
Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

MOE-MAMBA: EFFICIENT SELECTIVE STATE SPACE
MODELS WITH MIXTURE OF EXPERTS

Maciej Pióro
IPPT PAN
IDEAS NCBR

Kamil Ciebiera
University of Warsaw
IDEAS NCBR

Krystian Król
University of Warsaw
IDEAS NCBR

Jan Ludziejewski
University of Warsaw
IDEAS NCBR

Michał Krutul
University of Warsaw
IDEAS NCBR

Jakub Krajewski
University of Warsaw
IDEAS NCBR

Szymon Antoniak
IDEAS NCBR

Piotr Miłoś
University of Warsaw
IDEAS NCBR
IMPAN

Marek Cygan
University of Warsaw
Nomagic

Sebastian Jaszczur
University of Warsaw
IDEAS NCBR

ABSTRACT

State Space Models (SSMs) have become serious contenders in the field of se-
quential modeling, challenging the dominance of Transformers. At the same time,
Mixture of Experts (MoE) has significantly improved Transformer-based Large
Language Models, including recent state-of-the-art open models. We propose that
to unlock the potential of SSMs for scaling, they should be combined with MoE.
We showcase this on Mamba, a recent SSM-based model that achieves remark-
able performance. Our model, MoE-Mamba, outperforms Mamba and matches
the performance of Transformer-MoE. In particular, MoE-Mamba reaches the
same performance as Mamba in 2.35× fewer training steps while preserving the
inference performance gains of Mamba against Transformer.

Figure 1: Log perplexity throughout the training. From top to bottom: Mamba100M;
Transformer-MoE100M; MoE-Mamba100M.

Correspondence to Sebastian Jaszczur <s.jaszczur@uw.edu.pl>.

1

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a cornerstone in the ongoing AI revolution (Brown
et al., 2020; Chowdhery et al., 2023; Lewkowycz et al., 2022; OpenAI, 2023; Team, 2023). Their
remarkable effectiveness is primarily attributed to the Transformer architecture (Vaswani et al., 2017)
and training on an internet-wide scale, e.g., (TogetherComputer, 2023). Yet, questions remain: Should
Transformers be the only architecture used for LLMs? Can we scale language models even further,
and if so, how can this be achieved?

Regarding the first question, State Space Models (SSMs), e.g., Gu et al. (2022b; 2021); Gupta et al.
(2022); Li et al. (2022); Ma et al. (2022); Smith et al. (2023), have been increasingly gaining attention.
Notably, a recent addition to this category, Mamba (Gu & Dao, 2023), has shown impressive results,
positioning it as a promising contender to the attention-based Transformer architecture. Scaling is
believed to be a critical factor in developing powerful AI systems (Sutton, 2019). The Mixture of
Experts (MoE) approach (Jacobs et al., 1991), a set of techniques that enables an increase in model
parameters with minimal impact on computational demands, plays a significant role. Due to their
sparse activation, MoEs can be efficiently scaled up to trillions of parameters, as demonstrated by
Fedus et al. (2022).

In this paper, we advocate that to unlock the potential of SSMs for scaling up, they should be combined
with MoE. To this end, we introduce MoE-Mamba, combining Mamba (Gu & Dao, 2023) with a
Switch layer (Fedus et al., 2022) and enabling efficiency gains of both SSMs and MoE. We confirm
that the effect is robust to various design choices. In summary, our contributions are as follows:

• We introduce MoE-Mamba, a model that combines Mamba with a Mixture of Experts layer.
MoE-Mamba enables efficiency gains of both SSMs and MoE while reaching the same
performance as Mamba in 2.35× fewer training steps, see Figure 1.

• Via comprehensive studies, we confirm that the improvement achieved by MoE-Mamba is
robust to varying model sizes, design choices, and the number of experts.

• We explore and compare multiple alternative methods of integrating Mixture of Experts
within the Mamba block.

2 RELATED WORK

State Space Models State Space Models (SSMs) (Gu et al., 2021; 2022a; Gupta et al., 2022; Li
et al., 2022; Ma et al., 2022; Orvieto et al., 2023) form a family of architectures used for sequence
modeling. Stemming from signal processing, these models can be seen as a combination of RNNs and
CNNs (Gu & Dao, 2023). Recent breakthroughs (Gu et al., 2022b; Fu et al., 2023; Smith et al., 2023;
Gu & Dao, 2023), have allowed deep SSMs to be increasingly competitive against Transformers
(Vaswani et al., 2017). In particular, Mamba (Gu & Dao, 2023), studied in this paper, has shown
impressive results through its selective mechanism and hardware-aware design, which allows scaling
to billions of parameters while retaining computational efficiency and strong performance.

