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ABSTRACT

Optical Character Recognition (OCR) serves as a critical bridge connecting vision
and language, attracting increasing attention in the community of Large Vision-
Language Models (LVLMs). However, due to the prevalent encode-then-decode
architecture, LVLMs tend to over-rely on language priors, leading to frequent fail-
ures in following basic visual-text instructions. We term this issue OCR hallu-
cination. To systematically mitigate it and facilitate reliable OCR perception in
LVLMs, we conduct the first large-scale empirical analysis based on OCRBench
v2. Our findings reveal that current LVLMs frequently misinterpret or ignore
textual visual content, particularly across two orthogonal dimensions, including
perception task and hallucination taxonomy. Building on these insights, we intro-
duce HalluText, a benchmark specifically designed to comprehensively evaluate
OCR hallucination in LVLMs across nine subclasses. Alongside this benchmark,
we propose OCRAssistor, a lightweight plug-and-play method pioneering large-
small model collaboration. By integrating compact OCR model outputs into the
LVLM decoding process, it achieves a 9.6% improvement on HalluText with only
marginal computational cost. When applied to OCRBench v2, this method also
improves the performance of the top-performing open-source model Qwen2.5-
VL-7B, achieving a 3% gain and highlighting the importance of addressing OCR
hallucination in LVLMs. Through our benchmark and proposed solution, we hope
to shed light on the challenges and potential pathways for improving visual text
perception in LVLMs. The organized benchmark and the relevant code will be
released soon.

1 INTRODUCTION

Driven by advances from both academia and industry, Large Vision Language Models (LVLMs)
are increasingly applied across a wide range of domains. As a crucial bridge between vision and
language, Optical Character Recognition (OCR) has emerged as both a foundational pre-training
paradigm and a key task for supervised fine-tuning. OCR-centric tasks have also garnered significant
attention from both general-purpose (Wang et al.l 2024b; L1 et al.} 2024a; [Lu et al., 2024} [Yao et al.}
2024} Bai et al., 2025 Zhu et al., [2025a) and OCR-specialized LVLMs (L1 et al., 2024b; Huang
et al.,[2024a; Yu et al., |2024b; [Zhao et al., [2024} |[Nacson et al., [2025} |L1 et al., 2025), owing to their
wide applicability in real-world scenarios such as smart offices, content moderation, and document
intelligence.

Despite this growing focus on OCR-centric tasks, we observe that current LVLMs still often struggle
with seemingly simple questions that involve understanding text within images. Figure [I|illustrates
three representative failure cases where state-of-the-art models (Yao et al.|[2024;|Huang et al.,|2024a;
Bai et al.,[2025) consistently fail. Borrowing the concept of hallucinations, we attribute this issue as
“OCR hallucination”, defined as instances where the responses generated by LVLMs fail to accu-
rately follow visual text-centered instructions. To systematically analyze and attribute these errors,
we conduct a comprehensive empirical study on widely adopted OCRBench v2 (Fu et al.| [2024).
Evaluations across over 1,000 samples reveal that these errors are prevalent across different LVLMs
and tasks, while exhibiting consistent patterns that enable their categorical grouping. Driven by such
findings, we categorize the errors along two orthogonal dimensions: 1) the perception task stage,
which focuses on the perceptual stages of localization and recognition, and 2) the hallucination
taxonomy, which classifies error types into category, relation, and attribute hallucinations. Take the
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Figure 1: Taxonomy of OCR Hallucinations. The inner rings represent a dual-perspective taxonomy
by task stage and hallucination type, while the outer ring indicates the nine HalluText subsets aligned
with these categories. Colors denote hallucination types, and three examples around the perimeter
illustrate their definitions and characteristics.

the bottom of Figure[T]as an example, the question is “What’s the text in blue?”, the correct answer
is “shalls”, but all three models erroneously output “Connection”. We attribute this error primarily
to incorrect localization—the models fail to attend to the region containing the blue text. Further
analysis reveals that this localization failure stems from a misunderstanding of the visual attribute
“blue”, indicating an error due to attribute hallucination. Thus, this case exemplifies how an ini-
tial perceptual failure (e.g., color misinterpretation) can propagate to semantic-level hallucinations.
By framing OCR errors within this dual-perspective framework, we aim to better understand the
underlying causes of OCR failures and provide actionable insights for future model development.

Based on these insights, we introduce a new benchmark HalluText. Unlike the scattered
hallucination-related samples in OCRBench v2, HalluText offers a more comprehensive and struc-
tured diagnosis for OCR hallucination in LVLMs. Following 2024), we formulate test
samples as multiple-choice questions and collect 4,678 image—question—answer triplets covering
nine distinct types of hallucinations. As illustrated in Figure [I] these types are built upon the two
previous orthogonal dimensions, comprising existence, incompletion, typo, position, index, slice,
counting, frequency, and stroop effect.

Furthermore, we also propose a lightweight, plug-and-play method to mitigate OCR hallucinations,
called OCRAssistor. This framework pioneers a novel collaborative paradigm between large and
small models, where a small-scale OCR-specialized model injects vision-grounded cues to guide
the decoding process of large vision-language models (LVLMs). Notably, this design does not
require additional fine-tuning of the large model, making it both efficient and flexible to deploy.
Despite its simplicity, OCRAssistor achieves impressive results, improving the baseline Qwen?2.5-
VL-7B by 9.6% on HalluText. When applied to the more general OCRBench v2, it outperforms
the baseline by 2.5% on the English subset and 3.7% on the Chinese subset. These results not only
demonstrate the effectiveness and generalizability of our approach in fine-grained perception tasks
but also underscore the critical importance of addressing hallucination in OCR-centric applications.
Our contributions are summarized into three main aspects.

* We conduct an extensive empirical study to uncover the overlooked problem of OCR hallucina-
tion in LVLMs. Driven by the results, we establish a dual-perspective taxonomy based on the task
categories and hallucination types to systematically analyze these errors.

* We construct HalluText, a fine-grained benchmark for OCR hallucination. HalluText consists of
4,678 carefully curated samples across 9 subsets, each targeting specific perception and hallucina-
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tion dimensions. Compared to existing benchmarks like OCRBench v2, HalluText offers a more
comprehensive and structured diagnostic of OCR hallucination, providing clear insights for future
advancements of LVLMs.

* We design OCRAssistor, a plug-and-play method to mitigate OCR hallucination through a novel
large-small model collaboration framework. To our knowledge, it is the first work to adopt such
a collaborative paradigm for OCR hallucination mitigation. OCRAssistor incorporates minimal
computational overhead, yet significantly improves LVLMs on both HalluText and OCRBench v2.
Extensive experiments validate its effectiveness, efficiency, and scalability across a wide range of
scenarios.

