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ABSTRACT

Self-supervised learning (SSL) has revolutionized image processing, but extend-
ing its success to video understanding presents unique challenges due to increased
data complexity and computational demands. We introduce ViDROP (Video
Dense Representation thrOugh spatio-temporal sParsity), a novel SSL architec-
ture for video understanding that combines token dropping and masking strategies.
Our approach eliminates the need for a decoder and enables per-patch loss compu-
tation, overcoming limitations of previous video SSL methods. Moreover, we pro-
pose a simple yet effective video compression technique using k-means clustering
in pixel space, significantly accelerating data loading and facilitating rapid ex-
perimentation. ViDROP demonstrates remarkable scalability across model sizes,
from ViT-Small to ViT-Huge, when starting from pretrained models (VideoMAE
or V-JEPA), achieving significant performance gains. Pushing the boundaries even
further, we leverage network expansion techniques to successfully train ViT-Huge
from scratch using modest computational resources, achieving comparable accu-
racy to VideoMAE 25× faster in training time. This marks a significant break-
through in large-scale video SSL, enabling the training of state-of-the-art mod-
els with limited resources. Extensive experiments show that ViDROP achieves
state-of-the-art performance on various video understanding benchmarks, includ-
ing Kinetics400, SSv2, UCF101, and HMDB51, as well as in temporal action
detection (THUMOS14). These results highlight the effectiveness of our fine-
grained token-level learning strategy in a domain traditionally dominated by fine-
tuned SSL models, while enabling the training of large-scale models with limited
computational resources.

1 INTRODUCTION

Self-supervised learning (SSL) has transformed computer vision by enabling models to learn rich
representations from vast amounts of unlabeled data. While SSL methods like DINOv2 Oquab
et al. (2023) have achieved remarkable success in image processing, extending these techniques to
video understanding presents unique challenges due to increased data complexity and computational
demands.

The temporal dimension in videos captures essential information about object movement and scene
changes, crucial for action understanding. However, it also significantly increases the amount of
data to be processed, exacerbating computational burdens. Recent works such as VideoMAE Tong
et al. (2022) have addressed these challenges by employing sparse encoder and dense decoder archi-
tectures, leveraging vision transformers Dosovitskiy et al. (2020) to efficiently process video data
split into tokens or patches.

Despite their promise, these approaches face two significant limitations. First, the computational
cost of the decoder remains considerable, as it still operates on all or a large portion of video tokens
(see e.g., Wang et al. (2023a); Hwang et al. (2022)). Second, the split between encoder and decoder,
coupled with a low-level reconstruction objective, can lead to suboptimal representation learning.
The encoder may not capture all relevant high-level features, as some information is relegated to
the decoder for reconstruction purposes. This division of representational power can result in less
robust or comprehensive features, potentially misaligning with high-level downstream tasks.
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Figure 1: Visualization of per-patch representations. Top row: Original video frames of a dog
walking on grass. Middle row: 3-channel PCA visualization Oquab et al. (2023) of patch fea-
tures from VideoMAE Tong et al. (2022). Bottom row: 3-channel PCA visualization of patch fea-
tures from ViDROP. The more detailed and coherent colorization in the bottom row demonstrates
ViDROP’s ability to produce higher-quality per-patch representations, capturing finer details and
maintaining better consistency (semantic correspondences) across frames.

To address these challenges, we propose ViDROP (Video Dense Representation thrOugh spatio-
temporal sParsity), a novel SSL architecture for video understanding that combines token dropping
and masking strategies. ViDROP employs a sparse encoder with masked tokens and eliminates the
need for a decoder, enabling per-patch loss computation for robust representations while maintain-
ing exceptional efficiency. This approach overcomes the limitations of previous methods, providing
a more effective and computationally efficient solution for self-supervised learning in video under-
standing tasks (see Figure 2).

To accelerate training, we introduce a simple yet effective video compression technique using k-
means clustering Lloyd (1982) in pixel space. This innovation addresses the data loading bottleneck
that emerges as our model accelerates computation, especially for smaller models.

ViDROP achieves state-of-the-art linear probing results using only minimal data augmentations (ran-
dom resized cropping and flipping), in contrast to top-performing models like SVT Ranasinghe et al.
(2021) and ρBYOL Feichtenhofer et al. (2021) that rely on heavy, potentially dataset-specific aug-
mentations. This approach aims for more robust and generalizable representations. Additionally,
ViDROP produces high-quality per-patch representations alongside strong global representations,
distinguishing it from traditional contrastive methods that excel in global video clip representations
but may struggle with fine-grained, per-patch understanding (see Figure 1). This versatility enables
ViDROP to be effective across a wide range of downstream tasks, from those requiring local under-
standing to those needing global video comprehension.

