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ABSTRACT

Offline cooperative multi-agent reinforcement learning (MARL) faces unique chal-
lenges due to the distribution shift between online and offline data collection.
While online MARL typically converges to a single coordinated joint policy, offline
datasets are often mixtures of diverse cooperative behaviors, resulting in highly
multimodal joint behavior distributions. In such settings, independent policy regu-
larization often misaligns joint policy contraints and leads to severe distribution
shift. To address this, we propose OMSD, which sequentially decomposes the joint
behavior policy into individual conditional distributions and leverages diffusion-
based generative models to provide modality-coordinated regularization for each
agent. Combined with centralized critic guidance, OMSD achieves coordinated ex-
ploration within high-value, in-distribution regions, and avoids out-of-distribution
joint actions. Experiments across multiple datasets on various continuous control
tasks demonstrate that OMSD consistently achieves state-of-the-art performance,
especially in challenging multimodal scenarios. Our results highlight the necessity
of modality-aware coordination for robust offline MARL.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success in complex decision-
making scenarios, including games (Berner et al., 2019; Zhang et al., 2021a), AI-driven economic
models (Zheng et al., 2020), power systems (Chen et al., 2021), and traffic control (Ma et al., 2024).
Yet online MARL often suffers from poor sample efficiency and a pronounced sim-to-real gap, as
simulators fail to capture full complexities in the real-world and real-world exploration is risky and
costly. These limitations have motivated offline MARL, which learns coordinated policies from fixed
datasets without interacting with the environment during training (Yang et al., 2021; Formanek et al.,
2024a). In offline MARL, a central challenge is the distribution shift problem, stemming from the
disparity between the learned policy and the data collection policy (Pan et al., 2022; Barde et al.,
2023). Beyond the challenges seen in single-agent offline RL (Levine et al., 2020; Prudencio et al.,
2023), offline MARL must contend with exponentially large joint state-action spaces, as well as the
need for high-quality coordination among agents to achieve common goals. All these challenges
make effective policy learning in offline settings very difficult.

(a) (b) (c) (d)

Figure 1: (a) Both robots need to cooperatively pick the same one of the two apples in order to receive
a reward and end the game. There are two optimal strategies in this game. (b) The online expert
policy converges to the optimal joint policy for either single mode due to policy dependence. (c)
Offline expert datasets exhibits multi-modal optimal joint strategies due to diverse data collection
sources. (d) Lower quality datasets demonstrate more pronounced multimodality.
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To address these challenges, existing offline MARL methods mainly fall into two categories. The
first category comprises value-based methods that build on Individual-Global-Maximization (IGM)
decompositions (Rashid et al., 2018), typically coupled with conservative value estimation to mitigate
critic overestimation problems under limited data coverage (Yang et al., 2021; Pan et al., 2022; Wang
et al., 2023a). While these approaches alleviate extrapolation and achieve credit assignment under
the Centralized-Training-Decentralized-Execution (CTDE) framework (Yang & Wang, 2020), the
individual ϵ-greedy policy of each agent can still lead to the selection of out-of-distribution (OOD)
joint actions, which are often of low quality and may not be covered by the datasets (Matsunaga
et al., 2023). The second category constrains policies via behavior-regularized updates or generates
trajectories with centralized planners and world models (Matsunaga et al., 2023; Barde et al., 2023;
Zhu et al., 2024). Although these methods aim to avoid OOD joint action selection through direct
policy constraints, they often rely on local independent regularization for each agent. In cases where
dataset policies exhibit substantial behavioral diversity, such local constraints can cause misaligned
policy updates at the individual agent level, ultimately hindering the coordination required for an
effective joint policy. Furthermore, centralized planners introduce additional burdens in practice,
as they often entail high inference costs and require opponent modeling, which may be imprecise
(Foerster et al., 2017; Yu et al., 2022), to facilitate the translation into decentralized execution
strategies for each agent.

From the perspective of data distribution, the fundamental cause of these limitations lies in the stark
difference between online and offline MARL data collection, as exemplified by a simple 2-agent
cooperative harvesting task (Fig. 1). This is a common game with multiple Nash Equilibria, where
the optimal strategy is for both players to go together to either of the apples. Online MARL resolves
this ambiguity via interactive, on-policy adaptation: coupled updates and exploration break symmetry
and drive convergence to a single equilibrium, yielding a single-mode joint policy. In contrast,
offline MARL datasets are typically mixtures collected from diverse sources with various cooperative
policies (Formanek et al., 2023; 2024a), demonstrating highly multimodal behavior. In such scenarios,
the multiplicative decomposition of joint policies commonly used in online MARL can lead to biased
regularization across agents, as it fails to account for the dependencies introduced by multimodality.
Consequently, each agent may be pulled toward different modes, resulting in a misaligned joint policy
that lies outside the high-density regions of the dataset.

In this paper, we propose the Offline MARL with Sequential Score Decomposition (OMSD)
method to achieve coordination regularization under multimodal joint behavior policies. In partic-
ular, OMSD sequentially factorizes the joint behavior policy into individual conditional behavior
distributions conditioned on both states and prefix-actions, providing an unbiased reference for each
agent’s Kullback–Leibler (KL) divergence policy constraints. Then the flexible diffusion models
are trained to capture complex individual conditional distributions of each agent and estimate the
action-space gradient of the KL constraints with score functions (Song et al., 2020a). Finally, OMSD
combines the individual scores with the centralized critic gradient to guide appropriate exploration
within the modality and reduce extrapolation bias with limited data coverage. This design ensures
modality-consistent coordination regularization without explicit access to the full joint policy, and
guides to high-value in-distribution regions without OOD joint action selection problems. Extensive
experiments across various datasets and continuous control tasks demonstrate that OMSD signifi-
cantly outperforms existing methods, notably excelling in multimodal scenarios such as medium
datasets.

In summary, our contributions are threefold: (i) We identify the multimodal behavior policy distribu-
tion introduced by the online-offline data collection gap as the root cause of the difficulty in offline
MARL policy coordination, and shed light on how independent regularization can misalign agents
and cause the joint action policy distribution to shift; (ii) We develop OMSD, which sequentially
decomposes behavior policies and learns diffusion-based conditional scores as a behavior regularizer,
which can guarantee coordinated mode selection without modeling a full joint policy or relying on a
planner; (iii) We demonstrate state-of-the-art performance on a multi-agent continuous control task
benchmark, effectively handling scenarios with multimodal data distribution.
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2 PRELIMINARIES

2.1 PARTIALLY OBSERVABLE STOCHASTIC GAME

A partially observable stochastic game (POSG; Hansen et al., 2004) or Markov game is defined as a
tuple: ⟨X ,S,

{
Ai

}n
i=1

,
{
Oi

}n
i=1

,P, E ,
{
Ri

}n
i=1
⟩, where n is the number of agents, X is the agent

space, S is a finite set of states, Ai is the action set for agent i, A = A1 ×A2 × · · · × An is the set
of joint actions, P(s′|s,a) is the state transition probability function, Oi is the observation set for
agent i, O = O1 ×O2 × · · · × On is the set of joint observations, E(o|s) is the emission function,
andRi : S ×A× S → R is the reward function for agent i. The game progresses over a sequence
of stages called the horizon, which can be finite or infinite. This paper focuses on the episodic infinite
horizon problem, where each agent aims to minimize the expected discounted cumulative cost.

In a cooperative POSG (Song et al., 2020b), the relationship between agents x and x′ is given by:

∀x ∈ X , ∀x′ ∈ X \ {x},∀πx ∈ Πx, ∀πx′ ∈ Πx′ ,
∂Rx′

∂Rx
⩾ 0,

where πx and πx′ are policies in the policy spaces Πx and Πx′ , respectively. The inequality condition
intuitively means that there is no conflict of interest among any pair of agents. The paper addresses
the fully cooperative POSG, also known as the decentralized partially observable Markov decision
process (Dec-POMDP; Bernstein et al., 2002), where all agents share the same global cost at
each stage, i.e., R1 = R2 = · · · = Rn. The optimization goal for Dec-POMDP is defined
as: minΨ

∑n
i=1

∑∞
t=0 Es0∼p0,o∼E,a∼πΨ

[γtrit+1] where Ψ := {ψi}ni=1 are the parameters of the
approximated policies πiψi : Oi → Ai, and πΨ :=

∏n
i=1 π

i
ψi is the joint policy of all agents. Here, γ

is the discount factor, p0 is the initial state distribution, and rit+1 is the reward received by agent i at
timestep t+ 1 after taking action ait in observation oit. In the offline setting, we only have a static
dataset of transitions D = (omt , a

m
t , o

m
t+1, r

m
t )

nk

m=1
, where k is the number of transitions for each

agent.

2.2 DIFFUSION PROBABILISTIC MODELS

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a likelihood-based
generative framework designed to learn data distributions q(x) from offline datasets D := xi, where
i indexes individual samples (Song, 2021). A key feature of these models is the representation of the
(Stein) score function (Liu et al., 2016), which does not require a tractable partition function.

The model’s discrete-time generation procedure involves a forward noising process, defined as
q(xk+1|xk) := N (xk+1;

√
α̃kxk, (1−α̃k)I), at diffusion timestep k. This is paired with a learnable

reverse denoising process, pθ(xk−1|xk) := N (xk−1|µθ(xk, k),Σk), where N (µ,Σ) represents a
Gaussian distribution with mean µ and variance Σ. The variance schedule is defined by αk ∈ R. In
this framework, x0 := x corresponds to a sample in D, and x1,x2, . . . ,xK−1 are latent variables,
with xK ∼ N (0, I) for appropriately chosen α̃k values and a sufficiently large K.

Starting with Gaussian noise, samples are iteratively generated through a series of denoising steps.
The training of the denoising operator is guided by an optimizable and tractable variational lower
bound, with a simplified surrogate loss proposed in Ho et al. (2020):

Ldenoise(θ) := Ek∼[1,K],x0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xk, k)∥2

]
(1)

Here, the predicted noise ϵθ(xk, k), parameterized by a deep neural network, approximates the noise
ϵ ∼ N (0, I) added to the dataset sample x0 to produce the noisy xk in the noising process.

2.3 POLICY BASED OFFLINE RL

Policy based methods are successful and widely used in the offline RL algorithm community. Prior
work (Nair et al., 2020) formulates the offline policy optimization problem as:

max
π

Es∼Dµ

[
Ea∼π(s) [Qϕ(s, a)]−

1

β
DKL (π(·|s)∥µ(·|s))

]
, (2)
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where Qϕ(s, a) is a neural network approximation of the state-action value functions Qπ(s, a) :=
Est=s,at=a;at+1∼π[

∑∞
t=0 γ

tr(st, at)] under the current policy π, and β is temperature coefficient to
control how far the learned policy derive from the behavior policy µ. The closed form solutions for
this optimization problem (2) has been proved as

π∗(a | s) = 1

Z(s)
µ(a | s) exp (βQϕ(s, a)) ,

where Z(s) is the partition function. A subsequent challenge is to efficiently distill the optimal policy
into a parameterized policy πθ. A common approach is minimizing the KL-divergence between πθ
and π∗ with either forward or reverse direction (Chen et al., 2024). While the optimal policy may
be multi-modal, meaning it has multiple equivalent policy mode distributions, it is not necessary to
express every policy mode explicitly during execution. Therefore, it is a suitable choice to leverage
the natural of mode-seeking characteristic in reverse-KL and capture one feasible modal in the
parameterized policy with a simple distribution like Gaussian policy or deterministic policy.

