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Abstract

Static and contextual multilingual embeddings001
have complementary strengths. Static em-002
beddings, while less expressive than contex-003
tual language models, can be more straight-004
forwardly aligned across multiple languages.005
Contextual language models are more power-006
ful. We combine the strengths of static and007
contextual models to improve multilingual rep-008
resentations. We extract static embeddings009
for 40 languages from XLM-R, validate those010
embeddings with cross-lingual word retrieval,011
and then align them using VecMap. This re-012
sults in high-quality, highly multilingual static013
embeddings. Then we apply a novel continued014
pre-training approach to XLM-R, leveraging015
the high quality alignment of our static embed-016
dings to better align the representation space017
of XLM-R. We show positive results for mul-018
tiple complex semantic tasks. We will release019
the static embeddings and the continued pre-020
training code.021

1 Introduction022

Multilingual contextual encoders like XLM-R023

(Conneau et al., 2020a) and mBERT (Devlin024

et al., 2019), despite being trained without paral-025

lel data, exhibit “surprising” cross-linguality (Wu026

and Dredze, 2019; Conneau et al., 2020b) and027

have demonstrated strong performance on mul-028

tilingual and cross-lingual tasks (e.g., Hu et al.,029

2020; Lauscher et al., 2020; Kurfalı and Östling,030

2021; Turc et al., 2021). However, their language-031

neutrality, meaning how well languages are aligned032

with each other, has clear limits (Libovický et al.,033

2020; Cao et al., 2020, inter alia). In particular,034

more typologically distant language pairs tend to035

be less well-aligned than more similar ones, affect-036

ing transfer performance.037

By contrast, cross-lingual alignment is well-038

studied for static embeddings (e.g., Mikolov et al.,039

2013; Vulić et al., 2020), and they can be aligned040

using simple transformation matrices, resulting in041

high quality multilingual embeddings. However, 042

static embeddings are considerably less expressive 043

than contextual models and have in many applica- 044

tions been superseded by them. 045

This paper aims to combine the strengths of 046

static and contextual models, and explore how they 047

may benefit from each other. Our method requires 048

no parallel corpus. Monolingual static embeddings 049

have been extracted from BERT by Gupta and Jaggi 050

(2021). We show that their approach can be ap- 051

plied to multilingual embeddings. To our knowl- 052

edge, we are the first to explore the extraction of 053

static embeddings from a multilingual contextual 054

model. We distill static embeddings for 40 lan- 055

guages from XLM-R, showing that the resulting 056

embeddings are already somewhat cross-lingually 057

aligned, but that their alignment can be improved 058

using established tools (Section 3). These vectors 059

are of high monolingual and cross-lingual quality 060

despite being distilled using only 1M sentences 061

per language. Second, we present a novel contin- 062

ued pre-training approach for the contextual model, 063

combining masked language modelling (MLM) 064

with an alignment loss that leverages the well- 065

aligned static embeddings (Section 4). This results 066

in improved multilingual contextualised embed- 067

dings which work well for complex semantic tasks. 068

2 Contextual and Static Embeddings 069

XLM-R (Conneau et al., 2020a) and mBERT (De- 070

vlin et al., 2019) have been successful in multi- and 071

cross-lingual transfer despite being trained only on 072

monolingual corpora. However, the 100 languages 073

in XLM-R—or 104 in mBERT—are not repre- 074

sented equally well (cf. Wu and Dredze, 2020), 075

either in terms of data size or downstream perfor- 076

mance. Both Singh et al. (2019) and Libovický 077

et al. (2020) found that mBERT clusters its rep- 078

resentations of languages in a way that mirrors 079

typological language family trees. However, repre- 080

sentations being well-aligned across languages is 081
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related to better cross-lingual transfer performance,082

