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ABSTRACT

Offline reinforcement learning (RL) often struggles with limited data. This work
explores cross-domain offline RL where offline datasets (with possibly sufficient
data) from another domain can be accessed to facilitate policy learning. However,
the underlying environments of the two datasets may have dynamics mismatches,
incurring inferior performance when simply merging the data of two domains. Ex-
isting methods mitigate this issue by training domain classifiers, using contrastive
learning methods, etc. Nevertheless, they still rely on a large amount of target do-
main data to function well. Instead, we address this problem by establishing a con-
crete performance bound of a policy given datasets from two domains. Motivated
by the theoretical insights, we propose to align transitions in the two datasets using
optimal transport and selectively share source domain samples, without training
any neural networks. This enables reliable data filtering even given a few target
domain data. Additionally, we introduce a dataset regularization term that ensures
the learned policy remains within the scope of the target domain dataset, pre-
venting it from being biased towards the source domain data. Consequently, we
propose the Optimal Transport Data Filtering (dubbed OTDF) method and exam-
ine its effectiveness by conducting extensive experiments across various dynamics
shift conditions (e.g., gravity shift, morphology shift), given limited target domain
data. It turns out that OTDF exhibits superior performance on many tasks and
dataset qualities, often surpassing prior strong baselines by a large margin.

1 INTRODUCTION

Alice used to play tennis without any exposure to other ball sports. Recently, the tennis court needs
maintenance, and Alice ends up playing badminton with Bob. Alice quickly gets familiar with this
sport. As depicted in this example, human beings are capable of swiftly adapting their policies to
structurally similar tasks. We expect the same phenomenon to be observed in reinforcement learning
(RL) agents. To that end, we aim at achieving better performance in the target domain with a limited
budget by accessing a source domain (e.g., a simulator) where the two domains may have distinct
transition dynamics. Such a setting is referred to as the policy adaptation problem (Xu et al., 2023).

Many works focus on handling the online policy adaptation problem (Xu et al., 2023; Lyu et al.,
2024; Niu et al., 2022) where either the source domain or the target domain is online. Instead,
we are interested in offline policy adaptation, or the cross-domain offline RL problem (Wen et al.,
2024) (i.e., both domains are offline), mainly because online interactions can be expensive and even
dangerous. Meanwhile, we argue that the cross-domain offline RL setting is common in practice.
For example, one research team gathered historical trajectories of a humanoid robot. However, over
time, the robot’s physical body parts may degrade or get damaged during operation. That said, the
dataset collected by then would differ from the past datasets in transition dynamics. It becomes a
typical cross-domain offline RL scenario if one decides to utilize past data for training policies in the
robot. Recent advances in cross-domain offline RL include learning domain classifiers to estimate
the dynamics gap (Liu et al., 2022a), filtering source domain data based on mutual information (Wen
et al., 2024), etc. Unfortunately, it seems that these methods still run on a comparatively large target
domain dataset. This can be problematic since existing offline RL methods like ReBRAC (Tarasov
et al., 2024) can achieve quite strong performance on it, downgrading the necessity of an extra source
domain dataset. Hence, we consider the offline policy adaptation problem given very limited target
domain data, with which the single-domain offline RL methods often struggle.
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Figure 1: An overview of our proposed framework. We first align source domain data and target
domain data via the Wasserstein distance. Then we adopt the solved optimal coupling for selectively
sharing source domain transitions with the downstream offline RL algorithms. We further introduce
a regularization term to encourage the learned policy to lie in the support region of the target domain.

In light of such a challenge, we first theoretically characterize the performance bound of a policy
in the true target domain and the empirical source domain, which is related to the deviations of
the learned policy against the behavior policies in the source domain dataset and the target domain
dataset, and the dynamics gap between the two domains. The theoretical results highlight the ne-
cessity of selectively sharing source domain data to close the performance gap rather than simply
merging data from two domains. Given that only a few target domain data are accessible, we resort
to optimal transport to find optimal alignments between the source domain data and target domain
data without training any neural network. We then use the similarity measure between a transi-
tion in the source domain dataset and the entire target domain dataset to filter out dissimilar source
domain data. This enables reliable source domain data selection regardless of the target domain
dataset size. However, it is still insufficient to fulfill efficient offline policy adaptation, since the
performance bound is also controlled by the deviation of the learned policy against data-collecting
policies in both domains. To mitigate this, we further introduce a policy regularization term that
constrains the learned policy from executing out-of-distribution (OOD) actions outside the support
region of the target domain dataset. We name our method Optimal Transport Data Filtering (OTDF)
and summarize its framework in Figure 1.

We evaluate OTDF upon various D4RL (Fu et al., 2020) datasets with different types of dynam-
ics shifts (e.g., gravity shift), given limited target domain data. Empirically, we demonstrate that
OTDF achieves superior performance across numerous tasks and with varied source or target do-
main dataset qualities, often outperforming recent strong baseline methods by a large margin. To
ensure that our work is reproducible, we include the source codes in the supplementary materials.

2 PRELIMINARIES

Reinforcement Learning (RL). RL problems can be formulated by a Markov Decision Process
(MDP)M, which is defined by the 5-tupleM = (S,A, P, r, γ) where S denotes the state space,
A is the action space, P represents the transition probability, r(s, a) : S × A → R is the scalar
reward signal, and γ ∈ [0, 1) is the discount factor (Sutton & Barto, 2018). We assume that the
reward signals are bounded, i.e., |r(s, a)| ≤ rmax,∀ s, a. The objective of the RL agent is to learn
a policy π : S → ∆(A) such that the expected discounted cumulative return Eπ[

∑∞
t=0 γ

tr(st, at)]
is maximized, where ∆ is the probability simplex. We assume that we have access to a source
domain Msrc = (S,A, Psrc, r, γ) and a target domain Mtar = (S,A, Ptar, r, γ), where the two
domains only differ in their transition dynamics and share the identical state space and action space.
We denote the normalized probability that a policy π encounters the state action pair (s, a) in the
domainM as ρπM(s, a) := (1− γ)

∑∞
t=0 γ

tPπM,t(s)π(a|s) where PπM,t(s) denotes the probability
that the policy π encounters the state s at timestep t inM. Then, the performance of a policy π in
M can be formulated as JM(π) = Es,a∼ρπM [r(s, a)]. We denote Psrc = PMsrc

, Ptar = PMtar
.

In offline RL, the agent can only get access to a static dataset D = {(si, ai, ri, si+1)}Ni=1, where
N = |D| is the dataset size. The goal of cross-domain offline RL is to improve the performance of
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the agent in the target domain by leveraging the mixed dataset Dmix = Dsrc ∪ Dtar, where Dsrc

is the source domain dataset and Dtar is the target domain dataset. We further define the empirical
MDP in the dataset D as M̂ := (S,A, P̂ , r, γ). P̂ denotes the empirical transition probability in the
dataset and P̂ (s′|s, a) = 0 for all OOD transition pairs. That said, we have two empirical MDPs in
cross-domain offline RL, M̂src with dynamics PM̂src

, M̂tar with dynamics PM̂tar
.

Optimal Transport (OT). OT (Cuturi, 2013; Peyré & Cuturi, 2019) is a popular method to mea-
sure distribution discrepancy. The Wasserstein distance between two discrete measures µx =
1
n

∑n
t=1 δxt

and µy = 1
n′

∑n′

t=1 δyt is defined as:

W(µx, µy) = min
µ∈M

n∑
t=1

n′∑
t′=1

C(xt, yt′)µt,t′ , (1)

where C is a cost function, M = {µ ∈ Rn×n′
: µ1 = 1

n1, µT 1 = 1
n′ 1} is the set of the coupling

matrices, δx denotes a Dirac delta measure for x, µt,t′ is the t-th row, t′-th column element in µ,
and n, n′ are the sizes of the measures µx, µy , respectively. Solving Equation 1 results in an optimal
coupling µ∗ that depicts an alignment between the samples in µx and µy .

3 CROSS-DOMAIN POLICY ADAPTATION UNDER LIMITED SAMPLES

In this section, we start by theoretically unpacking the performance difference between a policy in
the true target domain and the empirical source domain. Motivated by theoretical insights, we for-
mulate a novel objective for cross-domain offline RL with optimal transport and support constraints.
Moreover, we introduce our practical algorithm to fulfill dynamics-aware offline policy adaptation.

3.1 THEORETICAL ANALYSIS GIVEN TWO OFFLINE DATASETS

Since we involve source domain offline data to facilitate policy learning in the target domain, it is
vital to theoretically investigate how source domain data can affect the performance of the learned
policy in the target domain. To that end, we establish a concrete performance bound of any policy
π in the true target domain and the empirical source domain (i.e., the source domain dataset) in the
following theorem, where DTV(p||q) denotes the total variation deviation between the probability
distributions p, q. Due to space limits, all proofs are deferred to Appendix B.
Theorem 3.1. Denote the empirical policy distribution in the offline dataset Dsrc from source do-
main Msrc and the offline dataset Dtar from target domain Mtar as πDsrc :=

∑
Dsrc

1(s,a)∑
Dsrc

1(s) and

πDtar :=
∑

Dtar
1(s,a)∑

Dtar
1(s) , respectively. Denote C1 = 2rmax

(1−γ)2 , then the return difference of any policy π

between the empirical source domain M̂src and the true target domainMtar is bounded:

JMtar
(π)− JM̂src

(π) ≥ −C1 EρπDsrc

M̂src
,PM̂src

[DTV(πDsrc
∥π)]︸ ︷︷ ︸

(a): source policy deviation

−C1 EρπMtar
,PMtar

[DTV(πDtar
∥π)]︸ ︷︷ ︸

(b): target policy deviation

− C1 EρπD
Msrc

,πDsrc

[
DTV(PMtar∥PM̂src

)
]

︸ ︷︷ ︸
(c): dynamicsmismatch

− constant.

Remark: The above bound depicts that the performance deviation of a policy in the true target do-
main and the empirical source domain is mainly determined by three factors: term (a) that measures
the deviation between the learned policy and the behavior policy in the source domain dataset; term
(b) that measures the deviation between the learned policy and the behavior policy in the target do-
main dataset; term (c) that measures the dynamics mismatch between the ground-truth target domain
transition dynamics and the empirical transition dynamics in the source domain dataset.

3.2 A NOVEL OBJECTIVE

Theorem 3.1 conveys that a promising way to improve the performance of the learned policy in the
target domain when leveraging source domain offline data is to minimize the dynamics mismatch
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between the target domain and the empirical source domain, i.e., DTV(PMtar
∥PM̂src

). Naturally,
this can be achieved by only keeping source domain data that have similar transition dynamics as
the target domain dynamics. Motivated by this insight, we can formulate the objective function for
training the value function Qθ(s, a) parameterized by θ as:

LQ = EDtar

[
(Qθ − T Qθ)2

]
+ E(s,a,s′)∼Dsrc

[
1(p̂ > ϵ)(Qθ − T Qθ)2

]
+RDsrc

(Qθ, T Qθ), (2)

where 1(·) is the indicator function, p̂ measures the probability that the sampled source domain
transition lies within the span of the target domain dataset, ϵ is a threshold hyperparameter, T is the
Bellman operator, and RDsrc

(Qθ, T Qθ) denotes the regularization term on source domain data. In
practice, directly optimizing Equation 2 is not preferred since one may need to manually determine
ϵ and adjust the regularization term per dataset. Instead, we propose to reject a fixed proposition of
data in the sampled batch and combine the regularization term with the Bellman error to attain an
implicit regularization. Formally, the objective function for the value function can be formulated as:

LQ = EDtar

[
(Qθ − T Qθ)2

]
+ E(s,a,s′)∼Dsrc

[
ω(s, a, s′)1(p̂ > p̂ξ%)(Qθ − T Qθ)2

]
, (3)

where p̂ξ% is the top ξ-quantile likelihood estimation of the sampled batch from the source domain
dataset, ω(s, a, s′) is the weight that is related to p̂, i.e., ω(s, a, s′) is large when p̂(s, a, s′) is large
(i.e., (s, a, s′) lies close to the target domain) and vice versa. Equation 3 is appealing because it
filters source domain data that deviate far from the target domain and adaptively penalizes the rest
samples. Then, it remains to decide how to empirically calculate p̂ and ω(s, a, s′). We notice that
measuring p̂ can be equivalent to measuring the deviation of the source domain sample against the
target domain. Some studies estimate the dynamics gap by training domain classifiers (Liu et al.,
2022a), performing contrastive learning (Wen et al., 2024), etc. However, they often involve training
neural networks, which can be inferior given few target domain data due to overfitting. Instead, we
propose to adopt the optimal transport (OT) approach, which is a principled method for comparing
two distributions, to align data in the source domain dataset and the target domain dataset.