Our contributions can be summarized as follows:

• A novel, efficient SSL architecture for video understanding: We introduce ViDROP,
combining sparse token processing with masked learning, achieving state-of-the-art per-
formance without a decoder while producing high-quality per-patch and global representa-
tions.

• Scalable and resource-efficient training: We demonstrate exceptional scalability across
model sizes (ViT-Small to ViT-Huge) and initialization strategies (VideoMAE Tong et al.
(2022), V-JEPA Bardes et al. (2024)). By leveraging network expansion techniques Wang
et al. (2023b) and introducing a novel k-means clustering-based video compression method,
we train a ViT-Huge model with comparable accuracy to VideoMAE in just 4% of the total
training time, enabling large-scale video SSL with limited computational resources.

• Comprehensive evaluation: ViDROP achieves superior performance across a wide range
of video understanding tasks, including action recognition, temporal action detection,
frame-wise tracking, and copy detection. Our method’s versatility extends to image classi-
fication, showcasing the robustness and generalizability of the learned representations.
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2 PRIOR WORK

Evolution of image SSL: Self-supervised learning (SSL) in computer vision has evolved from
image-based to video understanding approaches. Image SSL progressed from contrastive learn-
ing van den Oord et al. (2018); Chen et al. (2020a;b) to clustering-based methods Caron et al. (2018;
2020; 2021), then to direct feature prediction Grill et al. (2020); Chen & He (2020) and cross-
correlation techniques Zbontar et al. (2021). These discriminative approaches have consistently
advanced representation learning in static images.

Masked modeling and diverse SSL approaches: Complementing these discriminative methods,
various other approaches have played a crucial role in SSL. Notably, masked modeling approaches
have gained significant traction. BEiT Bao et al. (2021) introduced the concept of infilling in latent
space, inspired by BERT Devlin et al. (2019) in natural language processing. Masked Autoencoders
(MAE) He et al. (2021) adapted this idea to regress missing pixel patches directly in pixel space,
while AIM El-Nouby et al. (2024) advanced these concepts with next token prediction in latent
space. Hybrid models such as iBOT Zhou et al. (2021) and DINOv2 Oquab et al. (2023) have
further pushed the boundaries, combining generative and discriminative elements to produce high-
quality representations. These approaches have demonstrated exceptional performance in tasks like
KNN classification Fix & Hodges (1989) and unsupervised semantic segmentation Hamilton et al.
(2022), showcasing the power of integrating multiple SSL paradigms.

Video SSL challenges: The transition from image to video SSL introduces unique challenges due to
the temporal dimension and increased data scale. Video SSL methods often employ pretext tasks de-
signed to capture both spatial and temporal aspects, such as determining the correct order of shuffled
video frames Misra et al. (2016); Jenni et al. (2020); Dorkenwald et al. (2022); Dave et al. (2023).
Generative models like VideoMAE Tong et al. (2022) and VideoMAEv2 Wang et al. (2023a) have
been adapted to reconstruct video segments or entire frames, while consistency-based approaches
like ρBYOL Feichtenhofer et al. (2021), BRAVE Recasens et al. (2021), and SVT Ranasinghe et al.
(2021) ensure feature consistency across different video segments.

Computational optimization: The computational demands of processing videos, especially with
Vision Transformers (ViT) Dosovitskiy et al. (2020), have led to various optimization strategies.
Factorized attention, as used in SVT Ranasinghe et al. (2021), offers one approach, although com-
prehensive spatio-temporal attention, as in ViViT Arnab et al. (2021), typically yields superior re-
sults. Some methods leverage pretrained image or short video clip encoders to derive representations
for longer clips Sameni et al. (2022); Lei et al. (2021). Inspired by MAE He et al. (2021), sparse
encoder inputs paired with dense decoder outputs have been employed to reduce computational re-
quirements, with models like VideoMAEv2 Wang et al. (2023a) and EVEREST Hwang et al. (2022)
further economizing resources by introducing sparse reconstruction tokens to the decoder.