so this property limits the model’s transfer ability083

especially for more distant language pairs.084

In comparison, static embeddings are far less085

resource-intensive than contextual models, both at086

training and inference time. They can be trained087

with smaller data and achieve good representation088

quality where a Transformer model would be under-089

trained. Where time, data, or computational re-090

sources are limited, this makes static embeddings091

an attractive approach. Also, some NLP tasks rely092

on static embeddings in their formulation, such093

as lexical evaluation tasks, approaches compar-094

ing vector spaces to detect domain shift (Beyer095

et al., 2020) or linguistic change (Shoemark et al.,096

2019), or some bias detection and removal tasks097

(e.g., Kaneko and Bollegala, 2019; Manzini et al.,098

2019). Finally, importantly for us, cross-lingual099

alignment has been studied extensively in static100

embeddings (e.g., Artetxe et al., 2018a,b; Joulin101

et al., 2018). Especially those languages that are102

ill-represented in the massively multilingual model103

can benefit from using static embeddings. In sum-104

mary, static and contextual representations have105

complementary strengths.106

3 Static Embeddings from XLM-R107

Gupta and Jaggi (2021) extracted English static108

embeddings from BERT and RoBERTa. They109

showed that their CBOW-like training scales bet-110

ter with more data and outperforms an aggregation111

approach to extracting static embeddings (Bom-112

masani et al., 2020). In their system, X2Static,113

the context vector from which to predict the target114

word is given by the average of all vectors in the115

sentence without the target word. The method uses116

ten negative samples per target and calculates the117

loss based on similarity scores. However, they only118

evaluated their method on English. We are the first119

to extract static embeddings from a multilingual120

contextual model.121

3.1 Extraction and Alignment Process122

We choose 40 languages for static embeddings ex-123

traction. See Appendix A for the full list. As124

the multilingual contextual model, we use XLM-R.125

Due to the large number of languages and due126

to having limited data for some of them, we de-127

cided to use only up to 1M sentences per language128

for extraction. From preliminary experimentation129

with English, German and French, we determined130

Model en-xx xx-en
fasttextunsup 54.71 58.26
X2S-M 52.11 59.00
X2S-MA 58.41 65.60
MUSE (Conneau et al., 2018) 58.88 65.21
RCSLS (Joulin et al., 2018) 67.47 71.70

Table 1: Results from MUSE BLI tasks. Scores
are averaged over those language pairs present in all
models. Even before alignment (X2S-M), the em-
beddings derived from XLM-R are competitive with
fasttext vectors aligned using unsupervised VecMap
(fasttextunsup). After alignment and selection (X2S-
MA), they are on-par with the supervised embeddings
released by MUSE despite using much smaller data to
train. We show per-language results in Table 5.

how best to extract multilingual embeddings from 131

the model: First, using X2Static (Gupta and Jaggi, 132

2021) worked better than aggregation (Bommasani 133

et al., 2020) even with a small amount of data. One 134

important difference with Gupta and Jaggi’s work 135

is that for our task the sentence-level variant of 136

X2Static yielded better results than the paragraph- 137

level version. Crucially, we also found that embed- 138

dings extracted from layer 6 of XLM-R performed 139

noticeably better than embeddings extracted from 140

the output layer. The latter fits with findings for 141

mBERT by Muller et al. (2021) that the middle 142

layers are more multilingually aligned. 143

For the full set of embeddings, we used up to 144

1M sentences per language from the reconstructed 145

CC100 corpus by Wenzek et al. (2020). We filtered 146

out headlines and too-short sentences heuristically. 147

See Appendix B for data sampling and processing 148

details. We refer to the newly extracted embed- 149

dings as X2S-M for X2Static-Multilingual. 150

In a second step, we align X2S-M using VecMap 151

(Artetxe et al., 2018a) and a set of unsupervised 152

dictionaries that we had previously induced from 153

experiments aligning fasttext vectors (Bojanowski 154

et al., 2017) with unsupervised VecMap (Artetxe 155

et al., 2018b). We refer to the aligned embeddings 156

as X2S-MA (X2Static-Multilingually-Aligned). 157

3.2 Embedding Evaluation 158

We validate our embeddings using the MUSE 159

benchmark (Conneau et al., 2018), which includes 160

bilingual dictionary induction (BLI) tasks for 28 161

of the 40 languages we use, and on SemEval 2017 162

Task 2 (Camacho-Collados et al., 2017), monolin- 163

gual and cross-lingual word similarity. Addition- 164
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Model cross-lingual monolingual
fasttextunsup 0.712 0.743
X2S-M 0.708 0.699
X2S-MA 0.713 0.706
MUSE 0.707 0.728
RCSLS 0.714 0.718