Mixture of Experts Mixture of Experts (MoE) is a class of techniques that allow drastically
increasing the number of parameters of a model without much impact on the FLOPs required for the
model’s execution. Introduced in Jacobs et al. (1991); Jordan & Jacobs (1993), MoE was applied in
the context of NLP by Shazeer et al. (2017). In MoE for each token processed, only a subset of the
model’s parameters is used. Due to their computational demands, feed-forward layers in Transformers
have become the standard target of various MoE techniques (Lepikhin et al., 2020; Fedus et al., 2022;
Du et al., 2022; Zoph et al., 2022). More recently, MoE models have found their way onto the open
scene (Xue et al., 2023). In particular, the Mixtral 8×7B model (Jiang et al., 2024) fares comparably
to Llama 2 70B (Touvron et al., 2023) while requiring only around 1/6 of its inference computational
budget.

3 MOE-MAMBA ARCHITECTURE

The vanilla Mamba architecture consists of multiple Mamba blocks stacked one after another, with
each layer’s output being added to the residual stream; see Figure 2. In MoE-Mamba, we replace

2

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Figure 2: Diagrams of the architectures. From the left: vanilla Transformer, Transformer-MoE,
Mamba, MoE-Mamba.

Table 1: Comparison between different architectures. The □25M models were trained on ca. 10B
tokens and the □100M models were trained on ca. 30B tokens. Note that the parameter counts
exclude embedding and output (unembedding) layers (for further discussion of reporting either
non-embedding or all parameters, see Appendix E). The numbers of total and active parameters are
not matched exactly between similarly sized models due to, among other reasons, the MoE models
including routers and Mamba layer not containing precisely 6d2model parameters - a design choice we
did not want to modify. We consider those differences to be too small to be significant for our results.

Model # Parameters # Active Parameters
per Token

Final Log
Perplexity

Speedup Over
Vanilla Mamba
(Training Steps)

Mamba25M 27M 27M 3.34 1
MoE-Mamba25M (ours) 542M 26M 3.19 1.76
Transformer-MoE25M 545M 25M 3.23 1.56

Transformer25M 25M 25M 3.43 >1

Mamba100M 121M 121M 2.99 1
MoE-Mamba100M (ours) 2439M 117M 2.81 2.35
Transformer-MoE100M 2454M 114M 2.88 1.79

every other Mamba layer with a MoE layer (see Figure 2). We use the well-established (Zhao et al.,
2023a) and easy-to-implement Switch Transformer MoE layer (Fedus et al., 2022) (for details, see
Appendix B). This way, in MoE-Mamba, we separate unconditional processing of every token by the
Mamba layer and conditional processing by an MoE layer. The idea of interleaving conditional and
unconditional processing is used in some MoE-based models, typically by alternating vanilla and
MoE feed-forward layers (Lepikhin et al., 2020; Fedus et al., 2022).

4 EXPERIMENTS

4.1 TRAINING SETUP

We compare MoE-Mamba to three baselines: Mamba, Transformer, and Transformer-MoE. To be
able to compare MoE-Mamba to Transformer-based and Mamba baselines, we scale down the size of
each expert in our model as compared to traditional MoE approaches (we set dexpert = 3dmodel instead
of 4dmodel), keeping the number of blocks and the number of active parameters per token roughly the
same in all models of similar size. Active parameters denote those used to calculate the output for
a given token (e.g., typically, only one expert in each MoE layer is active). For a discussion of the
relation of active parameters and FLOPs, see Appendix C.

3

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

We train decoder-only models on the task of next token prediction using cross entropy as the loss
function. For further details, refer to Appendix A. Due to computational constraints, we perform
most of our experiments on smaller, □25M models and validate our findings on □100M models.

4.2 MAIN RESULTS

Table 1 presents the comparison between training results of MoE-Mamba and baselines; see also
Figure 1 for log perplexity curves. MoE-Mamba shows a remarkable improvement over the vanilla
Mamba model. Notably, MoE-Mamba100M was able to achieve the same performance as vanilla
Mamba100M with 2.35× speedup in terms of processed tokens, similar to Transformer-MoE100M,
strengthening the findings of Gu & Dao (2023) that Mamba is a competitive alternative to the
Transformer. For □25M model size, the performance gains are even higher, however in Mamba100M,
the gains might have been greater when trained on a larger number of tokens. For a detailed discussion
of the speedup, see Appendix D.

