 + 1
(1− cµ), µ) ≤ lim

µ→0+
y∗∗∗µ ≤ a

a2 + 1

Consequently,685

lim
µ→0+

y∗∗∗µ =
a

a2 + 1

686

E.3 Proof of Theorem 6687

Proof. (i) For µ > 0,688

lim
x→0+

t(x;µ) = lim
x→0+

a

x
− a2

µ(a2 + 1)2
− 1 =∞

t(a, µ) = − µa2

(µ(a2 + 1) + a2)2
< 0

(ii)

t(
√

µ(a2 + 1), µ) =
a√

a2 + 1

1
√
µ
− a2

4µ(a2 + 1)2
− 1
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If t(
√
µ(a2 + 1), µ) = 0, then689

1
√
µ

= 2
(a2 + 1)3/2

a
± 2(a2 + 1)⇒ µ =

(
a(
√
a2 + 1∓ a)

2(a2 + 1)

)2

so when µ <
(

a(
√
a2+1−a)

2(a2+1)

)2
or µ >

(
a(

√
a2+1+a)

2(a2+1)

)2
, then t(

√
µ(a2 + 1), µ) < 0690

(iii)

dt(x, µ)

dx

=− a

x2
+

4µa2x

(µ(a2 + 1) + x2)3

=
4µa2x3 − a(µ(a2 + 1) + x2)3

x2(µ(a2 + 1) + x2)3

=
a((µ(a2 + 1) + x2)2 + (µ(a2 + 1) + x2)(4µa)1/3x+ (4µa)2/3x2)((4µa)1/3x− µ(a2 + 1)− x2)

x2(µ(a2 + 1) + x2)3

For µ > a2

4(a2+1)3 , then (4µa)1/3x−µ(a2+1)−x2 < 0⇔ dt(x,µ)
dx < 0. For µ < a2

4(a2+1)3 ,691

and xlb < x < xub, then (4µa)1/3x−µ(a2+1)−x2 > 0⇔ dt(x,µ)
dx > 0, For µ < a2

4(a2+1)3 ,692

x < xlb or x > xub, (4µa)1/3x− µ(a2 + 1)− x2 < 0⇔ dt(x,µ)
dx < 0.693

We use the same argument as before to show that694

xlb <
√
µ(a2 + 1) < xub

(iv) Note that for 0 < µ < a2

4(a2+1)3695

∂t

∂µ
= −a2 x2 − µ(a2 + 1)

(µ(a2 + 1) + x2)3
and xlb <

√
µ(a2 + 1) < xub

then ∂t
∂µ

∣∣∣
x=xlb

> 0. Let q(µ) = t(xlb, µ), because ∂t
∂x

∣∣
x=xlb

= 0, then696

dq(µ)

dµ
=
dt(xlb, µ)

dµ
=

∂t

∂x

∣∣∣∣
x=xlb

dxlb

dµ
+

∂t

∂µ

∣∣∣∣
x=xlb

=
∂t

∂µ

∣∣∣∣
x=xlb

> 0

Note that µ = a2

4(a2+1)3 , xub = xlb = (4µa)1/3

2 , t( (4µa)
1/3

2 , a2

4(a2+1)3 ) =
a

(4µa)1/3
− 1 > 0.697

When µ <
(

a(
√
a2+1−a)

2(a2+1)

)2
, then t(

√
µ(a2 + 1), µ) < 0 by Theorem 6(ii). It implies that698

q(µ) < 0 when µ → 0+. By Theorem 6(iii), q(µ) = t(xlb, µ) < t(
√
µ(a2 + 1), µ) < 0.699