Table 2: Average monolingual and cross-lingual scores
on SemEval 2017 Task 2 (Camacho-Collados et al.,
2017). See Tables 6 and 7 for detailed results.

ally, we conduct a comparative evaluation of the165

supervised MUSE embeddings and the supervised166

RCSLS embeddings from Joulin et al. (2018). For167

the majority of languages, alignment improves BLI168

by at least a few points, with differences as large169

as 17 points for Bengali and Hindi (see Table 5).170

Such large gaps underline the fact that the align-171

ment of XLM-R is suboptimal for these languages.172

Notable exceptions are Korean, Thai, Tagalog, and173

Vietnamese, where the embeddings showed some174

success before alignment but were not useful after-175

wards. It may be that the induced dictionaries did176

not work well for these languages or that the static177

embedding spaces were too different (cf. Vulić178

et al., 2020). In these cases, we use the “unaligned”179

embeddings for further experiments.180

Tables 1 and 2 show that after alignment and181

selection (X2S-MA), our vectors perform similarly182

to the supervised embeddings released by MUSE.183

We also contrast X2S-M and X2S-MA against the184

fasttext embeddings that were used to induce the185

dictionaries mentioned above. On the cross-lingual186

tasks, X2S-MA performs on par with the fasttext187

embeddings; on the monolingual tasks, fasttext188

clearly outperforms X2S-M and X2S-MA. Note,189

however, that SemEval Task 2 only contains data190

for five of the 40 languages we experiment with.191

4 Cross-Linguality Transfer to XLM-R192

Since our static embeddings are of reasonably high193

quality after extraction and their cross-linguality194

can be further improved using established methods,195

we now ask whether the language neutrality of the196

Transformer model can in turn be improved via in-197

direct transfer from our aligned static embeddings.198

4.1 Continued Pre-Training199

Our approach for transfer from the static embed-200

dings is based on mixing an alignment loss with201

masked language modelling (MLM). For the align-202

ment loss, we sample word-vector pairs from our 203

static embeddings, encode the word using the con- 204

textual model, and mean-pool the contextual rep- 205

resentations over the subword tokens. We then 206

compare this representation to the sampled static 207

vector using one of two loss terms: 208

1) MSE. We use mean squared error (MSE), i.e., 209

an element-wise comparison of the static and con- 210

textual representations. This works only if the static 211

vector dimension matches the model’s hidden size. 212

2) DCCA. The second option is a correlation loss 213

(deep canonical correlation analysis; Andrew et al., 214

2013; implementation from Arjmand, 2020): Stan- 215

dard CCA (Hotelling, 1936) takes two continuous 216

representations of related data and linearly trans- 217

forms them to create two maximally correlated 218

views. In deep CCA, the linear transformations 219

are replaced by deep networks, which can be op- 220

timised on mini-batches. In our case, we treat the 221

contextual model as one of the two deep models, 222

and replace the other with the static embeddings. 223

We back-propagate the loss only to the deep model. 224

We train with two sets of static vectors: Fasttext 225

aligned with unsupervised VecMap (fasttextunsup), 226

and our aligned and selected X2S-MA vectors. The 227

former have 300 dimensions and so can only be 228

used with DCCA; the latter have 768 dimensions 229

and can thus be used with either loss. 230

Additionally, we use MLM during training to 231

ensure that the model retains its contextual capa- 232

bilities. See Appendix C for training details. As a 233

second baseline, we also continue the pre-training 234

with only MLM on our selected languages for the 235

same number of update steps. This ensures that 236

any improvements from our proposed model are 237

not merely a result of carrying out further MLM 238

training in these languages. 239

4.2 Downstream Tasks 240

For our downstream evaluation tasks, we follow 241

the fine-tuning procedures shown in the repository 242

for Hu et al. (2020) for better comparability. We 243

use a zero-shot transfer setting, i.e., we fine-tune 244

only on English data but evaluate on all test sets. 245

We report mean F1 score over all test sets and three 246

fine-tuning runs for all tasks except Tatoeba, which 247

uses accuracy as its metric and no fine-tuning. 248

Question Answering. We use two extractive QA 249

tasks, XQuAD (Artetxe et al., 2020) and TyDiQA- 250

GoldP (Clark et al., 2020). For XQuAD, the 251
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Model XQuAD TyDiQA PAN-X UD-POS Tatoeba avg
XLM-R 70.51 48.91 60.40 72.92 50.35 60.62
+MLM 70.50 48.15 61.80 72.97 60.87 62.86
+fasttextDCCA 70.84 52.47 61.84 72.09 59.99 63.45
+X2S-MAMSE 70.42 49.20 62.62 72.95 10.05 53.05
+X2S-MADCCA 70.92 51.02 62.73 72.09 68.06 64.96

Table 3: Downstream evaluation results. For the QA and sequence tagging tasks, we report F1 scores averaged
over three fine-tuning runs. For Tatoeba we report accuracy. +fasttextDCCA means continued pre-training was
done using MLM and DCCA with the aligned fasttext vectors, and analogously for +X2S-MAMSE and +X2S-
MADCCA. See appendix Tables 8-12 for per-language results.

