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ABSTRACT

State Space Models (SSMs) have become serious contenders in the field of se-
quential modeling, challenging the dominance of Transformers. At the same time,
Mixture of Experts (MoE) has significantly improved Transformer-based Large
Language Models, including recent state-of-the-art open models. We propose that
to unlock the potential of SSMs for scaling, they should be combined with MoE.
We showcase this on Mamba, a recent SSM-based model that achieves remark-
able performance. Our model, MoE-Mamba, outperforms Mamba and matches
the performance of Transformer-MoE. In particular, MoE-Mamba reaches the
same performance as Mamba in 2.35× fewer training steps while preserving the
inference performance gains of Mamba against Transformer.

Figure 1: Log perplexity throughout the training. From top to bottom: Mamba100M;
Transformer-MoE100M; MoE-Mamba100M.
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1 INTRODUCTION

Large Language Models (LLMs) have emerged as a cornerstone in the ongoing AI revolution (Brown
et al., 2020; Chowdhery et al., 2023; Lewkowycz et al., 2022; OpenAI, 2023; Team, 2023). Their
remarkable effectiveness is primarily attributed to the Transformer architecture (Vaswani et al., 2017)
and training on an internet-wide scale, e.g., (TogetherComputer, 2023). Yet, questions remain: Should
Transformers be the only architecture used for LLMs? Can we scale language models even further,
and if so, how can this be achieved?

Regarding the first question, State Space Models (SSMs), e.g., Gu et al. (2022b; 2021); Gupta et al.
(2022); Li et al. (2022); Ma et al. (2022); Smith et al. (2023), have been increasingly gaining attention.
Notably, a recent addition to this category, Mamba (Gu & Dao, 2023), has shown impressive results,
positioning it as a promising contender to the attention-based Transformer architecture. Scaling is
believed to be a critical factor in developing powerful AI systems (Sutton, 2019). The Mixture of
Experts (MoE) approach (Jacobs et al., 1991), a set of techniques that enables an increase in model
parameters with minimal impact on computational demands, plays a significant role. Due to their
sparse activation, MoEs can be efficiently scaled up to trillions of parameters, as demonstrated by
Fedus et al. (2022).

In this paper, we advocate that to unlock the potential of SSMs for scaling up, they should be combined
with MoE. To this end, we introduce MoE-Mamba, combining Mamba (Gu & Dao, 2023) with a
Switch layer (Fedus et al., 2022) and enabling efficiency gains of both SSMs and MoE. We confirm
that the effect is robust to various design choices. In summary, our contributions are as follows:

• We introduce MoE-Mamba, a model that combines Mamba with a Mixture of Experts layer.
MoE-Mamba enables efficiency gains of both SSMs and MoE while reaching the same
performance as Mamba in 2.35× fewer training steps, see Figure 1.

• Via comprehensive studies, we confirm that the improvement achieved by MoE-Mamba is
robust to varying model sizes, design choices, and the number of experts.

• We explore and compare multiple alternative methods of integrating Mixture of Experts
within the Mamba block.

2 RELATED WORK

State Space Models State Space Models (SSMs) (Gu et al., 2021; 2022a; Gupta et al., 2022; Li
et al., 2022; Ma et al., 2022; Orvieto et al., 2023) form a family of architectures used for sequence
modeling. Stemming from signal processing, these models can be seen as a combination of RNNs and
CNNs (Gu & Dao, 2023). Recent breakthroughs (Gu et al., 2022b; Fu et al., 2023; Smith et al., 2023;
Gu & Dao, 2023), have allowed deep SSMs to be increasingly competitive against Transformers
(Vaswani et al., 2017). In particular, Mamba (Gu & Dao, 2023), studied in this paper, has shown
impressive results through its selective mechanism and hardware-aware design, which allows scaling
to billions of parameters while retaining computational efficiency and strong performance.