We define u = ssrc⊕asrc⊕s′src and u′ = star⊕atar⊕s′tar, where⊕ is the the vector concatenation
operator, (ssrc, asrc, s′src) ∼ Dsrc, (star, atar, s

′
tar) ∼ Dtar. Let ps = 1

|Dsrc|
∑|Dsrc|
t=1 δut

and pt =
1

|Dtar|
∑|Dtar|
t=1 δu′

t
denote the state-action-next-state joint distribution of the source domain dataset

and the target domain dataset, respectively. Given a cost function C, the Wasserstein distance

W(u, u′) = min
µ∈M

|Dsrc|∑
t=1

|Dtar|∑
t′=1

C(ut, u
′
t′)µt,t′ (4)

can depict the distance between datasets from two domains. Suppose the optimal coupling by solv-
ing the optimization problem in Equation 4 gives µ∗, we determine the deviation between a source
domain data and the target domain dataset via:

d(ut) = −
|Dtar|∑
t′=1

C(ut, u
′
t′)µ

∗
t,t′ , ut = (stsrc, a

t
src, (s

′
src)

t) ∼ Dsrc. (5)

Intuitively, d is larger if the source domain data aligns the distribution of the target domain dataset
(since the cost is smaller by then) and smaller otherwise. It can hence work as a good proxy for p̂ in
Equation 3. Furthermore, we show in Theorem 3.2 that d serves as an upper bound of the negative
total variation deviation between two empirical distributions ps, pt.
Theorem 3.2. Assume that the cost is bounded, i.e., C(u, u′) ≤ Cmax <∞,∀u, u′, then we have

0 ≥ d(ut) ≥ −CmaxDTV(ps∥pt).

The assumption can be easily satisfied with an appropriate cost function (e.g., Euclidean distance)
since the state space and action space are usually bounded. The above theorem further validates the
rationality of using d where it bounds the dynamics discrepancy between two offline datasets.

Another benefit of computing d is that it provides a natural way of measuring the weight ω(s, a, s′)
in Equation 3, e.g., ω(s, a, s′) = exp(α × d(u)), where α > 0 is a hyperparameter. This is valid
because ω ∈ [0, 1] given d(u) ≤ 0. Consequently, the objective function becomes

LQ = EDtar

[
(Qθ − T Qθ)2

]
+ E(s,a,s′)∼Dsrc

[
exp(α× d)1(d > dξ%)(Qθ − T Qθ)2

]
, (6)
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where we abbreviate d(u) = d(s, a, s′) as d and dξ% denotes the top ξ-quantile likelihood estimation
of the sampled source domain batch. However, it is insufficient to merely optimize Equation 6 since
the performance bound in Theorem 3.1 is also connected with policy deviation terms. If only limited
target domain data is available (e.g., 5000 transitions), the learned policy can get biased towards the
behavior policy of the source domain dataset, incurring unsatisfying policy adaptation performance.

As a remedy, we include an extra policy regularization term that encourages the learned policy to be
close to the support region of the target domain dataset (namely, dataset regularization). Let Lπ be
the vanilla policy optimization objective of the underlying offline RL algorithm, we modify it into

L̂π = Lπ − β × Es∼Dsrc∪Dtar
log πbtar(π(·|s)|s), (7)

where β > 0 is the weight coefficient, πbtar is the behavior policy in the target domain dataset. Then,
minimizing L̂π guarantees that the probability of the learned policy lying in the span of the target
domain dataset is maximized. In this way, term (b) in Theorem 3.1 can be better controlled. Term
(a) can also be minimized since the agent trains upon the source domain data.

Formally, we introduce our novel Optimal Transport Data Filtering (tagged OTDF) approach with its
framework outlined in Figure 1, which is built upon the objective functions in Equation 6 and Equa-
tion 7. In principle, our framework can be integrated into any off-the-shelf offline RL algorithms.
The abstracted pseudocode of OTDF is presented in Algorithm 1.

Algorithm 1 Optimal Transport Data Filtering (Abstracted Version)
Input: Source domain dataset Dsrc, target domain dataset Dtar, batch size N , data selection ratio ξ

1: Initialize policy πϕ, value function Qθ, the cost function C, coefficients α, β
2: Compute the optimal alignment between Dsrc and Dtar with Equation 4 // Solve OT
3: Compute deviations {dt}|Dsrc|

t=1 between the source domain data and Dtar with Equation 5
4: Concatenate Dsrc and {dt}|Dsrc|

t=1 to get D̂src = {(st, at, rt, s′t, dt))}
|Dsrc|
t=1

5: for i = 1, 2, ... do
6: Sample a mini-batch bsrc := {(s, a, r, s′, d)} with size N

2 from D̂src

7: Sample a mini-batch btar := {(s, a, r, s′)} with size N
2 from Dtar

8: Optimize the value function Qθ on bsrc ∪ btar with Equation 6 // Data filtering
9: Optimize the policy πϕ on bsrc ∪ btar with Equation 7 // Dataset regularization

10: end for

3.3 PRACTICAL ALGORITHM

Intuitively, OTDF involves two crucial novel components: (a) selective source domain data sharing
via optimal transport alignment, and (b) policy constraint to align with the target domain dataset.

For the first component, one can solve the OT problem in Equation 4 before initializing the offline
RL algorithm (since both the source domain and the target domain are offline), or during the policy
optimization iterations. In practice, we resort to the former to save time used in solving the repetitive
OT problem under different seeds, as shown in Algorithm 1. To obtain the optimal coupling matrix
µ∗ in Equation 4, we solve the entropy-regularized OT problem with Sinkhorn’s algorithm (Cuturi,
2013), using the Sinkhorn solver in OTT-JAX (Cuturi et al., 2022). The OTT-JAX library provides
a highly efficient and scalable implementation of the Sinkhorn algorithm using GPUs. Thanks to its
computationally efficient property, we can compute the deviations in Equation 5 for 1 million source
domain transitions within five minutes, given about 5000 target domain data.

We then can leverage Equation 6 to train the value function. However, the resulting deviations d can
be largely affected by the underlying task (e.g., different tasks have varied state spaces and action
spaces) and dataset qualities (e.g., d obtained from the medium-level source domain dataset and the
expert-level source domain dataset can differ, given the same target domain dataset). This indicates
that one may manually decide the coefficient α per dataset to acquire suitable weights, which hinders
the practical application of OTDF. To mitigate this concern, we propose to normalize the deviations:

d̂i =
di −maxi di

maxi di −mini di
, i ∈ {1, 2, . . . , N}, (8)

where N is the size of the sampled source domain batch. We subtract maxi di to ensure that d̂i lies
in the range of [−1, 0]. We find this min-max normalization approach quite effective, diminishing
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the need for the extra hyperparameter α. We therefore optimize the following objective alternatively:

LQ = EDtar

[
(Qθ − T Qθ)2

]
+ E(s,a,s′)∼Dsrc

[
exp(d̂)1(d > dξ%)(Qθ − T Qθ)2

]
. (9)

For the second component, it necessities to model the behavior policy of the target domain dataset.
We fulfill this by using the conditional variational auto-encoder (CVAE) (Kingma & Welling, 2013),
which we find can model the behavior policy well even under a limited budget of data. The CVAE
G consists of an encoder Eν(s, a) and a decoder Dς(s, z) parameterized by ν, ς respectively. The
objective function for training the CVAE in the target domain dataset gives,

LCVAE = E(s,a)∼Dtar,z∼Eν(s,a)

[
(a−Dς(s, z))

2 +DKL (Eν(s, a)∥N (0, I))
]
, (10)

where DKL(p∥q) denotes the KL-divergence between two probability distributions p, q, and I is the
identity matrix. We pretrain the CVAE policy upon the target domain dataset before training OTDF.
Given a state sampled from the mixed datasetDsrc∪Dtar, we sample the corresponding action from
the learned policy a ∼ π(·|s), and feed them into the encoder E to produce M latent variables z.
Afterward, we input s and z into the decoder D to reconstruct actions â that come from the same
distribution as the target domain dataset and construct Gaussian distributions based on them. We
then compute the log probability of a (from π) belonging to these Gaussian distributions. Finally,
we approximate Equation 7 by measuring the logsumexp of the log probabilities:

L̂π = Lπ − β × E
s∼Dsrc∪Dtar

log

[
M∑
i=1

exp(log π̂itar(π(·|s)|s))

]
, (11)

where π̂itar denotes the i-th constructed Gaussian distribution with the decoded âi (based on zi, i ∈
{1, . . . ,M}) as the mean and a constant as the standard deviation. We find that OTDF is robust to
different choices of M . We hence set M = 10 by default and do not bother tuning it. Apparently,
Equation 9 and Equation 11 do not alter the vanilla objectives of the base offline RL methods and
can serve as an add-on module for them. In this work, we build the practical OTDF algorithm upon
IQL (Kostrikov et al., 2022) and defer the detailed pseudocode of OTDF+IQL to Appendix D.2.

4 EXPERIMENTS

In this section, we examine the effectiveness of our proposed method by conducting experiments on
environments with various dynamics shifts. We aim to answer two questions: (a) Can OTDF fulfill
effective offline policy adaptation and boost the performance of the base method? (b) Can OTDF
beat prior strong baselines across varied dynamics shifts and dataset qualities? We further present a
detailed parameter study to promote a better understanding of OTDF.

4.1 MAIN RESULTS

Tasks and datasets. To comprehensively evaluate the policy adaptation capabilities, we consider
three kinds of dynamics shifts, including gravity shift, kinematic shift, and morphology shift, for
four environments (halfcheetah, hopper, walker2d, ant) from OpenAI Gym (Brockman et al., 2016).
The gravity shifts are realized by modifying the strength of the gravity (the direction of the gravi-
tational force remains unchanged). We simulate the kinematic shifts by limiting the rotation range
of some joints, and the morphology shifts by modifying the size of some limbs. More details on
the environment settings can be found in Appendix C. Since we consider the cross-domain RL set-
ting where only limited target domain data can be accessed, we use offline datasets from D4RL (Fu
et al., 2020) as the source domain datasets and manually gather offline datasets in those modified
environments to serve as target domain datasets, which contain only around 5000 transitions. This
poses considerable challenges for existing offline RL methods to achieve good performance when
merely training on the target domain, as observed in Liu et al. (2024a); Wen et al. (2024). We
follow a similar data collection procedure as D4RL to collect medium, medium-expert, and expert
target domain datasets. We allow source domain dataset qualities to be medium, medium-replay and
medium-expert. This amounts to a total of 36 tasks for a single shift. We use D4RL “-v2” MuJoCo
datasets for experiments.

Metrics. We are primarily interested in the performance of the agent in the target domain. Since the
scales of the return can differ in varied environments, we follow D4RL and evaluate the normalized
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score metric: NS = J−Jr
Je−Jr × 100, where J, Je, Jr denote the return of the leaned policy, the expert

policy and the random policy, respectively. NS = 100 corresponds to an expert policy and NS = 0
corresponds to a random policy. Please see Appendix C.1 for more details on the datasets.

Baselines. We consider the following baselines: IQL* (Kostrikov et al., 2022) 1 that train the IQL
policy upon both source domain data and target domain data; DARA (Liu et al., 2022a) that esti-
mates the dynamics gap by training domain classifiers and utilizes it for penalizing source domain
rewards; BOSA (Liu et al., 2024a) that employs support-constrained objectives to regularize the
value function and the policy from being OOD; SRPO (Xue et al., 2024) that leverages the station-
ary state distribution as a regularizer for reward modification; IGDF (Wen et al., 2024) that filters
source domain data by introducing a contrastive learning objective. The implementation details of
these baselines can be found in Appendix D.1.