SQuAD v1.1 (Rajpurkar et al., 2016) training set252

is used. TyDiQA includes its own training set.253

Sequence Labelling. We experiment with the254

PAN-X (Pan et al., 2017) named entity recogni-255

tion and the UD-POS part-of-speech tagging tasks.256

The annotated data for UD-POS are taken from257

Universal Dependencies v2.5 (Zeman et al., 2019).258

Tatoeba is a sentence retrieval task compiled by259

Artetxe and Schwenk (2019). It does not need fine-260

tuning, instead using the cosine similarity of the261

mean-pooled layer 7 hidden states for retrieval.262

4.3 Results and Discussion263

Table 3 shows our downstream task results along264

with the average over all evaluated tasks. As ex-265

pected, our second baseline with additional MLM266

in the affected languages can improve slightly over267

the unmodified XLM-R. However, our proposed268

training with a DCCA loss improves further over269

both baselines, except on UD-POS. This shows that270

the improvement is not merely a result of speciali-271

sation on the task languages, but that our alignment272

loss improves the model’s language-neutrality.273

Although the fasttextunsup vectors performed274

very well in Section 3.2, using them in continued275

pre-training is less effective than using X2S-MA.276

X2S-MA has the advantage of having the same277

dimension as the model hidden size, as well as278

being derived from XLM-R itself, both of which279

likely make it easier to transfer their alignment280

signal to the contextual model.281

While both Tatoeba and the QA tasks favour282

DCCA, PAN-X improves regardless of the align-283

ment loss used with X2S-MA, and UD-POS perfor-284

mance even degrades when using DCCA. We spec-285

ulate that this is caused by the different task types286

requiring different strengths of the model. Further,287

UD-POS is a syntactic task, and the strength of the288

static embeddings is semantic.289

The sentence retrieval task is highly sensitive to 290

changes in the representation, whereas the tasks 291

using fine-tuning are more stable. It may be that 292

although the continued pre-training with DCCA 293

improves the alignment of XLM-R, fine-tuning for 294

tasks on English data then primarily changes the 295

English representation space again, leading to for- 296

getting. This prompts the question whether the 297

model could in future benefit from using the align- 298

ment loss alongside fine-tuning. Additionally, the 299

static embeddings may be improved further by 300

training them on more data per language, leading 301

to an even better signal for XLM-R. Recent work 302

also shows that some outlier dimensions in contex- 303

tual models can obscure representational quality, 304

suggesting that “accounting for rogue dimensions” 305

(Timkey and van Schijndel, 2021, p.4527) when 306

learning static embeddings may help as well. 307

5 Conclusions 308

We have extracted high-quality, highly multilingual 309

static embeddings from XLM-R using a modified 310