Mixture of Experts Mixture of Experts (MoE) is a class of techniques that allow drastically
increasing the number of parameters of a model without much impact on the FLOPs required for the
model’s execution. Introduced in Jacobs et al. (1991); Jordan & Jacobs (1993), MoE was applied in
the context of NLP by Shazeer et al. (2017). In MoE for each token processed, only a subset of the
model’s parameters is used. Due to their computational demands, feed-forward layers in Transformers
have become the standard target of various MoE techniques (Lepikhin et al., 2020; Fedus et al., 2022;
Du et al., 2022; Zoph et al., 2022). More recently, MoE models have found their way onto the open
scene (Xue et al., 2023). In particular, the Mixtral 8×7B model (Jiang et al., 2024) fares comparably
to Llama 2 70B (Touvron et al., 2023) while requiring only around 1/6 of its inference computational
budget.

3 MOE-MAMBA ARCHITECTURE

The vanilla Mamba architecture consists of multiple Mamba blocks stacked one after another, with
each layer’s output being added to the residual stream; see Figure 2. In MoE-Mamba, we replace
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Figure 2: Diagrams of the architectures. From the left: vanilla Transformer, Transformer-MoE,
Mamba, MoE-Mamba.

Table 1: Comparison between different architectures. The □25M models were trained on ca. 10B
tokens and the □100M models were trained on ca. 30B tokens. Note that the parameter counts
exclude embedding and output (unembedding) layers (for further discussion of reporting either
non-embedding or all parameters, see Appendix E). The numbers of total and active parameters are
not matched exactly between similarly sized models due to, among other reasons, the MoE models
including routers and Mamba layer not containing precisely 6d2model parameters - a design choice we
did not want to modify. We consider those differences to be too small to be significant for our results.

Model # Parameters # Active Parameters
per Token

Final Log
Perplexity

Speedup Over
Vanilla Mamba
(Training Steps)

Mamba25M 27M 27M 3.34 1
MoE-Mamba25M (ours) 542M 26M 3.19 1.76
Transformer-MoE25M 545M 25M 3.23 1.56

Transformer25M 25M 25M 3.43 >1

Mamba100M 121M 121M 2.99 1
MoE-Mamba100M (ours) 2439M 117M 2.81 2.35
Transformer-MoE100M 2454M 114M 2.88 1.79

every other Mamba layer with a MoE layer (see Figure 2). We use the well-established (Zhao et al.,
2023a) and easy-to-implement Switch Transformer MoE layer (Fedus et al., 2022) (for details, see
Appendix B). This way, in MoE-Mamba, we separate unconditional processing of every token by the
Mamba layer and conditional processing by an MoE layer. The idea of interleaving conditional and
unconditional processing is used in some MoE-based models, typically by alternating vanilla and
MoE feed-forward layers (Lepikhin et al., 2020; Fedus et al., 2022).

4 EXPERIMENTS

4.1 TRAINING SETUP

We compare MoE-Mamba to three baselines: Mamba, Transformer, and Transformer-MoE. To be
able to compare MoE-Mamba to Transformer-based and Mamba baselines, we scale down the size of
each expert in our model as compared to traditional MoE approaches (we set dexpert = 3dmodel instead
of 4dmodel), keeping the number of blocks and the number of active parameters per token roughly the
same in all models of similar size. Active parameters denote those used to calculate the output for
a given token (e.g., typically, only one expert in each MoE layer is active). For a discussion of the
relation of active parameters and FLOPs, see Appendix C.
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We train decoder-only models on the task of next token prediction using cross entropy as the loss
function. For further details, refer to Appendix A. Due to computational constraints, we perform
most of our experiments on smaller, □25M models and validate our findings on □100M models.