Lemma 2.1 (Behavior-Regularized Policy Optimization (BRPO) (Wu et al., 2019)). In policy-based
offline RL, given an optimal policy π∗ and a parameterized policy πθ, the policy regularization
learning objective with reverse KL-divergence can be written as,

min
θ

Es∼Dµ DKL [πθ(·|s)∥π∗(·|s)]︸ ︷︷ ︸
Reverse KL

⇔ max
θ

Es∼Dµ,a∼πθ
Qϕ(s, a)−

1

β
DKL (πθ(·|s)∥µ(·|s))︸ ︷︷ ︸

Behavior-Regularized Policy Optimization

. (3)

3 METHODOLOGY

3.1 JOINT BEHAVIOR POLICY FACTORIZATION MISMATCH IN OFFLINE MARL

The multi-modality of joint behavior policy distributions in offline MARL arises from several key
factors. First, many cooperative games admit multiple joint policies with similar quality, which is the
notorious multiple Nash equilibrium problem. This yields datasets with diverse but equally effective
behaviors, complicating policy learning. Second, in large-scale multi-agent systems, especially
with homogeneous agents, data collection often anonymizes agent identities (Franzmeyer et al.,
2024). Even under a single joint policy, agent trajectories become indistinguishable due to agent
interchangeability, introducing inherent symmetry and multi-modality. Furthermore, offline datasets
are often constructed by mixing demonstrations from various expert and suboptimal strategies due to
the high cost of data collection, further increasing behavioral diversity.

Despite this evidence, a common pitfall in offline policy-based methods is the policy factorization
assumption, which posits that the joint behavior policy can be factorized as µ(a|s) =

∏n
i=1 µi(ai|s).

For example, AlberDICE (Matsunaga et al., 2023, Eq. 4) implements an occupancy measure penalty
using a factorized model dD(s, ai)πD−i(a−i|s, ai), where −i represents all agents except agent
i, thereby regularizing each agent based on its own marginal behavior and effectively assuming
conditional independence. Similarly, DOM2 (Li et al., 2023) trains independent diffusion models for
each agent based on local behavioral data, which presupposes that joint behavior can be recovered
from marginal distributions. While such factorized regularization is well-motivated and effective in
online settings with consistent exploration and joint update adaptation, it will lead to miscoordination
of and a significant distribution shift in offline domains where the behavior policy is multimodal
and strongly coupled. To formalize this issue, we analyze a stylized scenario and formulate it as a
combinatorial mode mixing (CMS) proposition (proof in Appendix G.1).

Proposition 3.1 (Combinatorial Mode Shift (CMS)). Consider a fully cooperative n-player game
with a single state and continuous action space A = [0, 1]n. Let π∗ be the optimal joint policy with
two optimal modes: a1 = (1, ..., 1) and a2 = (0, ..., 0). Let π̂ be a factorized approximation of
π∗ such that π̂(a) =

∏n
i=1 π̂i(ai), where each π̂i is learned independently. Then we have each π̂i

converges to Uniform({0, 1}). The reconstruction of joint policy π̂ exhibits 2n modes, each with
probability 2−n. The total variation distance between π∗ and π̂ is:

δTV (π
∗, π̂) = 1− 21−n

As n→∞, δTV (π∗, π̂)→ 1, indicating a severe distribution shift.

4
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(a) (b) (c) (d)

Figure 2: From left to right are (a) original multi-modal data distribution; (b) standard canonical
direction of joint action; (c) biased canonical direction caused by Combinatorial Mode Shift; (d)
sequential decomposition proposed by OMSD to ensure unbiased canonical direction.

This result highlights a structural failure: even though the expert policy π∗ is low-entropy and well-
coordinated, the factorized approximation π̂ infinitely diffuses its support set over exponentially many
incoherent joint actions. Such a combinatorial mode shift arises because each agent’s behavior policy
µi is forced to match its own marginal, ignoring the inter-agent coordination property. Consequently,
each agent regresses to an average over modes in its own action space, resulting in an artificial
density–mode mismatch: the highest-probability joint actions under π̂ may not correspond to any
trajectory in the datasets.

During offline policy update, this means the behavior regularization term DKL(πθi(ai|s)|µi(ai|s))
fails as a reliable constraint: it may systematically steer policy updates toward spurious solutions
disconnected from true global coordination. The recovered joint policies lose alignment with any real
mode in the datasets, leading to low-efficiency exploration in areas with low data coverage regions.
Specifically for the BRPO algorithm, we can summarize the biased regular coordination caused by
CMS into combinatorial mode shift.

Corollary 3.2 (Joint Policy Distribution Shift). Let µ(a|s) be a joint behavior distribution with K
coordinated modes over n agents. When each agent regularizes to its own marginal µi(ai|s) and the
joint policy is factorized as

∏n
i=1 πi(ai|s), the resulting policy exhibits probability mass on Kn joint

actions. As n grows, the total variation distance δTV (µ,
∏
i πi)→ 1, indicating a severe distribution

shift from the data distribution.

This pitfall holds whether the underlying BRPO variant is fully independent or uses a centralized
critic with the CTDE framework: as long as the regularization is decomposed over agent marginals,
policy updates can drift toward spurious high-density configurations unrepresentative of any valid
global coordinated behavior in the data. We use a simple 2-Gaussian mixed data distribution to
illustrate the regularization directions brought by different policy decomposition methods in Fig. 2.

3.2 SEQUENTIAL SCORE DECOMPOSITION OF JOINT BEHAVIOR POLICY

To address these limitations, we propose a novel policy learning framework named Offline MARL
with Sequential Score Decomposition (OMSD). This method is designed to provide unbiased,
coordinated, and decentralized policy updates in offline learning where joint behavior distributions
µ(a|s) are often complex and highly entangled.

Inspired by coordinate descent and rollout update (Wang et al., 2023b), we address this issue via a
sequential decomposition of the joint behavior policy. Specifically, we model the behavior distribution
as:

µ(a|s) = Πni=1µ̂i(ai|s, a<i),

where a<i denotes the joint actions of all preceding agents, i.e., a<i = (a1, . . . , ai−1), with each
aj sampled from the corresponding policy πj(aj |s) for j = 1, . . . , i− 1. This sequential modeling
allows each agent to learn its behavior not in isolation but conditionally on earlier agents, capturing
inter-agent dependencies without requiring full joint modeling. Crucially, this structure ensures that
individual policy constraints remain aligned with the joint behavior distribution, avoiding the OOD
joint policies.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of OMSD: (Top Row) Training sequential diffusion models for each agent
to distill score regularization, (Bottom Row) Plugin the sequential score models with joint action
Q-gradient.

Following the BRPO framework (Chen et al., 2024), we now formulate the policy-based offline
MARL under the CTDE paradigm. The goal is to learn decentralized policies {πi(ai|s)} that
maximize the joint value while remaining close to the dataset behavior:

Li =min
θi

Es∼DµDKL[πθ(· | s)||π∗(· | s)]

=max
θi

Es∼Dµ,a∼πθ(·|s)Q
tot(s,a)− 1

β
DKL

[
πθi(· | s)πθ−i(· | s)∥µi(· | s, a<i)µ−i

]
, (4)

where Qtot(s,a) represents the joint state-action value estimation, µ−i =∏i−1
j=1 µj(aj |s, a<j)

∏n
j=i+1 µj(aj |s, a<j) denotes the conditional behavior distribution of

all agents except i. This formulation implies the following per-agent policy gradient:

∇θiLi = E
[
∇aiQtot(s,a)

∣∣
a=πθ(·|s)

+
1

β
∇ai log µi(· | s, a<i)

∣∣
ai=πθi

(s)

]
∇θiπθi(ai|s), (5)

where the expectation is taken on s ∼ Dµ, a−i ∼ πθ−i
.

This gradient update allows each agent to balance between maximizing expected return and adhering
to its own conditional behavior policy, conditioned on the updated actions of its prefix agents. Such
bottom-up sequential guidance serves as a natural safeguard against distributional shift. Even when
early agents in the sequence generate slightly OOD actions, the conditional dependency structure
ensures that the current agent is updated with respect to a meaningful, in-distribution context.

3.3 PRACTICAL ALGORITHM

Clearly, the policy update gradient in equation (5) consists of a centralized Q-gradient and a gradient of
an unknown logarithm probability distribution. To initialize agent policies, we first adopt centralized
offline IQL to learn a joint value function, and then pretrain a conditional diffusion model for each
agent, where ϵ̂i = ∇ai logµ(ai|s, a<i). Each agent’s score model is trained using only the dataset,
and the pretraining is fully parallelizable across agents, making it scalable for any team size.

Inspired by SRPO (Chen et al., 2024), instead of explicitly modeling the behavior policy distribution
µi(ai|s, a<i), we can distill agent-wise score functions ϵ̂i = ∇ai log µ(ai|s, a<i) from pretrained
diffusion models as gradient regularization into policy update at low noise levels (t→ 0), efficiently
providing score approximations without requiring sampling actions from consuming denoising
process. This transforms policy decomposition into direction-aware regularization, effectively
controlling update deviation and encouraging high-value yet conservative exploration. Formally, each
agent i minimizes the regularized objective from equation 4, where the practical policy gradient
becomes:

∇θiLiOMSD(θi) =E[∇aiQϕ(s,a) +
1

β
∇ai log µ(ai | s, a<i)|ai=πθi

,a<i=π̂θ<i
(s)︸ ︷︷ ︸

=−ϵ̂∗i (ai|s,t)/σt|t→0

]∇θiπθi(s). (6)

6
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To compute the regularization score∇ai log µ(ai|s, a<i) for πti , OMSD adopts a sequential update
scheme during policy update, where agent i conditions on prefix actions a(new)

<i sampled from the
most recently updated policies π(new)

j j < i within the same iteration. Here, a< i(new) indicates that,
for each agent i, the prefix actions are generated by the current versions of agents 1 to i − 1 after
their latest updates in this round. This sequential conditioning is only applied during the policy
optimization process to enable coordinated learning, while all agents can still act concurrently and
independently during execution. This mechanism guarantees that the score regularization directions
mutually point toward in-distribution modes of the dataset. To reduce variance in these prefixes and
stabilize score estimation, we use deterministic DiLac policies, which preserve expressiveness while
avoiding noise amplification in continuous control tasks. Note that the sequential structure is only
required during policy update, which provides flexibility for concurrent decentralized execution and
parallel diffusion models pretraining. The pseudo code is available in Appendix B. For more details,
refer to Appendix H.