Combining all of the theses, i.e.700

dq(µ)

dµ
> 0, lim

µ→0+
q(µ) < 0, q(

a2

4(a2 + 1)3
) > 0

There exists a τ < a2

4(a2+1)3 , q(τ) = 0. Such τ is the same as in Theorem 5(iv).701

(v) We follow the same proof from the proof of Theorem 5(v).702

(vi) By Theorem 6(v), ∀µ < µ0, there exists three stationary points such that 0 < x∗∗∗
µ < xlb <703

x∗∗
µ < xub < x∗

µ < a. Because dt(x;µ)
dx

∣∣∣
x=xlb

= dt(x;µ)
dx

∣∣∣
x=xub

= 0, then704

dt(x;µ)

dx

∣∣∣∣
x=x∗

µ

̸= 0,
dt(x;µ)

dx

∣∣∣∣
x=x∗∗

µ

̸= 0,
dt(x;µ)

dx

∣∣∣∣
x=x∗∗∗

µ

̸= 0
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By implicit function theorem [14], for solutions to equation t(x;µ) = 0, there exists a705

unique continuously differentiable function such that x = x(µ) and satisfies t(x(µ), µ) = 0.706

Therefore,707

dx

dµ
= −∂t/∂µ

∂t/∂x
= a2

x2−µ(a2+1)
(µ(a2+1)+x2)3

− a
x2 + 4µa2x

(µ(a2+1)+x2)3

Therefore, by Theorem 6(iii)708

dx

dµ

∣∣∣∣
x=x∗

µ

< 0
dx

dµ

∣∣∣∣
x=x∗∗∗

µ

> 0

Because 0 < x∗∗∗
µ < xlb < x∗∗

µ < xub and limµ→0+ xlb = limµ→0+ xub = 0.709

lim
µ→0

x∗∗
µ = lim

µ→0
x∗∗∗
µ = 0

Let us consider t(a(1− cµ), µ) where c = 32
a2 and µ < 1

2c710

t(a(1− cµ);µ)

=
a

a(1− cµ)
− µa2

(µ(a2 + 1) + a2(1− cµ)2)2
− 1

=
cµ

1− cµ
− µa2

(µ(a2 + 1) + a2(1− cµ)2)2

≥cµ− µa2

(a2(1− cµ)2)2

≥cµ− 16

a2
µ > 0

By Theorem 6(iii). It implies711

a(1− cµ) ≤ x∗
µ

taking µ→ 0+ on both side,712

a = lim
µ→0+

a(1− cµ) ≤ lim
µ→0+

x∗
µ ≤ a

Hence, limµ→0 x
∗
µ = a.713

When µ = τ , because t(xlb;µ) = 0 and xub >
√

µ(a2 + 1) > xlb, t(x;µ) is increas-714

ing function between [xlb, xub] then t(
√

µ(a2 + 1);µ) > t(xlb;µ) = 0. Moreover,715

t(
√
µ(a2 + 1), µ), xlb and x∗∗

µ are continuous function w.r.t µ, ∃δ > 0 which is really716

small, such that µ = τ − δ and t(
√
µ(a2 + 1), µ) > 0, t(xlb, µ) < 0 (by Theorem 6(iv))717

and x∗∗
µ > xlb, hence dx

dµ

∣∣∣
x=x∗∗

µ

< 0. It implies when µ decreases, then x∗∗
µ increases. This718

relation holds until x∗∗
µ =

√
µ(a2 + 1)719

t(x∗∗
µ , µ) = t(

√
µ(a2 + 1), µ) = 0

⇒µ =

(
a(
√
a2 + 1− a)

2(a2 + 1)

)2

and
√
µ(a2 + 1) = a(

√
a2+1−a)

2
√
a2+1

. Note that when µ <
(

a(
√
a2+1−a)

2(a2+1)

)2
,720

t(
√
µ(a2 + 1), µ) < 0, it implies that x∗∗

µ >
√

µ(a2 + 1) and dx
dµ

∣∣∣
x=x∗∗

µ

> 0, thus de-721

creasing µ leads to decreasing x∗∗
µ . We can conclude722

max
µ≤τ

x∗∗
µ ≤

a(
√
a2 + 1− a)

2
√
a2 + 1
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Note that ∀µ s.t.
(

a(
√
a2+1−a)

2(a2+1)

)2
< µ < τ , x∗∗

µ <
(

a(
√
a2+1−a)

2(a2+1)

)2
, so723

t(
(

a(
√
a2+1−a)

2(a2+1)

)2
, µ) ≥ 0.724

Note that when µ > a2

a2+1 , i.e. (x∗
µ)