Data processing bottlenecks: Addressing the data bottleneck in video SSL remains a significant
challenge. While tools like FFCV Leclerc et al. (2023) and its SSL variant Bordes et al. (2023) are
effective for images, they fall short for video processing. Wrappers such as decord and Avion Zhao
& Krahenbuhl (2023) offer some improvements but remain relatively slow. Data remasking tech-
niques Bardes et al. (2024); Feichtenhofer et al. (2022) provide a cost-effective way to alleviate
data loading bottlenecks. Another approach involves using precomputed latent representations of
videos Wiles et al. (2022); Jaegle et al. (2021), which can be integrated with learned data augmen-
tations Lee et al. (2023). However, this method introduces higher costs at the inference stage due to
the need for an expensive encoder to convert raw pixel videos into the latent representation.

Role of data augmentation: The role of data augmentation in SSL has been a subject of significant
research Zhai et al. (2023); Wagner et al. (2022); Kalibhat et al. (2023). While heavy augmentations
have been crucial for the success of many image SSL methods Chen et al. (2020a); Grill et al. (2020),
their application to video data is more complex due to the need to preserve temporal coherence Fe-
ichtenhofer et al. (2021). Some video SSL approaches have adapted image augmentation techniques
to the video domain Ranasinghe et al. (2021), while others have developed video-specific augmenta-
tions Qian et al. (2020). However, the computational cost of these augmentations can be substantial,
especially for large-scale video datasets. Moreover, the reliance on carefully designed augmenta-
tions raises questions about the broader applicability and robustness of SSL methods across diverse
video datasets and tasks.
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(a) (b) (c)

Figure 2: Comparison of patch reconstruction architectures. This figure illustrates three different
approaches to patch reconstruction. (a) Traditional Encoder/Decoder architecture, where a sparse
set of input patches is fed to the encoder, and a small decoder reconstructs all dropped tokens. (b)
Our proposed ViDROP architecture, which uniquely combines sparse (dropped) and masked (MSK)
tokens in a single encoder. (c) Masked Encoder approach (such as DINOv2 Oquab et al. (2023))
that uses only MSK tokens. In all methods, the input is flattened and patched (image or video), and
targets are either pixels or the output of the teacher network (an exponential moving average of the
encoder, omitted for clarity).

3 METHOD

ViDROP introduces a novel approach to self-supervised learning for video understanding, com-
bining efficient processing with effective representation learning. Our method builds upon the DI-
NOv2 Oquab et al. (2023) framework, adapting it for video data through a sparse encoder archi-
tecture that integrates token dropping and masking within a single network. We employ a video
sampling and processing strategy using both large and small crops, along with a multi-component
loss function ensuring global and local feature consistency. Additionally, we introduce a lossy data
loading scheme based on k-means clustering for efficient video compression. In the following sub-
sections, we detail these components and explain how they work together to overcome the limitations
of existing video SSL methods.

3.1 VIDEO SAMPLING AND PROCESSING

Given a video, we sample multiple clips, creating two large crops and eight small crops. The
large crops are fed directly to an exponential moving average (EMA) of the network, serving as
the teacher. For the student network, we apply sparsification (token dropping) to these same views
and replace some of the remaining tokens with a special MSK token. Small crops maintain dense
inputs without sparsification or masking Assran et al. (2022). Both student and teacher networks
include a CLS token for global representation.

3.2 LOSS FUNCTION

ViDROP’s loss function consists of two main components. The first is a DINO-style loss calculated
between the CLS tokens of the student and teacher Caron et al. (2021). The second is a patch-
level loss for the masked tokens in the student, using the corresponding outputs from the teacher
as targets Zhou et al. (2021). We employ a global-global consistency loss to ensure coherence
between different views of the same video and a global-local consistency loss that aligns features
from large crops (global) with those from small crops (local). The patch-level loss enables fine-
grained representation learning, complemented by the KoLeo regularization adapted from DINOv2.
For detailed formulations of these losses, we refer readers to the DINOv2 paper Oquab et al. (2023).
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Figure 3: Comparison of video frame compression methods. Top row: Original frames sampled
from the Kinetics-400 dataset Kay et al. (2017). Middle row: Frames compressed and reconstructed
using VQ-GAN Esser et al. (2020). Bottom row: Frames compressed and reconstructed using our
proposed k-means clustering method Lloyd (1982). Our approach achieves a balance between com-
pression efficiency and visual quality, maintaining compatibility with pretrained models while sig-
nificantly accelerating data loading.

Unlike traditional consistency-based SSL approaches, we minimize the use of data augmenta-
tion Moutakanni et al. (2024), relying primarily on heavy masking and our lossy data compression
technique as pseudo-augmentations.