4 EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed method OMSD on a bandit example and the challenging
high-dimensional continuous control multi-agent testbeds (MPE) (Lowe et al., 2017) and MaMuJoCo
(Peng et al., 2021). We aim to address the following questions: (i) Can OMSD learn high-quality
coordinated policies from sub-optimal datasets with multi-modality distribution? (ii) How do policy
factorization methods, e.g., Independent Factorization and Sequential Score Decomposition, influence
the policy update? (iii) Can OMSD effectively avoid OOD distribution shift problems?

Environments. In the bandit example, we design a 2-agent fully cooperative task where the reward
function is ri = a1∗a2 for i = 1, 2. The optimal rewards are achieved with joint actions [−1,−1] and
[1, 1]. MPE include 3 tasks requiring agents cooperation to conver landmarks or catch the pretrained
prey opponent in a 2D environment. In MaMuJoCo, each part of a robot is modeled as an independent
agent and learn optimal motions through cooperating with each other. Further details are provided in
Appendix D.

Datasets. For bandit problem, we generate an action dataset by randomly sampling 1,000,000 times
from a 2-Gaussian mixed model with mean values µ0 = [0.8, 0.8], µ1 = [−0.8,−0.8] and variance
σ0 = σ1 = 0.3. Considering the inconsistencies in datasets and baselines in previous research, as
noted by Formanek et al. (2024b), we select three of the most well-evaluated benchmarks, the MPE
datasets provided by OMAR Pan et al. (2022), and two MaMuJoCo datasets provided by OG-MARL
Formanek et al. (2023) and OMIGA Wang et al. (2023c). Each dataset contains datasets of various
qualities, ranging from expert to random. All offline datasets are open-sourced1 23.

Baselines. In the bandit setting, to clearly compare the learning dynamics of different policy
decomposition under multi-modal datasets, we extend the standard BRPO algorithm to a multi-agent
version, including BRPO-JAL (joint action learning), BRPO-IND (independent learning), and BRPO-
CTDE. Detailed algorithmic descriptions are provided in the Appendix G. For high-dimensional
tasks, we benchmark against state-of-the-art offline MARL methods, including independent learning
approaches (BC, MATD3+BC, MA-ICQ, OMAR (Pan et al., 2022)), CTDE value decomposition
methods (MA-CQL (Jiang & Lu, 2021) and CFCQL (Shao et al., 2023)), and diffusion-based
techniques (MADiff (Zhu et al., 2024) and DoF (Li et al., 2025)).

4.1 BANDIT EXAMPLES

As shown in Table 1, OMSD demonstrates performance comparable to joint action learning algorithm
BRPO-JAL, outperforming independent learning and naive CTDE methods with the factorization
assumption. Clearly, both BRPO-IND and BRPO-CTDE struggle with OOD joint actions like [1,−1]
and [−1, 1]. This issue is more pronounced in continuous tasks compared to discrete XOR Matrix
Games in Matsunaga et al. (2023), where behavior policies with limited expressivity often struggle to
capture complex multi-modal distributions (Wang et al., 2023c).

1OMAR datasets: https://github.com/ling-pan/OMAR
2OG-MARL datasets: https://github.com/instadeepai/og-marl
3OMIGA datasets: https://cloud.tsinghua.edu.cn/d/dcf588d659214a28a777/
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Table 2: The average normalized score on offline MARL tasks with OMAR datasets. Shaded columns
represent our methods. The mean and standard error are computed over 5 different seeds.

Testbed Task Dataset BC MA-ICQ MA-CQL MA-TD3+BC OMAR CFCQL MADiff-D DoF-P OMSD

MPE

Cooperative Navigation
Expert 35.0 ± 2.6 104.0 ± 3.4 98.2 ± 5.2 108.3 ± 3.3 114.9 ± 2.6 112 ± 4 95.0 ± 5.3 126.3 ± 3.1 102.3 ± 1.4 (-22.1%)

Medium 31.6 ± 4.8 29.3 ± 5.5 34.1 ± 7.2 29.3 ± 4.8 47.9 ± 18.9 65.0 ± 10.2 64.9 ± 7.7 60.5 ± 8.5 70.1 ± 1.4 (+7.8%)
Random -0.5 ± 3.2 6.3 ± 3.5 24.0 ± 9.8 9.8 ± 4.9 34.3 ± 5.3 62.2 ± 8.1 6.9 ± 3.1 34.5 ± 5.4 69.8 ± 4.6 (+12.1%)

Predator Prey
Expert 40.0 ± 9.6 113.0 ± 14.4 93.9 ± 14.0 115.2 ± 12.5 116.2 ± 19.8 118.2 ± 13.1 120.9 ± 14.6 120.1 ± 6.3 161.4 ± 4.2 (+33.5%)

Medium 22.5 ± 1.8 63.3 ± 20.0 61.7 ± 23.1 65.1 ± 29.5 66.7 ± 23.2 68.5±21.8 77.2 ± 10.4 83.9 ± 9.6 137.1 ± 6.3 (+63.0%)
Random 1.2 ± 0.8 2.2 ± 2.6 5.0 ± 8.2 5.7 ± 3.5 11.1 ± 2.8 78.5±15.6 3.2 ± 4.0 14.8 ± 3.2 133.9 ± 7.4 (+70.6%)

World
Expert 33.0 ± 9.9 109.5 ± 22.8 71.9 ± 28.1 110.3 ± 21.3 110.4 ± 25.7 119.7 ± 26.4 122.6 ± 14.4 138.4 ± 20.1 163.9 ± 10.8 (+18.4%)

Medium 25.3 ± 2.0 71.9 ± 20.0 58.6 ± 11.2 73.4 ± 9.3 74.6 ± 11.5 93.8 ± 31.8 123.5 ± 4.5 86.4 ± 10.6 160.3 ± 4.1 (+29.8%)
Random -2.4 ± 0.5 1.0 ± 3.2 0.6 ± 2.0 2.8 ± 5.5 5.9 ± 5.2 68 ± 20.8 2.0 ± 3.0 15.1 ± 3.0 141.1 ± 5.8 (+107.5%)

Average Score 20.6 ± 3.9 55.6 ± 10.6 49.8 ± 12.1 57.8 ± 10.5 64.7 ± 12.8 87.3 ± 16.9 68.5 ± 7.4 75.6 ± 7.8 126.7 ± 5.1 (+33.2%)

MaMuJoCo (210)

2-HalfCheetah
Good 6846 ± 574 - - 7025 ± 439 1434 ± 1903 - 8246 ± 342 - 8619 ± 187 (+4.5%)

Medium 1627 ± 187 - - 2561 ± 82 1892 ± 220 - 2207 ± 23 - 2660 ± 56 (+3.9%)
Poor 465 ± 59 - - 736 ± 72 384 ± 420 - 759 ± 18 - 866 ± 35 (+14.1%)

2-Ant
Good 2697 ± 267 - - 2922 ± 194 464 ± 469 - 2946 ± 77 - 2714 ± 248 (-7.9%)

Medium 1145 ± 126 - - 744 ± 283 799 ± 186 - 1211 ± 69 - 1372 ± 48 (+13.1%)
Poor 954 ± 80 - - 1256 ± 122 857 ± 73 - 946 ± 66 - 1213 ± 95 (-3.5%)

4-Ant
Good 2802 ± 133 - - 2628 ± 971 344 ± 631 - 3080 ± 38 - 2844 ± 68 (-7.7%)

Medium 1617 ± 153 - - 1843 ± 494 929 ± 349 - 1649 ± 100 - 1942 ± 131 (+5.3%)
Poor 1033 ± 122 - - 1075 ± 96 518 ± 112 - 1295 ± 57 - 1477 ± 86 (+14.1%)

Table 1: Evaluation rewards after convergence for
the toy example.

BRPO-IND BRPO-JAL BRPO-CTDE OMSD (Ours)

0±1 1±0 0±1 1±0

Furthermore, in Fig. 2, we visualize the policy
regularization gradient directions during training
by sampling joint actions. Independent factor-
ization methods such as BRPO-IND and BRPO-
CTDE exhibit miscoordination among indepen-
dent regularization, potentially leading to OOD
joint actions. Benefiting from unbiased score
decomposition and centralized critics, OMSD with sequential score decomposition can correctly
identify both the reward and behavior regularization directions, thereby ensuring convergence to
the optimal mode within the dataset distribution. Our results highlight OMSD’s effectiveness in
enforcing the policy update within the joint behavior policy distribution and improving coordination.
More detailed discussion about BRPO-IND and BRPO-CTDE can be found in Appendix G.

4.2 HIGH-DIMENSIONAL CONTINUOUS CONTROL TASKS

We further evaluated our algorithms on more complex continuous control tasks in the MPE and
MaMuJoCo suites. Table 2 shows the normalized scores of MPE and original scores of MaMuJoCo
for OMSD across various datasets. The performance of the experiment results is measured by the
normalized score 100× (S−SRandom)/(SExpert−SRandom) (Pan et al., 2022). The expert and ran-
dom scores for Cooperative Navigation, Predator Prey, and World are {516.8, 159.8}, {185.6,−4.1},
and {79.5,−6.8}.
OMSD surpasses the existing state-of-the-art methods on most tasks. Specifically, on datasets with
the most pronounced multimodal distributions, such as medium and random datasets, our method
achieves significant improvements over previous approaches, with performance closely approaching
the maximization episode rewards within datasets (as shown in Appendix E). This indicates that
OMSD is capable of identifying multimodal data distributions and selecting higher-quality modes.
As for the two tasks where performance is relatively poor, we find that they are mainly limited
by the suboptimal performance of the pre-trained centralized critic. As a result, even though the
diffusion model is able to capture the multi-modal structure in the dataset, it lacks an effective
reward improvement signal to guide policy update. More detailed description of hyperparameters and
pretraining can be found in Appendix D.

To further compare OMSD with other diffusion-based approaches for handling multi-modality, we
include two representative baselines: MADiff-D (Zhu et al., 2024), a decentralized execution variant
that leverages diffusion models for trajectory planning, and DoF-P (Li et al., 2025), which employs
a diffusion model as actor to generate actions by factorizing noise. Experimental results show
that OMSD consistently outperforms these methods across most tasks, particularly in cooperative-
competitive scenarios that require strong coordination. We attribute this advantage to the use of
diffusion models as sequential decomposed score functions estimators, which more accurately capture
inter-policy dependencies, enabling a more direct and fine-grained influence on policy gradient
directions. We achieved significant performance improvements of 73.9% on the OMIGA (Wang
et al., 2023a) dataset in Table. 3. We speculate that this is because the OMIGA environment uses

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 4: (a) Comparison of pre-trained IQL and post-trained algorithms. (b) Regularization term β
for OMSD performance. (c) t-SNE Visualization of policy evolution during OMSD training.

global states as observations, which facilitates more efficient behavioral regularization coordination.
Additional experiment results refer to Appendix C.