2 ≥ µ(a2 + 1) then725

dx

dµ

∣∣∣∣
x=x∗

µ

> 0

It implies that when µ decreases, x∗
µ also decreases. It holds true until x∗

µ =
√
µ(a2 + 1).726

The same analysis can be applied to x∗
µ like above, we can conclude that727

min
τ

x∗
µ =

a(
√
a2 + 1 + a)

2
√
a2 + 1

Hence728

max
µ≤τ

x∗∗
µ ≤

a(
√
a2 + 1− a)

2
√
a2 + 1

<
a(
√
a2 + 1 + a)

2
√
a2 + 1

≤ min
µ>0

x∗
µ

729

E.4 Proof of Theorem 7,8 and 9730

Proof. The proof is similar to the proof of Theorem 5 and Theorem 6.731

E.5 Proof of Lemma 1732

Proof.

∇2gµ(x, y) =

(
µ+ y2 2xy
2xy µ(a2 + 1) + x2

)
Let λ1(∇2gµ(x, y)), λ2(∇2gµ(x, y)) be the eigenvalue of matrix∇2gµ(x, y), then733

λ1(∇2gµ(x, y)) + λ2(∇2gµ(x, y))

=Tr(∇2gµ(x, y)) = µ+ y2 + µ(a2 + 1) + x2 > 0

Now we calculate the product of eigenvalue734

λ1(∇2gµ(x, y)) · λ2(∇2gµ(W ))

=det(∇2gµ(W ))

=(µ+ y2)(µ(a2 + 1) + x2)− 4x2y2

=
µa

x

µa

y
− 4x2y2 > 0

⇔(
aµ

2
)2/3 > xy

⇔(
aµ

2
)2/3 >

aµ

y2 + µ
y

⇔y +
µ

y
> (4aµ)1/3

Note that for (x∗
µ, y

∗
µ), (x

∗∗∗
µ , y∗∗∗µ ), they satisfy (11a) and (11b), this fact is used in third equality and735

second “⇔”. By (32b), we know λ1(∇2gµ(x, y)) · λ2(∇2gµ(x, y)) > 0 for (x∗
µ, y

∗
µ), (x

∗∗∗
µ , y∗∗∗µ ),736

and λ1(∇2gµ(x, y)) · λ2(∇2gµ(x, y)) < 0 for (x∗∗
µ , y∗∗µ ), then737

λ1(∇2gµ(x, y)) > 0, λ2(∇2gµ(x, y)) > 0 for (x∗
µ, y

∗
µ), (x

∗∗∗
µ , y∗∗∗µ )

738

λ1(∇2gµ(x, y)) < 0 or λ2(∇2gµ(x, y)) < 0 for (x∗∗
µ , y∗∗µ )

and739

∇gµ(x, y) = 0

Then (x∗
µ, y

∗
µ), (x

∗∗∗
µ , y∗∗∗µ ) are locally minima, (x∗∗

µ , y∗∗µ ) is saddle point for gµ(W ).740
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E.6 Proof of Lemma 2741
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Figure 8: Stationary points when µ < τ

Proof. Let us define the functions as below
yµ1(x) =

√
µ(

a− x

x
) 0 < x ≤ a (37a)

yµ2(x) =
µa

µ(a2 + 1) + x2
0 < x ≤ a (37b)


xµ1(y) =

µa

y2 + µ
0 < y < a

a2+1 (38a)

xµ2(y) =

√
µ(

a

y
− (a2 + 1)) 0 < y < a

a2+1 (38b)

with simple calculations,742

yµ1 ≥ yµ2 ⇔ t(x;µ) ≥ 0⇔ x ∈ (0, x∗∗∗
µ ] ∪ [x∗∗

µ , x∗
µ]

and743

xµ1 ≥ xµ2 ⇔ r(y;µ) ≤ 0⇔ y ∈ [y∗µ, y
∗∗
µ ] ∪ [y∗∗∗µ ,

a

a2 + 1
)

Here we divide Bµ into three parts, Cµ1, Cµ2, Cµ3744

Cµ1 ={(x, y)|x∗∗
µ < x ≤ x∗

µ, yµ1 < y < y∗∗µ } ∪ {(x, y)|x∗
µ < x ≤ a, yµ2 < y < y∗∗µ } (39)