2 RELATED WORKS

2.1 OCR-AWARE BENCHMARK IN LVLM ERA

Before the LVLM era, OCR-aware benchmarks focused on specific sub-tasks, such as scene text
detection and recognition (e.g., ICDAR (Karatzas et al., [2013)), Total-Text (Ch’ng & Chanl, [2017),
SCUT-CTW1500 2017), visual text understanding (e.g., TextVQA (Singh et al., 2019),
STVQA (Biten et al., 2019)), key information extraction (e.g., FUNSD (Jaume et al., 2019),
SROIE (Huang et al., 2019)), and chart understanding (e.g., ChartQA (Masry et al., [2022)), info-
graphicVQA (Mathew et al., 2022)). With the rise of LVLMs, the focus shifted towards unified
OCR-centric benchmarks. OCRBench integrates five major tasks—text recogni-
tion, scene VQA, document VQA, key information extraction, and handwritten formula recogni-
tion—across 27 datasets. The latest OCRBench v2 expands further, adding element parsing, knowl-
edge reasoning, and mathematical calculations. Additionally, document parsing and understanding
have gained widespread attention, with new benchmarks (Wei et al.} 2024} [Ouyang et al., 2025}
created for evaluating document-specific tasks. Recent research has also analyzed seg-
mentation deficiencies, with OCR-Reasoning (Huang et al.| 2025)) and Reasoning OCR (He et al}
focusing on dense text understanding. Work by (Shu et all 2025) and (He et al., 2025b)
addresses hallucinations in non-semantic and occluded/blurred text-rich scenarios. In this paper, we
propose a new benchmark to uncover OCR hallucinations in OCR-centric tasks, based on common
failure cases from the general OCRBench v2.

2.2 HALLUCINATION MITIGATION

The concept of hallucination origi-
nates from the domains of pathology

and psychology, where it is defined . _
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nomenon where the generated textre- Figure 2: The distribution of failure cases on OCRBench v2.
sponse does not align with the corre-

sponding visual content (Bai et al., 2024). To address this, some methods improve training data
et al.| 2023 [Yu et al.| [2024a; Zhang et al.,[2024), adopt architectural designs
et al., [2024)), or introduce post-training stages (Sun et al, 2023} [Zhao et al, 2023} Gunjal et al.)
2024). Given the high computational cost, others have explored training-free approaches (Leng
et al.l 2024; [Wang et al. [2024clfa; [Huang et al.l [2024b} [Favero et al, 2024} [Zhu et all 2025b),
mainly categorized as contrastive decoding and attention intervention. Contrastive decoding
et al} 2024} [Wang et all, 2024cta} [Ghosh et al, 2025) modifies the decoding distribution but re-
quires additional inference, leading to latency. Attention intervention (Huang et all, [2024b}

et al.l 2025b} [Favero et al, 2024)shifts focus toward visual inputs during decoding but still incurs
overhead. In OCR-centric tasks, we propose a large-small model collaboration framework that in-
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Figure 3: An overview of HalluText, which collects the challenging issues in visual text perception,
including localization and recognition. The column axis involves the three categories of halluci-
nation, Category Hallucination, Relation Hallucination, and Attribute Hallucination, respectively.
Bold indicates the correct answer.

tegrates a lightweight, visually faithful OCR model into LVLMs to mitigate hallucination. This
plug-and-play design improves visual alignment while avoiding the latency of prior training-free
methods.

3  ANALYSIS ON VISUAL TEXT HALLUCINATION

3.1 EMPIRICAL ANALYSIS ON OCRBENCH V2

OCRBench v2 is currently the largest and most comprehensive benchmark for OCR-related tasks,
comprising over 10,000 annotated question-answer pairs across more than 20 diverse scenarios in
both Chinese and English. However, hallucinated samples are scattered across various task cate-
gories, making it challenging to systematically evaluate the hallucination-handling capabilities of
LVLMs. To address this, we perform targeted analysis by identifying and categorizing hallucination
types in model failures.

We select three representative LVLMs, including Qwen2.5-VL, MiniCPM-o 2.6, and MiniMonkey,
and apply the official evaluation scripts to identify 3,006 samples where all models fail consis-
tently. It is important to note that not all error cases are related to hallucinations. We consider only
hallucination-related samples as analyzable. Other errors, such as those caused by question mis-
interpretation, complex reasoning failures, or annotation issues within the dataset, are not directly
related to OCR hallucinations and are therefore excluded from our analysis.

To attribute hallucinations, we adopt two orthogonal dimensions: (1) perception task type (local-
ization vs. recognition) and (2) hallucination type, which we refine for OCR settings as follows:
Category Hallucination: incorrect recognition of text content or coordinates; Relational Hallu-
cination: errors in spatial or semantic relations between text instances; Attribute Hallucination:
incorrect description of text attributes such as quantity or color. Among the failed samples, 1,034
(34%) are deemed analyzable. We perform detailed attribution across models, and the resulting
hallucination distributions, which are summarized in Figure[2] reveal consistent patterns across task
types and models. These findings provide both conceptual grounding and empirical basis for devel-
oping robust hallucination benchmarks in OCR-focused LVLM evaluation.
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Table 1: Distribution and original source of HalluText.

Subsets Existence Position Counting Stroop Typo Incomplete Freq. Index Slice

Number 250 500 233 200 500 1495 500 500 500

Source SCUT-ENS Total-Text ICDAR2013 Manual Typo-corpus Union-Incomplete Union-contextless
(Liu et al.}2020)  (Ch’ng & Chan;2017)  (Karatzas et al./2013] - (Hagiwara & Mita|2019}) (Jiang et al.||2023}

3.2 HALLUTEXT BENCHMARK

Building on the empirical analysis in the previous section, we identify the distribution of halluci-
nated samples within OCRBench v2. Based on the occurrence scenarios of these hallucinations,
we construct a dedicated dataset for OCR hallucination research, named HalluText, by reorganizing
existing OCR datasets according to hallucination types. HalluText consists of 9 subsets, each corre-
sponding to a specific hallucination category, and includes a total of 4,678 image—question—answer
triplets. The definitions and construction procedures of each subset are detailed in the following
section. The distribution and sources of the subsets are summarized in Table[Il The detailed con-
struction procedures of all subsets are provided in Appendix

Existence: Due to training data biases, LVLMs are prone to hallucinations when presented with
manipulated images. This subset is constructed from the scene text erasure dataset SCUT-ENS (Liu
et al., |2020), with the goal of evaluating whether LVLMs can accurately perceive the presence of
specific words in an image. To address the balance between Yes and No answers, we also incorporate
negative polarity questions during the question construction process.

Incompletion & Typo: Influenced by the Language model, LVLMs tend to replace non-semantic
words in their outputs with semantically plausible text. We constructed the Incomplete and Typo
subsets using scene text that is affected by occlusion or truncation, and text containing common
spelling errors, respectively. These subsets are designed to evaluate the ability the capability of
accurately recognizing visual text while remaining robust to linguistic priors.

Position: Empirical studies reveal that LVL.Ms exhibit limitations in relative position perception.
To evaluate their ability to understand spatial relationships in real-world scenes, we design a relative
position recognition task based on scene text data. This task assesses how well LVLMs can perceive
relative positions of visual elements across the entire image.

Index & Slice: Correspondingly, we also observe relation-level hallucinations within individual text
instances. To minimize the influence of semantic priors, we construct position-specific questions on
the Union14M-Contextless subset (Jiang et al., |2023), using common string slicing and indexing
operations for naming. These subsets are designed to evaluate the ability to perceive intra-word
spatial relations within single text instances.