4.2 MAIN RESULTS

Table 1 presents the comparison between training results of MoE-Mamba and baselines; see also
Figure 1 for log perplexity curves. MoE-Mamba shows a remarkable improvement over the vanilla
Mamba model. Notably, MoE-Mamba100M was able to achieve the same performance as vanilla
Mamba100M with 2.35× speedup in terms of processed tokens, similar to Transformer-MoE100M,
strengthening the findings of Gu & Dao (2023) that Mamba is a competitive alternative to the
Transformer. For □25M model size, the performance gains are even higher, however in Mamba100M,
the gains might have been greater when trained on a larger number of tokens. For a detailed discussion
of the speedup, see Appendix D.

4.3 ABLATIONS

Number of Experts We investigate the impact of the number of experts used in Switch layers on
MoE-Mamba and find that our approach scales favorably with the number of experts. MoE-Mamba
outperforms vanilla Mamba, when the number of experts is Nexperts ≥ 4. This is consistent with Gu
& Dao (2023) reporting that Mamba interleaved with feed-forward layers (which corresponds to a
single-expert MoE layer) is worse than vanilla Mamba. We obtain the best result with the highest
investigated expert count (32) and expect further gains with even more experts. For detailed results,
see Appendix G.

Optimal Ratio of Active Parameters in Mamba and MoE In this section, we investigate the
optimal ratio of active parameters in the Mamba layer to active parameters in the MoE layer while
keeping the total number of parameters fixed. The results are presented in Figure 3 (left graph). We
observe that increasing the number of active Mamba parameters improves the performance. However,
the gains become marginal after reaching the 3 : 3 ratio, and higher ratios are impractical due to
inefficient hardware utilization and high routing costs caused by a large number of experts. We
default to this choice in all other experiments. More details on selecting the optimal ratio can be
found in Appendix F.

Figure 3: Left: Final loss at different ratios of active Mamba-to-MoE parameters. Note that MoE
contains the majority of the total parameters in each model. For further discussion of the ratios
explored, see Appendix F. Right: Final loss varying number of experts in sequential and parallel
MoE-Mamba.

Parallel MoE-Mamba Inspired by Wang (2021) and Chowdhery et al. (2023), we experiment
with an alternative block design in which the MoE feed-forward layer and the Mamba layer are
placed in parallel instead of sequentially (see Figure 6 in Appendix). We compare this design to
MoE-Mamba for various numbers of experts; see Figure 3 (right). MoE-Mamba outperforms this
variant in all tested settings. The parallel MoE-Mamba matches vanilla Mamba when Nexperts ≥ 8
while requiring between 2 and 4 times as many experts and total parameters to match the performance
of the sequential variant.
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4.4 INNER MOE

Pursuing a uniform layer design, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer. Inspired by Fedus et al. (2022), we also performed
experiments in which only half of the Mamba blocks were modified to include MoE. For more details
on the experiments, see Appendix H. Three of the designs (Table 7 in Appendix) achieved results
marginally better than vanilla Mamba, with none outperforming MoE-Mamba. These results suggest
the most promising research directions for future work.

5 CONCLUSIONS

In this work, we present the first integration of Mixture of Experts with Mamba architecture, MoE-
Mamba. This novel method inherits the inference benefits of Mamba and MoE while requiring 2.35×
fewer training steps to reach the same performance as Mamba. We also investigate the impact of the
number of experts on the performance and explore numerous alternative design choices.

Our work opens a new research direction of combining Mixture of Experts with State Space Models.
We believe that this path will enable more efficient scaling to even larger language models.
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A HYPERPARAMETERS AND TRAINING SETUP

We train the models on C4 dataset Raffel et al. (2020) on the next token prediction task using cross
entropy as the loss function. We process only a small fraction of the training set, allowing us to
use EMA-smoothed (α = 0.001) training log perplexity as the comparison metric for both final
loss and speedup measurements. All models use the GPT2 tokenizer Radford et al. (2019). We
tune the learning rate separately for all □25M models and divide it by 2 when training their □100M
counterparts. The main experiments, described in section 4.2, use around 30B tokens (10B for □25M
models), while the experiments described in further sections use 1B tokens.