Cµ2 ={(x, y)|x∗∗
µ < x ≤ x∗

µ, 0 ≤ y < yµ2} ∪ {(x, y)|x∗
µ < x ≤ a, 0 ≤ y < yµ1} (40)

Cµ3 ={(x, y)|x∗∗
µ < x ≤ x∗

µ, yµ2 ≤ y ≤ yµ1} ∪ {(x, y)|x∗
µ < x ≤ a, yµ1 ≤ y ≤ yµ2} (41)

Also note that745

∀(x, y) ∈ Cµ1 ⇒
∂gµ(x, y)

∂x
> 0,

∂gµ(x, y)

∂y
> 0

∀(x, y) ∈ Cµ2 ⇒
∂gµ(x, y)

∂x
< 0,

∂gµ(x, y)

∂y
< 0

The gradient flow follows746 (
x′(t)
y′(t)

)
= −

(
∂gµ(x(t),y(t))

∂x
∂gµ(x(t),y(t))

∂y

)
= −∇gµ(x(t), y(t))
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then747

∀(x, y) ∈ Cµ1 ⇒
(
x′(t)
y′(t)

)
< 0, ∥∇gµ∥ > 0 (42)

∀(x, y) ∈ Cµ2 ⇒
(
x′(t)
y′(t)

)
> 0, ∥∇gµ∥ > 0 (43)

Note that ∥∇gµ∥ is not diminishing and bounded away from 0. Let us consider the (x(0), y(0)) ∈748

Cµ1, since∇gµ(x, y) ̸= 0, −∇gµ(x, y) < 0 in (42) and boundness of Cµ1, it implies there exists a749

finite t0 > 0 such that750

(x(t0), y(t0)) ∈ ∂Cµ1, (x(t), y(t)) ∈ Cµ1 for 0 ≤ t < t0

where ∂Cµ1 is defined as751

∂Cµ1 = {(x, y)|x∗∗
µ < x ≤ x∗

µ, y = yµ1} ∪ {(x, y)|x∗
µ < x ≤ a, y = yµ2} ⊆ Cµ3

For the same reason, if (x(0), y(0)) ∈ Cµ2, there exists a finite time t1 > 0,752

(x(t0), y(t0)) ∈ ∂Cµ2, (x(t), y(t)) ∈ Cµ2 for 0 ≤ t < t1

where ∂Cµ2 is defined as753

∂Cµ2 = {(x, y)|x∗∗
µ < x ≤ x∗

µ, y = yµ2} ∪ {(x, y)|x∗
µ < x ≤ a, y = yµ1} ⊆ Cµ3

then by lemma 7, limt→∞(x(t), y(t)) = (x∗
µ, y

∗
µ).754

E.7 Proof of Lemma 3755

Proof. This is just a result of the Theorem 5.756

E.8 Proof of Lemma 5757

Proof. Note that758

∇2gµ(W ) =

(
µ+ y2 2xy
2xy µ(a2 + 1) + x2

)
=

(
µ 0
0 µ(a2 + 1)

)
+

(
y2 2xy
2xy x2

)
Let ∥ · ∥op is the spectral norm, and it satisfies triangle inequality759 ∥∥∇2gµ(W )

∥∥
op ≤

∥∥∥∥(µ 0
0 µ(a2 + 1)

)∥∥∥∥
op
+

∥∥∥∥( y2 2xy
2xy x2

)∥∥∥∥
op

=µ(a2 + 1) +

∥∥∥∥( y2 2xy
2xy x2

)∥∥∥∥
op

The spectral norm of the second term in area A is bounded by760

max
(x,y)∈A

(x2 + y2) +
√
(x2 + y2)2 + 12x2y2

2
≤ 2a2 +

√
4a4 + 12a4

2
= 3a2

We use x2 ≤ a2, y2 ≤ a2 in the inequality. Therefore,761 ∥∥∇2gµ(W )
∥∥

op ≤ 3a2 + µ(a2 + 1)

Also, according to [5, 33], for any f , if ∇2f exists, then f is L smooth if and only if |∇2f |op ≤ L.762