Counting: Empirical results suggest that LVLMs struggle with counting-related tasks. To evaluate
their ability to perceive numerical attributes of visual text, we construct a counting task based on the
ICDAR?2013 dataset, which primarily consists of focused text with minimal ambiguity. This subset
is designed to assess whether LVLMs can accurately determine the number of text instances in an
image.

Frequency & Stroop Effect: Beyond counting, color perception represents another key aspect of
attribute-level hallucination. In addition to the intra-text counting task, we draw inspiration from
the Stroop Effect (MacLeod, [1991)) to construct synthetic images containing color and shape words.
These two subsets are designed to evaluate the ability of LVLMs to suppress hallucinations related
to text quantity and text color, respectively. More details are illustrated in Algorithm 1]

To ensure the quality of HalluText, we filtered out samples with blurred or occluded text and re-
moved short, duplicate, or overly close text instances that could introduce spatial ambiguity. Each
QA pair was then independently reviewed by two annotators and retained only when both agreed
that the text was clearly readable, the visual evidence was sufficient, and the question—answer tem-
plate was unambiguous, ensuring high inter-annotator reliability. Distractors were designed to be
visually plausible yet falsifiable, using strict geometric rules for spatial relations and +1 adjustments
for counting tasks to maintain controlled difficulty. These steps ensure that HalluText isolates hallu-
cination behavior without being confounded by image-quality issues or ambiguous annotations.
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3.3 METRIC

Following OCRBench v2, we adopt a multiple-choice QA format with up to four options per ques-
tion, using accuracy as the evaluation metric. For standardized evaluation, given images Z, questions
Q = {¢;}¥,, and answers A = {a;}}¥,, we employ a fixed prompt template: “ Please strictly fol-
low these rules: Only output the letter of the correct answer. Place the answer on a separate last
line. Question: {question}. Answer:{}.” The templatized questions are then fed into LVLMs to
obtain predictions P = {p;}¥; = M(Z, Q), where M is the LVLM. The multi-choice accuracy is

formulated as Acc = L SN 1(p; = a;), where 1 is the indicator function.

4 METHOD

Inspired by (Ghosh et al.} [2025), we introduce the OCRAssistor, an OCR-guided decoding frame-
work that pioneers a collaborative mechanism between a large vision-language model (LVLM) and
a lightweight OCR expert model to alleviate perception hallucination in OCR-centric tasks. The
overall pipeline is illustrated in Figure 4]

Given an input image and a textual prompt, we first extract textual elements from the im-

age using a lightweight OCR model, resulting in a sequence Xock = {01,02,...,0r}. To
ground the LVLM’s generation in these visual texts, we prepend them to the user prompt
Xoprompt = {1, %2,..., 2y}, yielding the augmented prompt Xconcat = {01,...,0k,T1,...,Tn}

Next, we construct a reference token distribu-
—,  tion over the model’s vocabulary V from the
OCR outputs. Specifically, we pass the OCR

w2

9 ,
g — [ text through the LVLM’s embedding and out-
) w put layers to obtain pseudo-logits focg € RV,
ARNOLD PALME 19,99 which approximate the token likelihoods if the
Cop TS e eue pae 29 model were asked to generate the OCR text.

These logits are normalized with a temperature-
scaled softmax:

Text Text Text
Tokenizer Tokenizer Tokenizer ] L
Attention Attention Appro

Layers Layers  Dec

uonnquisia
subo7 400

LI |

Decoder Decoder R . exp (KOCR (w) /T)
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Jmmmg ocrou| v oz > vev exp(locr (v)/T)
x The number on the (OCR-based Regularization B ‘é E ( 1 )
yellow AD is 12.99 The number on — B B g E . )
weyelowADi 9%, T — — - 5% where T' controls the sharpness of the distribu-
— Keopol METUOCMEATHEN 15 5 tion. This step ensures that all tokens receive

I Tmege  Xo T non-zero probability mass. During decoding,
let £; € RIVI denote the original decoded log-
Figure 4: The framework of OCRAssistor. its predicted by the LVLM M at step ¢ for the
next token, and let p;(w) = softmax(L;)(w)
be the corresponding token distribution. Moti-
vated by KL-divergence (Kullback, [1951), we
incorporate the OCR guidance by directly modifying the logits in a distribution-aware manner:

E;(w):ﬁi(w)f)\logw, Yw €V, 2)
Pocr (w)

where ) is a hyperparameter controlling the strength of OCR-based regularization. To ensure the

robustness of our design choices, we provide a detailed ablation on A in Table [13| of Appendix

D] Intuitively, tokens more consistent with OCR-derived probabilities are relatively boosted, while

inconsistent ones are penalized. The adjusted logits are then normalized to obtain the final decoding
distribution:

P (w | x<;) = softmax(L])(w). (3)

At each step, the next token is sampled from p’, using the same decoding configuration as the base
model. This ensures that the OCR guidance is seamlessly integrated into standard LVLM decoding
while encouraging semantic consistency with visual texts. The generation terminates once an end-
of-sequence token is produced or a predefined length limit is reached.

This approach integrates the predictions of an external OCR model into the decoding process via
a KL-divergence-based guidance mechanism. This alignment encourages the LVLM to focus more
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Table 2: Performance comparison on HalluText. OA indicates the OCRAssistor. Abbreviations:
EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY = Typo, IC =
Incompletion, FQ = Frequency, ID = Index.

Localization

Recognition

Model ‘ EX POS CT ‘ Accc | g7 Ty I FQ D SL ‘ Acerec | Acca
Proprietary LVLMs
Gemeni-Pro 91.6 63.8 69.1 74.8 | 99.0 66.8 56.1 63.7 462 628 | 65.8 68.8
GPT-40 ‘ 89.2 49.0 56.7 ‘ 650 | 985 952 751 649 669 60.1 ‘ 76.8 ‘ 72.8
Open-source LVLMs
Qwen2.5-VL-3B 90.8 39.4 464 | 589 | 940 792 421 495 450 477 | 59.6 59.3
Qwen2.5-VL-7B 984 504 59.7| 695 |90.5 888 723 623 503 498 | 69.0 69.1
Qwen2.5-VL-32B 944 554 63.1 | 71.0 |920 884 8l.6 69.6 443 473 | 705 70.7
InternVL3-2B 752 31.8 442 | 504 | 99.0 828 62.6 456 384 407 | 615 57.8
InternVL3-8B 89.2 36.8 670 | 643 |598 906 634 533 526 566 | 62.7 63.3
InternVL3-14B 95.6 672 63.1 | 753 |99.5 928 881 757 600 63.8 | 80.0 78.4
MiniCPM2.6-0-8B 776 512 519 | 602 |965 828 77.1 519 448 514 | 674 65.0
MiniMonkey-2B 764 324 352 | 480 | 769 710 771 438 6.0 244 | 499 49.2
LLaVA-NeXT-7B 740 386 313 | 480 | 714 486 415 643 518 396 | 446 45.7
LLaVA-NeXT-7B + OA | 81.6 372 42.1 | 536 940 634 735 493 324 357 581 56.6 (+10.9)
Qwen2.5-VL-7B 984 504 597 | 695 | 905 888 723 623 503 498 | 69.0 69.1
Qwen2.5-VL-7B+OA | 98.8 504 665 | 719 955 89.8 813 71.0 729 820 821 78.7 (+9.6)

heavily on visually grounded textual cues, effectively suppressing hallucinations and improving vi-
sual fidelity. Unlike prior comparison-based decoding methods, such as Visual Description Ground-
ing Decoding (VDGD), which require multiple rounds of model inference, our approach achieves
efficient inference by performing only one forward pass through the LVLM and a lightweight OCR
model. This significantly reduces computational cost while maintaining strong performance.

