

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HALLUTEXT: TOWARDS BENCHMARKING AND MITIGATION OCR HALLUCINATION FOR LVLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Optical Character Recognition (OCR) serves as a critical bridge connecting vision and language, attracting increasing attention in the community of Large Vision-Language Models (LVLMs). However, due to the prevalent encode-then-decode architecture, LVLMs tend to over-rely on language priors, leading to frequent failures in following basic visual-text instructions. We term this issue OCR hallucination. To systematically mitigate it and facilitate reliable OCR perception in LVLMs, we conduct the first large-scale empirical analysis based on OCRBench v2. Our findings reveal that current LVLMs frequently misinterpret or ignore textual visual content, particularly across two orthogonal dimensions, including perception task and hallucination taxonomy. Building on these insights, we introduce HalluText, a benchmark specifically designed to comprehensively evaluate OCR hallucination in LVLMs across nine subclasses. Alongside this benchmark, we propose OCRAssistor, a lightweight plug-and-play method pioneering large-small model collaboration. By integrating compact OCR model outputs into the LVLM decoding process, it achieves a 9.6% improvement on HalluText with only marginal computational cost. When applied to OCRBench v2, this method also improves the performance of the top-performing open-source model Qwen2.5-VL-7B, achieving a 3% gain and highlighting the importance of addressing OCR hallucination in LVLMs. Through our benchmark and proposed solution, we hope to shed light on the challenges and potential pathways for improving visual text perception in LVLMs. The organized benchmark and the relevant code will be released soon.

1 INTRODUCTION

Driven by advances from both academia and industry, Large Vision Language Models (LVLMs) are increasingly applied across a wide range of domains. As a crucial bridge between vision and language, Optical Character Recognition (OCR) has emerged as both a foundational pre-training paradigm and a key task for supervised fine-tuning. OCR-centric tasks have also garnered significant attention from both general-purpose (Wang et al., 2024b; Li et al., 2024a; Lu et al., 2024; Yao et al., 2024; Bai et al., 2025; Zhu et al., 2025a) and OCR-specialized LVLMs (Li et al., 2024b; Huang et al., 2024a; Yu et al., 2024b; Zhao et al., 2024; Nacson et al., 2025; Li et al., 2025), owing to their wide applicability in real-world scenarios such as smart offices, content moderation, and document intelligence.

Despite this growing focus on OCR-centric tasks, we observe that current LVLMs still often struggle with seemingly simple questions that involve understanding text within images. Figure 1 illustrates three representative failure cases where state-of-the-art models (Yao et al., 2024; Huang et al., 2024a; Bai et al., 2025) consistently fail. Borrowing the concept of hallucinations, we attribute this issue as “**OCR hallucination**”, defined as instances where the responses generated by LVLMs fail to accurately follow visual text-centered instructions. To systematically analyze and attribute these errors, we conduct a comprehensive empirical study on widely adopted OCRBench v2 (Fu et al., 2024). Evaluations across over 1,000 samples reveal that these errors are prevalent across different LVLMs and tasks, while exhibiting consistent patterns that enable their categorical grouping. Driven by such findings, we categorize the errors along two orthogonal dimensions: 1) **the perception task stage**, which focuses on the perceptual stages of localization and recognition, and 2) **the hallucination taxonomy**, which classifies error types into category, relation, and attribute hallucinations. Take the

Figure 1: Taxonomy of OCR Hallucinations. The inner rings represent a dual-perspective taxonomy by task stage and hallucination type, while the outer ring indicates the nine HalluText subsets aligned with these categories. Colors denote hallucination types, and three examples around the perimeter illustrate their definitions and characteristics.

the bottom of Figure 1 as an example, the question is “*What’s the text in blue?*”, the correct answer is “*shall*”, but all three models erroneously output “*Connection*”. We attribute this error primarily to incorrect localization—the models fail to attend to the region containing the blue text. Further analysis reveals that this localization failure stems from a misunderstanding of the visual attribute “blue”, indicating an error due to attribute hallucination. Thus, this case exemplifies how an initial perceptual failure (e.g., color misinterpretation) can propagate to semantic-level hallucinations. By framing OCR errors within this dual-perspective framework, we aim to better understand the underlying causes of OCR failures and provide actionable insights for future model development.

Based on these insights, we introduce a new benchmark **HalluText**. Unlike the scattered hallucination-related samples in OCRBench v2, HalluText offers a more comprehensive and structured diagnosis for OCR hallucination in LVLMs. Following (Yin et al., 2024), we formulate test samples as multiple-choice questions and collect 4,678 image–question–answer triplets covering nine distinct types of hallucinations. As illustrated in Figure 1, these types are built upon the two previous orthogonal dimensions, comprising existence, incompleteness, typo, position, index, slice, counting, frequency, and stroop effect.

Furthermore, we also propose a lightweight, plug-and-play method to mitigate OCR hallucinations, called **OCRAssistor**. This framework pioneers a novel collaborative paradigm between large and small models, where a small-scale OCR-specialized model injects vision-grounded cues to guide the decoding process of large vision-language models (LVLMs). Notably, this design does not require additional fine-tuning of the large model, making it both efficient and flexible to deploy. Despite its simplicity, OCRAssistor achieves impressive results, improving the baseline Qwen2.5-VL-7B by 9.6% on HalluText. When applied to the more general OCRBench v2, it outperforms the baseline by 2.5% on the English subset and 3.7% on the Chinese subset. These results not only demonstrate the effectiveness and generalizability of our approach in fine-grained perception tasks but also underscore the critical importance of addressing hallucination in OCR-centric applications. Our contributions are summarized into three main aspects.

- We conduct an extensive empirical study to uncover the overlooked problem of **OCR hallucination** in LVLMs. Driven by the results, we establish a dual-perspective taxonomy based on the task categories and hallucination types to systematically analyze these errors.
- We construct **HalluText**, a fine-grained benchmark for OCR hallucination. HalluText consists of 4,678 carefully curated samples across 9 subsets, each targeting specific perception and hallucina-

tion dimensions. Compared to existing benchmarks like OCRBench v2, HalluText offers a more comprehensive and structured diagnostic of OCR hallucination, providing clear insights for future advancements of LVLMs.

- We design **OCRAssistor**, a plug-and-play method to mitigate OCR hallucination through a novel large-small model collaboration framework. To our knowledge, it is the first work to adopt such a collaborative paradigm for OCR hallucination mitigation. OCRAssistor incorporates minimal computational overhead, yet significantly improves LVLMs on both HalluText and OCRBench v2. Extensive experiments validate its effectiveness, efficiency, and scalability across a wide range of scenarios.

2 RELATED WORKS

2.1 OCR-AWARE BENCHMARK IN LVLM ERA

Before the LVLM era, OCR-aware benchmarks focused on specific sub-tasks, such as scene text detection and recognition (e.g., ICDAR (Karatzas et al., 2013), Total-Text (Ch’ng & Chan, 2017), SCUT-CTW1500 (Liu et al., 2017)), visual text understanding (e.g., TextVQA (Singh et al., 2019), STVQA (Biten et al., 2019)), key information extraction (e.g., FUNSD (Jaume et al., 2019), SROIE (Huang et al., 2019)), and chart understanding (e.g., ChartQA (Masry et al., 2022), info-graphicVQA (Mathew et al., 2022)). With the rise of LVLMs, the focus shifted towards unified OCR-centric benchmarks. OCRBench (Liu et al., 2024) integrates five major tasks—text recognition, scene VQA, document VQA, key information extraction, and handwritten formula recognition—across 27 datasets. The latest OCRBench v2 expands further, adding element parsing, knowledge reasoning, and mathematical calculations. Additionally, document parsing and understanding have gained widespread attention, with new benchmarks (Wei et al., 2024; Ouyang et al., 2025; Li et al., 2025) created for evaluating document-specific tasks. Recent research has also analyzed segmentation deficiencies, with OCR-Reasoning (Huang et al., 2025) and Reasoning OCR (He et al., 2025a) focusing on dense text understanding. Work by (Shu et al., 2025) and (He et al., 2025b) addresses hallucinations in non-semantic and occluded/blurred text-rich scenarios. In this paper, we propose a new benchmark to uncover OCR hallucinations in OCR-centric tasks, based on common failure cases from the general OCRBench v2.