4.3 ABLATION STUDY

Does Score Decomposition Method Matter? To investigate the impact of our proposed sequential
score decomposition mechanism, we conduct a series of ablation studies. To keep fair comparison,
we compare OMSD against BRPO-IND and BRPO-CTDE as described in Sec. F. As shown in
Fig. 4a, OMSD consistently outperforms both the pretrained IQL and factorization methods, as
well as the overall dataset quality. The average episode reward across datasets is indicated by a
purple dashed line. The notable improvement over the pretrained IQL highlights OMSD’s ability
to effectively combine global critic signals with policy constraints, enabling more reliable offline
policy improvement. In contrast, the performance gap between OMSD and BRPO-CTDE illustrates
that inappropriate score decomposition can lead to poorly coordinated joint policies that suffer from
OOD actions, ultimately degrading overall performance. The dotted lines in the figure indicate the
average and maximized absolute return of the training datasets. Additionally, we verify that OMSD is
insensitive to the specific agent update order, demonstrating robustness across different factorization
sequences. More experiment results are provided in the Appendix D.7.1 and D.7.4.

Hyperparameters. Since policy-based offline methods are sensitive to the degree of behavior
regularization, we conduct a systematic study on the influence of the regularization coefficient β as
shown in Fig 4b. Specifically, we sweep β over the set {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
Our results show that the optimal value of β depends strongly on the quality of the dataset: expert-level
datasets benefit from stronger policy constraints (e.g., β = 0.001), preserving high-quality behaviors;
in contrast, lower-quality datasets such as random favor weaker regularization (e.g., β = 0.3),
allowing the policy to deviate from suboptimal demonstrations and encourage more exploratory
behavior. For detailed experimental results on additional tasks, please refer to the Appendix D.7.2.

How does OMSD avoid OOD joint actions? We observe that OMSD achieves remarkable perfor-
mance gains on low-quality datasets, where prior methods often struggle. To investigate this, we
visualize the learning policy checkpoints via t-SNE (Van der Maaten & Hinton, 2008) by sampling
state-action pairs from the policy and comparing them to the dataset distribution. As shown in
Fig. 4c, OMSD captures the underlying multimodal structure and concentrates around high-reward
regions within the dataset support. This suggests that OMSD effectively exploits the critic as a reward
landmark while remaining within the data distribution, which enables stable policy improvement.

5 CONCLUSION

In this paper, we study the key challenge of multi-modal joint behavior policies in offline MARL
and propose the sequential score decomposition algorithm OMSD with diffusion models. To our
knowledge, OMSD is the first policy decomposition-based offline MARL algorithm explicitly deal
the multimodal behavior policies, leveraging the decomposed score functions distilled from diffusion
models to regularize the policy update gradients. Experiment results demonstrate the superiority of
our methods OMSD and the effectiveness of policy improvement with coordinate action selection.
One future work aims to develop more precise and optimal policy decomposition methods to enhance
the ability of policy based offline MARL methods.
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6 ETHICS STATEMENT

Our work does not involve human subjects, sensitive data, or personally identifiable information.
The research is purely theoretical/empirical (choose one) and is not expected to raise any ethical
concerns. All experiments are conducted in simulated environments and comply with the relevant
ethical guidelines of our institution.

7 REPRODICIBILITY STATEMENT

We provide all the details necessary to reproduce our results. The main paper and supplementary
materials contain a comprehensive description of the model architecture, training procedure, and
hyperparameters. The code used to generate the main results will be publicly available on GitHub.
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A RELATED WORKS

Offline MARL. Early research in offline MARL mainly made efforts to extend the pessimistic
principles from offline single-agent RL with independent learning paradigm. For example, MAICQ
(Yang et al., 2021) and MABCQ (Jiang & Lu, 2021) extended the pessimistic value estimation such
as CQL to multi-agent and discuss the extrapolation error under exponential increasing dimension of
joint actions space problem. Furthermore, OMAR (Pan et al., 2022) dealed with the local optima with
zero-th order optimization. Motivated by this, CFCQL (Shao et al., 2023) further improved OMAR
with counterfactual value estimation to avoid over-pessimistic value estimation. Recently, MACCA
(Wang et al., 2023d) and OMIGA (Wang et al., 2023a) has incorporated causal credit assignment
technique and the IGM principle into the offline value decomposition process to enhance the credit

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

assignment. In SIT Tian et al. (2023), authors recognized the data-imbalance problem and handle it
with reliable credit assignment technique. On the other hand, AlberDICE (Matsunaga et al., 2023) and
MOMA-PPO (Barde et al., 2023) recognized and addressed OOD joint action coordination problems
with alternative best response and world model based planning. Our method aligns in this direction
and try to model complex behavior policies with diffusion models. BRUD Tilbury et al. (2024)
discusses the failure of policy updates caused by different data points under offline MADDPG-style
algorithm. The prioritised dataset sampling mechanism is proposed to ensure that the sampled data in
the current batch is close to the distribution of the updated policy. Although this paper considers the
impact of data points on policy learning under offline MARL, MADDPG-type modeling still ignores
the multimodal characteristics of the joint behavior policy distribution. Besides, there are also some
works following the trajectory generation route, such as MAT (Wen et al., 2022), MADT (Meng et al.,
2021), and MADTKD (Tseng et al., 2022). These methods are beyond our scope.

Diffusion Models in RL. Recently, motived by the great advantage of diffusion models, RL re-
searchers turn to seek the possibilities of introducing diffusion models into RL area. Previous works
can be typically divided into three topics: serving as planner, serving as policy, and serving for data
augmentation. Our method mainly fall in the second topic. Single RL suffers multimodal and MLE
fails due to mode cover. Diff-QL (Wang et al., 2023c) and SfBC (Chen et al., 2022) used diffusion
model to represent the behavior policy and generate a batch of candidate actions with diffusion mod-
els, then use resampling to choose the executive actions. These methods suffer the inherent drawback
of slow inference process of diffusion models. For this reason, some works tried to accelerate the
sampling process of diffusion actor. EDP (Kang et al., 2024) and consistency-AC (Ding & Jin, 2023)
leveraged the advanced diffusion models to accelerate the action sampling in RL tasks. Diff-DICE
Mao et al. (2024) investigated guiding and selecting paradigm in diffusion-based RL and avoid OOD
actions by proposing a guide-then-select mechanism. Recently, there are few works such as MADiff
(Zhu et al., 2024) and DoF (Li et al., 2025), which take diffusion models as a centralized planner or
actors. DoF (Li et al., 2025) introduces a novel diffusion-based factorization framework that explicitly
models multi-agent interactions, representing significant progress in this domain. Similarly, DOM2
(Li et al., 2023) adopts diffusion models as a data augmentation tool to synthesize interaction-aware
trajectories, improving cooperative behavior on shifted environments. While these works span diverse
methodologies, our approach aligns with efforts to address OOD joint action challenges and complex
behavior policies by leveraging advanced diffusion-based mechanisms.

B OMSD PSEUDO CODE

Here we provide the pseudo-code of our algorithm OMSD.

Algorithm 1 OMSD Algorithm

1: Input: Offline dataset Dµ
2: // Critic Pretraining
3: for critic training step do
4: Train centralized joint critic Qtot
5: end for
6: // Score Pretraining (Parallelizable)
7: for all agent i = 1, . . . , n in parallel do
8: Pretrain conditional diffusion score model ϵ̂i on Dµ
9: end for

10: // Policy Optimization (Sequential Update)
11: for policy gradient step do
12: for agent i = 1, . . . , n (in order) do
13: Sample prefix actions a<i using latest policies {πj}j<i
14: Update θi ← θi + α∇θiLiOMSD(θi) (Eq. 6)
15: end for
16: end for
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C ADDITIONAL EXPERIMENTS ON MAMUJOCO

In this sections, we provide additional experimental results to demonstrate the scalability and versatil-
ity of our method across different task scenarios. In Table 3, the experiment results are trained on the
MaMuJoCo datasets provided by OMIGA (Wang et al., 2023a). OMSD significantly outperforms
baselines across all tasks, achieving an impressive average improvement of 73.9%. This advantage is
particularly pronounced on mixed datasets such as Medium-Expert and Medium-Replay, validating its
effectiveness in modeling complex joint behavior policies. As the sequential decomposition process
is only conditioned on prefix local actions rather than states, the training complexity of the diffusion
model is similar for all agents. Therefore, OMSD can naturally be extended to more complex tasks
with a larger number of agents, such as 6-agent HalfCheetah.

Table 3: Experiment results on the MaMuJoCo environments with OMIGA (Wang et al., 2023a)
datasets.

Task Dataset BCQMA CQLMA ICQ OMAR OMIGA OMSD (ours)

6-HalfCheetah

Expert 2992.71±629.65 1189.54±1034.49 2955.94±459.19 -206.73±161.12 3383.61±552.67 5545±156 (+64%)
Medium-Expert 3543.70±780.89 1194.23±1081.06 2833.99±420.32 -253.84±63.94 2948.46±518.89 5237±46 (+48%)
Medium-Replay -333.64±152.06 1998.67±693.92 1922.42±612.87 -235.42±154.89 2504.70±83.47 4582±52 (+83%)

Medium 2590.47±1110.35 1011.35±1016.94 2549.27±96.34 -265.68±146.98 3608.13±237.37 4695±62 (+30%)

3-Hopper
Expert 77.85±58.04 159.14± 313.83 754.74± 806.28 2.36± 1.46 859.63±709.47 3595 ± 66 (+329%)

Medium-Expert 54.31±23.66 64.82±123.31 355.44±373.86 1.44±0.86 709.00±595.66 3568 ± 45 (+403%)
Medium 44.58±20.62 401.27±199.88 501.79±14.03 21.34±24.90 1189.26± 544.30 3360 ± 276 (+183%)

2-Ant

Expert 1317.73±286.28 1042.39±2021.65 2050.00±11.86 312.54±297.48 2055.46±1.58 2191 ± 46 (+6.6%)
Medium-Expert 1020.89±242.74 800.22±1621.52 1590.18±85.61 -2992.80± 6.95 1720.33±110.63 2002 ± 124 (+16.4%)
Medium-Replay 950.77±48.76 234.62±1618.28 1016.68±53.51 -2014.20±844.68 1105.13±88.87 1009 ± 43(-8.7%)

Medium 1059.60±91.22 533.90±1766.42 1412.41±10.93 -1710.04±1588.98 1418.44±5.36 1619 ± 77 (+14.2%)

Average 1210.82±313.12 784.56±1044.66 1631.17±267.71 -667.37±299.29 1954.74±313.48 3400±90 (+73.9%)

Experimental results on Table 4 are trained on the 2-agent Halfcheetah dataset provided by OMAR
Pan et al. (2022). In this experiment, OMSD achieves the best performance in three scenarios across
four experiment settings. The most significant improvement is observed on the Medium-Replay
dataset, highlighting the challenge posed by the severe multimodal distribution of joint behavior
policies on mixed-quality datasets to offline MARL algorithms, which can be effectively captured and
handled by our methods. Poor performance on the random-quality dataset is attributed to the difficulty
of learning the centralized critic on this dataset. Furthermore, since the behavioral policies on the poor
dataset are the worst, the policy regularization learned by the diffusion model struggles to provide
stable policy constraints and performance improvements. This suggests that our approach may benefit
from combining it with better critics from more robust value-based offline MARL training methods.