version of X2Static and only 1M sentences of data 311

per language. Our vectors have reasonable cross- 312

lingual quality immediately after extraction, but 313

we are able to improve their performance using 314

alignment with dictionaries induced from fasttext 315

vectors using VecMap. No parallel corpus was 316

needed for this process. Our final models perform 317

competitively with supervised vectors from MUSE, 318

and outperform both MUSE and RCSLS—or pro- 319

vide models at all—for a number of lower- and 320

medium-resource languages. 321

Further, we have proposed a novel continued 322

pre-training approach that pairs an alignment loss 323

with MLM. Using this approach and particularly 324

the DCCA loss, we can improve the language- 325

neutrality of XLM-R, benefitting downstream per- 326

formance on semantic tasks. 327
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Goran Glavaš. 2020. From zero to hero: On the458
limitations of zero-shot language transfer with mul-459
tilingual Transformers. In Proceedings of the 2020460
Conference on Empirical Methods in Natural Lan-461
guage Processing (EMNLP), pages 4483–4499, On-462
line. Association for Computational Linguistics.463
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A List of Languages594

We list all languages used in our experiments in595

Table 4.596

B Data Sampling and Processing Details597

for X2S-M598

Data Sampling. After sampling data from the re-599

constructed CC100 corpus (Wenzek et al., 2020),600

we do sentence segmentation and tokenisation (see601

the list of languages and tools below), then filter the602

data heuristically: Like Bommasani et al. (2020),603

Language Code Family
Afrikaans af IE: Germanic
Arabic ar Semitic
Bulgarian bg IE: Slavic
Bengali bn IE: Indo-Aryan
German de IE: Germanic
Greek el IE: Greek
English en IE: Germanic
Spanish es IE: Romance
Estonian et Uralic
Basque eu Isolate
Farsi fa IE: Iranian
Finnish fi Uralic
French fr IE: Romance
Hebrew he Semitic
Hindi hi IE: Indo-Aryan
Hungarian hu Uralic
Indonesian id Malayo-Polynesian
Italian it IE: Romance
Japanese ja Japonic
Javanese jv Malayo-Polynesian
Georgian ka Kartvelian
Kazakh kk Turkic
Korean ko Koreanic
Malayalam ml Dravidian
Marathi mr IE: Indo-Aryan
Malay ms Malayo-Polynesian
Burmese my Sino-Tibetan
Dutch nl IE: Germanic
Portuguese pt IE: Romance
Russian ru IE: Slavic
Swahili sw Niger-Congo
Tamil ta Dravidian
Telugu te Dravidian
Thai th Kra-Dai
Tagalog tl Malayo-Polynesian
Turkish tr Turkic
Urdu ur IE: Indo-Aryan
Vietnamese vi Mon-Khmer
Yoruba yo Niger-Congo
Mandarin zh Sino-Tibetan

Table 4: List of languages used with their ISO codes
and language families (Eberhard et al., 2021). IE stands
for Indo-European.

we discard sentences with fewer than seven tokens. 604

We also keep only sentences from paragraphs with 605

at least two sentences, avoiding, for example, head- 606

lines. 607
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Segmentation and Tokenisation Tools. af, ar,608