Basic model hyperameters (dmodel, dff, the number of attention heads, the number of layers) used in
this work were inspired by BERT (Devlin et al., 2019; Turc et al., 2019), with the □25M models being
equivalent to BERTMEDIUM and □100M models copying BERTBASE configuration while increasing
the number of blocks from 12 to 16. The learning rate schedule, as well as weight decay and
gradient clipping values were set per community’s standard practices. We used the AdamW optimizer
(Loshchilov & Hutter, 2019). We tune the maximum learning rate value for each of the □25M models
separately and divide it by 2 when training □100M counterparts. We train the models using PyTorch
(Paszke et al., 2019) and utilize FSDP (Zhao et al., 2023b) for facilitating multi-GPU setup.

Table 2: Hyperparameters (□25M Models). In Transformer models we use Rotary Position Embedding
(Su et al., 2023).

Hyperparameter Transformer25M Mamba25M Transformer-MoE25M MoE-Mamba25M

Model

Total Blocks 8 16 8 8
dmodel 512 512 512 512

# Parameters 25M 27M 545M 542M

# Active Parameters
per Token

25M 27M 25M 26M

Feed-Forward dff 2048 - - -

Mixture of Experts dexpert - - 2048 1536
Nexperts - - 32 42

Position Embedding RoPE - RoPE -

Attention Nheads 8 - 8 -

Training

Training Steps 150K 150K 150K 150K
Context Length 1024 1024 1024 1024

Batch Size 64 64 64 64
Max Learning Rate 5e-4 1e-3 5e-4 5e-4

LR Warmup 1% 1% 1% 1%
LR Schedule Cosine Cosine Cosine Cosine

Final LR Ratio 0.1 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1 0.1

Gradient Clipping 0.5 0.5 0.5 0.5

B SWITCH MOE LAYER

In each Switch MoE layer, we assume Nexperts experts {Ei}
Nexperts
i=1 , each being a trainable feed-forward

network with the same number of parameters. For each token embedding x, we calculate scores
h(x) = Wx ∈ RNexperts , where W is a trainable linear projection. These are normalized using
softmax:

pi(x) =
exp (h(x)i)∑Nexperts

i=1 exp (h(x)i)
.

Prior to Switch, top-k routing selecting k > 1 most suitable experts for each token was deemed
necessary. However, Switch successfully simplifies previous MoE approaches by setting k = 1.
Namely, the output of the MoE layer for x is given by:

y = pIEI(x),

where I = argmaxi pi(x).
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Table 3: Hyperparameters (□100M Models). In Transformer-MoE100M we use Rotary Position
Embedding Su et al. (2023).

Hyperparameter Mamba100M Transformer-MoE100M MoE-Mamba100M

Model

Total Blocks 32 16 16
dmodel 768 768 768

# Parameters 121M 2454M 2439M
# Active Parameters

per Token 121M 114M 117M

Mixture of Experts dexpert - 3072 2304
Nexperts - 32 42

Position Embedding - RoPE -

Attention Nheads - 12 -

Training

Training Steps 30K 30K 30K
Context Length 1024 1024 1024

Batch Size 1024 1024 1024
Max Learning Rate 1e-3 2.5e-4 5e-4

LR Warmup 1% 1% 1%
LR Schedule Cosine Cosine Cosine

Final LR Ratio 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1

Gradient Clipping 0.5 0.5 0.5

Table 4: Comparison of sequential and parallel MoE-Mamba - final log perplexity (1B tokens).

# of Experts MoE-Mamba
Sequential Parallel

1 3.76 3.79
2 3.74 3.77
4 3.71 3.74
8 3.69 3.72

16 3.67 3.70
32 3.66 3.69

During batched execution, e.g., in training, each batch contains N tokens. Following the standard
procedure, in a case where the assignment of tokens to the experts is not perfect, i.e., some expert
Ef is selected by more than N/Nexperts tokens in the current batch, the excess tokens are dropped
and not updated (capacity factor = 1). To further encourage an even distribution of tokens to experts,
load balancing loss as described by Fedus et al. (2022) with weight α = 0.01 is added to the training
objective.