Results. We run all algorithms for 1M gradient steps across 5 random seeds. We summarize perfor-
mance comparison results of OTDF against baselines under morphology shifts and gravity shifts in
Table 1 and Table 2, respectively. Due to space limits, the empirical results under the kinematic shifts
are deferred to Appendix E.1. We report the normalized score performance in the target domain.

Answering question (a): Based on the empirical results, it is evident that OTDF significantly out-
performs IQL* in most scenarios. Notably, OTDF achieves higher normalized scores than IQL*
on 27 out of 36 tasks under the morphology shifts and 29 out of 36 tasks under the gravity shifts.
OTDF exhibits competitive performance as IQL* on the remaining tasks. Adopting OTDF incurs
an increase of 59.7% and 40.7% in terms of the total normalized score under the morphology and
gravity shift tasks, respectively. These clearly validate the effectiveness of our method.

Answering question (b): We find that OTDF significantly surpasses recent baselines across numer-
ous dataset qualities and types of the dynamics shift scenarios, often by a large margin. Specifically,
OTDF excels in 23 out of 36 tasks (with varied dataset qualities of both domains) under the mor-
phology shifts and achieves a total normalized score 1274.3, while the second best baseline (DARA)
only has a total score of 816.8. Under the gravity shift tasks, OTDF markedly beats other methods
across 26 out of 36 tasks, exceeding the second best approach (DARA) by 36.4% in terms of the
total normalized score performance. Despite OTDF’s suboptimal performance in some tasks, it still
remains competitive compared to other methods in those tasks.

We observe that the most recent baselines have similar performance as IQL* on many tasks, indicat-
ing that they fail to fulfill effective offline policy adaptation. OTDF is the only method that exhibits
remarkable performance gain compared to the base method. This can be possibly attributed to the
fact that it is difficult to learn classifiers (DARA, SRPO) or dynamics transition model (BOSA) given
a limited budget of the target domain dataset. The reward penalties provided by DARA and SRPO
can hence be poor, which ultimately results in negative effects on policy training. Furthermore, the
policy trained by BOSA can be biased and favor the distribution of the source domain dataset instead
of the target domain dataset, because BOSA constrains the learned policy to stay within the support
region of the mixed dataset Dsrc∪Dtar. OTDF lifts these concerns by selectively sharing source do-
main data with OT (no neural network training) and enforcing target domain dataset regularization.
Since the computation of OT is not affected by the coverage or the quality of the adopted datasets,
OTDF can consistently keep its advantages over baselines across numerous tasks regardless of the
dataset qualities from both domains and types of dynamics shifts.

4.2 PARAMETER STUDY

In this part, we investigate how sensitive OTDF is to the introduced hyperparameters. There are two
crucial hyperparameters in OTDF, the data selection ratio ξ and the policy coefficient β.

Data selection ratio ξ. ξ decides how many source domain data in a sampled batch can be shared for
policy training. A larger ξ indicates that more source domain data will be admitted. To examine its
influence, we conduct experiments with medium source domain datasets and medium target domain
datasets and sweep ξ across {0, 20, 40, 60, 80, 100}. ξ = 100 means that no data selection process
is included in OTDF while ξ = 0 means that all source domain data are rejected when learning the
value function. We summarize the experimental results in Figure 2 and observe that it is not ideal to
set ξ = 0 or 100. This ablates the necessity of the data filtering process with OT. Note that different

1We add a * to IQL to highlight that it is trained on the mixed dataset.
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Table 1: Performance comparison in cross-domain offline RL given the morphology shift. half =
halfcheetah, hopp = hopper, walk = walker2d, m = medium, r = replay, e = expert. The target column
denotes the offline dataset quality of the target domain. We report normalized scores and standard
deviations in the target domain under varied dataset qualities of the source domain data (medium,
medium-replay, medium-expert) and target domain data (medium, medium-expert, expert). The
results are averaged over 5 seeds. We bold and highlight the best cell.

Source Target IQL* DARA BOSA SRPO IGDF OTDF (ours)

half-m medium 30.0±1.6 26.6±3.3 19.3±3.5 41.3±0.4 41.6±0.5 39.1±2.3
half-m medium-expert 31.8±1.1 32.0±0.7 33.6±1.1 30.7±0.8 29.6±2.2 35.6±0.7
half-m expert 8.5±1.0 9.3±1.6 7.9±0.8 8.6±0.9 10.0±0.8 10.7±1.2
half-m-r medium 30.8±4.4 35.6±0.7 35.0±4.6 32.0±1.4 28.0±2.0 40.0±1.2
half-m-r medium-expert 12.9±2.2 16.9±4.1 19.9±5.5 12.4±1.6 12.0±3.7 34.4±0.7
half-m-r expert 5.9±1.7 3.7±2.7 2.4±1.9 6.2±1.4 5.3±2.3 8.2±2.7
half-m-e medium 41.5±0.1 40.3±1.2 41.3±0.3 41.3±0.4 40.9±0.4 41.4±0.3
half-m-e medium-expert 25.8±2.0 30.6±2.8 32.1±0.8 27.2±0.8 26.2±1.8 35.1±0.6
half-m-e expert 7.8±1.3 8.3±1.3 9.1±0.8 7.8±0.9 7.5±0.9 9.8±1.0
hopp-m medium 13.5±0.2 13.5±0.4 13.2±0.3 13.4±0.1 13.4±0.2 11.0±0.9
hopp-m medium-expert 13.4±0.1 13.6±0.2 11.2±4.6 13.3±0.2 13.3±0.4 12.6±0.8
hopp-m expert 13.5±0.2 13.6±0.3 13.3±0.4 13.6±0.2 13.9±0.1 10.7±4.7
hopp-m-r medium 10.8±1.1 10.2±1.0 1.2±0.0 10.7±1.6 12.0±4.4 8.7±2.8
hopp-m-r medium-expert 11.6±1.6 10.4±0.9 1.3±0.2 10.4±1.2 8.2±2.8 9.7±2.7
hopp-m-r expert 9.8±0.5 9.0±0.3 1.3±0.1 10.4±1.4 11.4±1.5 10.7±2.4
hopp-m-e medium 12.6±1.4 13.0±0.5 15.7±7.2 14.0±2.3 12.7±0.8 7.9±3.2
hopp-m-e medium-expert 14.1±1.3 13.8±0.6 12.0±1.4 13.5±0.3 13.3±1.2 9.6±3.5
hopp-m-e expert 13.8±0.5 12.3±1.8 10.5±5.0 14.7±2.3 12.8±0.9 5.9±4.0
walk-m medium 23.0±4.7 23.3±3.3 6.2±2.9 24.7±1.7 27.5±9.5 50.5±5.8
walk-m medium-expert 21.5±8.6 22.2±7.6 7.2±2.9 18.7±7.3 20.7±5.9 44.3±23.8
walk-m expert 20.3±2.8 17.3±3.4 15.8±8.7 21.1±7.2 15.8±4.5 55.3±8.3
walk-m-r medium 11.3±3.0 10.9±4.6 5.4±4.0 10.4±4.8 13.4±7.2 37.4±5.1
walk-m-r medium-expert 7.0±1.5 4.5±1.1 4.0±2.2 4.9±1.7 6.9±2.2 33.8±6.9
walk-m-r expert 6.3±0.9 4.5±1.1 3.8±3.4 5.5±0.9 5.5±2.2 41.5±6.8
walk-m-e medium 24.1±7.4 31.7±6.6 18.7±6.5 29.9±4.7 27.5±2.3 49.9±4.6
walk-m-e medium-expert 27.0±5.5 23.3±5.5 11.1±0.9 22.9±3.8 25.3±6.4 40.5±11.0
walk-m-e expert 22.4±3.3 25.2±5.7 9.9±3.9 18.7±5.7 24.7±2.4 45.7±6.9
ant-m medium 38.7±3.8 41.3±1.8 18.2±1.9 40.6±2.1 40.9±1.7 39.4±1.7
ant-m medium-expert 47.0±5.1 43.3±2.0 45.3±7.0 47.2±4.3 44.4±1.7 58.3±8.9
ant-m expert 36.2±3.5 48.5±4.2 72.2±10.5 42.2±9.9 41.4±4.2 85.4±4.4
ant-m-r medium 38.2±2.9 38.9±2.7 20.2±3.7 38.3±1.9 39.7±1.2 41.2±0.9
ant-m-r medium-expert 38.1±3.5 33.4±5.5 15.2±1.6 35.0±5.7 37.3±2.4 50.8±4.5
ant-m-r expert 24.1±1.9 24.5±2.6 16.0±1.7 22.7±3.0 23.6±1.4 67.2±7.5
ant-m-e medium 32.9±5.1 40.2±1.5 28.1±5.6 35.9±2.5 36.1±4.4 39.9±2.9
ant-m-e medium-expert 35.7±3.9 36.5±8.7 14.8±15.9 24.5±15.7 30.7±10.8 65.7±4.5
ant-m-e expert 36.1±8.5 34.6±5.8 53.9±5.0 38.4±9.4 35.2±6.6 86.4±2.2

Total Score 798.0 816.8 646.3 803.1 808.7 1274.3
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Figure 2: Parameter study of the data selection ratio ξ. *-kinematic denotes the kinematic shift
task, while *-morph denotes the morphology shift tasks. We use halfcheetah, walker2d tasks. The
solid lines depict the average returns over 5 seeds and the shaded area denotes the standard deviation.
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Table 2: Performance comparison under the gravity shift. half = halfcheetah, hopp = hopper,
walk = walker2d, m = medium, r = replay, e = expert. The target column denotes the offline dataset
quality of the target domain. The normalized average scores in the target domain across 5 random
seeds are reported and ± captures the standard deviation. We bold and highlight the best cell.

Source Target IQL* DARA BOSA SRPO IGDF OTDF (ours)