With this, we conclude the proof.763

E.9 Proof of Lemma 7764

Proof. First we prove ∀t ≥ 0, (x(t), y(t)) ∈ Cµ3, because if (x(t), y(t)) /∈ Cµ3, then there exists a765

finite t such that766

(x(t), y(t)) ∈ ∂Cµ3

where ∂Cµ3 is the boundary of Cµ3, defined as767

∂Cµ3 = {(x, y)|y = yµ1(x) or y = yµ2(x), x
∗∗
µ < x ≤ a}
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W.L.O.G, let us assume (x(0), y(0)) ∈ ∂Cµ3 and (x(0), y(0)) ̸= (x∗
µ, y

∗
µ). Here are four different768

cases,769

∇gµ(x(t), y(t)) =



(
= 0
> 0

)
if y(0) = yµ1(x(0)), x

∗∗
µ < x(0) < x∗

µ(
= 0
< 0

)
if y(0) = yµ1(x(0)), x

∗
µ < x(0) ≤ a(

< 0
= 0

)
if y(0) = yµ2(x(0)), x

∗∗
µ < x(0) < x∗

µ(
> 0
= 0

)
if y(0) = yµ2(x(0)), x

∗
µ < x(0) ≤ a

This indicates that −∇gµ(x(t), y(t)) are pointing to the interior of Cµ3, then (x(t), y(t)) can not770

escape Cµ3. Here we can focus our attention in Cµ3, because ∀t ≥ 0, (x(t), y(t)) ∈ Cµ3. For771

Algorithm 1,772

df(zt)

dt
= ∇f(zt)żt = −∥∇f(zt)∥22

In our setting, ∀(x, y) ∈ Cµ3773 {
∇gµ(x, y) ̸= 0 (x, y) ̸= (x∗

µ, y
∗
µ)

∇gµ(x, y) = 0 (x, y) = (x∗
µ, y

∗
µ)

so774
dgµ(x(t), y(t))

dt
=

{
−∥∇gµ∥22 < 0 (x, y) ̸= (x∗

µ, y
∗
µ)

−∥∇gµ∥22 = 0 (x, y) = (x∗
µ, y

∗
µ)

Plus, (x∗
µ, y

∗
µ) is the unique stationary point of gµ(W ) in Cµ3. By lemma 8775

gµ(x, y) > gµ(x
∗
µ, y

∗
µ) (x, y) ̸= (x∗

µ, y
∗
µ)

By Lyapunov asymptotic stability theorem [28], and applying it to gradient flow for gµ(x, y) in Cµ3,776

we can conclude limt→∞(x(t), y(t)) = (x∗
µ, y

∗
µ).777

E.10 Proof of Lemma 8778

Proof. For any (x, y) ∈ Cµ3 in 41, and (x, y) ̸= (x∗
µ, y

∗
µ), in Algorithm 7. W.L.O.G, we can assume779

x ∈ (x∗∗
µ , x∗

µ), the analysis details can also be applied to x ∈ (x∗
µ, a). It is obvious that x̃j < x̃j+1780

and ỹj+1 < ỹj . Also, limj→∞(x̃j , ỹj) = (x∗
µ, y

∗
µ). Otherwise either x̃j ̸= x∗

µ or ỹj ̸= y∗µ hold,781

Algorithm 7 continues until limj→∞(x̃j , ỹj) = limj→∞(yµ2(ỹj), xµ1(x̃j)), i.e. (x̃j , ỹj) converges782

to (x∗
µ, y

∗
µ).783

Moreover, note that for any j = 0, 1, . . .784

gµ(x̃j−1, ỹj−1) > gµ(x̃j−1, ỹj) > gµ(x̃j , ỹj)

Because785

gµ(x̃j−1, ỹj−1)− gµ(x̃j−1, ỹj) =
∂gµ(x̃j−1, ỹ)

∂y
(ỹj−1 − ỹj) where ỹ ∈ (ỹj , ỹj−1)

Note that786
∂gµ(x̃j−1, ỹ)

∂y
> 0⇒ gµ(x̃j−1, ỹj−1) > gµ(x̃j−1, ỹj)

By the same reason,787

gµ(x̃j−1, ỹj) > gµ(x̃j , ỹj)