bg, de, en, el, es, et, eu, fa, fi, fr, he, hi, hu, id,609

it, ko, mr, nl, pt, ru, ta, te, tr, ur, vi: UDPipe (Straka610

and Straková, 2017; Text Analysis and Knowledge611

Engineering Lab, 2021) for both sentence segmen-612

tation and tokenisation. ja: ICU-tokenizer (Rui,613

2020) for sentence segmentation, fugashi (McCann,614

2020) for tokenisation. zh: ICU-tokenizer for sen-615

tence segmentation, jieba (Junyi, 2013) for tokeni-616

sation. bn, jv, ka, kk, ml, ms, my, sw, th, tl, yo:617

ICU-tokenizer for both.618

C Continued Pre-Training Details619

We start from the XLM-RBASE checkpoint, which620

has 270M parameters. At each training step, we621

mix samples from a text dataset with samples from622

our static embeddings, computing both a language623

modelling and an alignment loss. We use an effec-624

tive batch size of 64 for MLM and 1024 for the625

alignment loss. The data for MLM is sampled from626

concatenated Wikipedia data of all 40 languages.627

For this corpus, 100k paragraphs per language were628

taken from Rosa (2018). Each model is trained629

for 7500 update steps, corresponding to roughly630

four epochs over our set of static embeddings. We631

use the default hyperparameters for language mod-632

elling in Huggingface Transformers (Wolf et al.,633

2020). The final checkpoints are selected based on634

the MLM loss over a separate validation set. Each635

training run was done on a single Nvidia GeForce636

GTX 1080 Ti GPU.637
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Model af ar bg bn de el es et fa fi
fasttextunsup 34.43 44.04 53.13 28.90 73.38 55.01 78.70 43.65 36.83 48.24
X2S-M 58.48 30.23 50.91 18.03 64.52 42.08 74.07 44.82 32.17 49.21
X2S-MA 60.69 44.17 57.99 34.61 71.51 52.98 78.00 52.88 41.01 54.02
MUSE – 44.80 52.40 – 73.67 52.37 82.67 41.77 – 53.77
RCSLS 38.13 57.95 61.70 32.17 78.37 59.80 85.43 53.30 44.80 65.87
Model fr he hi hu id it ja ko ms nl
fasttextunsup 78.89 49.82 43.29 56.67 65.15 75.83 42.73 0.03 40.81 73.35
X2S-M 72.18 35.96 32.73 54.15 67.82 70.23 31.57 26.70 56.44 69.54
X2S-MA 77.36 49.87 49.94 60.16 73.79 76.52 42.53 25.83 63.64 75.08
MUSE 82.67 49.10 – 59.37 67.67 78.23 – – – 75.43
RCSLS 84.43 59.21 45.71 70.00 72.87 81.90 – 47.01 – 80.07

Model pt ru ta th tl tr vi zh
fasttextunsup 69.60 49.96 27.09 0.00 0.00 44.85 0.00 33.80
X2S-M 75.76 46.11 16.97 29.37 53.42 50.42 46.39 35.65
X2S-MA 77.38 53.47 31.23 28.58 53.12 51.97 46.89 44.80
MUSE 80.77 58.87 – – – 53.05 48.20 –
RCSLS 83.87 65.60 26.75 26.67 27.73 62.49 60.03 50.63

Table 5: Cross-lingual MUSE results, per language with English, averaged over both directions.

Model de-en de-es de-fa de-it en-es en-fa en-it es-fa es-it fa-it avg
fasttextunsup 0.74 0.75 0.69 0.72 0.73 0.69 0.71 0.70 0.74 0.66 0.712
X2S-M 0.71 0.73 0.66 0.70 0.72 0.69 0.72 0.73 0.74 0.69 0.708
X2S-MA 0.72 0.72 0.67 0.70 0.73 0.71 0.73 0.72 0.74 0.69 0.713
MUSE 0.71 0.70 – 0.68 0.71 – 0.71 – 0.73 – 0.707
RCSLS 0.74 0.71 0.67 0.69 0.73 0.73 0.74 0.71 0.73 0.70 0.714

Table 6: Full cross-lingual results from SemEval 2017 Task 2 (Camacho-Collados et al., 2017).

Model de en es fa it
fasttextunsup 0.80 0.71 0.76 0.72 0.73
X2S-M 0.73 0.70 0.73 0.65 0.68
X2S-MA 0.73 0.72 0.72 0.66 0.70
MUSE (Conneau et al., 2018) 0.73 0.72 0.74 – 0.72
RCSLS (Joulin et al., 2018) 0.73 0.72 0.74 0.66 0.73

Table 7: Full monolingual results from SemEval 2017 Task 2 (Camacho-Collados et al., 2017).

Model ar de el en es hi ru th tr vi zh
XLM-R 65.34 74.47 72.57 83.21 76.98 67.72 74.31 67.66 68.55 73.66 51.09
+MLM 64.93 74.73 72.52 83.66 76.75 68.00 74.30 67.76 67.86 73.35 51.68
+fasttextDCCA 65.50 74.77 73.78 83.66 76.75 68.84 75.06 67.35 68.30 74.18 51.00
+X2S-MAMSE 64.73 74.01 72.87 83.51 76.36 67.82 74.46 67.77 68.04 73.78 51.30
+X2S-MADCCA 65.91 74.83 73.05 84.07 77.00 69.29 74.26 66.99 68.55 73.98 52.20