half-m medium 39.6±3.3 41.2±3.9 38.9±4.0 36.9±4.5 36.6±5.5 40.7±7.7
half-m medium-expert 39.6±3.7 40.7±2.8 40.4±3.0 40.7±2.3 38.7±6.2 28.6±3.2
half-m expert 42.4±3.8 39.8±4.4 40.5±3.9 39.4±1.6 39.6±4.6 36.1±5.3
half-m-r medium 20.1±5.0 17.6±6.2 20.0±4.9 17.5±5.2 14.4±2.2 21.5±6.5
half-m-r medium-expert 17.2±1.6 20.2±5.2 16.7±4.2 16.3±1.7 10.0±2.5 14.7±4.1
half-m-r expert 20.7±5.5 22.4±1.7 15.4±4.2 23.1±4.0 15.3±3.7 11.4±1.9
half-m-e medium 38.6±6.0 37.8±3.3 41.8±5.1 42.5±2.3 37.7±7.3 39.5±3.5
half-m-e medium-expert 39.6±3.0 39.4±4.4 38.7±3.7 43.3±2.7 40.7±3.2 32.4±5.5
half-m-e expert 43.4±0.9 45.3±1.3 39.9±2.7 43.3±3.0 41.1±4.1 26.5±9.1
hopp-m medium 11.2±1.1 17.3±3.8 15.2±3.3 12.4±1.0 15.3±3.5 32.4±8.0
hopp-m medium-expert 14.7±3.6 15.4±2.5 21.1±9.3 14.2±1.8 15.1±3.6 24.2±3.6
hopp-m expert 12.5±1.6 19.3±10.5 12.7±1.7 11.8±0.9 14.8±4.0 33.7±7.8
hopp-m-r medium 13.9±2.9 10.7±4.3 3.3±1.9 14.0±2.6 15.3±4.4 31.1±13.4
hopp-m-r medium-expert 13.3±6.3 12.5±5.6 4.6±1.7 14.4±4.2 15.4±5.5 24.2±6.1
hopp-m-r expert 11.0±2.6 14.3±6.0 3.2±0.8 16.4±5.0 16.1±4.0 31.0±9.8
hopp-m-e medium 19.1±6.6 18.5±12.3 15.9±5.9 19.7±8.5 22.3±5.4 26.4±10.1
hopp-m-e medium-expert 16.8±2.7 16.0±6.1 17.3±2.5 15.8±3.3 16.6±7.7 28.3±6.7
hopp-m-e expert 20.9±4.1 23.9±14.8 23.2±7.9 21.4±1.9 26.0±9.2 44.9±10.6
walk-m medium 28.1±12.9 28.4±13.7 38.0±11.2 21.4±7.0 22.1±8.4 36.6±2.3
walk-m medium-expert 35.7±4.7 30.7±9.7 40.9±7.2 34.0±9.9 35.4±9.1 44.8±7.5
walk-m expert 37.3±8.0 36.0±7.0 41.3±8.6 39.5±3.8 36.2±13.6 44.0±4.0
walk-m-r medium 14.6±2.5 14.1±6.1 7.6±5.8 17.9±3.8 11.6±4.6 32.7±7.0
walk-m-r medium-expert 15.3±1.9 15.9±5.8 4.8±5.8 15.3±4.5 13.9±6.5 31.6±6.1
walk-m-r expert 15.8±7.2 15.7±4.5 7.1±4.6 13.7±8.1 15.2±5.3 31.3±5.3
walk-m-e medium 39.9±13.1 41.6±13.0 32.3±7.2 46.4±3.5 33.8±3.1 30.2±9.8
walk-m-e medium-expert 49.1±6.9 45.8±9.4 40.1±4.5 36.4±3.4 44.7±2.9 53.3±7.1
walk-m-e expert 40.4±11.9 56.4±3.5 43.7±4.4 45.8±8.0 45.3±10.4 61.1±3.4
ant-m medium 10.2±1.8 9.4±0.9 12.4±2.0 11.7±1.0 11.3±1.3 45.1±12.4
ant-m medium-expert 9.4±1.2 10.0±0.9 11.6±1.3 10.2±1.2 9.4±1.4 33.9±5.4
ant-m expert 10.2±0.3 9.8±0.6 11.8±0.4 9.5±0.6 9.7±1.6 33.2±9.0
ant-m-r medium 18.9±2.6 21.7±2.1 13.9±1.5 18.7±1.7 19.6±1.0 29.6±10.7
ant-m-r medium-expert 19.1±3.0 18.3±2.1 15.9±2.7 18.7±1.8 20.3±1.6 25.4±2.1
ant-m-r expert 18.5±0.9 20.0±1.3 14.5±1.7 19.9±2.1 18.8±2.1 24.5±2.8
ant-m-e medium 9.8±2.4 8.1±1.8 8.1±3.0 8.4±2.1 8.9±1.5 18.6±11.9
ant-m-e medium-expert 9.0±0.8 6.4±1.4 6.2±1.5 6.1±3.5 7.2±2.9 34.0±9.4
ant-m-e expert 9.1±2.6 10.4±2.9 4.2±3.9 8.8±1.0 9.2±1.5 23.2±2.9

Total Score 825.0 851.0 763.2 825.5 803.6 1160.7

tasks prefer varied ξ while we can achieve a trade-off with ξ = 80. We hence set ξ = 80 (i.e., share
80% source domain data) for OTDF by default and do not tune it.
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Figure 3: Parameter study of the policy regularization coefficient β. We report the returns ob-
tained in the modified hopper and ant tasks. The shaded region captures the standard deviation.
Policy coefficient β. β controls the strengths of the target domain constraint term in Equation 11.
A larger β may de-emphasize the knowledge carried by the source domain data while a small β can
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incur a biased policy that leans towards the distribution of the source domain dataset. Obviously,
β needs to be set properly to achieve a trade-off. We employ β ∈ {0, 0.1, 0.5, 2.0} and run OTDF
on the medium-replay source domain datasets and expert target domain datasets. We present the
results in Figure 3 and find that diminishing the role of dataset regularization (i.e., β = 0) leads to
unsatisfying performance. OTDF can be sensitive to the choice of β and the best β for each task
vary (e.g., ant-kinematic prefers β = 2.0 while hopper-kinematic favors β = 0.5). Fortunately, we
can reach a trade-off with β = 0.5 or β = 0.1. For most of our experiments, we set β = 0.5.

5 RELATED WORK

Offline Reinforcement Learning (RL). In Offline RL (or batch RL) (Levine et al., 2020; Lange
et al., 2012), the agent is only allowed to learn policies based on some previously gathered offline
datasets. Offline RL methods can be generally divided into model-free (Wu et al., 2021; An et al.,
2021) and model-based (Argenson & Dulac-Arnold, 2020; Matsushima et al., 2021) approaches.
The success of these offline RL methods relies heavily on the fact that the underlying static datasets
usually contain a large amount of transitions. Instead, we investigate how to facilitate target domain
policy training by leveraging source domain datasets, given only few target domain data.

Domain Adaptation in RL. In this work, we focus on the policy adaptation problem (Xu et al.,
2023; Lyu et al., 2024) under dynamics shifts between the two domains, while other components
like observation spaces are unchanged. To mitigate this issue, previous methods mainly leverages
domain randomization (Slaoui et al., 2019; Mehta et al., 2019), system identification (Clavera et al.,
2018; Du et al., 2021), imitation learning (Kim et al., 2019; Hejna et al., 2020), and meta-RL meth-
ods (Nagabandi et al., 2018; Raileanu et al., 2020), etc. However, they often require expert demon-
strations from the target domain, and prior knowledge to guide parameter randomization. Some
recent works discard these demands and train dynamics-aware policies given limited offline transi-
tions from one domain while having access to another online domain with dynamics discrepancies
(Niu et al., 2022; Xu et al., 2023; Lyu et al., 2024). In contrast, we explore the offline policy adapta-
tion setting where the two domains are both offline. Existing works address this issue via performing
reward penalization (Liu et al., 2022a), conducting data filtering from the perspective of mutual in-
formation (Wen et al., 2024), etc. Different from these methods, we resort to the optimal transport
approach for selecting source domain transitions that are close to the target domain, in conjunction
with a policy constraint term that enforces the learned policy to stay close to the support region
of the target domain. These allow our method to function well even under very few target domain
samples where existing methods typically fail.

Optimal Transport (OT). OT is widely used in domain adaptation (Damodaran et al., 2018; Shen
et al., 2018), recommender system (Li et al., 2019; Mashayekhi et al., 2023), and graph matching
(Chen et al., 2020; Xu et al., 2019). In the context of RL, OT is used in fields like imitation learning
(Haldar et al., 2023; Nguyen et al., 2021; Dadashi et al., 2020; Luo et al., 2023), curriculum RL
(Klink et al., 2022; Huang et al., 2022), preference-based RL (Liu et al., 2024b), etc. We, instead,
resort to OT for data filtering in the context of cross-domain offline RL.

6 CONCLUSION

In this paper, we study the cross-domain offline policy adaptation problem which seeks to enhance
offline policy training on a limited target domain dataset by leveraging a source domain dataset with
dynamics shifts. We theoretically characterize the performance bound of a policy under this setting,
which further motivates us to perform data filtering upon source domain data with optimal transport
and introduce a dataset regularization term to maximize the probability that the learned policy stays
within the span of the target domain dataset. These give birth to the OTDF algorithm, which is
compatible with any offline RL methods. Empirically, we combine OTDF with IQL and evaluate
its performance upon datasets with distinct qualities and dynamics shift types. Experimental results
demonstrate that OTDF significantly exceeds baselines on numerous tasks, often by a large margin.

The limitations of our work lie in that: (a) OTDF is inapplicable when the source domain and the
target domain have varied state spaces or action spaces; (b) our experiments are only carried out
in the simulated environments, and it remains to explore the effectiveness of OTDF in real-world
scenarios. We plan to resolve these drawbacks in future work.
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A EXTENDED RELATED WORK

Offline Reinforcement Learning (RL). In Offline RL (or batch RL) (Levine et al., 2020; Lange
et al., 2012), the agent is only allowed to learn policies based on some previously gathered offline
datasets. Offline RL methods can be generally divided into model-free (Wu et al., 2021; An et al.,
2021) and model-based (Argenson & Dulac-Arnold, 2020; Matsushima et al., 2021) approaches,
where model-free offline RL algorithms often leverage value penalization (Kumar et al., 2020; Lyu
et al., 2022c; Nikulin et al., 2023; Yang et al., 2024; Yeom et al., 2024), implicit or explicit policy
constraints (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2022; Wu et al., 2022a;
Lyu et al., 2022a; Ran et al., 2023; Tarasov et al., 2024), while model-based offline RL methods
typically rely on directly optimizing the policy with the learned model (Yu et al., 2020; Kidambi
et al., 2020; Rigter et al., 2022; Guo et al., 2022; Sun et al., 2023; Qiao et al., 2024; Luo et al., 2024),
or performing data augmentation for offline datasets (Yu et al., 2021; Lyu et al., 2022b; Zhang et al.,
2023). The success of these offline RL methods relies heavily on the fact that the underlying static
datasets usually contain a large amount of transitions. Instead, we investigate how to facilitate target
domain policy training by leveraging source domain datasets, given only few target domain data.

Domain Adaptation in RL. It is challenging to generalize or transfer policies to another domain
(Cobbe et al., 2019) in RL, where the two domains can differ in terms of agent embodiment (Liu
et al., 2022b; Zhang et al., 2021b), observation or action spaces (Gamrian & Goldberg, 2018; Bous-
malis et al., 2018; Zhang et al., 2021a; Ge et al., 2022), and the environmental dynamics (Eysenbach
et al., 2021; Viano et al., 2020), etc. In this work, we focus on the policy adaptation problem (Xu
et al., 2023; Lyu et al., 2024) under dynamics shifts between the two domains, while other com-
ponents like observation spaces remain unchanged. To mitigate this challenge, previous literature
mainly leverages domain randomization (Slaoui et al., 2019; Mehta et al., 2019; Vuong et al., 2019;
Jiang et al., 2023), system identification (Clavera et al., 2018; Du et al., 2021; Xie et al., 2022),
imitation learning (Kim et al., 2019; Hejna et al., 2020; Fickinger et al., 2022; Raychaudhuri et al.,
2021; Guo et al., 2024), and meta-RL methods (Nagabandi et al., 2018; Raileanu et al., 2020; Arndt
et al., 2019; Wu et al., 2022b), etc. Nevertheless, these methods often require expert demonstra-
tions from the target domain, and prior knowledge to guide parameter randomization. Some recent
works discard these demands and train dynamics-aware policies given limited offline transitions
from one domain while having access to another online domain with dynamics discrepancies (Ey-
senbach et al., 2021; Niu et al., 2022; Xu et al., 2023; Lyu et al., 2024). In contrast, we explore the
offline policy adaptation setting where the two domains are purely offline. Existing works address
this issue via performing reward penalization (Liu et al., 2022a), training a GAN-style discriminator
(Xue et al., 2024), incorporating pessimistic supported regularization (Liu et al., 2024a), utilizing
the return-conditioned supervised learning (RCSL) approach (Wang et al., 2024), or conducting data
filtering from the perspective of mutual information (Wen et al., 2024). Different from these meth-
ods, we resort to the optimal transport approach for selecting source domain transitions that are
close to the target domain, in conjunction with a policy constraint term that enforces the learned
policy to stay close to the support region of the target domain. These allow our method to function
well even under very few target domain samples where existing methods typically fail.

B MISSING PROOFS

In this section, we present the proofs of the theoretical results that are omitted from the main text
due to space limits. We note that QπM(s, a) means the state-action value function upon the sample
(s, a) by following the policy π in the MDPM. Also, recall that Psrc = PMsrc

, Ptar = PMtar
.

B.1 LEMMAS

Lemma B.1 (Telescoping lemma). DenoteM1 = (S,A, P1, r, γ) andM2 = (S,A, P2, r, γ) as
two MDPs that only differ in their transition dynamics. Suppose we have two policies π1, π2, we
can reach the following conclusion:

JM1
(π1)−JM2

(π2) =
1

1− γ
Eρπ1

M1
(s,a)

[
Es′∼P1,a′∼π1

[Qπ2

M2
(s′, a′)]− Es′∼P2,a′∼π2

[Qπ2

M2
(s′, a′)]

]
.