C ACTIVE PARAMETERS VS FLOPS

In this work, we report the number of active parameters (excluding embedding and unembedding
layers) and not the number of floating-point operations (FLOPs), following Zhou et al. (2022). Both
numbers will be roughly proportional (Kaplan et al., 2020), but the number of FLOPs is both harder
to calculate and less relevant for hardware-aware architecture like Mamba with its optimizations,
especially during inference.

10
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D RELATION BETWEEN SPEEDUP AND TRAINING TIME

In our experiments, we notice that as the training continues, the speedup of MoE-Mamba compared
to vanilla Mamba generally increases (see Fig. 4). That is, the ratio

speedup(l) =
# processed tokens vanilla Mamba took to reach loss l
# processed tokens MoE-Mamba took to reach loss l

increases as l decreases. Speedup in □25M models oscillates between 1.6 and 1.9, while the speedup
in □100M models rises steadily.

Figure 4: Speedup of different sizes of MoE-Mamba compared to their vanilla Mamba counterparts
as training progresses.

E COUNTING MODEL PARAMETERS

For all models and their variants, we report the number of trainable, non-embedding parameters,
i.e., we exclude the parameters in the input (embedding) and output (unembedding) layers. This
convention is proposed by Kaplan et al. (2020), who note that using just non-embedding parameters
gives their scaling laws a clearer form. The relatively low importance of the number of the embedding
parameters for the final performance has been noted by Lan et al. (2020).

F EXPLORING THE OPTIMAL MAMBA TO MOE ACTIVE PARAMETERS RATIO

The assignment of FLOPs and parameters to different components is an important design choice in
heterogeneous architectures. For example, in Transformer, the shape of the model has been studied
extensively by Kaplan et al. (2020).

In our work, we investigate the optimal ratio of active parameters in the Mamba layer to the number of
active parameters in the MoE layer. We vary the ratio while keeping dmodel, the number of blocks and
the total number of parameters fixed. Under these constraints, a given ratio determines the so-called
expansion factor E of the Mamba layer, the number of experts, and their size as detailed in Table
5 (see also Figure 6 for Mamba design). Figure 3 may suggest that increasing the ratio strengthens
the performance and maybe assigning all the active parameters to Mamba would result in the best
performance (ratio “6:0”). It should, however, be noted, that all the investigated models contain
the same number of both total parameters and active parameters per token. A hypothetical model
described above (“’6:0”) could not achieve this property. If we loosen the requirements and place all
the parameters in Mamba, lowering the umber of total parameters, the resulting model is the same as
Mamba25M with the expansion factor E = 4 and 8 instead of 16 Mamba layers. This model achieves
marginally worse final log perplexity than Mamba25M (3.73).
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Table 5: Comparison of different ratios of parameters between Mamba and MoE. The E = 2
corresponds to MoE-Mamba25M. The total number of parameters in all models is 542M and the
number of active parameters per token is 26M.

Ratio
N act. params

Mamba : N act. params
MoE

Expansion
Factor

E (Mamba)

Expert
Size

Number
of

Experts

1 : 5 2
3

2560 19
2 : 4 1 2

3
2048 24

3 : 3 2 1536 32
4 : 2 2 2

3
1024 48

5 : 1 3 1
3

512 96

G OPTIMAL NUMBER OF EXPERTS

Figure 5 shows the training runs for different numbers of experts. The results show that our approach
scales favorably with the number of experts. MoE-Mamba outperforms vanilla Mamba, when the
number of experts is Nexperts ≥ 4. We obtain the best result with 32 experts and expect further gains
with even more experts. Table 6 shows the final results.

Table 6: Log perplexity after 1B tokens for various numbers of experts. Note that the parameter
counts exclude the embedding and output (unembedding) layers.