4.3 ABLATIONS

Number of Experts We investigate the impact of the number of experts used in Switch layers on
MoE-Mamba and find that our approach scales favorably with the number of experts. MoE-Mamba
outperforms vanilla Mamba, when the number of experts is Nexperts ≥ 4. This is consistent with Gu
& Dao (2023) reporting that Mamba interleaved with feed-forward layers (which corresponds to a
single-expert MoE layer) is worse than vanilla Mamba. We obtain the best result with the highest
investigated expert count (32) and expect further gains with even more experts. For detailed results,
see Appendix G.

Optimal Ratio of Active Parameters in Mamba and MoE In this section, we investigate the
optimal ratio of active parameters in the Mamba layer to active parameters in the MoE layer while
keeping the total number of parameters fixed. The results are presented in Figure 3 (left graph). We
observe that increasing the number of active Mamba parameters improves the performance. However,
the gains become marginal after reaching the 3 : 3 ratio, and higher ratios are impractical due to
inefficient hardware utilization and high routing costs caused by a large number of experts. We
default to this choice in all other experiments. More details on selecting the optimal ratio can be
found in Appendix F.

Figure 3: Left: Final loss at different ratios of active Mamba-to-MoE parameters. Note that MoE
contains the majority of the total parameters in each model. For further discussion of the ratios
explored, see Appendix F. Right: Final loss varying number of experts in sequential and parallel
MoE-Mamba.

Parallel MoE-Mamba Inspired by Wang (2021) and Chowdhery et al. (2023), we experiment
with an alternative block design in which the MoE feed-forward layer and the Mamba layer are
placed in parallel instead of sequentially (see Figure 6 in Appendix). We compare this design to
MoE-Mamba for various numbers of experts; see Figure 3 (right). MoE-Mamba outperforms this
variant in all tested settings. The parallel MoE-Mamba matches vanilla Mamba when Nexperts ≥ 8
while requiring between 2 and 4 times as many experts and total parameters to match the performance
of the sequential variant.

4

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

4.4 INNER MOE

Pursuing a uniform layer design, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer. Inspired by Fedus et al. (2022), we also performed
experiments in which only half of the Mamba blocks were modified to include MoE. For more details
on the experiments, see Appendix H. Three of the designs (Table 7 in Appendix) achieved results
marginally better than vanilla Mamba, with none outperforming MoE-Mamba. These results suggest
the most promising research directions for future work.

5 CONCLUSIONS

In this work, we present the first integration of Mixture of Experts with Mamba architecture, MoE-
Mamba. This novel method inherits the inference benefits of Mamba and MoE while requiring 2.35×
fewer training steps to reach the same performance as Mamba. We also investigate the impact of the
number of experts on the performance and explore numerous alternative design choices.

Our work opens a new research direction of combining Mixture of Experts with State Space Models.
We believe that this path will enable more efficient scaling to even larger language models.

ACKNOWLEDGMENTS

This work was funded by IDEAS NCBR, which also provided significant computational resources a
supportive research environment and direction. The research was supported by PL-Grid infrastructure
(grant PLG/2023/016148). We acknowledge snakes and experts as essential to our work. We also
benefited from the Entropy cluster (hosted at the Faculty of Mathematics, Informatics and Mechanics
of the University of Warsaw) funded by NVIDIA, Intel, the Polish National Science Center grant
2022/45/N/ST6/02222, and ERC Starting Grant TOTAL. Marek Cygan was partially supported by an
NCBiR grant POIR.01.01.01-00-0392/17-00.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

5

https://arxiv.org/abs/2005.14165

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers,
2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp.
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations, 2020.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding, 2020.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: moving average equipped gated attention. arXiv preprint
arXiv:2209.10655, 2022.

6

https://openreview.net/forum?id=IFXTZERXdM7

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

OpenAI. Gpt-4 technical report, 2023.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the transformer era,
2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for
sequence modeling, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1), 2019.

Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

TogetherComputer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

7

https://github.com/togethercomputer/RedPajama-Data

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
Openmoe: Open mixture-of-experts language models. https://github.com/XueFuzhao/
OpenMoE, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023a.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
scaling fully sharded data parallel, 2023b.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022.