3.3 ARCHITECTURE

ViDROP employs a sparse encoder with masked tokens, eliminating the need for a separate decoder
(Figure 2). This design differs from asymmetric encoder-decoder architectures He et al. (2021);
Tong et al. (2022); Liu et al. (2022); Bardes et al. (2024); Assran et al. (2023); Baevski et al. (2022a)
by uniquely combining token dropping and masking strategies within a single encoder. Our approach
achieves the efficiency of sparse processing while maintaining the rich representational learning of
mask-based self-distillation methods Zhou et al. (2021); Oquab et al. (2023); Bao et al. (2021);
Xie et al. (2021); Baevski et al. (2022b). Crucially, our design enables per-patch loss computation,
allowing fine-grained representation learning without the computational overhead of dense decoders.
This bridges the gap between token dropping efficiency and mask-based representational power.

3.4 LOSSY DATA LOADING

To address the data loading bottleneck in video processing, we introduce a lossy data loading scheme
based on k-means clustering Lloyd (1982) of video patches (see Figure 3). By applying k-means
clustering directly in pixel space on 10 × 10 pixel patches, we achieve a compression rate of 150
(using 65536 clusters), significantly accelerating the data loading process.

This approach offers several advantages over VQVAE-based methods van den Oord et al. (2017);
Esser et al. (2020); Park et al. (2023); Wiles et al. (2022). It allows for faster processing during both
training and inference by avoiding complex encoding and decoding steps. Our method maintains
compatibility with pretrained models that operate on raw pixel data, enabling us to leverage exist-
ing large-scale pretrained checkpoints. Furthermore, our approach provides a flexible compression
scheme that can be easily adjusted to balance between compression rate and representation quality.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND PROTOCOLS

We use the training set of Kinetics-400 Kay et al. (2017) for self-supervised training. For eval-
uation, we use four common action classification datasets (Kinetics-400, Something-Something-
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Table 1: ViDROP ablation experiments. We report linear probing (single crop) accuracy (%) with
ViT-B/16 on K400. If not specified, the default is: the loss is iBOT Zhou et al. (2021), the data
augmentation is random resized cropping, the number of small crops is 8, the masking ratio is 85%,
and the pre-training length is 60 epochs. Default settings are marked in gray .

(a) Loss function. Patch loss
with MASK tokens improves
the performance.

patch loss linear
visible tokens 51.7

none 53.1
masked tokens 54.9

(b) Number of small crops.
Even having a few small crops
boosts the performance.

num. linear
8 54.9
4 54.1
0 50.2

(c) Drop pattern. Simple ran-
dom token dropping is more ef-
fective than complex patterns.

pattern linear
random tokens 54.9
random tubes 54.5
block (vjepa) 53.1

(d) Drop rate. Lower drop rates
yield better performance but re-
quire longer training times. The
model with an 80% drop rate
took the longest to train due to
reduced batch size.

rate time(hh:mm) linear
80% 31:54 55.2
85% 24:21 54.9
90% 23:46 54.4
95% 23:19 51.5

(e) Number of clusters. Re-
ducing clusters from 65k to 16k
maintains accuracy, while 2k
clusters slightly decrease it. Us-
ing a shared head for 65k clus-
ters also lowers accuracy.

num. shared linear
65k ✗ 54.9
16k ✗ 54.9
2k ✗ 54.3
65k ✓ 53.8

(f) Masking probability. In-
creasing the masking probabil-
ity range from 10-40% to higher
values slightly improves model
accuracy (all the models use 16k
clusters).

min max linear
0.1 0.4 54.9
0.1 0.7 54.9
0.5 0.7 55.5
0.7 0.7 55.0

v2 Goyal et al. (2017), UCF101 Soomro et al. (2012), and HMDB51 Kuehne et al. (2011)) and
THUMOS14 Jiang et al. (2014) for temporal action detection. For all evaluations, contrary to com-
mon settings in reconstruction-based models Tong et al. (2022); He et al. (2021); Liu et al. (2022);
Baevski et al. (2022b); Bardes et al. (2024) but compatible with consistency-based models that rely
on heavy data augmentations, we use a frozen backbone and only train a linear head on top (ex-
cept in the case of THUMOS14, where we train a transformer following ActionFormer Zhang et al.
(2022)).

For main results, we train ViT-Base, ViT-Large, and ViT-Huge models from pretrained checkpoints.
ViT-Base models are trained for 60 epochs with k-means compressed data (24 hours), while ViT-
Large and ViT-Huge are trained for 40 epochs without compression (57 and 100 hours, respectively).
All use a total batch size of 512 (with gradient accumulation).