5 EXPERIMENTS

5.1 SETTINGS

We evaluate and compare HalluText and OCRBench v2 with several state-of-the-art LVLMs, in-
cluding proprietary models GPT-40 (Hurst et al., |2024) and Gemini-Pro (Team et al.| |2024), as
well as open-source models InternVL3 (Zhu et al., 2025a), Qwen2.5-VL (Bai et al., [2025)), LLaVA-
NeXT (Li et al.| [20244a), MiniCPM2.6-0 (Yao et al.,|2024), and MiniMonkey (Huang et al.| 2024a).
We facilitate the widely used OCR engine PaddleOCR-v5 as our OCR model. To ensure fair com-
parison, we locally re-infer representative open-source LVLMs using only the annotated question
prompts, and follow the official evaluation protocol. The maximum number of generated tokens is
set to 1024. The temperature factor 7" and regularization factor A are set to 0.1 and 0.1 by default.
The detailed prompt settings are discussed in Appendix [C|

5.2 RESULTS AND ANALYSIS
5.2.1 HALLUTEXT

Table 2] presents the results on our proposed HalluText. We have several findings:

1) OCR-centric hallucination remains an unsolved challenge across both proprietary and
open-source models. Overall, all models achieve less than 80% accuracy on our benchmark, and
their performance on fine-grained subsets, such as relative position, counting, index, and slice, is sig-
nificantly lower than the average accuracy Accyy;. This highlights the persistent and under-addressed
issue of OCR hallucination in current LVLMs. The poor performance on Slice and Index suggests a
limited understanding of ordinal relationships. Counting and Relative position tasks remain difficult
due to the insensitivity of LVLMs to object-level correlation and the lack of fine-grained perceptual
reasoning. Moreover, subsets like Frequency and Slice, which lack contextual information, expose
the reliance of LVLMs on semantic cues for accurate recognition.

2) The scaling law continues to hold for the OCR hallucination task. We evaluate recent versions
of Qwen and InternVL across three model scales and observe a consistent trend: larger models
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Table 3: Performance comparison on OCRBench v2. OA indicates the OCRAssistor. Abbrevia-
tions: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation Extraction,
EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR = Knowledge

Reasoning.
Model English Part Chinese Part Overall
TR TD TS RE EP MC TU KR | TR RE EP TU KR | English Chinese

Proprietary LVLMs

Gemini-Pro 61.2 395 135 793 392 477 755 593|525 473 309 515 334 51.9 43.1

GPT-40 612 267 00 775 363 434 71.1 555|216 530 298 385 182 46.5 322
Open-source LVLMs

MiniMonkey-2B 581 196 00 513 330 157 61.7 448 | 614 405 279 428 179 355 38.1

MiniCPM-o0-2.6-8B 674 265 00 701 340 317 706 576|547 524 276 425 31.6 44.8 41.7

InternVL3-8B 669 257 00 853 368 344 723 588|676 569 327 538 36.7 47.5 49.5

LLaVA-NeXT-7B [38.0 185 00 210 98 133 659 486 58 93 141 40 16 26.9 7.0

LLaVA-NeXT+OA 472 19.1 00 604 227 220 644 450|310 29.1 182 440 181 | 35.1(+8.2) 28.1(+21.1)

Qwen2.5-VL-7B | 670 223 0.0 768 282 341 720 563 |69.0 527 423 433 379 44.6 49.1

Qwen2.5-VL-7B+OA 604 22,6 0.0 864 33.6 462 729 547|570 648 394 568 458 |47.1(+2.5 528(+3.7)

Table 4: Performance comparison on different hallucination mitigating methods. OA indicates the

OCRAssistor. Consensus are ensembled with Qwen2.5VL-3B, InternVL-2B and LLaVA-NeXT-7B.

Abbreviations: EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY =
Typo, IC = Incompletion, FQ = Frequency, ID = Index.

Localization Recognition

Model EX POS CT ST TY IC FQ 1 SL | Are | AcCan

SemanticHallu | 90.0 40.0 49.1 | 59.7 97.0 742 456 532 519 463 | 614 60.8
Consensus 83.6 360 446 | 547 869 694 423 445 416 466 | 552 55.1
VDGD 944 396 498 | 613 965 782 748 479 476 432 | 647 63.6
OCRAssistor | 96.4 40.6 50.6 | 62.5 | 100.0 838 76.2 41.6 444 43.0| 648 64.1

Acclo(:

exhibit stronger capabilities in suppressing textual hallucinations, confirming the applicability of
scaling effects in this domain.

3) Our OCRAssistor method, under a training-free setting, integrates an off-the-shelf open-
source OCR model and yields substantial improvements. Specifically, it improves LLaVA by
10.9% and Qwen2.5-VL by 9.6%, with consistent gains across nearly all fine-grained subsets. These
results demonstrate the effectiveness of our approach in mitigating OCR hallucinations.

5.2.2 OCRBENCH V2

We further evaluate our approach on OCRBench v2, a general benchmark for OCR-centric tasks. Ta-
ble 3] shows that our method improves LLaVA-NeXt-7B by 8.2% in English scenarios and 21.1% in
Chinese scenarios. For Qwen2.5-VL-7B, which possesses stronger baseline capabilities, our method
still achieves 2.5% and 3.7% improvements in English and Chinese settings, respectively. The no-
tably larger gain in LLaVA’s Chinese performance is primarily due to the relatively limited Chinese
data exposure during its pretraining phase, compared to Qwen2.5-VL. This suggests that our method
can effectively compensate for underrepresented modalities or languages in pretraining, particularly
in low-resource scenarios. Beyond perception tasks, OCRAssistor also improves relation extraction,
text comprehension, and knowledge reasoning. These results show that integrating an OCR model
not only benefits visual-text perception tasks but also enhances high-level semantic understanding
in LVLMs.

5.2.3 COMPARISON OF OTHER HALLUCINATION MITIGATION METHODS

We compared OCRAssistor with three representative hallucination-mitigation approaches: (1) a
visual-attention—enhanced variant (Shu et all [2025), (2) a consensus-based ensemble method
(Zhang et al.| [20235), and (3) the contrastive decoding strategy VDGD (Ghosh et al.| 2025). As
shown in the Table 4] OCRAssistor achieves the best performance across all HalluText subsets,
surpassing the consensus-based method by +9.8% and VDGD by +1.3%, while also being substan-
tially more efficient. These gains mainly come from incorporating reliable external OCR evidence,
which provides explicit grounding for both detection and recognition. In contrast, uncertainty-based
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Table 5: Ablation for all components. Baseline selects Qwen2.5-VL-7B. CoT means the prompt
includes the chain-of-thought instruction “Let us think this question step by step.”. OCR means
the OCR results are included in the prompt directly. OCRAssistor (OA) is our final version. OA
indicates the OCRAssistor. Abbreviations: EX = Existence, RP = Relative Position, CT = Counting,
ST = Stroop Effect, TY = Typo, IC = Incompletion, FQ = Frequency, ID = Index.