Table 4: Experiment results on the MaMuJoCo environments with OMAR (Pan et al., 2022) datasets.

Task Dataset MA-ICQ MA-CQL MA-TD3+BC OMAR CFCQL OMSD

2-HalfCheetah

Expert 110.6 ± 3.3 50.1±20.1 114.4 ± 3.8 113.5±4.3 118.5 ± 4.9 119.0 ± 1.3 (+0.4%)
Medium 73.6 ± 5.0 51.5±26.7 75.5±3.7 80.4±10.2 80.5±9.6 81.4 ± 7.2 (+1.2%)

Med-Replay 35.6±2.7 37.0±7.1 27.1±5.5 57.7±5.1 59.5 ± 8.2 78.9 ±4.4 (+32.6%)
Random 7.4±0.0 5.3±0.5 7.4±0.0 13.5±7.0 39.7±4.0 15.6±4.2 (-60.7%)

D EXPERIMENTAL DETAILS

In this section, we highlight the most important implementation details for the OMSD and baselines.
More details can be found in our open-source code.

D.1 ENVIRONMENT DETAILS

We use the open-source implementations of multi-agent particle environments4 Lowe et al. (2017)
and MaMuJoCo5 Peng et al. (2021). Fig. 5 and Fig. 6 illustrate the rendered environments.

In Cooperative Navigation task, 3 learning agents need to cooperatively spread to 3 landmarks, where
the common rewards are based on the distances away from landmarks with collusion penalties. In

4https://github.com/openai/multiagent-particle-envs
5https://github.com/schroederdewitt/multiagent_mujoco
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Figure 5: MPE environments. Pan et al. (2022)

Figure 6: MaMuJoCo environments. (Peng et al., 2021)

Predator Prey, 3 predators are trained to catch a moving prey, which challenge the predators to
surround the prey with high degree of coordination. In world, the original settings involves 4 slower
cooperating predators to catch 2 faster preys, where the preys are rewarded by avoiding being captured
and eating foods. However, the offline datasets provided by OMAR is trained with 3 slower predators
and 1 prey. In 2-agent HalfCheetah task, a halfcheetah with 6 joints need to keep moving forward.
The 6 joints are divided into two groups, where each agent controls 3 joints, representing the front
legs and the hind legs respectively.

Specifically, we noticed that several commonly used datasets have different settings for MaMuJoCo,
which affects the dimension of the observation space. Taking the 2-agent Halfcheetah
dataset as an example, the OMAR dataset uses obsk=0, disregarding neighbor information, re-
sulting in a state space dimension of state_dim=17 and an observation space dimension of
obs_dim=6. OMIGA customizes an environment wrapper, and the returned observation variables
are actually global state variables, with both the state space and observation space dimensions
of state_dim=17. The OGMARL dataset additionally sets obsk=1 to consider neighbor in-
formation and global categories: {qvel, qpos}, causing the observation space to be
expanded to obs_dim=13 dimensions. MADiff, due to its transformer structure, adds one-hot encod-
ing to OGMARL to represent the agent ID, resulting in an observation dimension of obs_dim=15
dimensions. To ensure fairness, this paper uniformly follows the original dataset collection process
settings, removing the one-hot ID from the MADiff dataset to ensure it is independent of agent ID
information. Besides, both OMAR and OMIGA employs mujoco 200 and mamujoco=0.0.1,
while OGMARL employs mujoco 210 and mamujoco=1.1.0. The different versions of the
mujoco suites will also lead to obvious performance differences.
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D.2 BASELINE SETTINGS

In this section, we provide additional details for each of the baseline algorithms. All scores of
baselines are derived from the standardized scores reported in the MADiff (Zhu et al., 2024) and the
DoF (Li et al., 2025). Consider that OMSD is developed as a CTDE algorithm for continuous control
tasks, we select the decentralized version MADiff-D and DoF-P. The open-sourced implementations
of baselines are from (Iqbal & Sha, 2019)6, OMAR (Pan et al., 2022), CFCQL (Shao et al., 2023)7,
MADiff (Zhu et al., 2024)8, and DoF (Li et al., 2025)9.

D.3 NETWORK ARCHITECTURE

The hyperparameter and network architecture settings for pre-training primarily follow those of the
standard IQL algorithm Kostrikov et al. (2021) and SRPO algorithm Chen et al. (2024).

For the centralized critic model, we adapt it from the standard IQL implementation10. This model
consists of a deterministic policy network, a state-action value network (Q-net) with double-Q
learning for stabilized training, and a state value network (V-net). All networks are structured as
2-layer MLPs with 256 hidden units and ReLU activations. The deterministic policy network is
optimized using annealing AdamW with a learning rate of 3× 10−4, while the value networks are
trained using Adam with a fixed learning rate of 3× 10−4.

The diffusion behavior model is implemented as a 2-layer U-Net with 512 hidden units. The time
embedding dimension is set to 64, and the embedding dimension for concatenated input (state and
actions) is 32. The learning rate is 3× 10−4.

The policy model is a Dilac policy represented by a 2-layer MLP with 256 hidden units and ReLU
activations. It is trained using the Adam optimizer with a learning rate of 3×10−4 and a batch size of
512. The training process consists of 1.0 million gradient steps for MaMuJoCo tasks and 0.1 million
gradient steps for MPE tasks.

The key hyperparameters for OMSD are summarized in Table 5.

Table 5: Hyper-Parameters for OMSD

Algorithm Hyper-Parameter Name Value
All Batch Size 512
All Optimizor Adam
All Learning Rate 3× 10−4

All Hidden Activation Function ReLU
All Discount Factors of RL γ 0.99
All Soft Update Rate of Target Networks τ 0.005
All MPE Episode Length 25
All MaMuJoCo Episode Length 1000
All Buffer Size 1e6
All Reward Scale 1
Critic & Diffusion Models Training Epochs 200
Critic & Diffusion Models Training Steps in Each Epoch 10000
Critic & Diffusion Models Actor Blocks 2
Critic Models Q-Network Layers 2
Diffusion Models Time Gaussian Projection Dims 32
Diffusion Models Time Embedding Dims 64
Diffusion Models State-action Embedding Dims 32
Diffusion Models Resnet Hidden Dims 512
Diffusion Models Dilac Policy Learning Rate 3e-4

6https://github.com/shariqiqbal2810/maddpg-pytorch
7https://github.com/thu-rllab/CFCQL
8https://github.com/zbzhu99/madiff
9https://github.com/xmu-rl-3dv/DoF

10https://github.com/ikostrikov/implicit_q_learning
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D.4 PRETRAIN CRITIC MODELS

In this section, we provide a detailed explanation of the pre-training process for the critic networks.
The network structures and parameter settings are consistent with those described in the previous
section. We pre-trained two types of critic networks: independent critic networks and joint action
learning critic networks. For the independent critic networks, each agent’s input consists of the
concatenation of its individual dataset’s states and actions, with the network learning each agent’s
behavior independently. In contrast, the joint action learning critic network adopts a centralized
approach, where the input comprises the concatenated joint states (observations) and joint actions
of all agents, enabling a global perspective for joint decision-making. All pre-trained critics were
trained for 200-500 epochs with checkpoints saved every 50 epochs. In subsequent OMSD training,
the critic generally loads the checkpoint from the final epoch.

During the optimization process, we made adjustments to various hyperparameters and design choices,
uncovering some important insights. First, the temperature and quantile regression coefficient τ were
found to significantly affect the performance of pre-trained IQL. We performed a sweep of τ values in
the range of [0.3, 0.5, 0.7, 0.9] and temperature values in the range of [1, 3, 5, 7, 10] across datasets of
different quality and reported the optimal hyperparameters in Tables 6 and 7. Second, regarding the
clamping of the advantage function, we initially clamped the exponential advantage term exp_adv
at a maximum value of 100. However, we later tried directly restricting the advantage values to the
range [-1, 1], which improved training stability in certain cases.

However, in the MPE environment, we encountered some challenges and issues that significantly
impacted OMSD’s performance. First, in medium replay datasets compared to those of other quality
levels, the training speed was approximately 3 times faster than expected. Additionally, the resulting
performance failed to learn meaningful signals. We hypothesize this is due to the sample volume of
medium replay datasets being significantly lower than that of others, with medium replay containing
only 62,500 samples, whereas datasets of other quality levels contain 1,000,000 samples. The poor
performance may be influenced by the dataset’s characteristics or overfitting during training, which
requires further investigation and resolution. Notably, such issues were not observed in datasets from
other environments, such as MaMuJoCo.

D.4.1 MPE

Since MPE tasks consist of only 25 steps per episode, significantly fewer than the 1000 steps per
episode in MaMuJoCo, we follow the settings of Clean Offline RL Tarasov et al. (2023) to train IQL
algorithms 500 epochs with 1000 update steps per epoch. Below are the hyperparameters for all three
MPE tasks:

D.4.2 MAMUJOCO

The training parameters are aligned with SRPO and have been shown to work effectively. Specifically,
for the critic, we use 10,000 steps per epoch for a total of 200 epochs. The quantile regression
coefficient τ is set to 0.9 for maze tasks and 0.7 otherwise, while the temperature β is fixed at 10.
Additionally, the exponential advantage term "exp_adv" is clamped to a maximum value of 100 to
ensure training stability.

For the MaMuJoCo tasks, the hyperparameters are outlined as follows. The dataset
2-HalfCheetah 200 is derived from OMAR, whereas the dataset 2-HalfCheetah 210
is sourced from OG-MARL Formanek et al. (2023) and MADiff Zhu et al. (2024).