2.2 HALLUCINATION MITIGATION

The concept of hallucination originates from the domains of pathology and psychology, where it is defined as the perception of something that does not exist in reality (Macpherson & Platchias, 2013). In natural language processing, hallucination typically refers to instances where generated content is implausible or inconsistent with the source input (Maynez et al., 2020). In the LVLM scenario, Hallucination refers to the phenomenon where the generated text response does not align with the corresponding visual content (Bai et al., 2023; Yu et al., 2024a; Zhang et al., 2024), or introduce post-training (2024). Given the high computational overhead. In OCR-centric tasks, we p

Figure 2: The distribution of failure cases on OCRBench v2.

		Localization	Recognition	
Category		Existence Does the text 'TEA' exist in the image? A. Yes B. No	Incomplete 	// StatefulSetNamespaeLister. Typo What text is written in the image? A. PRODUC B. PRODUCT C. PRODUCE D. PRODUE
Relation		Position What is the relative position of 'BURGERS' with respect to 'ACCESSIBLE'? A. Top Right B. Top Left C. Bottom Left D. Bottom Right		Index At what position(s) does the character 'x' appear in the text? A. 5 B. 6 C. 7 D. 8
Attribute		Counting How many words are in the picture? A. 4 B. 5 C. 6 D. 7		Frequency How many times does the character '0' appear in the text? A. 1 B. 2 C. 3 D. 4

Figure 3: An overview of HalluText, which collects the challenging issues in visual text perception, including localization and recognition. The column axis involves the three categories of hallucination, *Category Hallucination*, *Relation Hallucination*, and *Attribute Hallucination*, respectively. Bold indicates the correct answer.

tegrates a lightweight, visually faithful OCR model into LVLMs to mitigate hallucination. This plug-and-play design improves visual alignment while avoiding the latency of prior training-free methods.

3 ANALYSIS ON VISUAL TEXT HALLUCINATION

3.1 EMPIRICAL ANALYSIS ON OCRBENCH v2

OCRBench v2 is currently the largest and most comprehensive benchmark for OCR-related tasks, comprising over 10,000 annotated question-answer pairs across more than 20 diverse scenarios in both Chinese and English. However, hallucinated samples are scattered across various task categories, making it challenging to systematically evaluate the hallucination-handling capabilities of LVLMs. To address this, we perform targeted analysis by identifying and categorizing hallucination types in model failures.

We select three representative LVLMs, including Qwen2.5-VL, MiniCPM-o 2.6, and MiniMonkey, and apply the official evaluation scripts to identify 3,006 samples where all models fail consistently. It is important to note that not all error cases are related to hallucinations. We consider only hallucination-related samples as analyzable. Other errors, such as those caused by question misinterpretation, complex reasoning failures, or annotation issues within the dataset, are not directly related to OCR hallucinations and are therefore excluded from our analysis.

To attribute hallucinations, we adopt two orthogonal dimensions: (1) perception task type (localization vs. recognition) and (2) hallucination type, which we refine for OCR settings as follows: **Category Hallucination**: incorrect recognition of text content or coordinates; **Relational Hallucination**: errors in spatial or semantic relations between text instances; **Attribute Hallucination**: incorrect description of text attributes such as quantity or color. Among the failed samples, 1,034 (34%) are deemed analyzable. We perform detailed attribution across models, and the resulting hallucination distributions, which are summarized in Figure 2, reveal consistent patterns across task types and models. These findings provide both **conceptual** grounding and empirical basis for developing robust hallucination benchmarks in OCR-focused LVLM evaluation.

216

217

Table 1: Distribution and original source of HalluText.

218

219

Subsets	Existence	Position	Counting	Stroop	Typo	Incomplete	Freq.	Index	Slice
Number	250	500	233	200	500	1495	500	500	500
Source	SCUT-ENS (Liu et al., 2020)	Total-Text (Ch'ng & Chan, 2017)	ICDAR2013 (Karatzas et al., 2013)	Manual	Typo-corpus (Hagiwara & Mita, 2019)	Union-Incomplete (Jiang et al., 2023)			

220

221

222

223

3.2 HALLUTEXT BENCHMARK

224

225

Building on the empirical analysis in the previous section, we identify the distribution of hallucinated samples within OCRBench v2. Based on the occurrence scenarios of these hallucinations, we construct a dedicated dataset for OCR hallucination research, named HalluText, by reorganizing existing OCR datasets according to hallucination types. HalluText consists of 9 subsets, each corresponding to a specific hallucination category, and includes a total of 4,678 image–question–answer triplets. The definitions and construction procedures of each subset are detailed in the following section. The distribution and sources of the subsets are summarized in Table 1. The detailed construction procedures of all subsets are provided in Appendix B.

226

Existence: Due to training data biases, LVLMs are prone to hallucinations when presented with manipulated images. This subset is constructed from the scene text erasure dataset SCUT-ENS (Liu et al., 2020), with the goal of evaluating whether LVLMs can accurately perceive the presence of specific words in an image. To address the balance between *Yes* and *No* answers, we also incorporate negative polarity questions during the question construction process.

227

Incompletion & Typo: Influenced by the Language model, LVLMs tend to replace non-semantic words in their outputs with semantically plausible text. We constructed the Incomplete and Typo subsets using scene text that is affected by occlusion or truncation, and text containing common spelling errors, respectively. These subsets are designed to evaluate the ability the capability of accurately recognizing visual text while remaining robust to linguistic priors.

228

Position: Empirical studies reveal that LVLMs exhibit limitations in relative position perception. To evaluate their ability to understand spatial relationships in real-world scenes, we design a relative position recognition task based on scene text data. This task assesses how well LVLMs can perceive relative positions of visual elements across the entire image.

229

Index & Slice: Correspondingly, we also observe relation-level hallucinations within individual text instances. To minimize the influence of semantic priors, we construct position-specific questions on the Union14M-Contextless subset (Jiang et al., 2023), using common string slicing and indexing operations for naming. These subsets are designed to evaluate the ability to perceive intra-word spatial relations within single text instances.

230

Counting: Empirical results suggest that LVLMs struggle with counting-related tasks. To evaluate their ability to perceive numerical attributes of visual text, we construct a counting task based on the ICDAR2013 dataset, which primarily consists of focused text with minimal ambiguity. This subset is designed to assess whether LVLMs can accurately determine the number of text instances in an image.

231

Frequency & Stroop Effect: Beyond counting, color perception represents another key aspect of attribute-level hallucination. In addition to the intra-text counting task, we draw inspiration from the Stroop Effect (MacLeod, 1991) to construct synthetic images containing color and shape words. These two subsets are designed to evaluate the ability of LVLMs to suppress hallucinations related to text quantity and text color, respectively. More details are illustrated in Algorithm 1.

232

To ensure the quality of HalluText, we filtered out samples with blurred or occluded text and removed short, duplicate, or overly close text instances that could introduce spatial ambiguity. Each QA pair was then independently reviewed by two annotators and retained only when both agreed that the text was clearly readable, the visual evidence was sufficient, and the question–answer template was unambiguous, ensuring high inter-annotator reliability. Distractors were designed to be visually plausible yet falsifiable, using strict geometric rules for spatial relations and ± 1 adjustments for counting tasks to maintain controlled difficulty. These steps ensure that HalluText isolates hallucination behavior without being confounded by image-quality issues or ambiguous annotations.

270
271

3.3 METRIC

272
273
274
275
276
277
278
279

Following OCRBench v2, we adopt a multiple-choice QA format with up to four options per question, using accuracy as the evaluation metric. For standardized evaluation, given images \mathcal{I} , questions $\mathcal{Q} = \{q_i\}_{i=1}^N$, and answers $\mathcal{A} = \{a_i\}_{i=1}^N$, we employ a fixed prompt template: “ *Please strictly follow these rules: Only output the letter of the correct answer. Place the answer on a separate last line. Question: {question}. Answer: { }.*” The templatized questions are then fed into LVLMs to obtain predictions $\mathcal{P} = \{p_i\}_{i=1}^N = \mathcal{M}(\mathcal{I}, \mathcal{Q})$, where \mathcal{M} is the LVLM. The multi-choice accuracy is formulated as $Acc = \frac{1}{N} \sum_{i=1}^N \mathbb{1}(p_i = a_i)$, where $\mathbb{1}$ is the indicator function.

280
281

4 METHOD

282
283
284
285

Inspired by (Ghosh et al., 2025), we introduce the OCRAssistor, an OCR-guided decoding framework that pioneers a collaborative mechanism between a large vision-language model (LVLM) and a lightweight OCR expert model to alleviate perception hallucination in OCR-centric tasks. The overall pipeline is illustrated in Figure 4.