8

http://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/XueFuzhao/OpenMoE
https://github.com/XueFuzhao/OpenMoE

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A HYPERPARAMETERS AND TRAINING SETUP

We train the models on C4 dataset Raffel et al. (2020) on the next token prediction task using cross
entropy as the loss function. We process only a small fraction of the training set, allowing us to
use EMA-smoothed (α = 0.001) training log perplexity as the comparison metric for both final
loss and speedup measurements. All models use the GPT2 tokenizer Radford et al. (2019). We
tune the learning rate separately for all □25M models and divide it by 2 when training their □100M
counterparts. The main experiments, described in section 4.2, use around 30B tokens (10B for □25M
models), while the experiments described in further sections use 1B tokens.

Basic model hyperameters (dmodel, dff, the number of attention heads, the number of layers) used in
this work were inspired by BERT (Devlin et al., 2019; Turc et al., 2019), with the □25M models being
equivalent to BERTMEDIUM and □100M models copying BERTBASE configuration while increasing
the number of blocks from 12 to 16. The learning rate schedule, as well as weight decay and
gradient clipping values were set per community’s standard practices. We used the AdamW optimizer
(Loshchilov & Hutter, 2019). We tune the maximum learning rate value for each of the □25M models
separately and divide it by 2 when training □100M counterparts. We train the models using PyTorch
(Paszke et al., 2019) and utilize FSDP (Zhao et al., 2023b) for facilitating multi-GPU setup.

Table 2: Hyperparameters (□25M Models). In Transformer models we use Rotary Position Embedding
(Su et al., 2023).

Hyperparameter Transformer25M Mamba25M Transformer-MoE25M MoE-Mamba25M

Model

Total Blocks 8 16 8 8
dmodel 512 512 512 512

Parameters 25M 27M 545M 542M

Active Parameters
per Token

25M 27M 25M 26M

Feed-Forward dff 2048 - - -

Mixture of Experts dexpert - - 2048 1536
Nexperts - - 32 42

Position Embedding RoPE - RoPE -

Attention Nheads 8 - 8 -

Training

Training Steps 150K 150K 150K 150K
Context Length 1024 1024 1024 1024

Batch Size 64 64 64 64
Max Learning Rate 5e-4 1e-3 5e-4 5e-4

LR Warmup 1% 1% 1% 1%
LR Schedule Cosine Cosine Cosine Cosine

Final LR Ratio 0.1 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1 0.1

Gradient Clipping 0.5 0.5 0.5 0.5

B SWITCH MOE LAYER

In each Switch MoE layer, we assume Nexperts experts {Ei}
Nexperts
i=1 , each being a trainable feed-forward

network with the same number of parameters. For each token embedding x, we calculate scores
h(x) = Wx ∈ RNexperts , where W is a trainable linear projection. These are normalized using
softmax:

pi(x) =
exp (h(x)i)∑Nexperts

i=1 exp (h(x)i)
.

Prior to Switch, top-k routing selecting k > 1 most suitable experts for each token was deemed
necessary. However, Switch successfully simplifies previous MoE approaches by setting k = 1.
Namely, the output of the MoE layer for x is given by:

y = pIEI(x),

where I = argmaxi pi(x).

9

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table 3: Hyperparameters (□100M Models). In Transformer-MoE100M we use Rotary Position
Embedding Su et al. (2023).

Hyperparameter Mamba100M Transformer-MoE100M MoE-Mamba100M

Model

Total Blocks 32 16 16
dmodel 768 768 768

Parameters 121M 2454M 2439M
Active Parameters

per Token 121M 114M 117M

Mixture of Experts dexpert - 3072 2304
Nexperts - 32 42

Position Embedding - RoPE -

Attention Nheads - 12 -

Training

Training Steps 30K 30K 30K
Context Length 1024 1024 1024

Batch Size 1024 1024 1024
Max Learning Rate 1e-3 2.5e-4 5e-4

LR Warmup 1% 1% 1%
LR Schedule Cosine Cosine Cosine

Final LR Ratio 0.1 0.1 0.1
Weight Decay 0.1 0.1 0.1

Gradient Clipping 0.5 0.5 0.5

Table 4: Comparison of sequential and parallel MoE-Mamba - final log perplexity (1B tokens).

of Experts MoE-Mamba
Sequential Parallel

1 3.76 3.79
2 3.74 3.77
4 3.71 3.74
8 3.69 3.72

16 3.67 3.70
32 3.66 3.69

During batched execution, e.g., in training, each batch contains N tokens. Following the standard
procedure, in a case where the assignment of tokens to the experts is not perfect, i.e., some expert
Ef is selected by more than N/Nexperts tokens in the current batch, the excess tokens are dropped
and not updated (capacity factor = 1). To further encourage an even distribution of tokens to experts,
load balancing loss as described by Fedus et al. (2022) with weight α = 0.01 is added to the training
objective.