D.5 PRETRAIN DIFFUSION MODELS

For diffusion models, we follow the SRPO Chen et al. (2024) settings with slight modifications to
improve training efficiency. Specifically, we reduce the number of layers from 3 to 2. The noise
settings are defined as t = torch.rand(a.shape[0],device = s.device)× 0.96 + 0.02. For
the base SRPO framework, we use a hidden dimension of 64, a τ target network soft update rate of
0.01, a learning rate of 0.01, and the Annealing AdamW optimizer. Denoising is performed with 20
steps, while the denoising DDPM model operates with 5 steps using a beta schedule set to the "vp"
strategy.
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Table 6: IQL Training Hyperparameters in MPE

Environment Task Hyper Parameter Name Value

Global Training Steps/Epoch 1000
Epochs 500

Cooperative Navigation

Expert temperature 3.0
Expert τ 0.5
Medium temperature 0.5
Medium τ 0.7
Random temperature 0.5
Random τ 0.5

Predator Prey

Expert temperature 7.0
Expert τ 0.7
Medium temperature 1.0
Medium τ 0.5
Random temperature 5.0
Random τ 0.7

World

Expert temperature 3.0
Expert τ 0.5
Medium temperature 1.0
Medium τ 0.9
Random temperature 7.0
Random τ 0.7

Table 7: IQL Training Hyperparameters in MaMuJoCo

Environment Task Hyper Parameter Name Value

Global Training Steps/Epoch 10000
Epochs 200

2-HalfCheetah 200

Expert temperature 3.0
Expert τ 0.7
Medium temperature 3.0
Medium τ 0.7
Medium-Replay temperature 3.0
Medium-Replay τ 0.7
Random temperature 5.0
Random τ 0.5

In this study, we pretrained three types of diffusion models: (1) the independent diffusion model, (2)
the joint action learning diffusion model, and (3) the sequential diffusion model. In the independent
diffusion model, each agent’s input consists of a concatenation of its individual dataset’s state and
action. For the joint action learning diffusion model, learning is treated as a centralized process, with
inputs comprising the concatenated joint states (observations) and joint actions of all agents. Finally,
the sequential diffusion model extends this idea by incorporating the preceding agents’ actions as
a prefix to the input. Combined with each agent’s own state and action, this adjustment results in
task-specific variations in input dimensionality for each agent. The hyperparameters are shown in
Tables 8 and Table 9.

D.5.1 MPE

Here are the hyperparameters for all three tasks in MPE environments shown in Table 8.
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Table 8: Diffusion Models Training Hyperparameters in MPE

Environment Task Hyper Parameter Name Value

Global Training Steps 100000
Annealing Epochs 10

Cooperative Navigation
Expert β 0.001
Medium β 0.005
Random β 0.05

Predator Prey
Expert β 0.005
Medium β 0.05
Random β 0.5

World
Expert β 0.01
Medium β 0.05
Random β 0.5

D.5.2 MAMUJOCO

Here are the hyperparameters for MaMuJoCo comes from OMAR Pan et al. (2022) and MADiff Zhu
et al. (2024) shown in Table 9.

Table 9: Diffusion Models Training Hyperparameters in MaMuJoCo

Environment Task Hyper Parameter Name Value

Global Traning Steps 100000
Annealing Epochs 10

2-HalfCheetah 200

Expert β 0.001
Medium β 0.005
Medium-Replay β 0.05
Random β 0.05

D.6 TRAIN OMSD MODELS

In this subsection, we provide the hyperparameters for training OMSD models.

D.6.1 MPE

Here are the hyperparameters for all three tasks in MPE environments as shown in Table 10.

D.6.2 MAMUJOCO

Here are the hyperparameters for MaMuJoCo. The dataset 2-HalfCheetah 200 comes from OMAR
(Pan et al., 2022), and the dataset 2-HalfCheetah 210 comes from MADiff (Zhu et al., 2024) as shown
in Table 11.

D.7 MORE ABLATION STUDY RESULTS

D.7.1 SCORE DECOMPOSITION METHODS

Here we present more ablation study results of all three MPE tasks in Fig. 7, i.e., Cooperative
Navigation, Predator Prey, and World. Over multiple quality datasets across various tasks, our methods
demonstrates advantages over pre-trained Critic IQL and other policy decomposition methods.
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Table 10: OMSD Training Hyperparameters in MPE

Environment Task Hyper Parameter Name Value

Global Training Steps 100000
Annealing Epochs 10

Cooperative Navigation
Expert β 0.001
Medium β 0.005
Random β 0.05

Predator Prey
Expert β 0.005
Medium β 0.05
Random β 0.5

World
Expert β 0.01
Medium β 0.05
Random β 0.5

Table 11: OMSD Training Hyperparameters in MaMuJoCo

Environment Task Hyper Parameters Name Value

Global Traning Steps 100000
Annealing Epochs 10

2-HalfCheetah 200

Expert β 0.001
Medium β 0.005
Medium-Replay β 0.05
Random β 0.05

D.7.2 HYPERPARAMS

For the temperature coefficient, we sweep over β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and observe large
variances in appropriate values across different tasks (Fig. 8). We speculate this might be due to
β being closely intertwined with the behavior distribution and the variance of the Q-value. These
factors might exhibit entirely different characteristics across diverse tasks. Our choices for β are
detailed in Table .

D.7.3 VISUALIZATION OF FINAL POLICY

In Fig. 9, we illustrate the full learning trajectories of OMSD algorithms on MPE datasets.

The gray data points represent the t-SNE (Van der Maaten & Hinton, 2008) distribution of the
state-joint action pairs from the original dataset, while the data points transitioning from light blue to
dark blue indicate the t-SNE distribution of episode trajectories collected under policies at different
training steps, using 10 random seeds. It can be observed that during the policy update process, the
distribution remains mostly within the range of the original dataset, effectively avoiding the OOD
problem. This demonstrates that our sequential score decomposition method can effectively ensure
that the learning distribution remains in-sample under multimodal offline MARL datasets.

Furthermore, as the policy updates, the policy gradually learns and converges to high-reward regions,
concentrating within a limited range. This indicates that the joint action critic can effectively provide
signals for high-reward regions, guiding policy improvement.

D.7.4 SEQUENTIAL UPDATE ORDERS

To demonstrate our method’s insensitivity to update order, we conducted randomized ordering
experiments on the OMIGA Hopper-v2 datasets. Specifically, the task involved three agents. The
standard OMSD training process used the default agent ID order as the pre-trained diffusion model
and policy update order to determine prefix actions (0-1-2). In addition, we randomly assigned update
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(a) Cooperative Navigation (b) Predator Prey (c) World

Figure 7: Comparasion of Pretrained IQL, BRPO-IND, BRPO-CTDE, and OMSD on Cooperative
Navigation, Predator Prey, and World Tasks.

(a) Cooperative Navigation (b) Predator Prey (c) World

Figure 8: Comparison of regularization term β of OMSD on Cooperative Navigation, Predator Prey,
and World Tasks.

orders of 0-2-1 and 2-1-0 as control groups to avoid accidental agent relationship modeling under
specific update orders. Experimental results show that, with the same pre-training parameters and
OMSD training parameter settings, changing only the update order does not significantly impact
performance, strongly demonstrating the robustness of our method for capturing complex multimodal
behavior distributions. Furthermore, thanks to our structural design, our algorithm only needs to
consider the behavior of preceding agents during training, relying solely on its own local observations
during execution without needing action information from others. Compared to sequential action
modeling methods such as MAT (Wen et al., 2022), this method offers greater flexibility and is
insensitive to specific agent dependencies.

E DATA QUALITY VISUALIZATION OF OFFLINE DATASETS

In this section, we provide more details about the offline datasets MPE, 2-agent HalfCheetah we
used in this paper. The data distribution with violin plots and histogram plots in Fig. 12, Fig. 11, and
Fig. 13. These plots are provided by OG-MARL11 Formanek et al. (2023).

F WHY DO OFFLINE INDEPENDENT LEARNING AND NAIVE CTDE
FRAMEWORKS FAIL?

To further elucidate the impact of multimodal behavioral policies on offline MARL, we selected the
standard policy-based offline RL method, BRPO Wu et al. (2019), and extended it to the MARL
setting to analyze the failure modes. We focused on two mainstream paradigms: independent learning
and CTDE learning.

F.1 POLICY-BASED OFFLINE MARL WITH INDEPENDENT LEARNING.

We begin our analysis with independent BRPO (BRPO-IND), a fundamental case under the inde-
pendent learning paradigm. Generally, independent learning methods decompose MARL problems
into multiple autonomous single-agent RL processes by treating other agents as part of dynamic
environments. This is a robust approach widely adopted in both online and offline MARL algorithms
that has demonstrated stable performance across many tasks, which assumes that each policy is
independently factorizable. Specifically, in BRPO-IND, each agent independently learns the critic and

11https://github.com/instadeepai/og-marl
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Full training trajectories of OMSD on MPE tasks.

(a) Expert Datasets (b) Medium-Expert Datasets (c) Medium Datasets

Figure 10: Ablation experiments on three different random update orders of agents in Hopper-v2.

models individual behavior policy µi(ai|s) from individual datasets. With Lemma 2.1, we propose
the following proposition.
Proposition F.1. Consider a fully cooperative game with n agents. Under the independent learning
framework, the optimal individual policy of each agent is:

π∗
i (ai | s) =

1

Z(s)
µi(ai | s) exp

(
βiQ

i(s, ai)
)
,

where µi and Qi are individual behavior policy and Q-value function of agent i, respectively. With
Lemma 2.1, the learning objective of BRPO-IND is:

LInd = max

n∑
i=1

Es∼Dµ,ai∼πθi
Qi(s, ai)−

1

β
DKL [πθi∥µi]︸ ︷︷ ︸

Ind Behavior Reg

.

Here, the KL penalty prevents the learned individual policy from diverging significantly from the
individual behavior policy. By taking the gradient of equation LInd with respect to each agent’s
policy parameters, we obtain:

∇θiLInd = Es∼Dµ

[
∇aiQi(s, ai)

∣∣
ai=πθi

+
1

β
∇ai log µi(ai | s)|ai=πθi

(s)︸ ︷︷ ︸
=−ϵ∗i (at|s,t)/σt|t→0

]
∇θiπθi(ai|s), (7)

where ϵ∗i (at | s, t) represents the score function of individual behavior policy ∇aiµi(ai|s) (Song
et al., 2020a).
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(a) Cooperative Navigation Violin
Plot

(b) Predator Prey Violin Plot (c) World Violin Plot

Figure 11: Violin plots of MPE offline datasets.

(a) Cooperative Navigation Histogram

(b) Predator Prey Histogram

(c) World Histogram

Figure 12: Histogram plots of MPE offline datasets.

F.2 POLICY-BASED OFFLINE MARL WITH CTDE LEARNING.

In the CTDE framework, the centralized training process typically leverages the actions of other
agents, global states, and the policies of other agents to learn the optimal joint policy. It can
stabilize nonstationary learning process by capture interactive relationships between agents and global
information. The executable individual policies are ususally distilled through value decomposition or
policy decomposition. In policy-based methods, such as FOP (Zhang et al., 2021b) and AlberDICE
(Matsunaga et al., 2023), the decomposable assumption IGO (Individual-Global-Optimal) π∗

Ψ :=

πi∗ψi

∏
j=−i π

j∗
ψj is typically used to extract individual policies from the joint optimal policy. Based

on IGO principle and Lemma 2.1, we propose the BRPO-CTDE as follows.
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(a) HalfCheetah Histogram Plot

(b) HalfCheetah Violin Plot

Figure 13: Histogram and Violin plots of MaMuJoCo offline datasets.