286
287
288
289
290

Given an input image and a textual prompt, we first extract textual elements from the image using a lightweight OCR model, resulting in a sequence $X_{OCR} = \{o_1, o_2, \dots, o_k\}$. To ground the LVLM’s generation in these visual texts, we prepend them to the user prompt $X_{prompt} = \{x_1, x_2, \dots, x_n\}$, yielding the augmented prompt $X_{concat} = \{o_1, \dots, o_k, x_1, \dots, x_n\}$.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: The framework of OCRAssistor.

incorporate the OCR guidance by directly modifying the logits in a distribution-aware manner:

$$\mathcal{L}'_i(w) = \mathcal{L}_i(w) - \lambda \cdot \log \frac{p_i(w)}{\hat{p}_{OCR}(w)}, \quad \forall w \in \mathcal{V}, \quad (2)$$

where λ is a hyperparameter controlling the strength of OCR-based regularization. To ensure the robustness of our design choices, we provide a detailed ablation on λ in Table 13 of Appendix D. Intuitively, tokens more consistent with OCR-derived probabilities are relatively boosted, while inconsistent ones are penalized. The adjusted logits are then normalized to obtain the final decoding distribution:

$$p'(w | x_{<i}) = \text{softmax}(\mathcal{L}'_i)(w). \quad (3)$$

At each step, the next token is sampled from p' , using the same decoding configuration as the base model. This ensures that the OCR guidance is seamlessly integrated into standard LVLM decoding while encouraging semantic consistency with visual texts. The generation terminates once an end-of-sequence token is produced or a predefined length limit is reached.

This approach integrates the predictions of an external OCR model into the decoding process via a KL-divergence-based guidance mechanism. This alignment encourages the LVLM to focus more

324
 325 Table 2: Performance comparison on HalluText. OA indicates the OCRAssistor. Abbreviations:
 326 EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY = Typo, IC =
 327 Incompletion, FQ = Frequency, ID = Index.

328 Model	329 Localization			Acc_{loc}	330 ST			331 TY			332 Recognition			Acc_{rec}	Acc_{all}
	333 EX	334 POS	335 CT		336 IC	337 FQ	338 ID	339 SL							
<i>Proprietary LVLMs</i>															
Gemeni-Pro	91.6	63.8	69.1	74.8	99.0	66.8	56.1	63.7	46.2	62.8	65.8	68.8			
GPT-4o	89.2	49.0	56.7	65.0	98.5	95.2	75.1	64.9	66.9	60.1	76.8	72.8			
<i>Open-source LVLMs</i>															
Qwen2.5-VL-3B	90.8	39.4	46.4	58.9	94.0	79.2	42.1	49.5	45.0	47.7	59.6	59.3			
Qwen2.5-VL-7B	98.4	50.4	59.7	69.5	90.5	88.8	72.3	62.3	50.3	49.8	69.0	69.1			
Qwen2.5-VL-32B	94.4	55.4	63.1	71.0	92.0	88.4	81.6	69.6	44.3	47.3	70.5	70.7			
InternVL3-2B	75.2	31.8	44.2	50.4	99.0	82.8	62.6	45.6	38.4	40.7	61.5	57.8			
InternVL3-8B	89.2	36.8	67.0	64.3	59.8	90.6	63.4	53.3	52.6	56.6	62.7	63.3			
InternVL3-14B	95.6	67.2	63.1	75.3	99.5	92.8	88.1	75.7	60.0	63.8	80.0	78.4			
MiniCPM2.6-o-8B	77.6	51.2	51.9	60.2	96.5	82.8	77.1	51.9	44.8	51.4	67.4	65.0			
MiniMonkey-2B	76.4	32.4	35.2	48.0	76.9	71.0	77.1	43.8	6.0	24.4	49.9	49.2			
LLaVA-NeXT-7B	74.0	38.6	31.3	48.0	71.4	48.6	41.5	64.3	51.8	39.6	44.6	45.7			
LLaVA-NeXT-7B + OA	81.6	37.2	42.1	53.6	94.0	63.4	73.5	49.3	32.4	35.7	58.1	56.6 (+10.9)			
Qwen2.5-VL-7B	98.4	50.4	59.7	69.5	90.5	88.8	72.3	62.3	50.3	49.8	69.0	69.1			
Qwen2.5-VL-7B + OA	98.8	50.4	66.5	71.9	95.5	89.8	81.3	71.0	72.9	82.0	82.1	78.7 (+9.6)			

341
 342 heavily on visually grounded textual cues, effectively suppressing hallucinations and improving vi-
 343 sual fidelity. Unlike prior comparison-based decoding methods, such as Visual Description Ground-
 344 ing Decoding (VDGD), which require multiple rounds of model inference, our approach achieves
 345 efficient inference by performing only one forward pass through the LVLM and a lightweight OCR
 346 model. This significantly reduces computational cost while maintaining strong performance.
 347

349 5 EXPERIMENTS

351 5.1 SETTINGS

353 We evaluate and compare HalluText and OCRBench v2 with several state-of-the-art LVLMs, in-
 354 cluding proprietary models GPT-4o (Hurst et al., 2024) and Gemini-Pro (Team et al., 2024), as
 355 well as open-source models InternVL3 (Zhu et al., 2025a), Qwen2.5-VL (Bai et al., 2025), LLaVA-
 356 NeXT (Li et al., 2024a), MiniCPM2.6-o (Yao et al., 2024), and MiniMonkey (Huang et al., 2024a).
 357 We facilitate the widely used OCR engine PaddleOCR-v5 as our OCR model. To ensure fair com-
 358 parison, we locally re-infer representative open-source LVLMs using only the annotated question
 359 prompts, and follow the official evaluation protocol. The maximum number of generated tokens is
 360 set to 1024. The temperature factor T and regularization factor λ are set to 0.1 and 0.1 by default.
 361 The detailed prompt settings are discussed in Appendix C.

363 5.2 RESULTS AND ANALYSIS

365 5.2.1 HALLUTEXT

366 Table 2 presents the results on our proposed HalluText. We have several findings:

368 **1) OCR-centric hallucination remains an unsolved challenge across both proprietary and**
 369 **open-source models.** Overall, all models achieve less than 80% accuracy on our benchmark, and
 370 their performance on fine-grained subsets, such as relative position, counting, index, and slice, is sig-
 371 nificantly lower than the average accuracy Acc_{all} . This highlights the persistent and under-addressed
 372 issue of OCR hallucination in current LVLMs. The poor performance on *Slice* and *Index* suggests a
 373 limited understanding of ordinal relationships. *Counting* and *Relative position* tasks remain difficult
 374 due to the insensitivity of LVLMs to object-level correlation and the lack of fine-grained perceptual
 375 reasoning. Moreover, subsets like *Frequency* and *Slice*, which lack contextual information, expose
 376 the reliance of LVLMs on semantic cues for accurate recognition.

377 **2) The scaling law continues to hold for the OCR hallucination task.** We evaluate recent versions
 378 of Qwen and InternVL across three model scales and observe a consistent trend: larger models

Table 3: Performance comparison on OCRBench v2. OA indicates the OCRAssistor. Abbreviations: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation Extraction, EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR = Knowledge Reasoning.

Model	English Part						Chinese Part						Overall		
	TR	TD	TS	RE	EP	MC	TU	KR	TR	RE	EP	TU	KR	English	Chinese
<i>Proprietary LVLMs</i>															
Gemini-Pro	61.2	39.5	13.5	79.3	39.2	47.7	75.5	59.3	52.5	47.3	30.9	51.5	33.4	51.9	43.1
GPT-4o	61.2	26.7	0.0	77.5	36.3	43.4	71.1	55.5	21.6	53.0	29.8	38.5	18.2	46.5	32.2
<i>Open-source LVLMs</i>															
MiniMonkey-2B	58.1	19.6	0.0	51.3	33.0	15.7	61.7	44.8	61.4	40.5	27.9	42.8	17.9	35.5	38.1
MiniCPM-o-2.6-8B	67.4	26.5	0.0	70.1	34.0	31.7	70.6	57.6	54.7	52.4	27.6	42.5	31.6	44.8	41.7
InternVL3-8B	66.9	25.7	0.0	85.3	36.8	34.4	72.3	58.8	67.6	56.9	32.7	53.8	36.7	47.5	49.5
LLaVA-NeXT-7B	38.0	18.5	0.0	21.0	9.8	13.3	65.9	48.6	5.8	9.3	14.1	4.0	1.6	26.9	7.0
LLaVA-NeXT+OA	47.2	19.1	0.0	60.4	22.7	22.0	64.4	45.0	31.0	29.1	18.2	44.0	18.1	35.1 (+8.2)	28.1 (+21.1)
Qwen2.5-VL-7B	67.0	22.3	0.0	76.8	28.2	34.1	72.0	56.3	69.0	52.7	42.3	43.3	37.9	44.6	49.1
Qwen2.5-VL-7B+OA	60.4	22.6	0.0	86.4	33.6	46.2	72.9	54.7	57.0	64.8	39.4	56.8	45.8	47.1 (+2.5)	52.8 (+3.7)

Table 4: Performance comparison on different hallucination mitigating methods. OA indicates the OCRAssistor. Consensus are ensembled with Qwen2.5VL-3B, InternVL-2B and LLaVA-NeXT-7B. Abbreviations: EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY = Typo, IC = Incompletion, FQ = Frequency, ID = Index.