C ACTIVE PARAMETERS VS FLOPS

In this work, we report the number of active parameters (excluding embedding and unembedding
layers) and not the number of floating-point operations (FLOPs), following Zhou et al. (2022). Both
numbers will be roughly proportional (Kaplan et al., 2020), but the number of FLOPs is both harder
to calculate and less relevant for hardware-aware architecture like Mamba with its optimizations,
especially during inference.

10

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

D RELATION BETWEEN SPEEDUP AND TRAINING TIME

In our experiments, we notice that as the training continues, the speedup of MoE-Mamba compared
to vanilla Mamba generally increases (see Fig. 4). That is, the ratio

speedup(l) =
processed tokens vanilla Mamba took to reach loss l
processed tokens MoE-Mamba took to reach loss l

increases as l decreases. Speedup in □25M models oscillates between 1.6 and 1.9, while the speedup
in □100M models rises steadily.

Figure 4: Speedup of different sizes of MoE-Mamba compared to their vanilla Mamba counterparts
as training progresses.

E COUNTING MODEL PARAMETERS

For all models and their variants, we report the number of trainable, non-embedding parameters,
i.e., we exclude the parameters in the input (embedding) and output (unembedding) layers. This
convention is proposed by Kaplan et al. (2020), who note that using just non-embedding parameters
gives their scaling laws a clearer form. The relatively low importance of the number of the embedding
parameters for the final performance has been noted by Lan et al. (2020).

F EXPLORING THE OPTIMAL MAMBA TO MOE ACTIVE PARAMETERS RATIO

The assignment of FLOPs and parameters to different components is an important design choice in
heterogeneous architectures. For example, in Transformer, the shape of the model has been studied
extensively by Kaplan et al. (2020).

In our work, we investigate the optimal ratio of active parameters in the Mamba layer to the number of
active parameters in the MoE layer. We vary the ratio while keeping dmodel, the number of blocks and
the total number of parameters fixed. Under these constraints, a given ratio determines the so-called
expansion factor E of the Mamba layer, the number of experts, and their size as detailed in Table
5 (see also Figure 6 for Mamba design). Figure 3 may suggest that increasing the ratio strengthens
the performance and maybe assigning all the active parameters to Mamba would result in the best
performance (ratio “6:0”). It should, however, be noted, that all the investigated models contain
the same number of both total parameters and active parameters per token. A hypothetical model
described above (“’6:0”) could not achieve this property. If we loosen the requirements and place all
the parameters in Mamba, lowering the umber of total parameters, the resulting model is the same as
Mamba25M with the expansion factor E = 4 and 8 instead of 16 Mamba layers. This model achieves
marginally worse final log perplexity than Mamba25M (3.73).

11

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table 5: Comparison of different ratios of parameters between Mamba and MoE. The E = 2
corresponds to MoE-Mamba25M. The total number of parameters in all models is 542M and the
number of active parameters per token is 26M.

Ratio
N act. params

Mamba : N act. params
MoE

Expansion
Factor

E (Mamba)

Expert
Size

Number
of

Experts

1 : 5 2
3

2560 19
2 : 4 1 2

3
2048 24

3 : 3 2 1536 32
4 : 2 2 2

3
1024 48

5 : 1 3 1
3

512 96

G OPTIMAL NUMBER OF EXPERTS

Figure 5 shows the training runs for different numbers of experts. The results show that our approach
scales favorably with the number of experts. MoE-Mamba outperforms vanilla Mamba, when the
number of experts is Nexperts ≥ 4. We obtain the best result with 32 experts and expect further gains
with even more experts. Table 6 shows the final results.

Table 6: Log perplexity after 1B tokens for various numbers of experts. Note that the parameter
counts exclude the embedding and output (unembedding) layers.