Localization Recognition
Model EX POS CT ‘ Accioc | g1 1y 10 FQ ID SL ‘ Acerec | Accau
Qwen2.5VL-7B 984 504 597 | 695 |90.5 888 723 623 503 498 | 69.0 | 69.2
Qwen2.5VL-7B + CoT 984 500 63.1| 705 |92.0 882 562 651 776 80.6| 766 | 746
Qwen2.5VL-7B + OCR 980 522 60.1 | 70.1 |99.0 90.0 894 564 487 490 | 721 | 714
Qwen2.5VL-7B + OCR +CoT | 98.0 486 69.1 | 719 | 950 89.6 635 647 747 802 | 780 | 759
Qwen2.5VL-7B + OA 988 504 665 | 719 |955 89.8 813 710 729 820 | 821 | 787

Table 6: Performance comparispn Table 7: Effect on OCR quality. OA indicates the OCRAssistor.
on ChartQA and DocVQA. QA In- According to verification of ground truth, samples are divided
dicates our method OCRASssistor.  into Correct and Incorrect categories.

Settings ST TY IC FQ 1D SL Acce
Datasst  Base Base +OA Qwen2.5VL-3B+OA 100 838 762 416 444 430 6438
ChartQA  69.1 70.4 Correct OCR 100 854 844 742 778 862 847
DocVQA 493 571 Incorrect OCR 100 757 615 409 422 460 611

methods fail to correct visual-text perception errors, especially in cases of mis-detection, relational
confusion, or attribute mistakes.

5.2.4 ABLATIONS

In this section, we conduct a series of ablation studies under different experimental configurations
to investigate which components contribute most to reducing hallucination in LVLMs, shown in
Table [5] Specifically, we compare the following setups on the HalluText benchmark: (1) adding
chain-of-thought (CoT) prompting, (2) simply appending raw OCR outputs to the prompt, and (3)
our proposed OCRAssistor strategy. Results show that directly appending OCR results to the prompt
brings modest gains on average. While CoT prompting yields some improvement, our OCRAssistor
demonstrates substantially stronger gains, achieving improvements of 2.4% in localization, 13.1%
in recognition, and 9.6% on the overall average metric. These results confirm that our carefully
designed OCRAssistor effectively and seamlessly integrates OCR information into LVLMs. By
leveraging the structured visual guidance provided by the OCR model, our method significantly
alleviates OCR-aware hallucinations in both perception and understanding tasks.

5.2.5 EXPERIMENTS ON OTHER TEXTVQA BENCHMARK

We additionally evaluated our method on two widely used open-ended benchmarks,
ChartQA (Masry et al.}[2022) and DocVQA (Mathew et al.,2021)), to further assess its generalization
beyond multiple-choice settings. Table[6] shows that OCRAssistor yields consistent improvements
on both benchmarks. The gain on ChartQA is relatively smaller, which we attribute to the fact that
the dataset involves substantial numerical reasoning beyond text recognition. Our method is de-
signed to enhance the LVLM’s ability to accurately perceive and ground textual content in images,
thereby reducing hallucinations arising from internal priors. Although OCRAssistor does not ex-
plicitly target complex reasoning, the improved visual-text grounding still contributes to measurable
performance improvements on both ChartQA and DocVQA.

5.2.6 OCR QUALITY

To directly assess this failure mode, we conducted a controlled experiment simulating the “OCR fail-
ure” scenario. We partitioned the evaluation samples into two subsets according to the correctness
of the OCR output: a Correct set, where all OCR-extracted text matches the ground-truth annota-
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Table 8: The efficiency experiments between

OCRAssistor and VDGD (Ghosh et al., [2025). Table 9: The gains of OCRAssistor on
For convenience, we use Qwen2.5-VL-3B as the Qwen2.5-VL series across different scales.
base model.

Settings HalluText Time(s/image) Model HalluText OCRBench v2(EN/ZH)
Qwen2.5-VL-3B 59.3 0.275 Qwen2.5-VL-3B +4.8 +1.3/+44.7
Qwen2.5-VL-3B + VDGD 63.6 10.972 Qwen2.5-VL-7B +9.6 +2.5/+43.7
Qwen2.5-VL-3B + OA 64.1 0.817

tions, and an Incorrect set, where the OCR model produces mismatched or erroneous text. Results
of Table[7]show that the Correct subset achieves an Acc,. of 84.7, reflecting the upper bound of the
benefit when OCR cues are fully accurate. The Incorrect subset yields an Acc,... of 61.1, confirming
that incorrect OCR cues do introduce noise and can degrade performance. Crucially, accuracy on
the Incorrect subset remains far above naive baselines (e.g., random choice or the LVLM without as-
sistance), demonstrating that OCR Assistor does not blindly follow faulty OCR outputs. Instead, its
soft-guidance formulation allows the LVLM to partially resist or correct misleading cues, indicating
a non-trivial degree of robustness even under simulated OCR failure.

5.2.7 EFFICIENCY

Table [§] presents the runtime performance of OCRAssistor on Qwen2.5-VL. We compare three se-
tups: the original 3B model, the VDGD-enhanced model, and our OCRAssistor. OCRAssistor
introduces only 0.6s of additional latency per image while delivering a 4.8% performance gain.
In contrast, VDGD adds over 10s per image, making it impractical despite modest improvements.
This demonstrates OCR Assistor’s favorable balance of efficiency and effectiveness. Notably, since
our evaluation involves only multiple-choice outputs, baseline inference times remain low. In more
complex scenarios requiring free-form or subjective generation, the overall inference latency would
increase significantly, thereby reducing the relative overhead introduced by the OCR module. Thus,
the efficiency advantage of our method could be more pronounced in real-world applications. Sec-
tion [F] will discuss the efficiency of OCRAssistor under a more open-ended generation scenario
further.

5.2.8 SCALING

We further examine the effectiveness of OCRAssistor across different model scales, with results
summarized in Table O] Experimental results demonstrate that OCRAssistor consistently yields
performance gains across both model sizes. Notably, the improvements are more pronounced on
HalluText, which is explicitly designed to evaluate hallucination, indicating that our decoding strat-
egy is particularly effective in hallucination-prone scenarios. These findings highlight the robust
generalization ability of our method across LVLMs of varying capacity, making it applicable to both
lightweight and large-scale models.