Model	Localization			Acc_{loc}	Recognition					Acc_{rec}	Acc_{all}	
	EX	POS	CT		ST	TY	IC	FQ	ID	SL		
SemanticHallu	90.0	40.0	49.1	59.7	97.0	74.2	45.6	53.2	51.9	46.3	61.4	60.8
Consensus	83.6	36.0	44.6	54.7	86.9	69.4	42.3	44.5	41.6	46.6	55.2	55.1
VDGD	94.4	39.6	49.8	61.3	96.5	78.2	74.8	47.9	47.6	43.2	64.7	63.6
OCRAssistor	96.4	40.6	50.6	62.5	100.0	83.8	76.2	41.6	44.4	43.0	64.8	64.1

exhibit stronger capabilities in suppressing textual hallucinations, confirming the applicability of scaling effects in this domain.

3) Our OCRAssistor method, under a training-free setting, integrates an off-the-shelf open-source OCR model and yields substantial improvements. Specifically, it improves LLaVA by 10.9% and Qwen2.5-VL by 9.6%, with consistent gains across nearly all fine-grained subsets. These results demonstrate the effectiveness of our approach in mitigating OCR hallucinations.

5.2.2 OCRBENCH v2

We further evaluate our approach on OCRBench v2, a general benchmark for OCR-centric tasks. Table 3 shows that our method improves LLaVA-NeXt-7B by 8.2% in English scenarios and 21.1% in Chinese scenarios. For Qwen2.5-VL-7B, which possesses stronger baseline capabilities, our method still achieves 2.5% and 3.7% improvements in English and Chinese settings, respectively. The notably larger gain in LLaVA’s Chinese performance is primarily due to the relatively limited Chinese data exposure during its pretraining phase, compared to Qwen2.5-VL. This suggests that our method can effectively compensate for underrepresented modalities or languages in pretraining, particularly in low-resource scenarios. Beyond perception tasks, OCRAssistor also improves relation extraction, text comprehension, and knowledge reasoning. These results show that integrating an OCR model not only benefits visual-text perception tasks but also enhances high-level semantic understanding in LVLMs.

5.2.3 COMPARISON OF OTHER HALLUCINATION MITIGATION METHODS

We compared OCRAssistor with three representative hallucination-mitigation approaches: (1) a visual-attention-enhanced variant (Shu et al., 2025), (2) a consensus-based ensemble method (Zhang et al., 2025), and (3) the contrastive decoding strategy VDGD (Ghosh et al., 2025). As shown in the Table 4, OCRAssistor achieves the best performance across all HalluText subsets, surpassing the consensus-based method by +9.8% and VDGD by +1.3%, while also being substantially more efficient. These gains mainly come from incorporating reliable external OCR evidence, which provides explicit grounding for both detection and recognition. In contrast, uncertainty-based

432
 433 Table 5: Ablation for all components. Baseline selects Qwen2.5-VL-7B. CoT means the prompt
 434 includes the chain-of-thought instruction “*Let us think this question step by step.*”. OCR means
 435 the OCR results are included in the prompt directly. OCRAssistor (OA) is our final version. OA
 436 indicates the OCRAssistor. Abbreviations: EX = Existence, RP = Relative Position, CT = Counting,
 437 ST = Stroop Effect, TY = Typo, IC = Incompletion, FQ = Frequency, ID = Index.

Model	Localization			Acc_{loc}	Recognition						Acc_{rec}	Acc_{all}
	EX	POS	CT		ST	TY	IC	FQ	ID	SL		
Qwen2.5VL-7B	98.4	50.4	59.7	69.5	90.5	88.8	72.3	62.3	50.3	49.8	69.0	69.2
Qwen2.5VL-7B + CoT	98.4	50.0	63.1	70.5	92.0	88.2	56.2	65.1	77.6	80.6	76.6	74.6
Qwen2.5VL-7B + OCR	98.0	52.2	60.1	70.1	99.0	90.0	89.4	56.4	48.7	49.0	72.1	71.4
Qwen2.5VL-7B + OCR + CoT	98.0	48.6	69.1	71.9	95.0	89.6	63.5	64.7	74.7	80.2	78.0	75.9
Qwen2.5VL-7B + OA	98.8	50.4	66.5	71.9	95.5	89.8	81.3	71.0	72.9	82.0	82.1	78.7

444 Table 6: Performance comparison
 445 on ChartQA and DocVQA. OA in-
 446 dicates our method OCRAssistor.

447 Table 7: Effect on OCR quality. OA indicates the OCRAssistor.
 448 According to verification of ground truth, samples are divided
 449 into Correct and Incorrect categories.

Dataset	Base	Base + OA
ChartQA	69.1	70.4
DocVQA	49.3	57.1

Settings	ST	TY	IC	FQ	ID	SL	Acc_{rec}
Qwen2.5VL-3B+OA	100	83.8	76.2	41.6	44.4	43.0	64.8
Correct OCR	100	85.4	84.4	74.2	77.8	86.2	84.7
Incorrect OCR	100	75.7	61.5	40.9	42.2	46.0	61.1

452 methods fail to correct visual–text perception errors, especially in cases of mis-detection, relational
 453 confusion, or attribute mistakes.

455 5.2.4 ABLATIONS

456 In this section, we conduct a series of ablation studies under different experimental configurations
 457 to investigate which components contribute most to reducing hallucination in LVLMs, shown in
 458 Table 5. Specifically, we compare the following setups on the HalluText benchmark: (1) adding
 459 chain-of-thought (CoT) prompting, (2) simply appending raw OCR outputs to the prompt, and (3)
 460 our proposed OCRAssistor strategy. Results show that directly appending OCR results to the prompt
 461 brings modest gains on average. While CoT prompting yields some improvement, our OCRAssistor
 462 demonstrates substantially stronger gains, achieving improvements of 2.4% in localization, 13.1%
 463 in recognition, and 9.6% on the overall average metric. These results confirm that our carefully
 464 designed OCRAssistor effectively and seamlessly integrates OCR information into LVLMs. By
 465 leveraging the structured visual guidance provided by the OCR model, our method significantly
 466 alleviates OCR-aware hallucinations in both perception and understanding tasks.

468 5.2.5 EXPERIMENTS ON OTHER TEXTVQA BENCHMARK

469 We additionally evaluated our method on two widely used open-ended benchmarks,
 470 ChartQA (Masry et al., 2022) and DocVQA (Mathew et al., 2021), to further assess its generalization
 471 beyond multiple-choice settings. Table 6 shows that OCRAssistor yields consistent improvements
 472 on both benchmarks. The gain on ChartQA is relatively smaller, which we attribute to the fact that
 473 the dataset involves substantial numerical reasoning beyond text recognition. Our method is de-
 474 signed to enhance the LVLM’s ability to accurately perceive and ground textual content in images,
 475 thereby reducing hallucinations arising from internal priors. Although OCRAssistor does not ex-
 476 plicitly target complex reasoning, the improved visual–text grounding still contributes to measurable
 477 performance improvements on both ChartQA and DocVQA.

482 5.2.6 OCR QUALITY

483 To directly assess this failure mode, we conducted a controlled experiment simulating the “OCR fail-
 484 ure” scenario. We partitioned the evaluation samples into two subsets according to the correctness
 485 of the OCR output: a Correct set, where all OCR-extracted text matches the ground-truth annota-

486
 487 Table 8: The efficiency experiments between
 488 OCRAssistor and VDGD (Ghosh et al., 2025).
 489 For convenience, we use Qwen2.5-VL-3B as the
 490 base model.

Settings	HalluText	Time(s/image)
Qwen2.5-VL-3B	59.3	0.275
Qwen2.5-VL-3B + VDGD	63.6	10.972
Qwen2.5-VL-3B + OA	64.1	0.817

Table 9: The gains of OCRAssistor on
 Qwen2.5-VL series across different scales.