For the LEMON Wang et al. (2023b) experiment with random initialization, we follow a progressive
schedule: ViT-Small (100 epochs, k-means data, 17 hours), ViT-Base (6 epochs, real data, 12 hours),
ViT-Large (19 epochs, 52 hours), and ViT-Huge (30 epochs, 62 hours), totaling 155 epochs and 143
hours (almost 6 days or 1144 V100 hours). For comparison, the VideoMAE ViT-Huge model trained
for 1600 epochs is estimated to take approximately 28862 V100 hours (25× longer).

During training, 85% of the tokens are dropped for the student when fed with two large clips (16
frames of 224 × 224). For half of the mini-batch, we randomly mask a portion of the remaining
tokens. Additionally, 8 local crops of size 96 × 96 (8 frames) are fed as dense input without token
dropping or masking.

4.2 ABLATIONS

Here we perform in-depth ablation studies on ViDROP design choices with a ViT-B. We use 16384
clusters for the DINO loss, both for the CLS token and the per-patch loss, and mask uniformly be-
tween 10% to 40% of the tokens. To accelerate training, we start from a pretrained VideoMAE Tong
et al. (2022) checkpoint trained on K400 for 800 epochs.

Loss function. Table 1a shows that patch token loss is crucial for ViDROP. An extra loss on masked
tokens (iBOT Zhou et al. (2021)) outperforms DINO Caron et al. (2021)’s approach. Using MASK
tokens for loss calculation proves more effective than calculating loss on all visible tokens.
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Figure 4: Probing accuracy as a function of
training time for dense and sparse models.
The dense model (without token dropping) takes
significantly longer to train and achieves lower
accuracy compared to the sparse model (with
85% token drop rate), even after training for
four times longer.

Table 2: Effect of initialization on ViT-Base
model performance. The random model was
trained for 240 epochs (4× the epochs of the
pretrained models). Initial pretraining was con-
ducted on 64 Tesla V100 GPUs, and our train-
ing on 4 RTX 4090 GPUs.† is estimated by mul-
tiplying the training time of the VMAE1600 by
the relative training throughput of a ViT-Base
and ViT-Large (4.24)

Setting Pretraining Time Linear
(V100 Days) Accuracy

VMAE800 74 41.0%
+ViDROP +8 55.5%

VMAE1600 148 43.5%
+ViDROP +8 57.0%

ViDROP rand 32 53.3%

VMAELarge
1600 627† 52.5%

Number of small crops. A key success element of DINO Caron et al. (2021) and MSN Assran et al.
(2022) was using small crops. We see a similar pattern in Table 1b, where small crops significantly
boost performance. We use the same setting as DINOv2 Oquab et al. (2023), but observe that fewer
crops are viable. If computational load is an issue (as small crops are not sparsified), the number
can be reduced while maintaining considerable performance gains.

Drop pattern. While previous video reconstruction methods emphasized specific token dropping
patterns Tong et al. (2022); Bardes et al. (2024); Feichtenhofer et al. (2022), Table 1c shows that
random patch dropping outperforms tube dropping Tong et al. (2022); Wang et al. (2023a) and block
masking Bardes et al. (2024). We observe higher self-supervised loss for these patterns compared to
random dropping, suggesting that their difficulty may hinder the model’s representational power.

Drop rate. Token dropping is an essential component for reducing the computational load of our
model. In Table 1d, we can see that there is a trade-off in terms of training time and quality. Reducing
the drop rate improves the quality but at the cost of extra training time. Note that in this experiment,
we had to reduce the batch size of the model trained with an 80% token drop rate to be able to train
it on our hardware. We further studied this trade-off and trained a dense model (i.e., a model with a
drop rate of 0%) for 100 hours (almost 4× the base model) and achieved an accuracy of only 47.1%,
which is significantly lower than the 54.9% accuracy of the base model (see Figure 4).

Number of clusters. Since we are using Sinkhorn-Knopp centering for our DINO Caron et al.
(2021) losses, we are significantly more compute-heavy in the loss (compared to V-JEPA Bardes
et al. (2024) and VideoMAE Tong et al. (2022)). Additionally, we can’t apply gradient accumulation
with many steps, since the centering operation depends on the whole batch. Changing the loss is
beyond the scope of this paper, so instead, we reduced the number of clusters both for the global loss
and patch loss. Results in Table 1e show that, similar to the findings of MSN Assran et al. (2022),
we can significantly reduce the number of clusters and maintain the same performance. We also
notice that, similar to the findings of DINOv2 Oquab et al. (2023), having different heads for the
two loss terms is beneficial. For the rest of the ablation studies, we used 16k clusters.