6 CONCLUSION

In this work, we present a comprehensive study on OCR-centric hallucinations in LVLMs. After
applying a dual-perspective taxonomy that categorizes errors by task process (localization, recogni-
tion) and hallucination type (category, relation, attribute) and analyzing failure cases, we introduce
HalluText, a fine-grained benchmark comprising 4,678 samples across 9 subsets, designed to diag-
nose OCR hallucinations. To address these challenges, we develop OCRAssistor, a training-free and
plug-and-play pipeline that leverages external OCR signals to guide LVLM decoding. Experiments
on HalluText and OCRBench v2 show that OCRAssistor consistently improves performance across
models of different scales, while remaining efficient and scalable. Our findings underscore not only
the importance of structured OCR integration but also highlight the effectiveness of a large-small
model collaboration paradigm, where a lightweight OCR expert module supplements the strengths
of a powerful LVLM. This cooperative design offers a practical and generalizable solution for re-
ducing hallucinations in vision-language understanding.

10
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that the results reported in this work are reproducible. All
model architectures, training procedures, and hyperparameter settings are described in the main text
(Sections 4-5) and detailed further in the Appendix (Appendix A—C). For the datasets used in our
experiments, we provide complete descriptions of preprocessing and filtering steps in the supple-
mentary materials. All evaluation metrics are formally defined in Section 3.3, enabling consistent
replication of our analysis. Additionally, the source code and scripts used for training, inference,
and evaluation will be made publicly available as anonymized supplementary material, facilitating
direct reproduction of the reported results. Readers are referred to these resources for all necessary
details to reproduce the experiments and analyses presented in this work.

ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. This work focuses on analyzing
and mitigating OCR hallucination, and does not involve direct experimentation on human subjects.
All datasets used are either publicly available or used under appropriate licenses, and any personal
information has been anonymized to protect privacy. We are aware of potential societal impacts of
multimodal Al systems, including misuse for generating misleading content or biased outputs. In
our experiments, we take care to evaluate model behavior across diverse languages and scenarios to
mitigate unintended bias. No datasets or methods used are expected to cause harm to individuals
or communities. We encourage responsible use and recommend that future users of the proposed
models follow relevant legal, privacy, and fairness guidelines. Any conflicts of interest have been
disclosed, and all research practices adhere to established standards of scientific integrity.
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The appendix includes the following aspects:

. Use of Large Language Models
* [Bl Details of HalluText curation.

* [C} Details of the prompt.

« [D} Additional Experiments.

* [E} Visualization.

* [{ Efficiency Analysis.

* [Gl OCR Quality.

A USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used solely as generally purpose assistive tools to
improve the clarity, grammar, and readability of the manuscript. LLMs are not used for research
ideation, data analysis, model development, or any other scientific decision-making. All scientific
content, ideas, results, and conclusions presented in this paper are independently produced by the
authors. The authors take full responsibility for the accuracy and integrity of the work, including
any content that was refined or edited with the assistance of LLMs. No information generated by
LLMs that could constitute plagiarism, fabrication, or scientific misconduct has been included.

B DETAILS OF HALLUTEXT CURATION

Algorithm 1 Generating Stroop-Effect QA Pairs

Require: colors, shapes
Ensure: ga pair
1: function GENERATESTROOPQA
2: shape_color, text_color, render_color < RandomSelect(colors)
3 shape_shape, text_shape < RandomSelect(shapes)
4: img - ImageDraw(shape_shape, shape_color, render_color)
5: text ¢ concatenate(text_color, text_shape)
6.
7
8

font_size < RandomSelect(range(10, 50))
bbox ¢ ComputeBBox(text, font_size)
if apply_rotation then

9: rotated_dims < GetRotatedDims(bbox, angle)
10: if rotated_dims exceeds image boundaries then
11: font_size < AdjustFontSize(font_size, max_scale)
12: bbox < ComputeBBox(text, font_size)
13: end if
14: pos < FindValidPos(rotated_dims)
15: RenderTextRotated(text, pos, font_size, angle)
16: else
17: pos < FindValidPos(bbox)
18: RenderText(text, pos, font_size)
19: end if
20: question < “What text is written in the image?”
21: options ¢  GenerateOptions(text_color, text_shape, shape_color,
shape_shape, render_color)
22: options, answer < ShuffleOptions(text, optiobs)
23: ga.-pair < {question, img, options, answer}

24: end function

B.1 EXISTENCE

We construct the Existence subset using SCUT-ENS [Liu et al.| (2020)), a dataset containing paired
images before and after scene text erasing. By leveraging these image pairs and their corresponding
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Table 10: Prompt templates for different settings.

Settings

Prompt

Baseline

HalluText
Please strictly follow these rules: \n Place the answer only option letter
(with no extra characters) on a separate last line. \n Question: [QUES-
TION]. \n Options: [OPTIONS]. \n Answer: \n

Baseline+CoT

Please strictly follow these rules: \n Let us think this question step by
step (Chain of thought) and Place the answer only option letter (with no
extra characters) on a separate last line. \n Question: [QUESTION]. \n
Options: [OPTIONS]. \n Chain of thought: \n Answer: \n

Baseline+OCR

The texts in the image were recognized in the image: [OCR RESULTS]
\Please strictly follow these rules: \n Place the answer only option
letter (with no extra characters) on a separate last line. \n Question:
[QUESTION]. \n Options: [OPTIONS].\n Answer: \n

Baseline+OCR+CoT

The texts in the image were recognized in the image: [OCR RESULTS].
Please strictly follow these rules: \n Let us think this question step by
step (Chain of thought) and place the answer only option letter (with no
extra characters) on a separate last line. \n Question: [QUESTION]. \n
Options: [OPTIONS]. \n Chain of thought: \n Answer: \n

Baseline+OCRAssistor

Same as Baseline+OCR+CoT

OCR annotations, we create VQA-style samples that ask whether a specific text instance existed
prior to erasure. As shown in Figure[5] we design the questions template “Does the text ‘TEA’ exist
in the image?”, accompanied by the erased image as shown in Figure [5| (a). The correct answer
is clearly No. If the LVLM relies solely on dataset bias rather than visual information provided by
the user, it is prone to incorrectly predicting Yes. To further balance the distribution of answers, we
deliberately incorporate negative forms in the question design, ensuring a more even ratio between

Yes and No responses.

B.2 INCOMPLETE

(a) Erased image (b) Original image

Figure 5: The details of “Existence” subset.

The Incompletion subset is adapted from OCRBench v2 using its standard recognition prompts. To
ensure quality, we manually verify and clean the original annotations. For each question, a confusion
option is generated by using the original word, which is rich in semantics. The other two distractors
are created by applying random character-level edits (insertion, deletion, substitution) based on the
ground truth. An example is shown in Figure[3]

16



Under review as a conference paper at ICLR 2026

B.3 COUNTING

The Counting subset also follows the instruction of OCRBench v2, using standard counting-style
prompts. Answers are derived from the original dataset, with confusion options introduced by sam-
pling positive integer near the correct answer (e.g. +1, —1) to simulate realistic ambiguity.

B.4 TyPO

The Typo subset is synthetically constructed using the typo corpus and the Pillow image library. We
adopt a minimalist rendering black text on a white background, without any decorative elements.
Confusion options are generated by randomly applying one character-level edit (insertion, deletion,
or substitution) to the ground truth or its corrected version. This process mirrors that of the Incom-
plete subset, focusing on recognition robustness under typographical noise.