Table 8: XQuAD results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model ar bn en fi id ko ru sw te
XLM-R 57.43 37.20 62.74 53.87 68.04 20.67 52.25 54.16 33.80
+MLM 57.89 35.48 62.38 51.70 66.06 21.08 52.64 54.76 31.40
+fasttextDCCA 60.96 43.20 63.79 56.52 70.72 23.58 55.57 55.37 42.56
+X2S-MAMSE 57.46 37.59 61.16 52.95 66.77 21.73 51.63 53.10 40.43
+X2S-MADCCA 58.58 42.69 63.48 56.78 69.02 23.11 54.55 54.90 36.04

Table 9: TyDiQA results (F1) per language. Averaged over three fine-tuning runs with different random seeds.

Model af ar bg bn de el en es et eu
XLM-R 74.88 46.12 77.18 67.96 74.34 72.97 82.83 74.52 70.44 57.75
+MLM 76.48 48.25 77.51 69.89 75.00 73.88 82.75 75.90 73.17 57.21
+fasttextDCCA 77.93 47.58 78.00 67.27 76.23 75.34 82.82 79.45 74.06 61.43
+X2S-MAMSE 76.87 47.86 77.79 70.69 75.58 76.34 82.72 77.87 73.96 61.90
+X2S-MADCCA 77.50 53.03 77.98 66.16 75.81 75.30 82.73 75.76 74.67 60.28
Model fa fi fr he hi hu id it ja jv
XLM-R 49.30 74.95 77.51 51.86 66.65 76.10 48.99 77.13 19.61 57.45
+MLM 47.72 75.52 79.17 53.63 68.74 76.94 50.62 77.48 18.28 58.32
+fasttextDCCA 47.74 76.93 78.71 56.70 66.66 77.27 49.35 78.56 17.48 59.14
+X2S-MAMSE 55.45 76.30 78.83 57.81 67.76 77.22 49.92 77.98 20.53 63.28
+X2S-MADCCA 50.56 76.20 78.88 54.91 67.86 76.83 55.03 78.13 17.94 58.42
Model ka kk ko ml mr ms my nl pt ru
XLM-R 65.60 45.45 48.07 60.50 61.31 62.54 53.09 79.45 77.67 63.42
+MLM 67.35 51.14 51.97 63.19 61.30 67.42 52.84 80.64 79.14 62.40
+fasttextDCCA 67.88 51.49 47.48 51.92 63.13 57.89 46.19 81.25 79.48 64.41
+X2S-MAMSE 69.14 51.76 54.13 64.49 62.96 67.43 53.53 80.82 78.90 64.50
+X2S-MADCCA 66.49 50.59 52.55 59.64 60.35 66.94 51.79 81.06 80.45 62.77
Model sw ta te th tl tr ur vi yo zh
XLM-R 63.96 54.64 48.66 3.60 71.46 74.68 54.31 68.58 34.91 25.47
+MLM 65.27 56.12 50.77 3.34 71.39 76.49 62.23 69.88 38.05 24.51
+fasttextDCCA 66.45 57.31 53.63 3.42 71.78 78.59 56.52 71.97 53.07 21.26
+X2S-MAMSE 66.35 58.47 53.66 3.22 70.49 77.09 60.26 69.90 37.00 24.33
+X2S-MADCCA 65.40 56.26 54.61 2.19 67.65 77.53 63.47 70.53 50.23 24.40