Proposition F.2. Consider a fully cooperative game with n agents. In centralized learning process,
the optimal joint policy is derived as

π∗(a | s) = 1

Z(s)
µ(a | s) exp

(
βQtot(s,a)

)
,

where a represents the joint actions and Qtot represents the global state-action value function. With
Lemma 2.1 and the factorization principle, the learning objective for each agent becomes

LiCTDE =min
θi

Es∼Dµ
DKL[πθi(· | s)πθ−i(· | s)||π∗(· | s)]

=max
θi

Es∼Dµ,a∼πθ(·|s)Q
tot(s,a)− 1

β
DKL [πθi(· | s)πθ−i(· | s)∥µ(a | s)]︸ ︷︷ ︸

Joint Behavior Reg

.

Compared to BRPO-IND, BRPO-CTDE minimizes the KL divergence between the learned joint
policy Πni πi(ai|s) and the joint behavior policy distribution µ(a|s) on each agent’s policy update.
Then we can derive the gradient of equation LiCTDE with respect to each agent’s policy parameters
as:

∇θiLiCTDE = Es∼Dµ,a−i∼πθ−i

[
∇aiQtot(s,a)

∣∣
a=πθ(·|s)

+
1

β
∇ai log µ(a | s)

∣∣
ai=πθi

(s)

]
∇θiπθi(ai|s).

(8)

Equations (7) and (8) reveal that the gradients in offline policy-based MARL consist of Q-value gra-
dients and behavior policy regularization terms. However, this structure poses significant challenges
for joint policy updates.

First, an obvious problem arises in the coordination of Q-value gradients. In offline MARL, the
absence of online data collection severely limits the ability to adjust policies by exploring new
experiences. This issue further exacerbates the misalignment coordination of individual Q-value
gradients in MARL and may lead to suboptimal gradient directions (Kuba et al., 2022; Pan et al.,
2022).

Admittedly, the CTDE frameworks can slightly alleviate the Q-value gradients coordination problem
by directly providing local gradients of the joint Q-function to each agent. However, the individual

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

regularization terms are also challenging due to the multi-modal property of the joint behavior policy
µ(a|s). With IGO assumption, the individual behavior regularization term in CTDE becomes a
biased score function as

∇ai log µ(a | s) = ∇aiπ(a|s)∇a log µ(a | s)
̸= ∇ai log µ(ai | s),

where ∇π log µ(a|s) represents the score function of the joint behavior policy captured by high-
capacity generative models, and∇aiπ is the partial gradient of the joint policy with respect to agent i.
The primary difficulty lies in accurately calculating∇aiπ from the multi-modal joint behavior policy,
as the offline joint policy may not be easily factorizable into individual agent policies.

These challenges faced by BRPO-IND and BRPO-CTDE are fundamentally rooted in the multi-
modality problem described in Section 3.1 and can be generalized to other policy-based offline
RL algorithms. Multi-modal joint behavior policies cause complex dependencies among agents,
while the infactorization property prevents accurate factorization of these joint policies. Directly
applying assumptions in online MARL, such as the factorization assumption, will induce biased
policy regularization on individual policy update, ultimately causing the joint policy distribution to
deviate from the support set of the dataset.

G THEOREM DETAILS

G.1 PROOF OF PROPOSITION 3.1

We consider a fully-cooperative n-player game with a single state and action space A = [0, 1]n.
Let π∗ be the optimal joint policy with two optimal modes: a1 = (1, . . . , 1) and a2 = (0, . . . , 0).
Let π̂ be a factorized approximation of π∗ such that π̂(a) =

∏n
i=1 π̂i(ai), where each π̂i is learned

independently.

Given that π∗ has two optimal modes (1, . . . , 1) and (0, . . . , 0), and each π̂i is learned independently,
the best approximation for each individual policy is to assign equal probability to 0 and 1. Thus, each
π̂i converges to Uniform({0, 1}), with π̂i(0) = π̂i(1) = 0.5 for all i.

Since each π̂i is Uniform({0, 1}), the joint policy π̂ will have a mode for each possible combination
of 0s and 1s across the n players. There are 2n such combinations. The probability of each mode is
π̂(a) =

∏n
i=1 π̂i(ai) = (0.5)n = 2−n. Therefore, the reconstruction of joint policy π̂ exhibits 2n

modes, each with probability 2−n.

To prove that the total variation distance between π∗ and π̂ is δTV (π∗, π̂) = 1− 21−n, we start with
the definition of total variation distance:

δTV (π
∗, π̂) =

1

2

∑
a

|π∗(a)− π̂(a)|

For π∗, we have π∗(a1) = π∗((1, . . . , 1)) = 0.5, π∗(a2) = π∗((0, . . . , 0)) = 0.5, and π∗(a) = 0
for all other a. For π̂, we have π̂(a) = 2−n for all 2n modes.

Calculating the sum of absolute differences:

|π∗(a1)− π̂(a1)|+ |π∗(a2)− π̂(a2)| = |0.5− 2−n|+ |0.5− 2−n| = 1− 21−n

For the remaining 2n − 2 modes of π̂:∑
|0− 2−n| = (2n − 2) · 2−n = 1− 21−n

Therefore,

δTV (π
∗, π̂) =

1

2
· (1− 21−n + 1− 21−n) = 1− 21−n

As n→∞, we have:

lim
n→∞

δTV (π
∗, π̂) = lim

n→∞
(1− 21−n) = 1− lim

n→∞
21−n = 1− 0 = 1
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This limit indicates a severe distribution shift between the true optimal policy π∗ and its factorized
approximation π̂ as the number of players increases.

G.2 PROOF OF PROPOSITION F.1

First, we derive the optimization objectives with independent learning framework. By decomposing
the KL term in (F.1), we have

LInd =
n∑
i=1

(
Es∼Dµ,ai∼πθi

Qi(s, ai) +
1

β
Es∼Dµ,ai∼πθi

log µi(ai|s) +
1

β
Es∼DµH(πi(ai|s))

)
where H(πi(ai|s)) is the entropy of the agent i’s policy. As BRPO-IND learns behavior policy
independently, we can directly get the term log µi(ai|s) implicitly from the pretrained diffusion
models of each agent.

Consider that each agent’s policy is trained independently without dependency, we can derive the
gradient of agent i as

∇θiLInd = ∇θi
n∑
i=1

(
Es∼Dµ,ai∼πθi

Qi(s, ai) +
1

β
Es∼Dµ,ai∼πθi

log µi(ai|s) +
1

β
Es∼DµH(πi(ai|s))

)
= Es∼Dµ,ai∼πθi

[
∇θiQi(s, ai) +

1

β
∇θi log µi(ai|s)

]
= Es∼Dµ,ai∼πθi

[
∇θiπi ∗ ∇aiQi(s, ai) +

1

β
∇θiπi ∗ ∇ai log µi(ai|s)

]
= Es∼Dµ,ai∼πθi

[
∇aiQi(s, ai) +

1

β
∇ai log µi(ai|s)

]
∇θiπi.

Notice that the term ∇ai log µi(ai|s) serves as the score function of the independent behavior policy,
we can further construct a surrogate loss LsurrInd and derive a practical gradient for BRPO-IND. Our
proof is mainly inspired by the following Lemma G.1.
Lemma G.1 (Proposition 1 in Chen et al. (2024)). Given that π is sufficiently expressive, for any
time t, any state s, we have

argmin
π
DKL[πt(·|s)||µt(·|s)] = argmin

π
DKL[π(·|s)||µ(·|s)],

where both µt and πt follow the same predefined diffusion process in qt0(xt|x0) = N (xt|αtx0, σ2
t I),

which implies xt = αtx0 + σtε.

The surrogate loss is

Lsurr
Ind(θi) = Es,ai∼πθi

Q(s, ai)−
1

β
Et,sω(t)

σt
αt
DKL[πθi,t(·|s)∥µi,t(·|s)]. (9)

Then we can propose the practical gradient as follows.
Proposition G.2 (Practical Gradient of BRPO-IND). Given that πθi is deterministic policy and ϵ∗i is
the optimal diffusion model of independent behavior policy µi, the gradient of the surrogate loss (9)
w.r.t agent i is

∇θiLπsurr(θ) =

[
Es∇aQϕ(s, a)|a=πθ(s) −

1

β
Et,sω(t)(ϵ∗i (at,i|s, t)− ϵi)|ai,t=αtπθi

(s)+σtϵi

]
∇θiπθi(s).

Proof. The fundamental framework of the proof follows the proof process of SRPO (Chen et al.,
2024), extending it to the multi-agent scenario. Based on the forward diffusion process in section 2.2,
we can represent the noisy distribution of actor policy at step t as

πθi,t(at,i|s) =
∫
N (ai,t|αtai, σ2

t I)πθi(ai|s)dai (10)

=

∫
N (at,i|αtai, σ2

t I)δ(ai − πθi(s))dai (11)

= N (at,i|αtπθi(s), σ2
t I) (12)
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Note that πθ,t(·|s) is a Gaussian policy with expected value αtπθ(s) and variance σ2
t I , we can

simplify the surrogate training objective as

LsurrInd (θi) = Es,ai∼πθi
(·|s)Q(s, ai)−

1

β
Et,sω(t)

σt
αt
DKL[πθi,t(·|s)∥µi,t(·|s)]

= EsQ(s, ai)|ai=πθi
(s) +

1

β
Et,sω(t)

σt
αt

Eai,t∼N (·|αtπθi
(s),σ2

t I)
[log µt(ai,t|s)− log πt,θi(ai,t|s)]

Then we can derive the gradient of this objective as follows

∇θiLsurrInd (θi) = ∇θiEs∼DµQϕ(s, ai)|ai∼πi
θ(s)

+
1

β
Et,s

σt
αt
ω(t)∇θiEϵi

[
log µit(a

i
t|s)− log πit(a

i
t|s)

]
(reparameterization of πi = αtπθi(s) + σtϵi)

= ∇θiEs∼DµQϕ(s, ai)|ai∼πi
θ(s)

+
1

β
Et,s,ϵi

σt
αt
ω(t)

[
∇θi log µit(ait|s)−∇θi log πit(ait|s)

]
(chain rule)

= ∇θiEs∼DµQϕ(s, ai)|ai∼πi
θ(s)

+
1

β
Et,s,ϵi

σt
αt
ω(t)

[
∇ati log µ

i
t(a

i
t|s)∇θiati|ati=αtπθi

(s)+σtϵi

−∇ati log π
i
t(a

i
t|s)∇θiati|ati=αtπθi

(s)+σtϵi

]
= Es∼Dµ∇aiQϕ(s,ai,a−i)|ai∼πi

θ(s),a−i∼π−i
θ (s)∇θiπi

+
1

β
Et,s,ϵi

σt
αt
ω(t)