By Lemma 1, (x∗
µ, y

∗
µ) is local minima, and there exists a rµ > 0 and any {(x, y) | ∥(x, y) −788

(x∗
µ, y

∗
µ)∥2 ≤ rµ}, gµ(x, y) > gµ(x

∗
µ, y

∗
µ) Since limj→∞(x̃j , ỹj) = (x∗

µ, y
∗
µ), there exists a J > 0789

such that ∀j > J , ∥(x̃j , ỹj)− (x∗
µ, y

∗
µ)∥2 ≤ rµ, combining them all790

gµ(x, y) > gµ(x̃j , ỹj) > gµ(x
∗
µ, y

∗
µ)

791

792
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Algorithm 7: Path goes to (x∗
µ, y

∗
µ)

Input: (x, y) ∈ Cµ3, xµ1(y), yµ2(x) as (38a),(37b)
Output: {(x̃j , ỹj)}∞j=0

1 (x̃0, ỹ0)← (x, y)
2 for j = 1, 2, . . . do
3 ỹj ← yµ2(x̃j−1)
4 x̃j ← xµ1(ỹj−1)
5 end

E.11 Proof of Lemma 4793

Proof. From the proof of Theorem 1, any any scheduling for µk satisfies following will do the job794

(2/a)2/3µ
4/3
k−1 ≤ µk < µk−1

Note that in Algorithm 4, we have â =
√
4(µ0 + ε) < a, then it is obvious795

(2/a)2/3µ
4/3
k−1 < (2/â)2/3µ

4/3
k−1

The same analysis for Theorem 1 can be applied here.796

E.12 Proof of Lemma 6797

Proof. By the Theorem 3 and Lemma 5 and the fact that A1
µ,ϵ is µ-stationary point region, we use the798

same argument as proof of Lemma 7 to demonstrate the gradient descent will never go to A2
µ,ϵ.799

E.13 Proof of Lemma 9800

Proof. By Theorem 9(iv)801

max
µ≤τβ

x∗∗
µ,β ≤ min

µ>0
x∗
µ,β

We also know from the proof of Corollary 3, x∗∗
µ,ϵ < x∗∗

µ,β and x∗
µ,β < x∗

µ,ϵ. Consequently,802

max
µ≤τβ

x∗∗
µ,ϵ ≤ min

µ>0
x∗
µ,ϵ

Because τβ > τ , so803

max
µ≤τ

x∗∗
µ,ϵ ≤ max

µ≤τβ
x∗∗
µ,ϵ ≤ min

µ>0
x∗
µ,ϵ

804

E.14 Proof of Corollary 1805

Proof. Note that806

a2

4(a2 + 1)3
≤ 1

27
a > 0

when a >
√

5
27 , then a2

4 > µ0 = 1
27 ≥

a2

4(a2+1)3 , it satisfies condition in Lemma 4, we obtain the807

same result.808

E.15 Proof of Corollary 2809

Proof. Use Theorem 5(vi) and Theorem 6(vi).810
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E.16 Proof of Corollary 3811

Proof. It is easy to know that812

rβ(y;µ) > rϵ(y;µ) > r(y;µ)

and813

tβ(x;µ) < tϵ(x;µ) < t(x;µ)

and when µ < τ , there are three solutions to r(y;µ) = 0 by Theorem 5. Also, we know from814

Theorem 7, 8815

lim
y→0+

rϵ(y;µ) =∞ lim
y→0+

rβ(y;µ) =∞

Note that when
(

1+β
1−β

)2
≤ a2 + 1816

rβ(
√
µ;µ) =

a(1 + β)
√
µ

− (a2 + 1)− a2(1− β)2

4µ
≤ 0 ∀µ > 0

Therefore,817

0 ≥ rβ(
√
µ;µ) > rϵ(

√
µ;µ) > r(

√
µ;µ)

Also, we know that for yub defined in Theorem 5(iii), we know r(yub;µ) > 0 from Theorem 5(iv).818

Therefore,819

rβ(yub;µ) > rϵ(yub;µ) > r(yub;µ) > 0

Besides,
√
µ < yub. By monotonicity of rβ(y;µ) and rϵ(y;µ) from the Theorem 7(ii) and Theorem820