(12)
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Proof. Please check the proof of Lemma C.2 in Xu et al. (2023).

Lemma B.2. DenoteM = (S,A, P, r, γ) as the underlying MDP., The performance difference of
the two policies π1, π2 in the MDPM gives:

JM(π1)− JM(π2) =
1

1− γ
Eρπ1

M(s,a),s′∼P [Ea′∼π1
[Qπ2

M(s′, a′)]− Ea′∼π2
[Qπ2

M(s′, a′)]] . (13)

Proof. Please check the proof of Lemma B.3 in Lyu et al. (2024).

B.2 PROOF OF THEOREM 3.1

Theorem B.3 (Offline performance bound). Denote the empirical policy distribution in the offline
dataset Dsrc from source domain Msrc and the offline dataset Dtar from target domain Mtar as

πDsrc :=
∑

Dsrc
1(s,a)∑

Dsrc
1(s) and πDtar :=

∑
Dtar

1(s,a)∑
Dtar

1(s) , respectively. Denote C1 = 2rmax

(1−γ)2 , then the return

difference of any policy π between the empirical source domain M̂src and the true target domain
Mtar is bounded:

JMtar
(π)− JM̂src

(π) ≥ −C1 EρπDsrc

M̂src
,PM̂src

[DTV(πDsrc
∥π)]︸ ︷︷ ︸

(a): source policy deviation

−C1 EρπMtar
,PMtar

[DTV(πDtar
∥π)]︸ ︷︷ ︸

(b): target policy deviation

− C1 EρπD
Msrc

,πDsrc

[
DTV(PMtar

∥PM̂src
)
]

︸ ︷︷ ︸
(c): dynamicsmismatch

− constant.

Proof. We establish the performance bound of the policy in the true target domain Mtar and the
empirical source domain M̂src by dividing the performance deviation into three parts,

JMtar(π)− JM̂src
(π) = (JMtar(π)− JMtar(πDtar))︸ ︷︷ ︸

(a)

+
(
JMtar(πDtar)− JM̂src

(πDsrc)
)

︸ ︷︷ ︸
(b)

+
(
JM̂src

(πDsrc
)− JM̂src

(π)
)

︸ ︷︷ ︸
(c)

.
(14)

The term (a) in the RHS measures the performance deviation of the learned policy and the behavior
policy of target domain dataset under the target domain, term (b) measures the performance of the
behavior policy of the target domain dataset in the true target domain MDP against the performance
of the behavior policy in the source domain dataset under the empirical source domain MDP, and
term (c) depicts the performance deviation of the learned policy and the behavior policy in the source
domain under the empirical source domain MDP. We first bound term (a). By using Lemma B.2,
we have

(a) = JMtar
(π)− JMtar

(πDtar
)

=
1

1− γ
EρπMtar

(s,a),s′∼PMtar (·|s,a)
[
Ea′∼π

[
Q
πDtar

Mtar
(s′, a′)

]
− Ea′∼πDtar

[
Q
πDtar

Mtar
(s′, a′)

]]
≥ − 1

1− γ
EρπMtar

(s,a),s′∼PMtar (·|s,a)
∣∣Ea′∼π [QπDtar

Mtar
(s′, a′)

]
− Ea′∼πDtar

[
Q
πDtar

Mtar
(s′, a′)

]∣∣
≥ − 1

1− γ
EρπMtar

(s,a),s′∼PMtar (·|s,a)

∣∣∣∣∣∑
a′∈A

(πDtar
(a′|s′)− π(a′|s′))QπDtar

Mtar
(s′, a′)

∣∣∣∣∣
≥ − rmax

(1− γ)2
EρπMtar

(s,a),s′∼PMtar (·|s,a)

∣∣∣∣∣∑
a′∈A

(πDtar
(a′|s′)− π(a′|s′))

∣∣∣∣∣
= − 2rmax

(1− γ)2
EρπMtar

(s,a),PMtar
[DTV(πDtar

(·|s′)∥π(·|s′)] ,
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where we use the fact that |Q(s, a)| ≤ rmax

1−γ . Then, we can bound term (c) by using Lemma B.2,

(c) = JM̂src
(πDsrc

)− JM̂src
(π)

=
1

1− γ
E
ρ
πDsrc

M̂src
(s,a),s′∼PM̂src

(·|s,a)

[
Ea′∼πDsrc

[
QπM̂src

(s′, a′)
]
− Ea′∼π

[
QπM̂src

(s′, a′)
]]

≥ − 1

1− γ
E
ρ
πDsrc

M̂src
(s,a),s′∼PM̂src

(·|s,a)

∣∣∣Ea′∼πDsrc

[
QπM̂src

(s′, a′)
]
− Ea′∼π

[
QπM̂src

(s′, a′)
]∣∣∣

≥ − 1

1− γ
E
ρ
πDsrc

M̂src
(s,a),s′∼PM̂src

(·|s,a)

∣∣∣∣∣∑
a′∈A

(πDsrc
(a′|s′)− π(a′|s′))QπM̂src

(s′, a′)

∣∣∣∣∣
≥ − rmax

(1− γ)2
E
ρ
πDsrc

M̂src
(s,a),s′∼PM̂src

(·|s,a)

∣∣∣∣∣∑
a′∈A

(πDsrc(a
′|s′)− π(a′|s′))

∣∣∣∣∣
= − 2rmax

(1− γ)2
E
ρ
πDsrc

M̂src
(s,a),PM̂src

[DTV(πDsrc
(·|s′)∥π(·|s′)] .

Finally, we bound term (b). By using Lemma B.1, we have

(b) = JMtar
(πDtar

)− JM̂src
(πDsrc

)

= − 1

1− γ
E
ρ
πDtar
Mtar

(s,a)

[
Es′∼PMtar ,a

′∼πDtar
[Q

πDsrc

M̂src
(s′, a′)]− Es′∼PM̂src

,a′∼πDsrc
[Q

πDsrc

M̂src
(s′, a′)]

]

= − 1

1− γ
E
ρ
πDtar
Mtar

(s,a)

(Es′∼PMtar ,a
′∼πDtar

[
Q
πDsrc

M̂src
(s′, a′)

]
− Es′∼PMtar ,a

′∼πDsrc

[
Q
πDsrc

M̂src
(s′, a′)

])
︸ ︷︷ ︸

(d)

+
(
Es′∼PMtar ,a

′∼πDsrc

[
Q
πDsrc

M̂src
(s′, a′)

]
− Es′∼PM̂src

,a′∼πDsrc

[
Q
πDsrc

M̂src
(s′, a′)

])
︸ ︷︷ ︸

(e)

 .
For term (d), it is easy to find that:

(d) = Es′∼PMtar

[∑
a′∈A

(πDtar
(a′|s′)− πDsrc

(a′|s′))QπDsrc

M̂src
(s′, a′)

]

≤ Es′∼PMtar

[∑
a′∈A

|πDtar(a
′|s′)− πDsrc(a

′|s′)| × |QπDsrc

M̂tar
(s′, a′)|

]

≤ 2rmax

1− γ
Es′∼PMtar

[DTV(πDtar
(·|s′)∥πDsrc

(·|s′)] .

It remains to bound term (e). We have

(e) = Es′∼PMtar ,a
′∼πDsrc

[Q
πDsrc

M̂src
(s′, a′)]− Es′∼PM̂src

,a′∼πDsrc
[Q

πDsrc

M̂src
(s′, a′)]

= Ea′∼πDsrc

[∑
s′

(PMtar
(s′|s, a)− PM̂src

(s′|s, a))QπDsrc

M̂src
(s′, a′)

]

≤ Ea′∼πDsrc

[∑
s′

|PMtar
(s′|s, a)− PM̂src

(s′|s, a)| × |QπM̂src
(s′, a′)|

]

≤ rmax

1− γ
Ea′∼πDsrc

[∑
s′

∣∣∣PMtar
(s′|s, a)− PM̂src

(s′|s, a)
∣∣∣]

=
2rmax

1− γ
Ea′∼πDsrc

[
DTV(PMtar(·|s, a)∥PM̂src

(·|s, a))
]
.
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Then, we get the bound for term (b):

(b) = JMtar
(πDtar

)− JM̂src
(πDsrc

)

≥ − 2rmax

(1− γ)2
E
ρ
πDtar
Mtar

(s,a),s′∼PMtar

[DTV(πDtar(·|s′)∥πDsrc(·|s′)]

− 2rmax

(1− γ)2
EρπD

Msrc
(s,a),a′∼πDsrc

[
DTV(PMtar

(·|s, a)∥PM̂src
(·|s, a))

]
.

Note that the behavior policy in the source domain and the behavior policy in the target domain are
fixed, indicating that their total variation deviation under the target domain transition dynamics is
constant. Combining the above bounds for term (a), term (b) and term (c), and we have

JMtar
(π)− JM̂src

(π) ≥ − 2rmax

(1− γ)2
EρπMtar

,PMtar
[DTV(πDtar

∥π)]− 2rmax

(1− γ)2
E
ρ
πDsrc

M̂src
,PM̂src

[DTV(πDsrc
∥π)]

− 2rmax

(1− γ)2
EρπD

Msrc
,πDsrc

[
DTV(PMtar

∥PM̂src
)
]
− constant.

By replacing
2rmax

(1− γ)2
with C1, we have the desired conclusion immediately.

B.3 PROOF OF THEOREM 3.2

Theorem B.4. Assume that the cost is bounded, i.e., C(u, u′) ≤ Cmax <∞,∀u, u′, then we have

0 ≥ d(ut) ≥ −CmaxDTV(ps∥pt).

Proof. Recall that ps = 1
|Dsrc|

∑|Dsrc|
t=1 δut and pt = 1

|Dtar|
∑|Dtar|
t=1 δu′

t
, where u = ssrc⊕asrc⊕s′src,

u′ = star ⊕ atar ⊕ s′tar, and (ssrc, asrc, s
′
src) ∼ Dsrc, (star, atar, s

′
tar) ∼ Dtar.

Note that the cost C(u, u′) ≥ 0,∀u, u′ and the solved optimal coupling µ∗ is also non-negative. It
is then easy to find that

d(ut) = −
|Dtar|∑
t′=1

C(ut, u
′
t′)µ

∗
t,t′ ≤ 0, ut = (stsrc, a

t
src, (s

′
src)

t) ∼ Dsrc. (15)

We also have that

−
|Dsrc|∑
t=1

dt =W(u, u′) =

|Dsrc|∑
t=1

|Dtar|∑
t′=1

C(ut, u
′
t′)µ

∗
t,t′ . (16)

Using the definition of the Wasserstein distance, we have

−
|Dsrc|∑
t=1

dt = min
µ∈M

|Dsrc|∑
t=1

|Dtar|∑
t′=1

C(ut, u
′
t′)µt,t′

≤ min
µ∈M

max
t,t′

C(ut, u
′
t′)

|Dsrc|∑
t=1

|Dtar|∑
t′=1

1(ut ̸= ut′)µt,t′

= Cmax min
µ∈M

|Dsrc|∑
t=1

|Dtar|∑
t′=1

1(ut ̸= ut′)µt,t′

= CmaxDTV(ps∥pt),

where the last equation holds due to Remark 2.27 in Peyré & Cuturi (2019). Finally, we have

−dt ≤ −
|Dsrc|∑
t=1

dt ≤ CmaxDTV(ps∥pt)⇔ dt ≥ −CmaxDTV(ps∥pt). (17)

This concludes the proof.
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C ENVIRONMENT SETTING

In this section, we include a detailed description of the environmental settings we adopt in this paper,
such as the basic information on the source domain datasets and target domain datasets, details on
how dynamics shifts are realized, etc.