B.5 POSITION

The Position subset is built from the Total-Text dataset. We discard illegible or unannotated text
instances and classify the remaining ones into eight relative positional categories: top-left, top,
top-right, right, bottom-right, bottom, bottom-left, and left. To avoid ambiguity between adjacent
classes (e.g., top-left vs. top), we explicitly remove potentially confusing categories when generating
answer options. This ensures that each question has one unambiguous correct answer.

B.6 INDEX, SLICE, AND FREQUENCY

The Index, Slice, and Frequency subsets are jointly derived from the Unionl4M-contextless
dataset|Jiang et al.|(2023). For each image—annotation pair, we sample character-level statistics such
as frequency, position, and index to formulate distinct question types. To maintain a single-answer
format, we filter out ambiguous cases—such as words with repeated characters—where multiple
valid answers might exist for an index-based query.

B.7 STROOP EFFECT

The Stroop Effect subset is uniquely constructed without relying on any existing public dataset. We
manually generate image—question—answer triplets to simulate conditions where irrelevant but plau-
sible distractors interfere with OCR perception. The generation pipeline is detailed in Algorithm [I]
Crucially, all confusion options used in the answer choices are explicitly present within the image,
enabling a faithful evaluation of the LVLM’s susceptibility to OCR hallucinations.

C DETAILS OF PROMPT

To adapt different ablation settings, we design prompt templates tailored to various input configu-
rations. The detailed prompt formats are provided in Table [I0} In the HalluText benchmark, the
Baseline configuration includes only the core question and the corresponding answer choices. For
the CoT and OCR settings, we incorporate respective guiding cues into the prompt. In the OCRAs-
sistor setup, we include both the CoT prompt and OCR information in the language instruction to
encourage alignment between the LVLM’s output and the OCR-derived content distribution. Ex-
perimental results show that our method significantly improves performance on HalluText and has
a consistent positive effect in mitigating OCR hallucinations. On the OCRBench v2 benchmark, we
follow the standard evaluation protocol, using only the question as the full prompt. Under the fair
setting, our method demonstrates stable and consistent improvements in fair comparisons with other
models, as shown in Table[3]

D ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results that are omitted from the main text due to
space limitations.
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Table 11: Ablation for OCR inputs. The baseline LVLM is Qwen2.5-VL-3B. All settings loads
OCRAssistor.

Model Accioe AcCree Accan

Rec-only 62.5 64.8 64.1
Det & Rec  63.5(+1.0) 62.5(-2.3) 62.8(-1.3)

Table 12: Ablation for the setting of A, The
baseline LVLM is Qwen2.5-VL-3B. Bold indi- Table 13: Ablation for the setting of 7', The

cates the best performance. baseline LVLM is Qwen2.5-VL-3B. Bold indi-
i\ Acc, Ace Accal cates the best performance.
oc rec a.
0.1 603 658 640 T Accoe  Actrec Accan
0.5 59.7 66.0 63.9 0.1 62.5 64.8 64.1
1.0 59.1 65.9 63.6 0.5 61.0 65.2 63.8

1.5 595 65.6 63.6 1.0 603 65.8 64.0
20 595 65.9 63.8 .

D.1 OCR INPUTS

We conduct an ablation study on the use of OCR inputs. Two configurations are compared: (1) us-
ing only the OCR recognition results as input, and (2) incorporating both detection and recognition
results into the prompt. As shown in Table [IT} providing both detection and recognition results as
OCR priors leads to a 1.0% improvement on the localization task compared to using recognition re-
sults alone. However, this setting results in performance drops of 2.3% and 1.3% on the recognition
task and the overall average, respectively. We attribute this phenomenon to the limited guidance pro-
vided by the coordinate-format detection results after tokenization, which could not be effectively
utilized during LVLM decoding. We caution that directly including OCR detection outputs in the
prompt make adverse effects.

D.2 THE EFFECT OF A AND T

We conducted a comprehensive ablation study to evaluate the sensitivity of OCRAssistor to its two
key hyperparameters: the guidance weight A and the temperature T. As shown in Tables (A ) and (T),
the overall performance remains remarkably stable across a wide range of values. For A, varying the
weight from 0.1 to 2.0 results in only minimal fluctuations in both Acc;,. and Acc,... (within 0.3 on
overall accuracy). Similarly, adjusting T from 0.1 to 1.0 produces highly consistent results, with the
overall accuracy differing by less than 0.3 across settings. Importantly, no monotonic degradation
or sharp peak is observed, indicating that OCRAssistor is not sensitive to either \ or temperature,
and the guidance effect remains robust under different strengths of modulation. Given this stability,
we adopt A =0.1 and T = 0.1 in our main experiments.

D.3 THE DETAILED RESULTS ON QWEN2.5-VL-3B

Owing to space constraints, Table [0] presents only the performance gains of Qwen2.5-VL-3B with
OCRAssistor on HalluText and OCRBench v2. For completeness, the detailed results are provided
in Table[14]l and Table

E VISUALIZATION

This section presents qualitative visualizations of Qwen2.5-VL-7B’s performance on two datasets.
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Table 14: Detailed results of Qwen2.5-VL-3B on OCRBench v2. OA indicates the OCRAssistor.
Abbreviations: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation
Extraction, EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR =
Knowledge Reasoning.

Model English Part Chinese Part Overall
TR TD TS RE EP MC TU KR | TR RE EP TU KR | English Chinese
Qwen2.5-VL-3B 639 187 0.0 815 325 353 692 492|690 472 330 355 435 43.8 45.6

Qwen2.5-VL-3B+OA | 589 20.6 0.0 847 346 399 709 510|676 548 332 540 418|451 (+13) 50.3(+4.7)

Table 15: Detailed performance of Qwen2.5VL-3B on HalluText. OA indicates the OCRAssistor.
Abbreviations: EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY =
Typo, IC = Incompletion, FQ = Frequency, ID = Index.

Localization Recognition
Model EX POS CT | Ao | g7 1y ¢ FQ ID sL | Are | Accan
Qwen2.5-VL-3B 908 394 464 | 589 | 940 792 421 495 450 477 596 | 593
Qwen2.5-VL-3B+OA | 964 40.6 506 | 62.5 | 100.0 838 782 41.6 444 430 | 648 | 641

E.1 HALLUTEXT

Figure [6] illustrates results on HalluText, where we visualize the input image, question, answer
options, model predictions (before and after enhancement), and the OCR-recognized text. The com-
parison shows that with guidance from OCR outputs, Qwen2.5-VL-7B better adheres to visual in-
structions and exhibits reduced OCR hallucinations.

E.2 OCRBENCH V2

Figure [7] and Figure [§] show visualizations on the English and Chinese subsets of OCRBench, re-
spectively. We observe that the proposed OCRAssistor module helps the LVLM correct fine-grained
recognition errors. For example, in Figure 7, the model originally extracted “Newspaper Parent” for
the field “Brand(s) Applicable”, while the image text actually reads “Newport Parent”; similarly, it
misread “Coupon Issue Date” as “4/1/00” instead of the correct “4/14/00”. These cases highlight
the presence of OCR hallucinations in the baseline LVLM, which are significantly mitigated after
applying the proposed improvements. In summary, our method achieves stable performance gains
across diverse generalized OCR scenarios.