Model	HalluText	OCR Bench v2(EN/ZH)
Qwen2.5-VL-3B	+4.8	+1.3 / +4.7
Qwen2.5-VL-7B	+9.6	+2.5 / +3.7

495
 496 tions, and an Incorrect set, where the OCR model produces mismatched or erroneous text. Results
 497 of Table 7 show that the Correct subset achieves an Acc_{rec} of 84.7, reflecting the upper bound of the
 498 benefit when OCR cues are fully accurate. The Incorrect subset yields an Acc_{rec} of 61.1, confirming
 499 that incorrect OCR cues do introduce noise and can degrade performance. Crucially, accuracy on
 500 the Incorrect subset remains far above naive baselines (e.g., random choice or the LVLM without as-
 501 sistance), demonstrating that OCRAssistor does not blindly follow faulty OCR outputs. Instead, its
 502 soft-guidance formulation allows the LVLM to partially resist or correct misleading cues, indicating
 503 a non-trivial degree of robustness even under simulated OCR failure.

504 5.2.7 EFFICIENCY

505
 506 Table 8 presents the runtime performance of OCRAssistor on Qwen2.5-VL. We compare three se-
 507 tups: the original 3B model, the VDGD-enhanced model, and our OCRAssistor. OCRAssistor
 508 introduces only 0.6s of additional latency per image while delivering a 4.8% performance gain.
 509 In contrast, VDGD adds over 10s per image, making it impractical despite modest improvements.
 510 This demonstrates OCRAssistor’s favorable balance of efficiency and effectiveness. Notably, since
 511 our evaluation involves only multiple-choice outputs, baseline inference times remain low. In more
 512 complex scenarios requiring free-form or subjective generation, the overall inference latency would
 513 increase significantly, thereby reducing the relative overhead introduced by the OCR module. Thus,
 514 the efficiency advantage of our method could be more pronounced in real-world applications. **Sec-
 515 tion F will discuss the efficiency of OCRAssistor under a more open-ended generation scenario
 516 further.**

517 5.2.8 SCALING

518
 519 We further examine the effectiveness of OCRAssistor across different model scales, with results
 520 summarized in Table 9. Experimental results demonstrate that OCRAssistor consistently yields
 521 performance gains across both model sizes. Notably, the improvements are more pronounced on
 522 HalluText, which is explicitly designed to evaluate hallucination, indicating that our decoding stra-
 523 tegy is particularly effective in hallucination-prone scenarios. These findings highlight the robust
 524 generalization ability of our method across LVLMs of varying capacity, making it applicable to both
 525 lightweight and large-scale models.

526 6 CONCLUSION

527
 528 In this work, we present a comprehensive study on OCR-centric hallucinations in LVLMs. After
 529 applying a dual-perspective taxonomy that categorizes errors by task process (localization, recogni-
 530 tion) and hallucination type (category, relation, attribute) and analyzing failure cases, we introduce
 531 HalluText, a fine-grained benchmark comprising 4,678 samples across 9 subsets, designed to diag-
 532 nose OCR hallucinations. To address these challenges, we develop OCRAssistor, a training-free and
 533 plug-and-play pipeline that leverages external OCR signals to guide LVLM decoding. Experiments
 534 on HalluText and OCRBench v2 show that OCRAssistor consistently improves performance across
 535 models of different scales, while remaining efficient and scalable. Our findings underscore not only
 536 the importance of structured OCR integration but also highlight the effectiveness of a large-small
 537 model collaboration paradigm, where a lightweight OCR expert module supplements the strengths
 538 of a powerful LVLM. This cooperative design offers a practical and generalizable solution for re-
 539 ducing hallucinations in vision-language understanding.

540 REPRODUCIBILITY STATEMENT
541

542 We have made extensive efforts to ensure that the results reported in this work are reproducible. All
543 model architectures, training procedures, and hyperparameter settings are described in the main text
544 (Sections 4–5) and detailed further in the Appendix (Appendix A–C). For the datasets used in our
545 experiments, we provide complete descriptions of preprocessing and filtering steps in the supple-
546 mentary materials. All evaluation metrics are formally defined in Section 3.3, enabling consistent
547 replication of our analysis. Additionally, the source code and scripts used for training, inference,
548 and evaluation will be made publicly available as anonymized supplementary material, facilitating
549 direct reproduction of the reported results. Readers are referred to these resources for all necessary
550 details to reproduce the experiments and analyses presented in this work.

551
552 ETHICS STATEMENT
553

554 All authors have read and adhered to the ICLR Code of Ethics. This work focuses on analyzing
555 and mitigating OCR hallucination, and does not involve direct experimentation on human subjects.
556 All datasets used are either publicly available or used under appropriate licenses, and any personal
557 information has been anonymized to protect privacy. We are aware of potential societal impacts of
558 multimodal AI systems, including misuse for generating misleading content or biased outputs. In
559 our experiments, we take care to evaluate model behavior across diverse languages and scenarios to
560 mitigate unintended bias. No datasets or methods used are expected to cause harm to individuals
561 or communities. We encourage responsible use and recommend that future users of the proposed
562 models follow relevant legal, privacy, and fairness guidelines. Any conflicts of interest have been
563 disclosed, and all research practices adhere to established standards of scientific integrity.

564 REFERENCES
565

566 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
567 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv:2502.13923*, 2025.

568 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng
569 Shou. Hallucination of multimodal large language models: A survey. *arXiv:2404.18930*, 2024.

570 Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis Gomez, Marçal Rusinol, Ernest Valveny,
571 CV Jawahar, and Dimosthenis Karatzas. Scene text visual question answering. In *ICCV*, pp.
572 4291–4301, 2019.

573 Chee Kheng Ch’ng and Chee Seng Chan. Total-text: A comprehensive dataset for scene text detec-
574 tion and recognition. In *ICDAR*, volume 1, pp. 935–942. IEEE, 2017.

575 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
576 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control
577 by visual information grounding. In *CVPR*, pp. 14303–14312, 2024.

578 Ling Fu, Zhebin Kuang, Jiajun Song, Mingxin Huang, Biao Yang, Yuzhe Li, Linghao Zhu, Qidi
579 Luo, Xinyu Wang, Hao Lu, et al. Ocrbench v2: An improved benchmark for evaluating large
580 multimodal models on visual text localization and reasoning. *arXiv:2501.00321*, 2024.

581 Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Utkarsh Tyagi, Oriol Nieto, Zeyu Jin,
582 and Dinesh Manocha. Visual description grounding reduces hallucinations and boosts reasoning
583 in lmlms. In *ICLR*, 2025.

584 Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision
585 language models. In *AAAI*, volume 38, pp. 18135–18143, 2024.

586 Masato Hagiwara and Masato Mita. Github typo corpus: A large-scale multilingual dataset of
587 misspellings and grammatical errors. *arXiv:1911.12893*, 2019.

588 Haibin He, Maoyuan Ye, Jing Zhang, Xiantao Cai, Juhua Liu, Bo Du, and Dacheng Tao. Reasoning-
589 ocr: Can large multimodal models solve complex logical reasoning problems from ocr cues?
590 *arXiv:2505.12766*, 2025a.

594 Zhentao He, Can Zhang, Ziheng Wu, Zhenghao Chen, Yufei Zhan, Yifan Li, Zhao Zhang, Xian
 595 Wang, and Minghui Qiu. Seeing is believing? mitigating ocr hallucinations in multimodal large
 596 language models, 2025b. URL <https://arxiv.org/abs/2506.20168>.

597

598 Mingxin Huang, Yuliang Liu, Dingkang Liang, Lianwen Jin, and Xiang Bai. Mini-monkey: Alleviate
 599 the sawtooth effect by multi-scale adaptive cropping. *arXiv e-prints*, pp. arXiv-2408, 2024a.

600 Mingxin Huang, Yongxin Shi, Dezheng Peng, Songxuan Lai, Zecheng Xie, and Lianwen Jin. Ocr-
 601 reasoning benchmark: Unveiling the true capabilities of mllms in complex text-rich image rea-
 602 soning. *arXiv:2505.17163*, 2025.

603

604 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 605 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 606 via over-trust penalty and retrospection-allocation. In *CVPR*, pp. 13418–13427, 2024b.

607 Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu, and CV Jawa-
 608 har. Icdar2019 competition on scanned receipt ocr and information extraction. In *ICDAR*, pp.
 609 1516–1520. IEEE, 2019.

610

611 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 612 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv:2410.21276*,
 613 2024.

614 Jitesh Jain, Jianwei Yang, and Humphrey Shi. Vcoder: Versatile vision encoders for multimodal
 615 large language models. In *CVPR*, pp. 27992–28002, 2024.

616

617 Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. Funsd: A dataset for form
 618 understanding in noisy scanned documents. In *ICDARW*, volume 2, pp. 1–6. IEEE, 2019.