C.1 DATASETS

Source domain datasets. Since we consider the setting where only a few target domain data are
available, we directly adopt the MuJoCo datasets from D4RL (Fu et al., 2020) as source domain
datasets. In D4RL, the MuJoCo datasets are collected during the interactions with the continu-
ous action environments in Gym (Brockman et al., 2016) simulated by MuJoCo (Todorov et al.,
2012). We adopt four tasks, halfcheetah, hopper, walker2d, ant, and consider source domain dataset
qualities across medium, medium-replay, medium-expert. The medium datasets contain experiences
collected from an early-stopped SAC policy for 1M steps. The medium-replay datasets record the
replay buffer of a policy trained up to the performance of the medium agent. The medium-expert
datasets are constructed by mixing the medium data and expert data at a 50-50 ratio. Note that the
source domain datasets can have quite distinct dataset sizes, e.g., medium datasets have 1M samples
while medium-replay datasets can only have 100K samples.

Target domain datasets. To examine the offline policy adaptation capability of our method, we
design three kinds of dynamics shift scenarios for empirical evaluations based on four widely used
MuJoCo tasks (HalfCheetah-v3, Hopper-v3, Walker2d-v3, Ant-v3), including gravity shift, kine-
matic shift and morphology shift. The gravity shift means that the gravitational forces acting on the
robot in the source and target domains are different, the kinematic shift indicates that some joints of
the simulated robot are broken in the target domain, while the morphology shift suggests that there
are some morphological mismatch between the simulated robot in two domains. We show the visu-
alization results of the agent in the source domain and the target domain in Figure 4. We explicate
the detailed modifications in the following subsections.

We then collect target domain datasets in the revised environments by following a similar data-
collecting procedure as D4RL. We train an SAC (Haarnoja et al., 2018) agents in environments with
dynamics shifts for 1M steps. We log the policy checkpoints of the agent during training and use
them for rolling out trajectories. The expert datasets are generated using the last policy checkpoint,
and the medium datasets are gathered with the policy checkpoint that exhibits approximately 1/2
or 1/3 the performance of the expert policy. To ensure that only a limited budget of target domain
data can be accessed, we only collect 5 trajectories for each dataset, which amounts to about 5000
transitions. We do not follow D4RL to simply merge the medium dataset and the expert dataset to
produce medium-expert datasets. Instead, we strictly follow the data budget and pick 2 trajectories
from the medium dataset and 3 trajectories from the expert dataset to construct the medium-expert
datasets. We observe that it is extremely difficult for off-the-shelf offline RL methods to acquire
meaningful performance given such little data. Since we evaluate the performance of the agent
in our modified environments, we follow D4RL and propose to use the normalized score metric
to better characterize the performance of the agent across different tasks. The normalized score
performance of the agent in the target domain gives:

NS =
J − Jr
Je − Jr

× 100, (18)

where J is the return acquired by the agent in the target domain, Jr, Je are the returns obtained
by the random policy and the expert policy in the target domain, respectively. We summarize the
reference scores of Jr and Je under different dynamics shift scenarios in Table 3. We also list the
minimum return, the maximum return, and the average return of trajectories in each target domain
offline dataset in Table 4.

C.2 GRAVITY SHIFT TASKS

To simulate the gravity shifts between the source domain and the target domain, we modify the xml
files of the underlying environments. We set the gravitational acceleration of the target domain to
half of that in the source domain, and we do not alter the direction of the gravitational force.
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Target domains

(gravity shifts)

Target domains

(kinematic shifts)

Target domains

(morphology shifts)

Source domains

Figure 4: Illustration of the adopted environments. Target domain robots can have gravity shifts
(second row), kinematic shifts (third row), and morphology shifts (bottom) compared with the source
domain (top) robots.

Table 3: The referenced min score and max score for MuJoCo datasets under various dynamics
shift scenarios. These are used to evaluate the normalized score performance of the algorithm in the
target domain. Since the source domain and the target domain differ from each other in transition
dynamics, one could not simply adopt the reference scores from D4RL directly.

Task Name Dynamics shift type Reference min score Jr Reference max score Je
halfcheetah gravity −280.18 9509.15
halfcheetah kinematic −280.18 7065.03
halfcheetah morphology −280.18 9713.59
hopper gravity −26.336 3234.3
hopper kinematic −26.336 2842.73
hopper morphology −26.336 3152.75
walker2d gravity 10.08 5194.713
walker2d kinematic 10.08 3257.51
walker2d morphology 10.08 4398.43
ant gravity −325.6 4317.065
ant kinematic −325.6 5122.57
ant morphology −325.6 5722.01

halfcheetah / hopper / walker2d / ant-gravity: the modifications of the xml file gives:

# gravity
<option gravity="0 0 -4.905" timestep="0.01"/>

C.3 KINEMATIC SHIFT TASKS

Different from the gravity shift, the kinematic shift occurs at different parts of the simulated robot.
Detailed modifications of the xml files give:

halfcheetah-kinematic: The rotation angle of the joint on the thigh of the robot’s back leg is modi-
fied from [−0.52, 1.05] to [−0.0052, 0.0105].
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Table 4: Trajectory return information of the target domain datasets. We list here the minimum
return (abbreviated as min return), the maximum return (denoted as max return), and the average
return of trajectories in the target domain datasets.

Task Name Dynamics shift Dataset type Min return Max return Average return

halfcheetah gravity medium 4179.82 4383.32 4296.27
halfcheetah gravity medium-expert 4342.78 8243.03 6567.94
halfcheetah gravity expert 7846.18 8339.18 8131.54
halfcheetah kinematic medium 2709.52 2782.61 2755.50
halfcheetah kinematic medium-expert 2709.52 7065.04 5298.61
halfcheetah kinematic expert 6951.27 7065.04 6998.93
halfcheetah morphology medium 4070.43 4214.64 4156.88
halfcheetah morphology medium-expert 4070.43 9713.60 7475.13
halfcheetah morphology expert 9474.34 9719.81 9614.92
hopper gravity medium 1784.88 2885.13 2367.66
hopper gravity medium-expert 2416.82 4143.63 3297.79
hopper gravity expert 3745.59 4186.19 4051.07
hopper kinematic medium 1849.06 1886.89 1870.16
hopper kinematic medium-expert 1868.20 2842.17 2452.67
hopper kinematic expert 2840.97 2842.73 2841.83
hopper morphology medium 1946.73 2039.80 1980.33
hopper morphology medium-expert 1980.06 3152.75 2694.58
hopper morphology expert 3148.26 3152.75 3151.39
walker2d gravity medium 2421.98 3444.63 2897.85
walker2d gravity medium-expert 3144.32 5166.62 4415.11
walker2d gravity expert 5159.51 5219.14 5174.51
walker2d kinematic medium 1415.69 2223.17 2026.49
walker2d kinematic medium-expert 1415.69 3257.51 2442.82
walker2d kinematic expert 2874.92 3257.51 3077.19
walker2d morphology medium 772.82 2875.40 2013.11
walker2d morphology medium-expert 772.82 4348.94 2961.67
walker2d morphology expert 4341.38 4398.44 4354.58
ant gravity medium 377.10 3247.66 2314.45
ant gravity medium-expert 377.10 4511.55 2131.79
ant gravity expert 335.28 4584.53 3365.35
ant kinematic medium 2826.00 3111.93 3017.82
ant kinematic medium-expert 2826.00 5122.58 4240.99
ant kinematic expert 5009.82 5122.57 5072.50
ant morphology medium 2150.50 2204.32 2176.02
ant morphology medium-expert 5150.50 5653.05 4199.54
ant morphology expert 5461.49 5722.01 5586.73

# broken back thigh
<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.0052

.0105" stiffness="240" type="hinge"/

hopper-kinematic: The rotation angle of the head joint is modified from [−150, 0] to [−0.15, 0] and
the rotation angle of the foot joint is modified from [−45, 45] to [−18, 18].

# head joint
<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-0.15 0"

type="hinge"/>
# foot joint
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-18 18" type=

"hinge"/>
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walker-kinematic: We modify the rotation angle of the foot joint on the robot’s right leg from
[−45, 45] to [−0.45, 0.45].
# right foot
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-0.45 0.45"

type="hinge"/>

ant-kinematic: The rotation angles of the joints on the hip of two legs in the ant robot are modified
from [−30, 30] to [−0.3, 0.3]
# hip joints of front legs
<joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-0.3 0.3" type=

"hinge"/>
<joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-0.3 0.3" type=

"hinge"/>

C.4 MORPHOLOGY SHIFT TASKS

Akin to the kinematic shift tasks, the morphological change of the robot in the target domain differs
per environment. To be specific,

halfcheetah-morph: We modify the sizes of the back thigh and the forward thigh of the Cheetah
robot as below:

# back thigh
<geom fromto="0 0 0 -0.0001 0 -0.0001" name="bthigh" size="0.046" type="

capsule"/>
<body name="bshin" pos="-0.0001 0 -0.0001">
# forward thigh
<geom fromto="0 0 0 0.0001 0 0.0001" name="fthigh" size="0.046" type="

capsule"/>
<body name="fshin" pos="0.0001 0 0.0001">

hopper-morph: We increase the head size of the robot. The modifications are shown below:

# head size
<geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="torso_geom" size="

0.125" type="capsule"/>

walker-morph: We modify the thigh on the right leg of the robot as the following:

# right leg
<body name="thigh" pos="0 0 1.05">
<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-150 0"

type="hinge"/>
<geom friction="0.9" fromto="0 0 1.05 0 0 1.045" name="thigh_geom" size=

"0.05" type="capsule"/>
<body name="leg" pos="0 0 0.35">
<joint axis="0 -1 0" name="leg_joint" pos="0 0 1.045" range="-150 0"

type="hinge"/>
<geom friction="0.9" fromto="0 0 1.045 0 0 0.3" name="leg_geom" size="

0.04" type="capsule"/>
<body name="foot" pos="0.2 0 0">
<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.3" range="-45 45"

type="hinge"/>
<geom friction="0.9" fromto="-0.0 0 0.3 0.2 0 0.3" name="foot_geom"

size="0.06" type="capsule"/>
</body>

</body>
</body>

ant-morph: We reduce the size of the ant robot’s feet on its front two legs to simulate an ant robot
with short feet. The detailed modifications are:
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# front leg 1
<geom fromto="0.0 0.0 0.0 0.1 0.1 0.0" name="left_ankle_geom" size="0.08"

type="capsule"/>
# front leg 2
<geom fromto="0.0 0.0 0.0 -0.1 0.1 0.0" name="right_ankle_geom" size="

0.08" type="capsule"/>

We have included the modified xml files in the supplementary material.

D IMPLEMENTATION DETAILS

In this part, we describe the implementation details of the baseline methods and our proposed OTDF
algorithm. We also provide a detailed pseudocode for OTDF+IQL. Furthermore, we list the hyper-
parameter setup used for all methods.

D.1 BASELINES

IQL*: IQL (Kostrikov et al., 2022) is a widely used offline RL algorithm that learns an in-sample
policy without querying OOD samples that lie outside of the offline datasets. Since we observe
that IQL can not learn meaningful policies merely on the target domain dataset, we slightly alter its
training objectives by involving both the source domain dataset and the target domain dataset. We
name the revised method IQL*. It trains the state value function via expectile regression:

LV = E(s,a)∼Dsrc∪Dtar
[Lτ2(Qθ′(s, a)− Vψ(s))], (19)

where Lτ2(u) = |τ − 1(u < 0)|u2, 1(·) is the indicator function, θ′ is the target network parameter.
The state-action value function is then updated by:

LQ = E(s,a,r,s′)∼Dsrc∪Dtar
[(r(s, a) + γVψ(s

′)−Qθ(s, a))2]. (20)

We then calculate the advantage function A(s, a) = Q(s, a)− V (s) and use it as weights for policy
optimization:

Lactor = E(s,a)∼Dsrc∪Dtar
[exp(βIQL ×A(s, a)) log πϕ(a|s)] , (21)

where βIQL is the inverse temperature coefficient. We implement IQL by following its official
codebase2. We adopt the symmetric sampling method when sampling data from two offline datasets.