Masking probability. Following the setting of iBOT Zhou et al. (2021) and DINOv2 Oquab et al.
(2023), we apply masking to only half of the large crops. For the other half, we initially randomly
masked between 10% to 40% of the remaining tokens (after token dropping). Table 1f shows that
we can use larger probabilities and achieve slight improvement. This likely stems from video data’s
higher redundancy compared to images, allowing for greater sparsity (e.g., 90% for videos Tong
et al. (2022) vs 75% for images He et al. (2021)).

Initialization. To demonstrate the general applicability of our model, we trained it from scratch
and compared it to models initialized with different pretrained weights, as shown in Table 2. The
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Table 3: Comparison of different compression methods.
Evaluation of various methods for compressing and decom-
pressing 0.5M frames on 4 GPUs. KMeans-based methods
offer a good balance between quality (PSNR), processing
time, and compression factor.

Method PSNR Time Compression
(mm:ss) Factor

SD-XL 30.29 40:29 24
TinyAE-XLbyte 26.44 7:25 48
VQGAN-f16 23.36 25:59 384
KMeans16×16 24.28 1:23 384
KMeans10×10 25.75 1:41 150

Table 4: Effect of KMeans on
training speed and accuracy with
ViT-Small. Using KMeans com-
pression achieves a 5.37× speedup
with a minor performance cost.
Training on pixel data for the same
duration results in lower perfor-
mance.

KMeans Time Linear
(hh:mm) Accuracy

✓ 9:42 44.4
✗ 52:09 46.1
✗ 9:42 29.5

Table 5: Training throughput of various SSL methods with ViT models. Comparison of training
speeds for different SSL methods using ViT-Base, ViT-Large, and ViT-Huge architectures on a single
NVIDIA RTX 4090 GPU. DINOv2 refers to the dense version of our model without sparsity. While
ViDROP shows lower raw throughput compared to reconstruction-based methods, it significantly
outperforms consistency-based models (DINOv2 and SVT) and achieves superior sample efficiency
(see Table 2).

Method ViT-Base ViT-Large ViT-Huge
Max B.S. Throughput Max B.S. Throughput Max B.S. Throughput

SVT 4 8.4 1 1.5 OOM N/A
VMAE 30 139.6 8 32.9 4 17.0
VMAEv2 15 58.8 8 29.7 4 16.1
VJEPA 37 74.4 22 37.9 8 16.2
DINOv2 12 23.4 4 7.8 1 3.1
ViDROP 33 43.1 11 17.4 4 7.8

randomly initialized model was trained for 4× the epochs of the pretrained models but still required
significantly less total training time when considering the pretraining duration of the checkpoints.

Data compression method. To accelerate training for ViT-Small and ViT-Base models, we em-
ployed KMeans-based data compression. Table 3 shows that KMeans compression strikes a good
balance between quality (measured by PSNR), encoding/decoding time, and compression rate.
Other methods rely on large models, complicating inference and disallowing the use of pretrained
checkpoints. For all ablation experiments, data was compressed once, taking around 40 hours for 60
epochs of data. We used a patch size of 10× 10 and 65536 clusters.

Table 4 demonstrates that using KMeans data results in a 5.37× speedup with a small performance
cost when training a ViT-Small model. Training the same model on pixel data for the same duration
yields worse performance. ViT-Base sees a 2.71× speedup, and ViT-Large a 1.24× speedup (better
GPUs can lead to greater speedup, as data becomes the bottleneck).

Training throughput. Table 5 compares the training speed of various self-supervised learning
(SSL) methods for video ViT models on a single NVIDIA RTX 4090 GPU (24 GB VRAM). We
used official code and configurations for each model: VJEPA Bardes et al. (2024) with repeated
masking of 2, VideoMAEv2 Wang et al. (2023a) with 4, and VideoMAE Tong et al. (2022) without
repeated masking. DINOv2 represents the dense version of our model without sparsity. Measure-
ments exclude data loading time, focusing on forward and backward passes. While ViDROP shows
lower raw throughput compared to reconstruction-based methods due to its combination of small
and large crops and more complex loss calculation, it significantly outperforms consistency-based
models like SVT and DINOv2. Crucially, as demonstrated in Table 2, ViDROP achieves superior
sample efficiency, reaching higher performance with fewer training iterations, thus offsetting its
lower per-iteration speed.
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Table 6: Comprehensive performance comparison on action classification tasks. We report
linear probing accuracies (%) for all datasets and KNN accuracies for smaller datasets. Numbers
in parentheses indicate evaluation clips. For K400, we also present low-shot learning results with
varying amounts of labeled data. For temporal action detection on THUMOS14, we report the
average mean Average Precision (mAP) across different temporal Intersection over Union (tIoU)
thresholds. ViDROP variants consistently outperform their baselines across all tasks and metrics.
Superscript numbers indicate performance gap compared to the respective baseline.