619

620 Qing Jiang, Jiapeng Wang, Dezheng Peng, Chongyu Liu, and Lianwen Jin. Revisiting scene text
 621 recognition: A data perspective. In *ICCV*, pp. 20543–20554, 2023.

622 Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura, Lluis Gomez i Bigorda,
 623 Sergi Robles Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Almazan, and Lluis Pere
 624 De Las Heras. Icdar 2013 robust reading competition. In *ICDAR*, pp. 1484–1493. IEEE, 2013.

625

626 Solomon Kullback. Kullback-leibler divergence. *Tech. Rep.*, 1951.

627

628 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 629 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 630 coding. In *CVPR*, pp. 13872–13882, 2024.

631

632 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan
 633 Li. Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models.
 634 *arXiv:2407.07895*, 2024a.

635

636 Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
 637 Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal
 638 models. In *CVPR*, pp. 26763–26773, 2024b.

639

640 Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang,
 641 Xinyu Wang, and Xiang Bai. Monkeyocr: Document parsing with a structure-recognition-relation
 642 triplet paradigm. *arXiv:2506.05218*, 2025.

643

644 Chongyu Liu, Yuliang Liu, Lianwen Jin, Shuaitao Zhang, Canjie Luo, and Yongpan Wang. Erasenet:
 645 End-to-end text removal in the wild. *IEEE TIP*, 29:8760–8775, 2020.

646

647 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating
 648 hallucination in large multi-modal models via robust instruction tuning. *arXiv:2306.14565*, 2023.

649

650 Yuliang Liu, Lianwen Jin, Shuaitao Zhang, and Sheng Zhang. Detecting curve text in the wild: New
 651 dataset and new solution. *arXiv*, 2017.

648 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 649 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 650 multimodal models. *SCIS*, 67(12):220102, 2024.

651

652 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:
 653 Structural embedding alignment for multimodal large language model. *arXiv:2405.20797*, 2024.

654 Colin M MacLeod. Half a century of research on the stroop effect: an integrative review. *Psycho-*
 655 *logical bulletin*, 109(2):163, 1991.

656

657 Fiona Macpherson and Dimitris Platchias. *Hallucination: Philosophy and psychology*. MIT Press,
 658 2013.

659 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 660 mark for question answering about charts with visual and logical reasoning. *arXiv:2203.10244*,
 661 2022.

662

663 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 664 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 665 pp. 2200–2209, 2021.

666 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 667 Infographicvqa. In *WACV*, pp. 1697–1706, 2022.

668

669 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
 670 in abstractive summarization. *arXiv:2005.00661*, 2020.

671 Mor Shpigel Nacson, Aviad Aberdam, Roy Ganz, Elad Ben Avraham, Alona Golts, Yair Kittenton,
 672 Shai Mazor, and Ron Litman. Docvlm: Make your vlm an efficient reader. In *CVPR*, pp. 29005–
 673 29015, 2025.

674

675 Linke Ouyang, Yuan Qu, Hongbin Zhou, Jiawei Zhu, Rui Zhang, Qunshu Lin, Bin Wang, Zhiyuan
 676 Zhao, Man Jiang, Xiaomeng Zhao, et al. Omnidocbench: Benchmarking diverse pdf document
 677 parsing with comprehensive annotations. In *CVPR*, pp. 24838–24848, 2025.

678 Yan Shu, Hangui Lin, Yexin Liu, Yan Zhang, Gangyan Zeng, Yan Li, Yu Zhou, Ser-Nam Lim,
 679 Harry Yang, and Nicu Sebe. When semantics mislead vision: Mitigating large multimodal models
 680 hallucinations in scene text spotting and understanding. *arXiv:2506.05551*, 2025.

681 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 682 and Marcus Rohrbach. Towards vqa models that can read. In *CVPR*, pp. 8317–8326, 2019.

683

684 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 685 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 686 factually augmented rlhf. *arXiv:2309.14525*, 2023.

687 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 688 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 689 standing across millions of tokens of context. *arXiv:2403.05530*, 2024.

690

691 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and
 692 Huajun Chen. Mllm can see? dynamic correction decoding for hallucination mitigation.
 693 *arXiv:2410.11779*, 2024a.

694 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 695 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 696 world at any resolution. *arXiv:2409.12191*, 2024b.

697

698 Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large
 699 vision-language models with instruction contrastive decoding. *arXiv:2403.18715*, 2024c.

700

701 Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang
 702 Zhao, Jianjian Sun, Yuang Peng, et al. General ocr theory: Towards ocr-2.0 via a unified end-to-
 703 end model. *arXiv preprint arXiv:2409.01704*, 2024.

702 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu
 703 Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone.
 704 *arXiv:2408.01800*, 2024.

705 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 706 multimodal large language models. *NSR*, 11(12):nvae403, 2024.

708 Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang, Qi Tian,
 709 and Yueting Zhuang. Hallucidocor: Mitigating hallucinatory toxicity in visual instruction data.
 710 In *CVPR*, pp. 12944–12953, 2024a.

711 Ya-Qi Yu, Minghui Liao, Jihao Wu, Yongxin Liao, Xiaoyu Zheng, and Wei Zeng. Texthawk: Ex-
 712 ploring efficient fine-grained perception of multimodal large language models. *arXiv:2404.09204*,
 713 2024b.

715 Jinrui Zhang, Teng Wang, Haigang Zhang, Ping Lu, and Feng Zheng. Reflective instruction tuning:
 716 Mitigating hallucinations in large vision-language models. In *ECCV*, pp. 196–213. Springer,
 717 2024.

718 Yulong Zhang, Tianyi Liang, Xinyue Huang, Erfei Cui, Xu Guo, Pei Chu, Chenhui Li, Ru Zhang,
 719 Wenhui Wang, and Gongshen Liu. Consensus entropy: Harnessing multi-vlm agreement for self-
 720 verifying and self-improving ocr. *arXiv preprint arXiv:2504.11101*, 2025.

722 Zhen Zhao, Jingqun Tang, Binhong Wu, Chunhui Lin, Shu Wei, Hao Liu, Xin Tan, Zhizhong
 723 Zhang, Can Huang, and Yuan Xie. Harmonizing visual text comprehension and generation.
 724 *arXiv:2407.16364*, 2024.

725 Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond
 726 hallucinations: Enhancing lmlms through hallucination-aware direct preference optimization.
 727 *arXiv:2311.16839*, 2023.

729 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 730 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 731 open-source multimodal models. *arXiv:2504.10479*, 2025a.

732 Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating halluci-
 733 nations in large vision-language models via image-biased decoding. In *CVPR*, pp. 1624–1633,
 734 2025b.

735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 The appendix includes the following aspects:
 757

- 758 • A: Use of Large Language Models
- 759 • B: Details of HalluText curation.
- 760 • C: Details of the prompt.
- 761 • D: Additional Experiments.
- 762 • E: Visualization.
- 763 • F: Efficiency Analysis.
- 764 • G: OCR Quality.

767 A USE OF LARGE LANGUAGE MODELS

768
 769 In this work, large language models (LLMs) are used solely as generally purpose assistive tools to
 770 improve the clarity, grammar, and readability of the manuscript. LLMs are not used for research
 771 ideation, data analysis, model development, or any other scientific decision-making. All scientific
 772 content, ideas, results, and conclusions presented in this paper are independently produced by the
 773 authors. The authors take full responsibility for the accuracy and integrity of the work, including
 774 any content that was refined or edited with the assistance of LLMs. No information generated by
 775 LLMs that could constitute plagiarism, fabrication, or scientific misconduct has been included.