8(ii), it implies that there are at least two solutions to rβ(y;µ) and rϵ(y;µ). From the geometry821

of rβ(y;µ), rϵ(y;µ), r(y;µ) and tβ(x;µ), tϵ(x;µ), t(x;µ), it is trivial to know that x∗
µ,ϵ ≤ x∗

µ,822

y∗µ,ϵ ≥ y∗µ, x∗∗
µ,ϵ ≥ x∗∗

µ , y∗µ,ϵ ≤ y∗∗µ .823

Finally, for every point (x, y) ∈ A1
µ,ϵ, there exists a pair ϵ1, ϵ2, each satisfying |ϵ1| ≤ ϵ and |ϵ2| ≤ ϵ,824

such that (x, y) is the solution to825

x =
µa+ ϵ1
µ+ y2

y =
µa+ ϵ2

x2 + µ(a2 + 1)

We can repeat the same analysis above to show that x∗
µ,ϵ ≤ x, y∗µ,ϵ ≥ y. Applying the same logic826

to ∀(x, y) ∈ A2
µ,ϵ, we find x∗∗

µ,ϵ ≥ x, y∗µ,ϵ ≤ y. Thus, (x∗
µ, y

∗
µ) is the extreme point of A1

µ,ϵ and827

(x∗∗
µ , y∗∗µ ) is the extreme point of A2

µ,ϵ, we get the results.828

F Experiments Details829

In this section, we present experiments to validate the global convergence of Algorithm 6. Our830

goal is twofold: First, we aim to demonstrate that irrespective of the starting point, Algorithm 6831

using gradient descent consistently returns the global minimum. Second, we contrast our updating832

scheme for µk, ϵk as prescribed in Algorithm 6 with an arbitrary updating scheme for µk, ϵk. This833

comparison illustrates how inappropriate setting of parameters in gradient descent could lead to834

incorrect solutions.835
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F.1 Random Initialization Converges to Global Optimum836
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(a) Random Initialization 1
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(b) Random Initialization 2
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(c) Random Initialization 3
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(d) Random Initialization 4

Figure 9: Trajectory of the gradient descent path with the different initializations for a = 2. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.
Initial µ0 = a2
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(a) Random Initialization 1
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(b) Random Initialization 2
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(c) Random Initialization 3
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(d) Random Initialization 4

Figure 10: Trajectory of the gradient descent path with the different initializations for a = 0.5. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.
Initial µ0 = a2
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F.2 Wrong Specification of δ Leads to Spurious Local Optimial837
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(a) δ = 0.4
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(b) δ = 0.1

Figure 11: Trajectory of the gradient descent path for two difference δ. Left: β violates requirement(
1+β
1−β

)2
≤ (1 − δ)(a2 + 1) in Theorem 4, leading to spurious local minimum. Right: β follows

requirement
(

1+β
1−β

)2
≤ (1 − δ)(a2 + 1) in Theorem 4, leading to global minimum. Initial µ0 =

a2
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F.3 Wrong Specification of β Leads to Incorrect Solution838
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(a) β = 0.6

0.0 0.5 1.0 1.5 2.0
x

0.0

0.1

0.2

0.3

0.4

0.5

y

start end

Algorithm 6 for a =2 = 0.01 = 0.4 0 = 0.2034

(b) δ = 0.01

Figure 12: Trajectory of the gradient descent path for two difference β. Left: β violates requirement(
1+β
1−β

)2
≤ (1−δ)(a2+1) in Theorem 4, leading to incorrect solution. Right: β follows requirement(

1+β
1−β

)2
≤ (1− δ)(a2 + 1) in Theorem 4, leading to global minimum. Initial µ0 = a2

4
(1−δ)3(1−β)4

(1+β)2

39



F.4 Faster decrease of µk Leads to Incorrect Solution839
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(a) Bad scheduling
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(b) Good scheduling

Figure 13: Trajectory of the gradient descent path for two difference update rules for µk with the
same initialization. Left: “Bad scheduling” uses a faster-decreasing scheme for µk, leading to an
incorrect solution, even a non-local optimal solution. Right: “Good scheduling” follows updating
rule for µk in Algorithm 6, leading to the global minimum. Initial µ0 = a2
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