DARA: DARA (Liu et al., 2022a) is the offline version of DARC (Eysenbach et al., 2021). It trains
two domain classifiers qθSAS

(target|st, at, st+1), qθSA(target|st, at) with the following objectives

L(θSAS) = EDtar [log qθSAS(target|st, at, st+1)] + EDsrc [log(1− qθSAS(target|st, at, st+1))] ,

L(θSA) = EDtar [log qθSA(target|st, at)] + EDsrc [log(1− qθSA(target|st, at))] ,

to estimate the dynamics gap log
PMtar (st+1|st,at)
PMsrc (st+1|st,at) between the source domain and the target domain.

DARA approximates this term by leveraging the trained classifiers and proposes to modify the source
domain rewards as follows

r̂DARA = r − λ× δr, δr(st, at) = − log
qθSAS

(target|st, at, st+1)qθSA(source|st, at)
qθSAS(source|st, at, st+1)qθSA(target|st, at)

, (22)

where λ is an important hyperparameter that controls the strengths of the reward penalty. We em-
pirically find that setting λ = 1 or a larger value leads to often incurs quite poor performance. We
hence set λ = 0.1 for DARA by default. We implement DARA by following its code attached in
https://openreview.net/forum?id=9SDQB3b68K. We clip the reward penalty term to lie in [−10, 10]
for training stability. We use IQL as the base algorithm for DARA to align with other algorithms.

BOSA: BOSA (Liu et al., 2024a) proposes to address the cross-domain offline RL problems by
including two support constraints, which handle the OOD state actions problem through a supported

2https://github.com/ikostrikov/implicit q learning
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policy optimization and mitigate the OOD dynamics issue through a supported value optimization.
To be specific, the critics in BOSA are updated via:

Lcritic = E
(s,a)∼Dsrc

[Qθi(s, a)] + E
(s,a,r,s′)∼Dsrc∪Dtar,

a′∼πϕ(·|s)

[
1(P̂tar(s

′|s, a)) > ϵ)(Qθi(s, a)− y)2
]
,

(23)

where 1(·) is the indicator function, P̂tar(s
′|s, a) = argmaxE(s,a,s′)∼Dtar

[log P̂tar(s
′|s, a)] is the

estimated target domain transition dynamics, ϵ is the selection threshold, i ∈ {1, 2}. The policy in
BOSA is updated via another supported optimization objective:

Lactor = Es∼Dsrc∪Dtar,a∼πϕ(s)[Qθi(s, a)], s.t. Es∼Dsrc∪Dtar
[π̂ϕmix

(πϕ(s)|s)] > ϵ′ (24)

where ϵ′ is a hyperparameter that determines the selection threshold, π̂ϕmix
is the learned behavior

policy of the mixed dataset Dsrc ∪Dtar. BOSA models the transition dynamics model in the target
domain and the behavior policy of the mixed dataset with CVAE. Since no open-source codes can
be found for BOSA, we implement it by following the instructions in the original paper. BOSA is
trained for 1M gradient steps in practice by drawing samples from both the source domain dataset
and the target domain dataset. We use SPOT (Wu et al., 2022a) as the backbone for BOSA.

SRPO: SRPO (Xue et al., 2024) proposes to optimize the policy by solving the following con-
strained optimization problem:

max
π

Est,at∼τπ

[ ∞∑
t=0

γtr(st, at)

]
s.t. DKL(dπ(·)∥ζ(·)) < ϵ, (25)

where τπ is the trajectory induced by the policy π, dπ(·) is the stationary state distribution of policy
π, ζ(·) denotes the optimal state distribution in other environment dynamics. The above problem
can be transformed into the unconstrained optimization problem via Lagrange multipliers, where
the logarithm of probability density ratio λ log ζ(st)

dπ(st)
is added to the vanilla reward term. In light

of this, SRPO samples a batch of data with size N from two offline datasets Dsrc, Dtar and ranks
these transitions by state values. SRPO then tags a proportion of ρN samples with high state-values
as real data and others as fake data. It trains a discriminator Dδ(·) to distinguish these samples, and
proposes to modify the rewards via:

r̂SRPO = r + λ× Dδ(s)

1−Dδ(s)
, (26)

where λ is the reward coefficient. We use a fixed proportion of real data ρ = 0.5 for all experiments.
We do not the find official code for SRPO and implement it ourselves by following its original paper.

IGDF: IGDF (Wen et al., 2024) captures the dynamics gap between the source domain and the target
domain through contrastive learning. It trains a score function h(·) using (s, a, s′tar) ∼ Dtar from
the target domain as positive samples, and mixed transition (s, a, s′src) as negative samples, where
(s, a) ∼ Dtar, s

′
src ∼ Dsrc. The score function is optimized via the following contrastive learning

objective:

Lcontrastive = −E(s,a,s′tar)
ES′−

[
log

h(s, a, s′tar)∑
s′∼S′−∪s′tar

h(s, a, s′)

]
, (27)

where S′− is a collection of the next states in negative samples. Practically, IGDF adopts two neural
networks ϕ(s, a), ψ(s′) to learn representations of state-action pairs and states, and approximate the
score function with a linear parameterization of them:

h(s, a, s′) = exp(ϕ(s, a)Tψ(s′)). (28)
Based on the measured score function, IGDF proposes to filter out source domain data when training
value functions:

Lcritic =
1

2
EDtar

[
(Qθ − T Qθ)2

]
+
1

2
α·h(s, a, s′)E(s,a,s′)∼Dsrc

[
1(h(s, a, s′) > hξ%)(Qθ − T Qθ)2

]
,

(29)
where α is the importance coefficient for weighting the TD error of the source domain data, ξ is the
data selection ratio akin to that in OTDF. We run IGDF by using its official codebase3 and use IQL
as its backbone.

3https://github.com/BattleWen/IGDF
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D.2 ALGORITHMIC DETAILS OF OTDF

To avoid solving repetitive OT problems across different seeds of the same task, we solve the OT
problem before the policy training process begins. This is feasible thanks to the fact that both the
source domain and the target domain are offline. We use the cosine distance as the cost function in
OTT-JAX. After calculating the optimal coupling, we measure the deviation of the source domain
data to the entire target domain dataset via Equation 5. This process is very computationally efficient
thanks to the OTT-JAX library, solving the entropy-regularized OT problem within 5 minutes given
1M source domain data and 5000 target domain data. Then we incorporate these deviations into the
source domain dataset. For practical usage, we build the practical OTDF algorithm on top of IQL.

We summarize the pseudocode of OTDF+IQL in Algorithm 2. When updating the value function,
we selectively reject some source domain data that deviate far from the span of the target domain
dataset. We further normalize the deviation obtained by OT with min-max normalization and lever-
age them as weights for source domain data. This encourages the agent to adaptively emphasize
source domain data that lie close to the target domain while de-emphasizing others. This can also
be viewed as a regularization term that penalizes the source domain transitions. Note that the data
filtering process only occurs at the optimization process of the state-action value function Q and the
update formula of the state-value function V remains unchanged.

Algorithm 2 Optimal Transport Data Filtering (OTDF)
Input: Source domain dataset Dsrc, target domain dataset Dtar, batch size N , data selection ratio ξ

1: Initialize policy network πϕ, value networks Vψ, Qθ, target Q function Qθ′ , the cost function
C, CVAE G, policy coefficients β, number of sampled latent variables M , target update rate η

2: // Solve the OT problem
3: Compute the optimal alignment between Dsrc and Dtar with Equation 4
4: Compute deviations {dt}|Dsrc|

t=1 between the source domain data and Dtar with Equation 5
5: Concatenate Dsrc and {dt}|Dsrc|

t=1 to get D̂src = {(st, at, rt, s′t, dt))}
|Dsrc|
t=1

6: // CVAE training
7: Train CVAE policy to model the behavior policy in the target domain dataset with Equation 10
8: for i = 1, 2, ... do
9: Sample a mini-batch bsrc := {(s, a, r, s′, d)} with size N

2 from D̂src

10: Sample a mini-batch btar := {(s, a, r, s′)} with size N
2 from Dtar

11: Update the state value function Vψ via: LV = E(s,a)∼Dsrc∪Dtar
[Lτ2(Qθ′(s, a)− Vψ(s))]

12: Normalize the deviations d via Equation 8 to obtain normalized deviations d̂
13: // Data filtering
14: Rank the deviations of the sampled source domain data and admit top ξ% of them
15: Compute the weights for the remaining source domain data via exp(d̂)
16: Compute the target value via: y = r + γVψ(s

′)
17: Optimize the state-action value function Qθ on bsrc ∪ btar via:

LQ = EDtar

[
(Qθ − y)2

]
+ E(s,a,r,s′,d)∼D̂src

[
exp(d̂)1(d > dξ%)(Qθ − y)2

]
.

18: Update the target network via: θ′ ← ηθ + (1− η)θ′
19: // Dataset regularization
20: Decode M actions from CVAE and construct Gaussian distributions {π̂itar(·|s)}Mi=1
21: Compute the advantageA and optimize the policy πϕ on bsrc∪btar using advantage-weighted

regression (AWR) and dataset regularization:

Lπ = E
(s,a)∼Dsrc∪Dtar

[exp(βIQL ×A) log πϕ(a|s)]−β× E
s∼Dsrc∪Dtar

log

[
M∑
i=1

π̂itar(π(·|s)|s)

]
,

22: end for

As for the policy update, we introduce a novel dataset regularization term in conjunction with the
vanilla weighted behavior cloning term in IQL. We adopt the conditional variational autoencoder
(CVAE) to approximate the behavior policy in the target domain dataset. Note that we find that
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CVAE can well-model the target domain behavior policy even given limited target domain data. This
phenomenon can also be observed in the single-domain model-free RL, e.g., BCQ (Fujimoto et al.,
2019) can achieve quite good performance on Adroit human datasets from D4RL. The CVAE G
contains an encoder E and a decoder D. Both the encoder and the decoder contain two intermediate
layers with 750 hidden units in each layer. We use the relu activation for each intermediate layer.

We note that the dataset regularization term in Equation 11 can degenerate into:

L̂π = Lπ − β × E
s∼Dsrc∪Dtar

log

[
M∑
i=1

exp(log π̂itar(π(·|s)|s))

]

= Lπ − β × E
s∼Dsrc∪Dtar

log

[
M∑
i=1

π̂itar(π(·|s)|s)

]
.

D.3 HYPERPARAMETER SETUP

We summarize the detailed hyperparameter setup for all baseline methods and OTDF in Table 5.
For SRPO, we report its best performance by sweeping its reward coefficient λ across {0.1, 0.3}.
For IGDF, we set its data selection ratio ξ% = 75% as we find setting it to be 25% incurs poor
performance. We sweep the representation dimension in IGDF across {16, 64} and report the best
score. As for OTDF, we adopt a fixed ξ% = 80% for all tasks. We set the policy coefficient β = 0.5
for all of our experiments except for all halfcheetah and walker2d tasks under gravity shifts, where
we use β = 0.1. We do not bother tuning the hyperparameters and demonstrate that our method can
achieve quite strong performance with one set of hyperparameters under many scenarios.

E WIDER EXPERIMENTAL RESULTS

In this section, we provide wider experimental results that are omitted from the main text due to
the page limit. We present the comprehensive normalized score comparison of OTDF against other
baselines under tasks with kinematic shifts. We also investigate whether the advantages of OTDF can
still hold when expert-level source domain datasets are provided. Furthermore, we study whether it
is necessary to adaptively weight source domain data.

E.1 MISSING RESULTS UNDER KINEMATIC SHIFTS

We summarize the normalized score comparison of OTDF against other baselines under the kine-
matic shift tasks in Table 6. As shown, OTDF achieves the best performance on 22 out of 36 tasks
while remaining competitive against other methods on the rest of the tasks. OTDF achieves a to-
tal normalized score of 1547.6, surpassing IQL* by 29.7% and the second best approach (IGDF)
by 21.8%. Again, we observe that existing cross-domain offline RL methods often fail to bring
performance improvement compared to IQL*, and OTDF is the only algorithm that significantly
outperforms them. We believe these further verify the superior offline policy adaptation capability
of our proposed OTDF algorithm.

E.2 CAN OTDF BEAT BASELINES GIVEN HIGH-QUALITY SOURCE DOMAIN DATASETS?