Number of Experts # Parameters
# Active

Parameters
per Token

Log Perplexity After
1B Tokens

Speedup Over
Vanilla Mamba
(Training Steps)

N/A - Vanilla Mamba 27M 27M 3.72 1
1 26M 26M 3.75 <1

4 experts 64M 26M 3.72 1.03
8 experts 114M 26M 3.70 1.10
16 experts 215M 26M 3.67 1.21
32 experts 416M 26M 3.67 1.23

H INNER MOE

As described in Section 4.4, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer; see Figure 6. Enumerating all the possible placements
results in 23 − 1 = 7 possible designs (we discard one combination that would feature no MoE inside
the block). We maintain a similar number of total parameters and FLOPs in all models by assuring
the total number of expert feed-forward layers in a block sums up to 24 regardless of the placement,
i.e., the 24 experts are split evenly between one, two or three MoE’s inside the block. Inspired by
Fedus et al. (2022), we also performed experiments in which only half of the Mamba blocks were
modified to include MoE, but the number of experts was increased to 48 to maintain the total number
of parameters.

Three of the designs (Table 7) achieved results marginally better than vanilla Mamba, with none
outperforming MoE-Mamba.

I ACCURACY AND PERPLEXITY

We have observed a curious case of metric inconsistency between two models that achieved similar
performance but were based on different architectures, namely MoE-Mamba25M with 32 instead of
42 experts and Transformer-MoE25M. We hypothesize that this discrepancy hints at a potential failure
mode of Mamba and other SSMs. Due to the compression of the history into a finite hidden state,
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Figure 5: Training loss (log perplexity) for a differing number of experts for MoE-Mamba with
ca. 26M active non-embedding parameters. The final log perplexity improves monotonically as the
number of experts increases.

Table 7: Comparison of different variants of MoE in Mamba - final log perplexity (1B tokens).

Model Name /
Modified Projection

MoE in Mamba
All

Layers
Every Other

Layer

Vanilla Mamba 3.72
MoE-Mamba (16 experts) 3.67

Conv Projection 3.79 3.71
Gate Projection 3.89 3.70

Output Projection 4.05 3.70
Conv + Gate Projection 3.95 3.72

Conv + Output Projection 4.17 3.76
Gate + Output Projection 4.16 3.88

Conv + Gate + Output Projection 4.39 3.88

their ability for verbatim token-copying is limited. The related ability to predict the token [B] given a
prefix ...[A][B]...[A] (where [A], [B] can be any tokens) has been mechanistically studied by Elhage
et al. (2021) and has been conjectured to be responsible for Transformer’s remarkable in-context
learning capabilities (Olsson et al., 2022).

Peng et al. (2023) mentions that their attention-free model, RWKV, may have limited performance
on tasks that require recalling precise information over long contexts due to a fixed-sized hidden
state, a property that Mamba and other SSMs share. However, since the perplexity of Mamba can
match the perplexity of a similarly-sized Transformer, we can suspect that Mamba compensates for
that failure mode in other ways and might show a relative advantage on other tasks when compared
to Transformer. In particular, it might outperform Transformers in 0-shot tasks in contrast to tasks
allowing few-shot demonstrations or requiring in-context learning.

J REPRODUCIBILITY

The codebase used to run the experiments is available at https://github.com/llm-random/llm-random.
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Figure 6: Diagram of Parallel MoE-Mamba architecture (left) and Mamba Block (right). The outputs
of the Gate and Conv Projections are E (expansion factor) times bigger than the input, i.e., Conv and
SSM operate on vectors ∈ RE·dmodel . Vanilla Mamba assumes E = 2 (Gu & Dao, 2023). Expansion
factor E determines how much the input vector is scaled up by Gate and Conv Projection and then
scaled down by Output Projection, and because of that, it is also proportional to the number of FLOPs
and parameters in the Mamba layer.

Figure 7: Discrepancy between accuracy and log perplexity: MoE-Mamba with 32 experts and
Transformer-MoE.
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