777 B DETAILS OF HALLUTEXT CURATION

779 **Algorithm 1** Generating Stroop-Effect QA Pairs

780 **Require:** colors, shapes

781 **Ensure:** qa_pair

```

782 1: function GENERATESTROOPQA
783 2:   shape_color, text_color, render_color  $\leftarrow$  RandomSelect(colors)
784 3:   shape_shape, text_shape  $\leftarrow$  RandomSelect(shapes)
785 4:   img  $\leftarrow$  ImageDraw(shape_shape, shape_color, render_color)
786 5:   text  $\leftarrow$  concatenate(text_color, text_shape)
787 6:   font_size  $\leftarrow$  RandomSelect(range(10, 50))
788 7:   bbox  $\leftarrow$  ComputeBBox(text, font_size)
789 8:   if apply_rotation then
790 9:     rotated_dims  $\leftarrow$  GetRotatedDims(bbox, angle)
791 10:    if rotated_dims exceeds image boundaries then
792 11:      font_size  $\leftarrow$  AdjustFontSize(font_size, max_scale)
793 12:      bbox  $\leftarrow$  ComputeBBox(text, font_size)
794 13:    end if
795 14:    pos  $\leftarrow$  FindValidPos(rotated_dims)
796 15:    RenderTextRotated(text, pos, font_size, angle)
797 16:  else
798 17:    pos  $\leftarrow$  FindValidPos(bbox)
799 18:    RenderText(text, pos, font_size)
800 19:  end if
801 20:  question  $\leftarrow$  "What text is written in the image?"
802 21:  options  $\leftarrow$  GenerateOptions(text_color, text_shape, shape_color,
803  shape_shape, render_color)
804 22:  options, answer  $\leftarrow$  ShuffleOptions(text, options)
805 23:  qa_pair  $\leftarrow$  {question, img, options, answer}
806 24: end function

```

807 B.1 EXISTENCE

808
 809 We construct the Existence subset using SCUT-ENS Liu et al. (2020), a dataset containing paired
 images before and after scene text erasing. By leveraging these image pairs and their corresponding

810

811

Table 10: Prompt templates for different settings.

812 Settings	813 Prompt
HalluText	
814 Baseline	815 Please strictly follow these rules: \n Place the answer only option letter 816 (with no extra characters) on a separate last line. \n Question: [QUESTI- 817 ON]. \n Options: [OPTIONS]. \n Answer: \n
818 Baseline+CoT	819 Please strictly follow these rules: \n Let us think this question step by 820 step (Chain of thought) and Place the answer only option letter (with no 821 extra characters) on a separate last line. \n Question: [QUESTION]. \n 822 Options: [OPTIONS]. \n Chain of thought: \n Answer: \n
823 Baseline+OCR	824 The texts in the image were recognized in the image: [OCR RESULTS] 825 \Please strictly follow these rules: \n Place the answer only option letter 826 (with no extra characters) on a separate last line. \n Question: 827 [QUESTION]. \n Options: [OPTIONS]. \n Answer: \n
828 Baseline+OCR+CoT	829 The texts in the image were recognized in the image: [OCR RESULTS]. 830 Please strictly follow these rules: \n Let us think this question step by 831 step (Chain of thought) and place the answer only option letter (with no 832 extra characters) on a separate last line. \n Question: [QUESTION]. \n 833 Options: [OPTIONS]. \n Chain of thought: \n Answer: \n
834 Baseline+OCRAssistor	835 Same as Baseline+OCR+CoT

831

832

833

OCR annotations, we create VQA-style samples that ask whether a specific text instance existed prior to erasure. As shown in Figure 5, we design the questions template “*Does the text ‘TEA’ exist in the image?*”, accompanied by the erased image as shown in Figure 5 (a). The correct answer is clearly *No*. If the LVLM relies solely on dataset bias rather than visual information provided by the user, it is prone to incorrectly predicting *Yes*. To further balance the distribution of answers, we deliberately incorporate negative forms in the question design, ensuring a more even ratio between *Yes* and *No* responses.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

(a) Erased image

(b) Original image

851

852

853

Figure 5: The details of “Existence” subset.

854

855

856

857

858

B.2 INCOMPLETE

859

860

861

862

863

The *Incompletion* subset is adapted from OCRBench v2 using its standard recognition prompts. To ensure quality, we manually verify and clean the original annotations. For each question, a confusion option is generated by using the original word, which is rich in semantics. The other two distractors are created by applying random character-level edits (insertion, deletion, substitution) based on the ground truth. An example is shown in Figure 3.

864
865

B.3 COUNTING

866
867
868

The *Counting* subset also follows the instruction of OCRBench v2, using standard counting-style prompts. Answers are derived from the original dataset, with confusion options introduced by sampling positive integer near the correct answer (e.g. $+1, -1$) to simulate realistic ambiguity.

869

870
871

B.4 TYPO

872
873
874
875
876

The *Typo* subset is synthetically constructed using the typo corpus and the Pillow image library. We adopt a minimalist rendering black text on a white background, without any decorative elements. Confusion options are generated by randomly applying one character-level edit (insertion, deletion, or substitution) to the ground truth or its corrected version. This process mirrors that of the Incomplete subset, focusing on recognition robustness under typographical noise.

877

878

B.5 POSITION

879
880
881
882
883
884

The *Position* subset is built from the Total-Text dataset. We discard illegible or unannotated text instances and classify the remaining ones into eight relative positional categories: top-left, top, top-right, right, bottom-right, bottom, bottom-left, and left. To avoid ambiguity between adjacent classes (e.g., top-left vs. top), we explicitly remove potentially confusing categories when generating answer options. This ensures that each question has one unambiguous correct answer.

885

886

B.6 INDEX, SLICE, AND FREQUENCY

887
888
889
890
891

The *Index*, *Slice*, and *Frequency* subsets are jointly derived from the Union14M-contextless dataset Jiang et al. (2023). For each image–annotation pair, we sample character-level statistics such as frequency, position, and index to formulate distinct question types. To maintain a single-answer format, we filter out ambiguous cases—such as words with repeated characters—where multiple valid answers might exist for an index-based query.

892

893

B.7 STROOP EFFECT

894
895
896
897
898
899

The *Stroop Effect* subset is uniquely constructed without relying on any existing public dataset. We manually generate image–question–answer triplets to simulate conditions where irrelevant but plausible distractors interfere with OCR perception. The generation pipeline is detailed in Algorithm 1. Crucially, all confusion options used in the answer choices are explicitly present within the image, enabling a faithful evaluation of the LVLM’s susceptibility to OCR hallucinations.

900

901

C DETAILS OF PROMPT

902

To adapt different ablation settings, we design prompt templates tailored to various input configurations. The detailed prompt formats are provided in Table 10. In the HalluText benchmark, the *Baseline* configuration includes only the core question and the corresponding answer choices. For the *CoT* and *OCR* settings, we incorporate respective guiding cues into the prompt. In the OCRAssistor setup, we include both the CoT prompt and OCR information in the language instruction to encourage alignment between the LVLM’s output and the OCR-derived content distribution. Experimental results show that our method significantly improves performance on HalluText and has a consistent positive effect in mitigating OCR hallucinations. On the OCRBench v2 benchmark, we follow the standard evaluation protocol, using only the question as the full prompt. Under the fair setting, our method demonstrates stable and consistent improvements in fair comparisons with other models, as shown in Table 3.

913

914

915

D ADDITIONAL EXPERIMENTS

916

917

In this section, we provide additional experimental results that are omitted from the main text due to space limitations.

918
 919 Table 11: Ablation for OCR inputs. The baseline LVLM is Qwen2.5-VL-3B. All settings loads
 920 OCRAssistor.

Model	Acc_{loc}	Acc_{rec}	Acc_{all}
Rec-only	62.5	64.8	64.1
Det & Rec	63.5 (+1.0)	62.5 (-2.3)	62.8 (-1.3)

921
 922
 923
 924
 925
 926 Table 12: Ablation for the setting of λ , The
 927 baseline LVLM is Qwen2.5-VL-3B. **Bold** indi-
 928 cates the best performance.

λ	Acc_{loc}	Acc_{rec}	Acc_{all}
0.1	60.3	65.8	64.0
0.5	59.7	66.0	63.9
1.0	59.1	65.9	63.6
1.5	59.5	65.6	63.6
2.0	59.5	65.9	63.8

929
 930
 931
 932
 933
 934
 935
 936
 937
 938 Table 13: Ablation for the setting of T , The
 939 baseline LVLM is Qwen2.5-VL-3B. **Bold** indi-
 940 cates the best performance.

T	Acc_{loc}	Acc_{rec}	Acc_{all}
0.1	62.5	64.8	64.1
0.5	61.0	65.2	63.8
1.0	60.3	65.8	64.0

939 D.1 OCR INPUTS

940 We conduct an ablation study on the use of OCR inputs. Two configurations are compared: (1) us-
 941 ing only the OCR recognition results as input, and (2) incorporating both detection and recognition
 942 results into the prompt. As shown in Table 11, providing both detection and recognition results as
 943 OCR priors leads to a 1.0% improvement on the localization task compared to using recognition re-
 944 sults alone. However, this setting results in performance drops of 2.3% and 1.3% on the recognition
 945 task and the overall average, respectively. We attribute this phenomenon to the limited guidance pro-
 946 vided by the coordinate-format detection results after tokenization, which could not be effectively
 947 utilized during LVLM decoding. We caution that directly including OCR detection outputs in the
 948 prompt make adverse effects.