In the main text, we only consider source domain datasets with medium, medium-replay and medium-
expert qualities. These datasets may typically have broader coverage and possibly contain many
transitions that are similar to those in the target domain datasets. However, it can also happen in
real-world applications that we may get access to sufficient expert source domain datasets. The
expert source domain datasets often have a narrow distribution and state-action coverage. It is then
interesting to examine whether OTDF can still beat baseline methods under such a scenario.

We then adopt the D4RL MuJoCo “-v2” expert-level datasets as source domain datasets. We allow
the quality of the target domain dataset to be medium, medium-expert, or expert. We choose the
morphology shift tasks and run all algorithms upon them for 1M gradient steps across 5 random
seeds. The experimental results are shown in Table 7. It can be seen that OTDF outperforms other
methods on 6 out of 12 tasks. OTDF achieves a total normalized score of 393.0, while the second
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Table 5: Hyperparameter setup for OTDF and baseline methods.
Hyperparameter Value
Shared

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam (Kingma & Ba, 2015)
Discount factor 0.99
Nonlinearity ReLU
Target update rate 5× 10−3

Source domain Batch size 128
Target domain Batch size 128

IQL
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Inverse temperature parameter βIQL 3.0
Expectile parameter τ 0.7

DARA
Temperature coefficient 0.2
Classifier network (256, 256)
Reward penalty coefficient λ 0.1

BOSA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Policy regularization coefficient λpolicy 0.1
Transition coefficient λtransition 0.1
Threshold parameter ϵ, ϵ′ log(0.01)
Value wight ω 0.1
CVAE ensemble size of the dynamics model 5

SRPO
Discriminator network (256, 256)
Data selection ratio 0.5
Reward coefficient λ {0.1, 0.3}

IGDF
Representation dimension {16, 64}
Contrastive encoder network (256, 256)
Encoder pretraining steps 7000
Importance coefficient 1.0
Data selection ratio ξ% 75%

OTDF
CVAE training steps 10000
CVAE learning rate 0.001
Number of sampled latent variables M 10
Standard deviation of Gaussian distribution

√
0.1

Cost function cosine
Data filtering ratio ξ% 80%
Policy coefficient β {0.1, 0.5}
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Table 6: Performance comparison under the kinematic shift. half = halfcheetah, hopp = hopper,
walk = walker2d, m = medium, r = replay, e = expert. The target column denotes the offline dataset
quality of the target domain. We report normalized scores and standard deviations in the target
domain under varied dataset qualities of the source domain data (medium, medium-replay, medium-
expert) and target domain data (medium, medium-expert, expert). The results are averaged over 5
seeds. We bold and highlight the best cell.

Source Target IQL DARA BOSA SRPO IGDF OTDF (ours)

half-m medium 12.3±1.2 10.6±1.2 8.3±1.2 16.8±4.2 23.6±5.7 40.2±0.0
half-m medium-expert 10.8±1.9 12.9±2.8 8.7±1.3 10.3±2.7 9.8±2.4 10.1±4.0
half-m expert 12.6±1.7 12.1±1.0 10.8±1.7 12.2±0.9 12.8±0.7 8.7±2.0
half-m-r medium 10.0±5.4 11.5±4.9 7.5±3.1 10.2±3.7 11.6±4.6 37.8±2.1
half-m-r medium-expert 6.5±3.1 9.2±4.7 6.6±1.7 9.5±1.8 8.6±2.3 9.7±2.0
half-m-r expert 13.6±1.4 14.8±2.0 10.4±4.9 14.8±2.2 13.9±2.2 7.2±1.4
half-m-e medium 21.8±6.5 25.9±7.4 30.0±4.3 17.2±3.3 21.9±6.5 30.7±9.6
half-m-e medium-expert 7.6±1.4 9.5±4.2 6.8±2.9 9.6±2.4 8.9±3.3 10.9±4.2
half-m-e expert 9.1±2.4 10.4±1.3 4.9±3.2 11.2±1.0 10.7±1.4 3.2±0.6
hopp-m medium 58.7±8.4 43.9±15.2 12.3±6.6 65.4±1.5 65.3±1.4 65.6±1.9
hopp-m medium-expert 68.5±12.4 55.4±16.9 15.6±10.8 43.9±30.8 51.1±18.5 55.4±25.1
hopp-m expert 79.9±35.5 83.7±19.6 14.8±5.5 53.1±39.8 87.4±25.4 35.0±19.4
hopp-m-r medium 36.0±0.1 39.4±7.2 3.2±2.6 36.1±0.2 35.9±2.4 35.5±12.2
hopp-m-r medium-expert 36.1±0.1 34.1±3.6 4.4±2.8 36.0±0.1 36.1±0.1 47.5±14.6
hopp-m-r expert 36.0±0.1 36.1±0.2 3.7±2.5 36.1±0.1 36.1±0.3 49.9±30.5
hopp-m-e medium 66.0±0.5 61.1±4.0 35.0±20.1 64.6±2.6 65.2±1.5 65.3±2.4
hopp-m-e medium-expert 45.1±15.7 61.9±16.9 13.9±4.9 54.7±17.0 62.9±15.6 38.6±15.9
hopp-m-e expert 44.9±19.8 84.2±21.1 12.0±4.3 57.6±40.6 52.8±39.7 29.9±11.3
walk-m medium 34.3±9.8 35.2±22.5 14.3±11.2 39.0±6.7 41.9±11.2 49.6±18.0
walk-m medium-expert 30.2±12.5 51.9±11.5 13.6±7.7 38.6±6.5 42.3±19.3 43.5±16.4
walk-m expert 56.4±18.2 40.7±14.4 15.3±2.5 57.3±12.2 60.4±17.5 46.7±13.6
walk-m-r medium 11.5±7.1 12.5±4.3 1.9±2.1 14.3±3.1 22.2±5.2 49.7±9.7
walk-m-r medium-expert 9.7±3.8 11.2±5.0 4.6±3.0 4.2±5.1 7.6±4.9 55.9±17.1
walk-m-r expert 7.7±4.8 7.4±2.4 3.6±1.5 13.2±8.5 7.5±2.1 51.9±7.9
walk-m-e medium 41.8±8.8 38.1±14.4 21.4±8.3 36.9±4.3 41.2±13.0 44.6±6.0
walk-m-e medium-expert 22.2±8.7 23.6±8.1 15.9±4.1 23.2±7.9 28.1±4.0 16.5±7.2
walk-m-e expert 26.3±10.4 36.0±9.2 18.5±3.6 40.9±9.6 46.2±19.4 42.4±9.1
ant-m medium 50.0±5.6 42.3±7.6 20.9±2.6 50.5±6.7 54.5±1.3 55.4±0.0
ant-m medium-expert 57.8±7.2 54.1±3.8 31.7±7.0 54.9±1.3 54.5±4.6 60.7±3.6
ant-m expert 59.6±18.5 54.2±11.3 45.4±8.6 45.5±9.3 49.4±14.6 90.4±4.8
ant-m-r medium 43.7±4.6 42.0±5.4 19.0±1.8 45.3±5.1 41.4±5.0 52.8±4.4
ant-m-r medium-expert 36.5±5.9 36.0±6.7 19.1±1.6 36.2±6.6 37.2±4.7 54.2±5.2
ant-m-r expert 24.4±4.8 22.1±0.4 19.5±0.8 27.1±3.7 24.3±2.8 74.7±10.5
ant-m-e medium 49.5±4.1 44.7±4.3 19.0±8.0 41.3±8.1 41.8±8.8 50.2±4.3
ant-m-e medium-expert 37.2±2.0 33.3±7.0 6.4±2.5 32.8±8.0 41.5±4.9 48.8±2.7
ant-m-e expert 18.7±8.1 17.8±23.6 14.5±9.0 35.2±15.5 14.4±22.9 78.4±12.2

Total Score 1193.0 1219.8 513.5 1195.7 1271.0 1547.6

best approach, DARA, only achieves a total normalized score of 298.1. Despite that OTDF exhibits
inferior performance on some tasks here, we would argue that all hyperparameters adopted in OTDF
are fixed, i.e., ξ% = 80%, β = 0.5, without any hyperparameter tuning. Nevertheless, we tune
hyperparameters for baseline methods. We strongly believe that the performance of OTDF can be
further improved by carefully tuning the data selection ratio and the policy coefficient.

E.3 IS IT NECESSARY TO WEIGHT SOURCE DOMAIN DATA?

In this part, we provide an ablation study to investigate whether we should adaptively weight the
source domain data with exp(d̂). To be specific, we consider a variant of OTDF that leverages the
following objective function to update its state-action value function:

LQ = EDtar

[
(Qθ − T Qθ)2

]
+ E(s,a,s′)∼Dsrc

[
1(d > dξ%)(Qθ − T Qθ)2

]
. (30)
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Table 7: Performance comparison under the morphology shift tasks given expert-level source
domain datasets. half = halfcheetah, hopp = hopper, walk = walker2d, e = expert. All methods
are run over 5 varied random seeds. We report normalized scores along with the corresponding
standard deviations in the target domain given different qualities of target domain data (medium,
medium-expert, expert). We bold and highlight the best cell.

Source Target IQL DARA BOSA SRPO IGDF OTDF (ours)

half-e medium 40.1±1.0 40.9±1.5 40.5±1.5 40.8±1.0 39.4±2.6 38.6±1.4
half-e medium-expert 22.5±3.6 27.9±0.6 28.7±2.7 23.1±3.9 24.3±1.2 27.4±3.6
half-e expert 7.9±1.5 8.6±0.5 8.0±0.7 6.3±0.8 7.4±1.3 8.8±1.4
hopp-e medium 9.5±2.3 11.4±0.5 8.7±1.7 10.5±1.1 9.6±3.6 5.7±1.2
hopp-e medium-expert 9.8±2.8 10.0±1.8 8.5±1.8 10.7±1.6 11.5±0.4 6.5±1.4
hopp-e expert 10.3±2.9 9.6±3.9 8.4±3.3 11.9±0.3 10.2±2.8 5.7±4.0
walk-e medium 36.7±4.6 36.9±4.5 6.1±5.1 36.7±7.7 38.6±10.2 32.4±5.1
walk-e medium-expert 20.6±7.2 29.2±9.0 4.5±2.9 21.9±5.6 30.1±5.9 34.8±8.8
walk-e expert 16.4±10.9 30.0±15.7 11.4±12.1 21.9±8.1 32.8±22.4 42.5±17.1
ant-e medium 31.0±9.0 39.6±2.5 33.0±3.5 33.5±4.1 35.8±8.1 40.4±1.8
ant-e medium-expert 28.1±4.2 37.8±9.5 47.3±13.8 37.4±10.4 36.1±3.8 61.4±6.8
ant-e expert 4.0±12.0 16.2±17.8 69.3±7.8 18.7±16.1 4.0±7.5 88.8±6.6

Total Score 236.9 298.1 274.4 273.4 279.8 393.0
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Figure 5: Ablation study on the source domain data weight. *-kinematic denotes tasks with
kinematic shifts and *-morph means environments with morphology shifts. w/o weight refers to
OTDF that excludes the component of source domain data weight, and vanilla denotes the vanilla
OTDF algorithm. We report average returns in the target domain across 5 different random seeds
and the shaded area captures the standard deviation.

Compared to Equation 9, the above objective function treats each filtered data with equal weights.
Intuitively, this can be problematic since the data selection ratio ξ% is a constant, and bad transi-
tions can still be included for training if no adaptive weighting mechanism (or regularization on the
source domain data) is involved. Empirically, we conduct experiments on some selected tasks (two
kinematic tasks and two morphology tasks) using the medium-replay source domain dataset and the
expert target domain dataset. We present the experimental results in Figure 5. It is evident that the
vanilla OTDF beats OTDF w/o weight on 3 out of 4 tasks, indicating that incorporating the weights
exp(d̂) is a better choice.

F COMPUTE INFRASTRUCTURE

In Table 8, we list the compute infrastructure that we use to run all of the algorithms.

Table 8: Compute infrastructure.

CPU GPU Memory
AMD EPYC 7452 RTX3090×8 288GB
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