Method
K400 SSv2 UCF-101 HMDB-51 K400 Low-shot THU.

Linear Attn. Linear Linear KNN Linear KNN 5% 10% 50% Avg.
(5×3) (1×1) (2×3) (5×3) (1×1) (5×3) (1×1) Linear (5×3) mAP

ρBYOL 71.5 N/A 25.3 89.6 85.2 61.2 49.7 - - - -
SVT 68.1 N/A 20.3 91.3 87.2 63.1 51.8 - - - -

VMAELarge
1600 60.7 68.6 27.9 84.5 49.1 60.3 29.2 43.3 50.4 59.6 15.0

+ViDROP kmeans
noaug 63.4+2.7 71.9+3.3 32.9+5.0 86.6+2.1 73.0+23.9 60.9+0.6 45.5+16.3 50.4+7.1 55.8+5.4 64.7+5.1 50.2+35.2

+ViDROP 74.3+13.6 72.6+4.0 38.4+10.5 94.2+9.7 88.0+38.9 69.6+9.3 55.2+26.0 59.7+16.4 64.2+13.8 71.8+12.2 57.1+42.1

VJEPALarge 62.7 73.7 43.2 92.0 81.2 66.9 54.7 49.6 54.8 58.0 20.1
+ViDROP noaug 72.4+9.7 71.1-2.6 33.8-9.4 91.1-0.9 81.3+0.1 66.0-0.9 51.0-3.7 58.5+8.9 62.5+7.7 69.8+11.8 49.9+29.8

+ViDROP 74.8+12.1 72.7-1.0 38.7-4.5 93.7+1.7 84.8+3.6 69.6+2.7 55.3+0.6 61.2+11.6 65.4+10.6 72.5+14.5 56.2+36.1

VMAEHuge
1600 67.2 - 29.3 84.3 48.6 59.7 30.1 46.8 52.9 64.5 41.7

+ViDROP 74.8+7.6 - 39.3+10.0 94.2+9.9 85.9+37.3 69.4+9.7 53.4+23.3 60.3+13.5 64.4+11.5 72.2+7.7 55.7+14.0

ViDROP Huge
noaug 66.3-0.9 - 30.1+0.8 85.2+0.9 75.7+27.1 59.6-0.1 45.4+15.3 50.1+3.3 55.4+2.5 63.7-0.8 47.2+5.5

4.3 RESULTS

For our main results, we train seven different models to comprehensively evaluate the performance of
ViDROP under various conditions. We begin with two ViT-Large models based on VideoMAE Tong
et al. (2022), one with minimal data augmentation and another incorporating heavier augmentations
used in DINO Caron et al. (2021). These are followed by two similarly configured ViT-Large models
based on VJEPA Bardes et al. (2024), demonstrating the compatibility and versatility of our method
across different pretraining paradigms. To showcase scalability, we include two ViT-Huge mod-
els: one initialized from a VideoMAE checkpoint and another trained using LEMON Wang et al.
(2023b) expansion techniques from random initialization, highlighting the efficiency and potential of
our method for training large-scale models with limited computational resources. All VideoMAE-
based models are initialized with checkpoints pretrained for 1600 epochs on Kinetics400, while
VJEPA-based models use the original VJEPA checkpoint. For one VideoMAE-based ViT-Large
model, we utilize KMeans compressed data. While KMeans compression doesn’t offer significant
speed benefits for ViT-Large models, we include this configuration to demonstrate the robustness
of our findings. By using compressed data, we establish a lower bound on performance (as shown
in Table 4), yet still outperform the original VideoMAE model, underscoring the effectiveness of
ViDROP even under potentially suboptimal data conditions. Additionally, to facilitate direct com-
parisons with academic papers, we separately train a ViT-Base model based on VideoMAE trained
for 800 epochs on Kinetics400.