Number of Experts # Parameters
Active

Parameters
per Token

Log Perplexity After
1B Tokens

Speedup Over
Vanilla Mamba
(Training Steps)

N/A - Vanilla Mamba 27M 27M 3.72 1
1 26M 26M 3.75 <1

4 experts 64M 26M 3.72 1.03
8 experts 114M 26M 3.70 1.10
16 experts 215M 26M 3.67 1.21
32 experts 416M 26M 3.67 1.23

H INNER MOE

As described in Section 4.4, we experimented with replacing each of the three linear projections
within the Mamba block with an MoE layer; see Figure 6. Enumerating all the possible placements
results in 23 − 1 = 7 possible designs (we discard one combination that would feature no MoE inside
the block). We maintain a similar number of total parameters and FLOPs in all models by assuring
the total number of expert feed-forward layers in a block sums up to 24 regardless of the placement,
i.e., the 24 experts are split evenly between one, two or three MoE’s inside the block. Inspired by
Fedus et al. (2022), we also performed experiments in which only half of the Mamba blocks were
modified to include MoE, but the number of experts was increased to 48 to maintain the total number
of parameters.

Three of the designs (Table 7) achieved results marginally better than vanilla Mamba, with none
outperforming MoE-Mamba.

I ACCURACY AND PERPLEXITY

We have observed a curious case of metric inconsistency between two models that achieved similar
performance but were based on different architectures, namely MoE-Mamba25M with 32 instead of
42 experts and Transformer-MoE25M. We hypothesize that this discrepancy hints at a potential failure
mode of Mamba and other SSMs. Due to the compression of the history into a finite hidden state,

12

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Figure 5: Training loss (log perplexity) for a differing number of experts for MoE-Mamba with
ca. 26M active non-embedding parameters. The final log perplexity improves monotonically as the
number of experts increases.

Table 7: Comparison of different variants of MoE in Mamba - final log perplexity (1B tokens).

Model Name /
Modified Projection

MoE in Mamba
All

Layers
Every Other

Layer

Vanilla Mamba 3.72
MoE-Mamba (16 experts) 3.67

Conv Projection 3.79 3.71
Gate Projection 3.89 3.70

Output Projection 4.05 3.70
Conv + Gate Projection 3.95 3.72

Conv + Output Projection 4.17 3.76
Gate + Output Projection 4.16 3.88

Conv + Gate + Output Projection 4.39 3.88

their ability for verbatim token-copying is limited. The related ability to predict the token [B] given a
prefix ...[A][B]...[A] (where [A], [B] can be any tokens) has been mechanistically studied by Elhage
et al. (2021) and has been conjectured to be responsible for Transformer’s remarkable in-context
learning capabilities (Olsson et al., 2022).

Peng et al. (2023) mentions that their attention-free model, RWKV, may have limited performance
on tasks that require recalling precise information over long contexts due to a fixed-sized hidden
state, a property that Mamba and other SSMs share. However, since the perplexity of Mamba can
match the perplexity of a similarly-sized Transformer, we can suspect that Mamba compensates for
that failure mode in other ways and might show a relative advantage on other tasks when compared
to Transformer. In particular, it might outperform Transformers in 0-shot tasks in contrast to tasks
allowing few-shot demonstrations or requiring in-context learning.

J REPRODUCIBILITY

The codebase used to run the experiments is available at https://github.com/llm-random/llm-random.

13

https://github.com/llm-random/llm-random

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Figure 6: Diagram of Parallel MoE-Mamba architecture (left) and Mamba Block (right). The outputs
of the Gate and Conv Projections are E (expansion factor) times bigger than the input, i.e., Conv and
SSM operate on vectors ∈ RE·dmodel . Vanilla Mamba assumes E = 2 (Gu & Dao, 2023). Expansion
factor E determines how much the input vector is scaled up by Gate and Conv Projection and then
scaled down by Output Projection, and because of that, it is also proportional to the number of FLOPs
and parameters in the Mamba layer.

Figure 7: Discrepancy between accuracy and log perplexity: MoE-Mamba with 32 experts and
Transformer-MoE.

14

	Introduction
	Related Work
	MoE-Mamba architecture
	Experiments
	Training Setup
	Main Results
	Ablations
	Inner MoE

	Conclusions
	Hyperparameters and Training Setup
	Switch MoE Layer
	Active Parameters vs FLOPs
	Relation between Speedup and Training Time
	Counting Model Parameters
	Exploring the Optimal Mamba to MoE Active Parameters Ratio
	Optimal Number of Experts
	Inner MoE
	Accuracy and Perplexity
	Reproducibility