F EFFICIENCY ANALYSIS

As a supplement to Table [8] we further evaluate the efficiency of OCRAssistor on OCRBenchv2,
an open-ended generation benchmark in Table[T6 The results show that OCRAssistor consistently
achieves the highest overall accuracy across both the 128- and 1024-token settings (e.g., TR, RE,
TU), while maintaining substantially lower computational overhead. At 128 tokens, OCRAssistor
requires only 1.12 seconds, 3.3x faster than TextHallu and 8x faster than VDGD. Even at 1024 to-
kens, its runtime remains low (1.24 seconds), still achieving 3x and 9x speedups over TextHallu and
VDGD, respectively. Regarding scalability, OCRAssistor exhibits only an 11% increase in latency
from 128 to 1024 tokens, closely matching the baseline trend and outperforming both VDGD’s steep
growth and the consistently high cost of TextHallu. Overall, OCRAssistor provides the best accu-
racy—efficiency trade-off: it delivers higher performance across key metrics while adding only less
than 1 second of overhead, and preserves robust scalability for longer input sequences.

G OCR QuALITY

We also investigate the impact of OCR quality on hallucination mitigation, as shown in Table [T7}
Specifically, we evaluate the recognition quality of OCR models on the 1,500 original images used
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Jan) ) yc u t[ | f u (2 Resrouces Cotent Here
User User User
‘What is written in the image? ‘What is written in the image?
A. youthful A. Resrouces Cotent Here
B. yoUthfu B. Resources Cotent Here
C. youtfu C. Resrouces Ctent Here
D. youthfu D. Resrouces Cotent Here-
Does the text 'JOYBOOTH'
exist in the image?
A. Yes o o
B. No
A. youthful IBI B. Resources Cotent Here IBI
Igl Qwen2.5-VL-7B Qwen2.5-VL-7B
A. Yes
Qwen2.5-VL-7B
B.No | A. youthfu | A. Resrouces Cotent Here |
X Qwen2.5-VL-7B + § Qwen2.5-VL-7B + OCR Result: Qwen2.5-VL-7B +
OCR Result: None OCRAssistor OCR Result: youthfu OCRAssistor Resrouces Cotent Here OCRAssistor
Figure 6: A Visualization of HalluText.
“From": “Lynnette Stevens",
O "To": "Kelli Scruggs", P
“"Brand(s) Applicable": "Newport Parent, Lights. & 120's", <
o "Media Type": "Direct Mail", -
User “Media Name": "Competitive 21 - 34 years",
“"Coupon Issue Date": "4/14/00",
"Coupon Expiration Date": "9/30/00",
“Signature of Initiator": “21-Jan-00",
"Code Assigned": "05787",
"Est. Redemption": "13%"
“From": "Lynnette Stevens", 2
“To": "Kelli Struggeri", Iml
“Brand(s) Applicable": "Newspaper, Lights, & 120's",
"Media Type": "Direct Mail", Qwen2.5-VL-7B
“Media Name": "Competitive 21 - 34 years",
“Coupon Issue Date": "4/1/00",
“"Coupon Expiration Date": “9/30/00",
@ “Signature of Initiator": "Lynnette Stevens",
] “Code Assigned": "05787",
H "Est. Redemption": "13/16"
Find out the values of 'From', 'To', 'Brand(s) Applicable', 'Media Type', ...":.:?,'_n ..;zh?";‘;?e ssufevens ‘ I
'Media Name', 'Coupon Issue Date', 'Coupon Expiration Date', 'Signature of o ug9: W, o . et
oo R - N ; Brand(s) Applicable": Parent.Lights.&120's",
Initiator', 'Code Assigned', 'Est. Redemption' stated in the image. Extract the "Media Type": "Direct Mail" Qwen2.5-VL-7B +
required information using the text in the image directly, and return the result "Media NZI"’::';: "Compzﬁfivelzl-u years" OCR)\ssistor

in a dict with keys 'From!, 'To', 'Brand(s) Applicable', 'Media Type', 'Media
Name', 'Coupon Issue Date', 'Coupon Expiration Date', 'Signature of Initiator’,
'Code Assigned', 'Est. Redemption'. Your answer should be in the JSON
format:\n{\n \"key1\":\"..\", # The firt key and value\n \"key2\":\"..\"

# The second key and value\n ..\n}\n",

""Coupon Issue Date":

"Coupon Expiration Date": "9/30/00",
“Signature of Initiator": "Amate lauye feens",
“"Code Assigned": "05787",

“Est. Redemption": "13%"

Figure 7: A Visualization of OCRBench v2-EN.

to construct the HalluText benchmark. In addition to our default OCR system PaddleOCREL we
compare with another widely used alternative, EasyOCRH Experimental results indicate that Easy-
OCR achieves a 1-N.E.D. score that is 2.2 points lower than PaddleOCR, suggesting slightly inferior
recognition performance. Correspondingly, under the same experimental settings, the downstream
results on HalluText using EasyOCR are consistently lower than those with PaddleOCR. These
findings demonstrate a positive correlation between OCR quality and hallucination-mitigating per-
formance: higher-quality OCR outputs provide more reliable visual cues, which better guide LVLMs
and reduce hallucinated generations.

"nttps://github.com/PaddlePaddle/PaddleOCR
https://github.com/JaidedAI/EasyOCR
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Figure 8: A Visualization of OCRBench v2-CN.

Table 16: Perfomance comparison on OCRBench v2. OA indicates the OCRAssistor. Abbrevia-
tions: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation Extraction,
EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR = Knowledge
Reasoning.

English Part Chinese Part Overall

Model ‘

Time
| TR TD TS RE EP MC TU KR | TR RE EP TU KR | English Chinese |

Baseline-128 579 186 0 679 156 334 69.1 479|412 462 232 370 431 38.8 38.1 0.66
Baseline-1024 64.1 18,6 0 813 325 353 69.0 49.0 | 69.0 473 329 365 43.1 43.7 458 0.96
TextHalllu-128 589 209 0 678 147 317 649 482|375 323 210 298 425 384 32.6 3.68
TextHalllu-1024 664 209 0 815 303 357 649 493|678 341 307 328 420 43.6 41.5 3.60
VDGD-128 536 202 0 641 168 285 69.6 470|339 464 251 286 385 37.5 34.5 8.97
VDGD-1024 60.7 203 0 788 340 317 69.6 48.1 | 620 478 337 310 386 429 42.6 10.95
OCRAssistor-128 | 529 215 0 704 17.0 346 713 492 | 400 539 253 570 424 39.6 43.7 1.12
OCRAssistor-1024 | 594 214 0 839 346 389 712 504|699 551 315 560 429 45.0 51.1 1.24

Table 17: Effect of different OCR models. 1-N.E.D. is a recognition metric defined as 1 — NED.

OCR Model 1-N.ED. Accoe Accree Accqy
PaddleOCR 88.7 71.9 82.1 78.7
EasyOCR 86.5 71.5 79.1 76.6
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