950 D.2 THE EFFECT OF λ AND T

952 We conducted a comprehensive ablation study to evaluate the sensitivity of OCRAssistor to its two
 953 key hyperparameters: the guidance weight λ and the temperature T . As shown in Tables (λ) and (T),
 954 the overall performance remains remarkably stable across a wide range of values. For λ , varying the
 955 weight from 0.1 to 2.0 results in only minimal fluctuations in both Acc_{loc} and Acc_{rec} (within ± 0.3 on
 956 overall accuracy). Similarly, adjusting T from 0.1 to 1.0 produces highly consistent results, with the
 957 overall accuracy differing by less than 0.3 across settings. Importantly, no monotonic degradation
 958 or sharp peak is observed, indicating that OCRAssistor is not sensitive to either λ or temperature,
 959 and the guidance effect remains robust under different strengths of modulation. Given this stability,
 960 we adopt $\lambda = 0.1$ and $T = 0.1$ in our main experiments.

962 D.3 THE DETAILED RESULTS ON QWEN2.5-VL-3B

964 Owing to space constraints, Table 9 presents only the performance gains of Qwen2.5-VL-3B with
 965 OCRAssistor on HalluText and OCRBench v2. For completeness, the detailed results are provided
 966 in Table 14 and Table 15.

969 E VISUALIZATION

971 This section presents qualitative visualizations of Qwen2.5-VL-7B’s performance on two datasets.

972
 973 Table 14: Detailed results of Qwen2.5-VL-3B on OCRBench v2. OA indicates the OCRAssistor.
 974 Abbreviations: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation
 975 Extraction, EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR =
 976 Knowledge Reasoning.

977	Model	English Part						Chinese Part						Overall		
		TR	TD	TS	RE	EP	MC	TU	KR	TR	RE	EP	TU	KR	English	Chinese
978	Qwen2.5-VL-3B	63.9	18.7	0.0	81.5	32.5	35.3	69.2	49.2	69.0	47.2	33.0	35.5	43.5	43.8	45.6
979	Qwen2.5-VL-3B+OA	58.9	20.6	0.0	84.7	34.6	39.9	70.9	51.0	67.6	54.8	33.2	54.0	41.8	45.1 (+1.3)	50.3 (+4.7)

980
 981 Table 15: Detailed performance of Qwen2.5VL-3B on HalluText. OA indicates the OCRAssistor.
 982 Abbreviations: EX = Existence, RP = Relative Position, CT = Counting, ST = Stroop Effect, TY =
 983 Typo, IC = Incompletion, FQ = Frequency, ID = Index.

984	Model	Localization			Acc_{loc}	Recognition					Acc_{rec}	Acc_{all}	
		EX	POS	CT		ST	TY	IC	FQ	ID			
985	Qwen2.5-VL-3B	90.8	39.4	46.4	58.9	94.0	79.2	42.1	49.5	45.0	47.7	59.6	59.3
986	Qwen2.5-VL-3B + OA	96.4	40.6	50.6	62.5	100.0	83.8	78.2	41.6	44.4	43.0	64.8	64.1

E.1 HALLUTEXT

991 Figure 6 illustrates results on HalluText, where we visualize the input image, question, answer
 992 options, model predictions (before and after enhancement), and the OCR-recognized text. The com-
 993 parison shows that with guidance from OCR outputs, Qwen2.5-VL-7B better adheres to visual in-
 994 structions and exhibits reduced OCR hallucinations.

E.2 OCRBENCH v2

998 Figure 7 and Figure 8 show visualizations on the English and Chinese subsets of OCRBench, re-
 999 spectively. We observe that the proposed OCRAssistor module helps the LVLM correct fine-grained
 1000 recognition errors. For example, in Figure 7, the model originally extracted “Newspaper Parent” for
 1001 the field “Brand(s) Applicable”, while the image text actually reads “Newport Parent”; similarly, it
 1002 misread “Coupon Issue Date” as “4/1/00” instead of the correct “4/14/00”. These cases highlight
 1003 the presence of OCR hallucinations in the baseline LVLM, which are significantly mitigated after
 1004 applying the proposed improvements. In summary, our method achieves stable performance gains
 1005 across diverse generalized OCR scenarios.

F EFFICIENCY ANALYSIS

1011 As a supplement to Table 8, we further evaluate the efficiency of OCRAssistor on OCRBenchv2,
 1012 an open-ended generation benchmark in Table 16. The results show that OCRAssistor consistently
 1013 achieves the highest overall accuracy across both the 128- and 1024-token settings (e.g., TR, RE,
 1014 TU), while maintaining substantially lower computational overhead. At 128 tokens, OCRAssistor
 1015 requires only 1.12 seconds, 3.3x faster than TextHallu and 8x faster than VDGD. Even at 1024 to-
 1016 kens, its runtime remains low (1.24 seconds), still achieving 3x and 9x speedups over TextHallu and
 1017 VDGD, respectively. Regarding scalability, OCRAssistor exhibits only an 11% increase in latency
 1018 from 128 to 1024 tokens, closely matching the baseline trend and outperforming both VDGD’s steep
 1019 growth and the consistently high cost of TextHallu. Overall, OCRAssistor provides the best accu-
 1020 racy–efficiency trade-off: it delivers higher performance across key metrics while adding only less
 1021 than 1 second of overhead, and preserves robust scalability for longer input sequences.

G OCR QUALITY

1022 We also investigate the impact of OCR quality on hallucination mitigation, as shown in Table 17.
 1023 Specifically, we evaluate the recognition quality of OCR models on the 1,500 original images used

Figure 6: A Visualization of HalluText.

Figure 7: A Visualization of OCRBench v2-EN.

to construct the HalluText benchmark. In addition to our default OCR system PaddleOCR¹, we compare with another widely used alternative, EasyOCR². Experimental results indicate that EasyOCR achieves a 1-N.E.D. score that is 2.2 points lower than PaddleOCR, suggesting slightly inferior recognition performance. Correspondingly, under the same experimental settings, the downstream results on HalluText using EasyOCR are consistently lower than those with PaddleOCR. These findings demonstrate a positive correlation between OCR quality and hallucination-mitigating performance: higher-quality OCR outputs provide more reliable visual cues, which better guide LLMs and reduce hallucinated generations.

¹<https://github.com/PaddlePaddle/PaddleOCR>

²<https://github.com/JaideedAI/EasyOCR>

Figure 8: A Visualization of OCRBench v2-CN.

Table 16: Performomance comparison on OCRBench v2. OA indicates the OCRAssistor. Abbreviations: TR = Text Recognition, TD = Text Detection, TS = Text Spotting, RE = Relation Extraction, EP=Element Parsing, MC = Metathetical Calculating, TU=Text Understanding, KR = Knowledge Reasoning.

Model	English Part							Chinese Part							Overall		Time
	TR	TD	TS	RE	EP	MC	TU	KR	TR	RE	EP	TU	KR	English	Chinese		
Baseline-128	57.9	18.6	0	67.9	15.6	33.4	69.1	47.9	41.2	46.2	23.2	37.0	43.1	38.8	38.1	0.66	
Baseline-1024	64.1	18.6	0	81.3	32.5	35.3	69.0	49.0	69.0	47.3	32.9	36.5	43.1	43.7	45.8	0.96	
TextHallu-128	58.9	20.9	0	67.8	14.7	31.7	64.9	48.2	37.5	32.3	21.0	29.8	42.5	38.4	32.6	3.68	
TextHallu-1024	66.4	20.9	0	81.5	30.3	35.7	64.9	49.3	67.8	34.1	30.7	32.8	42.0	43.6	41.5	3.60	
VDGD-128	53.6	20.2	0	64.1	16.8	28.5	69.6	47.0	33.9	46.4	25.1	28.6	38.5	37.5	34.5	8.97	
VDGD-1024	60.7	20.3	0	78.8	34.0	31.7	69.6	48.1	62.0	47.8	33.7	31.0	38.6	42.9	42.6	10.95	
OCRAssistor-128	52.9	21.5	0	70.4	17.0	34.6	71.3	49.2	40.0	53.9	25.3	57.0	42.4	39.6	43.7	1.12	
OCRAssistor-1024	59.4	21.4	0	83.9	34.6	38.9	71.2	50.4	69.9	55.1	31.5	56.0	42.9	45.0	51.1	1.24	

Table 17: Effect of different OCR models. 1-N.E.D. is a recognition metric defined as $1 - NED$.

OCR Model	1-N.E.D.	Acc_{loc}	Acc_{rec}	Acc_{all}
PaddleOCR	88.7	71.9	82.1	78.7
EasyOCR	86.5	71.5	79.1	76.6