Table 10: PAN-X results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model af ar bg de el en es et eu
XLM-R 88.46 67.56 88.58 88.64 87.79 95.85 88.04 85.63 69.38
+MLM 88.75 68.21 88.85 88.57 87.37 95.71 88.51 85.88 69.05
+fasttextDCCA 88.96 67.73 88.30 88.40 87.34 95.79 87.33 85.58 68.33
+X2S-MAMSE 88.87 68.43 88.55 88.72 87.45 95.77 88.61 85.72 69.27
+X2S-MADCCA 88.50 67.45 88.11 88.22 87.26 95.69 87.87 85.99 68.34
Model fa fi fr he hi hu id it ja
XLM-R 70.16 85.60 86.00 66.96 67.83 83.14 72.64 87.41 24.23
+MLM 70.14 85.75 86.50 68.51 68.14 83.07 72.59 88.46 23.59
+fasttextDCCA 68.70 85.69 86.20 66.33 65.70 82.87 72.64 87.32 13.89
+X2S-MAMSE 70.46 85.61 86.76 67.63 69.30 82.82 72.59 88.61 20.61
+X2S-MADCCA 68.81 85.74 86.38 66.34 66.01 82.89 72.82 87.43 14.12
Model kk ko mr nl pt ru ta te th
XLM-R 76.74 53.06 82.95 89.42 86.21 89.25 62.12 84.90 42.36
+MLM 76.54 52.88 83.21 89.45 86.82 89.00 61.62 83.79 42.09
+fasttextDCCA 78.09 52.86 82.86 89.35 85.70 89.11 63.00 84.21 41.54
+X2S-MAMSE 76.55 53.16 84.19 89.45 87.45 89.17 61.44 84.60 42.62
+X2S-MADCCA 77.78 52.93 82.66 89.37 86.07 88.89 62.21 84.49 39.63

Model tl tr ur vi yo zh
XLM-R 88.91 74.27 56.48 58.59 25.29 32.08
+MLM 89.42 74.20 56.58 58.21 24.38 32.06
+fasttextDCCA 88.22 74.53 56.06 57.62 23.76 25.02
+X2S-MAMSE 89.21 74.19 57.45 58.15 25.45 28.54
+X2S-MADCCA 87.44 74.58 56.79 57.68 24.55 25.80

Table 11: UD-POS results (F1) per language. Averaged over three fine-tuning runs with different random seeds.
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Model af ar bg bn de el es et eu
XLM-R 51.60 35.80 66.90 28.70 88.40 51.60 71.00 44.20 26.10
+MLM 65.60 46.50 74.70 41.70 91.90 61.10 79.00 55.80 38.60
+fasttextDCCA 70.60 47.20 78.20 44.90 95.00 68.40 85.80 63.90 44.70
+X2S-MAMSE 10.90 3.90 17.10 2.40 42.50 5.10 15.20 7.90 7.40
+X2S-MADCCA 74.10 57.00 82.10 54.90 95.40 72.50 88.60 75.20 52.50
Model fa fi fr he hi hu id it ja
XLM-R 64.40 63.90 72.50 51.70 50.50 58.70 68.60 64.70 52.80
+MLM 73.50 74.60 77.90 65.10 69.10 69.90 81.10 73.40 64.20
+fasttextDCCA 74.60 78.60 82.30 65.50 61.90 73.30 82.80 78.50 67.00
+X2S-MAMSE 10.50 12.70 22.20 10.10 9.00 13.40 14.30 11.50 10.00
+X2S-MADCCA 79.90 84.30 84.30 71.70 70.10 80.20 86.40 82.30 74.00
Model jv ka kk ko ml mr nl pt ru
XLM-R 15.12 37.13 33.22 50.10 54.73 38.00 76.80 76.60 69.80
+MLM 20.00 45.98 44.17 61.00 64.19 50.70 84.60 84.40 78.50
+fasttextDCCA 16.10 30.56 53.39 40.40 14.56 35.40 87.20 88.30 83.00
+X2S-MAMSE 5.37 4.96 6.09 10.50 4.51 5.30 17.80 19.70 12.50
+X2S-MADCCA 22.93 63.81 62.26 63.20 25.47 34.90 89.30 90.40 85.60
Model sw ta te th tl tr ur vi zh
XLM-R 15.64 25.08 30.77 34.67 29.70 54.90 31.10 67.70 59.40
+MLM 23.59 36.16 37.61 51.28 39.90 65.20 47.40 77.50 75.60
+fasttextDCCA 21.54 42.35 51.28 35.58 37.80 69.30 42.60 76.20 70.80
+X2S-MAMSE 4.10 1.95 3.42 1.64 6.80 6.80 2.50 15.60 6.10
+X2S-MADCCA 23.85 56.35 59.40 68.43 45.10 78.00 45.90 84.40 85.20

Table 12: Tatoeba results (accuracy) per language.
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