[
−ϵi(ai|s, t)

σt
αt∇θiπθi(s) +

ϵ

σt
αt∇θiπθi(s)

]

=

Es∇aiQϕ(s,ai,a−i)|ai∼πi
θ(s),a−i∼π−i

θ (s)︸ ︷︷ ︸
Q gradient

− 1

β
Et,s,ϵiω(t)

ϵi(ati|s, t)︸ ︷︷ ︸
score µt

i

− ϵ︸︷︷︸
score πt

i

 |ati=αtπθi
(s)+σtϵi

∇θiπi(s)
(13)

G.3 PROOF OF PROPOSITION F.2

First, we derive the optimization objectives with centralized learning framework. By decomposing
the KL term, we have

LiCTDE = Es∼Dµ,a∼πθ(·|s)Q
tot(s,a) +

1

β
Es∼Dµ,a∼πθ(·|s) log µ(a|s) +

1

β
Es∼DµH(π(a|s)),

whereH(π(a|s)) is the entropy of the joint policy. Then we need to distill the decentralized executive
policy for each agent. Consider that each agent policy πθi is an isotropic Gaussian policy, we can
decompose the joint policy by π = πθiπθ−i . The gradient of agent i is as follows

∇θiLiCTDE = ∇θiEs∼Dµ,a−i∼πθ−i
(·|s)

[
Qtot(s,a) +

1

β
log µ(a|s)

]
(14)

= Es∼Dµ,a−i∼πθ−i
(·|s)

[
∇θiQtot(s,a) +

1

β
∇θi log µ(a|s)

]
(15)

= Es∼Dµ,a−i∼πθ−i
(·|s)

[
∇θiπi ∗ ∇aiQtot(s,a) +

1

β
∇θiπi ∗ ∇ai log µ(a|s)

]
(16)

= Es∼Dµ,a−i∼πθ−i
(·|s)

[
∇aiQtot(s,a) +

1

β
∇ai log µ(a|s)

]
∇θiπi. (17)
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Importantly, different from the cases in BRPO-IND, we cannot distill a score function∇ai logµ(a|s)
from the pretrained diffusion models of joint behavior policies. To illustrate the influence of inpropo-
rate factorizations, we slightly abuse the factorization assumptions to decompose the joint behavior
policy as µ(a|s) =

∏n
i=1 µi(ai|s) and propose a revised baseline called BRPO-CTDE. This variant

shares most of the framework with BRPO-CTDE, but differs in the policy regularization component:
instead of using the joint behavior policy, BRPO-CTDE employs individual behavior policies for
regularization.

H DETAILS ABOUT PRACTICAL ALGORITHM

H.1 OMSD PIPELINE

The OMSD methods contain a two-stages training process: 1) pretraining sequential diffusion models
and joint action critic on the dataset by making score decomposition, and 2) injecting decomposed
scores as the individual policy regularization terms into the critic and derive deterministic policies for
execution. The resulting OMSD algorithm is presented in Algorithm 1.

The basic workflow of OMSD follows the idea of SRPO (Chen et al., 2024) by extending the single
agent learning process into multi-agent process, where the unbiased score decomposition methods
proposed in section 3.2 are plugged-in to avoid the uncoordination policy updated. Specifically, as we
take the joint critic and individual score regularization, all the agents share the copies of a pre-trained
common joint action Q-networks Qtot and keep individual pre-trained behavior diffusion models
to extract the score regularization. This is a common setup in multi-agent reinforcement learning,
such as MADDPG. Besides, each agent maintains a deterministic policy as the actor network, which
bypasses the heavy iterative denoising process of diffusion models to generate actions and enjoy the
fast decision-making speed.

H.2 PRETRAINING IQL AS CRITIC

The centralized Q-network are pretrained with implicit Q-learning (Kostrikov et al., 2021), which
introduced the expectile regression in pessimistic value estimation:

minLV (ζ) = E(s,a)∼Dµ
[Lτ2 (Qϕ(s, a)− Vζ(s))] ,

minLQ(ϕ) = E(s,a,s′)∼Dµ

[
||r(s, a) + γVζ(s

′)−Qϕ(s, a)||22
]
,

where Lτ2(u) = |τ − 1(u < 0)|u2 is the expectile operator.

H.3 PRETRAINING DIFFUSION MODELS

Considering the state and actions are continuous, the behavior models are trained with classsifier-
free guidance diffusion models (Hansen-Estruch et al., 2023; Chen et al., 2024) by minimizing the
following loss:

min
ψi

Lµ(ψi) = Et,ϵi,(s,a)∼Dµ

[
||ϵ̂ψi

(ait|s, ai−, t)− ϵ||22
]
ait=αtai+σtϵ

, (18)

where t ∼ U(0, 1), ϵ ∼ N (0, I), and the sequential score function can be estimated with
ϵ̂ψi(a

i
t|s, ai−, t) ≈ −σt∇ai log µ(ai|s, ai−) (Song et al., 2020a).

Following similar numerical computation simplification methods in SRPO Chen et al. (2024), we also
utilize the intermediate distributions of the entire diffusion process t ∈ [0, 1] to replace the original
training objective here. The surrogate objective is

max
θi
Lsurrπ (θi) =Es∼Dµ,ai∼πi(·|s),a−i∼π−i(·|s)Qϕ(s,ai,a−i) (19)

− 1

β
Et,sω(t)

σt
αt
DKL

[
πi,t(· | s)∥µi,t(· | s, ai−)

]
|ai−∼πi− ,

where ω(t) = δ(t − 0.02)α0.02

σ0.02
is the weighting parameters to ensure the gap between

Lsurr(θi) and L(θi), πi,t(· | s) := Eai∼πi(·|s)N (ai,t|αtai, σ2
t I), and µi,t(· | s, ai−) :=

Eai∼µi,t(·|s,ai−)N (ai,t|αtai, σ2
t I).
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Considering the instability of the diffusion model near the initial and terminal times, we truncate the
time range as t ∼ U(0.02, 0.98). Therefore, we can derive the practical gradients for optimizing the
objective as

∇θiLπ(θi) =Es∼Dµ,ai−∼π̄−i,ai+∼πi+ [∇ai
Qϕ(s,a)|ai=πθi

,a−i=πθ−i
(s) (20)

+
1

β
∇ai

a · ∇a log µ(a | s)|a=πθ(s)︸ ︷︷ ︸
=−ϵ∗(at|s,t)/σt|t→0

]∇θiπθi(s).

Compared to the naive score decomposition methods BRPO-CTDE, the main improvement is
replacing the biased score regularization with sequential decomposed score. It strongly guarantees
the policy update directions and coordination among all agents’ gradients.

H.4 DISCUSSIONS

In OMSD, the sequential conditional distribution is solely utilized during the policy update phase to
extract conditional score functions for policy regularization. Specifically, the sequential structure is
not embedded in the execution policy. Instead, it is only used to model the joint behavior policy and
derive score functions that guide individual policy updates. This design ensures that during execution,
each agent’s policy remains independently executable based solely on local observations, without
requiring sequential action selection or global coordination at runtime.

In continuous control tasks, the policy is typically modeled as a Dilac distribution (or Gaussian
distribution). Without loss of generality, we employ the Dilac policy, which provides deterministic
prefix actions a<i given the state during the policy update of agent i. This approach not only preserves
the flexibility of simultaneous decision-making but also enables efficient parallel pre-training of score
models for each agent directly from the dataset. By decoupling the sequential modeling of joint
behavior policies from the execution phase, OMSD achieves a unique balance between coordinated
learning and decentralized execution, making it highly efficient and scalable for real-world multi-agent
scenarios.

While Gaussian policies are standard in continuous control, they are suboptimal for sequential
score regularization since sampling stochastic prefix actions causes noise propagation and instability.
Instead, we adopt Dilac policies—deterministic mappings with likelihood approximation capacity—to
ensure that prefix actions remain stable and deterministic during training.

This design choice aligns with the score distillation requirement and allows high-throughput parallel
updates across agents, improving both training efficiency and scalability.

Crucially, OMSD does not employ the diffusion model as an actor network during execution, which
could lead to out-of-distribution (OOD) action problems due to the iterative sampling process Mao
et al. (2024). Instead, we only perturb the sampled actions from policy a0i = π(ai|s) with a random
noise ϵt ∼ N (0, I) to construct latent variables ati and use the diffusion model to compute the
corresponding score function ϵ̂(ati|s, a<i, t) as behavior regularization. This approach avoids the
computationally expensive ancestral sampling required in denoising steps in traditional diffusion
models, significantly accelerating both training and execution.

Figure 3 illustrates the training workflow of OMSD. Joint offline data is reused to train a global Q
function Qtot(s,a) and agent-wise conditional diffusion models. During policy updates, each agent
receives:

• Top-down guidance from Qtot(s,a), for identifying high-value regions;
• Bottom-up score regularization from the diffusion model, which conditions on prior agents’

actions and regularizes against OOD updates.

This two-way information flow enables coordinated learning while ensuring in-distribution updates at
each step. Even when earlier agents’ policies deviate, the proper conditional score guides corrections,
preserving a stable joint behavior pattern.

Moreover, because diffusion models are used only for score estimation, not sampling, OMSD avoids
diffusion-based actor workflows that suffer from iterative sampling inefficiency and OOD action
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generation Mao et al. (2024). The final policies remain lightweight, independently executable, and
deployable in fully decentralized environments.

I COMPUTATIONAL RESOURSES

For MaMuJoCo and MPE experiments, we utilized a single NVIDIA Geforce RTX 3090 graphics
processing unit (GPU). For the most complex MaMuJoCo task, training IQL takes 6-10 hours, training
the diffusion model for each agent takes 4-6 hours, and training the OMSD policy update only takes
1-2 hours to converge. For the simpler tasks such as MPE and bandit, each module only takes 1 hour
and 10 minutes respectively. Since the sequential diffusion model for each agent can be trained in
parallel using the data from the dataset, multiple pretraining models can be initiated in parallel to
avoid the training time increasing linearly with the number of agents.

IMPACT STATEMENT

This work advances offline multi-agent reinforcement learning (MARL) by addressing the challenge
of unbiased decomposition of multimodal joint action behavior distributions. Our methods improve
coordination and decision-making in multi-agent systems, with potential applications in robotics,
autonomous vehicles, and collaborative AI systems. By enabling more effective offline learning, our
approach reduces the need for risky online exploration in safety-critical domains.

J USE OF LLMS

We use LLMs for polish writing. Specifically, LLMs assist in refining the grammar, clarity, and
overall presentation of the paper, ensuring that the text is clear and professionally written. No
experimental results or core content were generated by LLMs.

K LIMITATION AND FUTURE WORKS

Our current work is limited to continuous control tasks, and we have not yet validated the effectiveness
of OMSD on discrete action spaces. In the future, we plan to extend our approach to a wider range of
discrete or hybrid tasks to further test its generalizability and practical value.
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