Action classification results. Table 6 presents our comprehensive results on various action clas-
sification tasks, including standard action recognition, low-shot learning, and temporal action de-
tection. For action recognition, ViDROP variants consistently improve linear probing accuracies
across all datasets, with the exception of VJEPA-based models on some datasets due to potential
forgetting effects from extra training data of VJEPA Bardes et al. (2024). Notably, attention prob-
ing for VideoMAE-based models shows improvement, while VJEPA-based models exhibit lower
attention probing accuracies compared to linear probing, reminiscent of DINOv2’s behavior on Im-
ageNet. KNN accuracies see substantial improvements, particularly for VideoMAE-based models.
The incorporation of data augmentation further enhances performance across metrics. In low-shot
settings on K400, our ViDROP models often match or surpass the full data baseline using only
10% of the labeled data, demonstrating strong data efficiency. For temporal action detection on
THUMOS14 Jiang et al. (2014), ViDROP shows remarkable improvement over baselines, with
the average mAP more than doubling, indicating more temporally precise feature representations.
The LEMON-trained model, starting from random initialization, achieves comparable results to
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Table 7: Performance comparison of ViT-Base models. Linear probing accuracies (%) on various
datasets, DAVIS tracking ((J&F)m metric), and copy detection (µAP). SIGMADINO Salehi et al.
(2024) uses a teacher model pretrained on extra data.

Method SSv2 K400 UCF HMDB IN-1K DAVIS Copy Det.

SIGMAMLP 19.9 30.7 73.8 45.0 24.1 - -
SIGMADINO 20.8 47.5 80.7 52.3 45.0 - -
VMAEBase

800 17.5 20.7 58.6 37.7 20.2 40.8 2.0
+ViDROP noaug 25.4 59.5 81.7 54.6 44.6 54.8 22.4

VMAEHuge
1600, with slightly lower performance on full K400 but improved results in low-shot scenar-

ios, highlighting the potential of progressive training for large-scale video SSL.

These comprehensive results demonstrate the effectiveness and scalability of ViDROP across various
model sizes, datasets, and action understanding tasks. Our method consistently achieves state-of-
the-art performance in linear probing, shows strong transferability to smaller datasets and low-shot
scenarios, and exhibits remarkable generalization to temporal action detection, underscoring its po-
tential for a wide range of video understanding applications.

Comparison with small scale methods. To facilitate fair comparisons with small scale approaches,
we trained a ViT-Base model following the setting of SIGMA Salehi et al. (2024) (current SotA
method in small scale models). Table 7 presents the results of this comparison across various
datasets and tasks. For ImageNet (IN-1K) evaluation, we follow the common practice of repeat-
ing each image twice to create a pseudo-video input. Our method significantly outperforms both
SIGMA variants and the VideoMAE baseline across all datasets, demonstrating its effectiveness
even without additional data augmentation. Notably, ViDROP achieves comparable or superior per-
formance to SIGMADINO, which benefits from a teacher model pretrained on extra imagenet data.
The results also showcase ViDROP’s versatility on DAVIS tracking Pont-Tuset et al. (2017) and
copy detection Pizzi et al. (2023) tasks. For DAVIS tracking, we adopt the DINO approach of
processing frames individually. The findings highlight ViDROP’s substantial improvements over
VideoMAE baselines, particularly in copy detection where ViDROP achieves a remarkable 22.4
µAP, compared to 2.0 for the VideoMAE baseline. These results underscore ViDROP’s ability to
learn rich, transferable representations across diverse video understanding tasks.

5 CONCLUSION

We presented ViDROP, a novel self-supervised learning approach for video understanding that
combines token dropping and masking strategies within a single encoder. Our method achieves
state-of-the-art performance across various video understanding tasks, including action recognition,
temporal action detection, and low-shot learning, while maintaining computational efficiency. Key
innovations include a sparse encoder architecture that eliminates the need for a separate decoder, en-
abling fine-grained representation learning without computational overhead, and a lossy data loading
scheme based on k-means clustering, significantly accelerating data processing while maintaining
compatibility with pretrained models. We demonstrated scalability across model sizes and initializa-
tion strategies, including successful training of ViT-Huge models from scratch using limited com-
putational resources. ViDROP’s remarkable data efficiency in low-shot learning scenarios and its
effectiveness in both action classification and temporal action detection tasks highlight its versatility
and potential for real-world applications.

Looking forward, our work opens up possibilities for training state-of-the-art models with limited
computational resources, making advanced video understanding more accessible. However, our re-
sults with VJEPA-initialized models highlight the importance of training on more diverse datasets to
enhance generalization capabilities. Additionally, while our LEMON experiments for training ViT-
Huge models from scratch show promising results, they are not yet on par with models initialized
from pretrained weights, indicating a need for further exploration of optimal scaling strategies.
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