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Clustered Federated Learning via Generalized Total
Variation Minimization

Yasmin SarcheshmehPour ¥, Yu Tian

Abstract—We study optimization methods to train local
(or personalized) models for decentralized collections of local
datasets with an intrinsic network structure. This network struc-
ture arises from domain-specific notions of similarity between
local datasets. Examples of such notions include spatio-temporal
proximity, statistical dependencies or functional relations. Our
main conceptual contribution is to formulate federated learning
as generalized total variation (GTV) minimization. This formula-
tion unifies and considerably extends existing federated learning
methods. It is highly flexible and can be combined with a broad
range of parametric models, including generalized linear models
or deep neural networks. Our main algorithmic contribution is a
fully decentralized federated learning algorithm. This algorithm
is obtained by applying an established primal-dual method to
solve GTV minimization. It can be implemented as message
passing and is robust against inexact computations that arise
from limited computational resources, including processing time
or bandwidth. Our main analytic contribution is an upper bound
on the deviation between the local model parameters learnt by
our algorithm and an oracle-based clustered federated learning
method. This upper bound reveals conditions on the local models
and the network structure of local datasets such that GTV
minimization is able to pool (nearly) homogeneous local datasets.

Index Terms—Federated learning,
networks, total variation, regularization.

clustering, complex

1. INTRODUCTION

ANY important application domains generate collec-

tions of local datasets that are related via an intrinsic
network structure [1]. Two timely application domains generat-
ing such networked data are (i) healthcare management during
pandemics and (ii) the Internet of Things (IoT) [2], [3], [4].
Such local datasets are generated by smartphones, wearables,
or industrial IoT devices [5]. These local datasets are related
via physical contact networks, social networks, co-morbidity
networks, or communication networks [6], [7], [8]. The model
for networked data studied in this paper can also be useful
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for geospatial data analysis. Indeed, local datasets generated
at near-by geographic locations tend to have similar statistical
properties (distributions) [9], [10], [11], [12], [13].

Federated learning (FL) is an umbrella term for machine
learning (ML) techniques that collaboratively train models on
decentralized collections of local datasets [14], [15], [16]. These
methods carry out computations such as gradient descent steps
during model training at the location of data generation, rather
than first collecting all data at a central location [17]. FL. meth-
ods are appealing for applications involving sensitive data (such
as healthcare) as they do not require the exchange of raw data
but only model (parameter) updates without leaking sensitive
information in local datasets [15]. Moreover, FL. methods offer
robustness against malicious data perturbation due to its intrin-
sic averaging or aggregation over large collections of (mostly
benign) datasets [18].

FL applications often face local datasets with different sta-
tistical properties [19]. Each local dataset induces a separate
learning task that consists of learning (or optimizing) the pa-
rameters of a local model. Our focus is on applications where
local datasets are too small to allow for reliable training of high-
dimensional local models. For these applications, the training of
high-dimensional local models separately for each local dataset
would result in overfitting [20, Ch. 6].

To avoid overfitting of local models, our FL. method couples
the training of local models via adding a regularizer [20, Ch. 7].
This regularizer is a quantitative measure for the variation of
local model parameters, which we refer to as generalized total
variation (GTV) (see Section III). We solve the resulting GTV
minimization problem using a primal-dual method that can be
implemented as message passing over the network structure of
local datasets (see Section IV).

A main theme of our paper is that GTV minimization is an
instance of clustered FL [19], [21], [22]. Clustered FL methods
aim at grouping local datasets into a few disjoint subsets or
clusters, which are then used to train a cluster-specific model.
Instead of explicitly pooling local datasets in the same cluster,
GTV minimization enforces identical local model parameters at
all nodes in the same cluster. We provide sufficient conditions
on the connectivity of the empirical graph and the geometry
of local models such that GTV minimization recovers the true
underlying cluster structure of local datasets (see Section V).

What sets our approach apart from existing methods for
clustered FL [19], [21] is that we exploit known pairwise sim-
ilarities between local datasets. These similarities are encoded
by the weighted undirected edges of an empirical graph [22].

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on September 26,2025 at 05:49:23 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2724-2339
https://orcid.org/0000-0001-9467-9410
https://orcid.org/0000-0003-2189-2813
https://orcid.org/0000-0001-7538-0990
mailto:alex.jung@aalto.fi
https://doi.org/10.1109/TSP.2023.3322848

SARCHESHMEHPOUR et al.: CLUSTERED FEDERATED LEARNING VIA GENERALIZED TOTAL VARIATION MINIMIZATION

Algorithm 1 Primal-Dual Method for GTV Minimization
foriecV,

Input: empirical graph G; local loss {L; (-) }
GTV parameter A and penalty ¢(-)
Initialize: k :=0; W\ := 0, 7; = 1/|N@| for all nodes i € V;
4l := 0,0, = 1/2 for each ec&;

1: while stopping criterion is not satisfied do

i€V’

2: for all( 4r)10des { %)V do ©
~ (2 ~ (2 ~(e
3: w/(f-;-l =W, ‘* Ti %665 Deyiuk
4 Wil = Put {wil, |
5: end for
6: for all edges e € £ do
~(e) . ~(e ~(eqr) ~(eo) ~(eq)
7: u,(H)1 = u,(c)—l—oe(Q(Wk;{ —wkﬂ)—(wl(c+ -
wke_
8: a) =pu {al)
9: end for
10: k:=k+1

11: end while ‘
Ensure: learnt model parameters vAv,g1 for each node 7 € V

Instead of a trivial combination of clustering methods and
cluster-wise model training, our FL method (see Algorithm 1)
interweaves the pooling of local datasets with model training.
We use the connectivity of the empirical graph to guide this
pooling (see Section IV).

Our FL method requires a useful choice for the empirical
graph of networked data. If a useful choice for the empirical
graph is not obvious, we might use statistical tests for the
similarity between two datasets [23]. These tests could be based
on parametric models such as (mixtures of) Gaussian distribu-
tions or non-parametric methods for density estimation [24],
[25], [26], [27]. We demonstrate some of these methods in the
numerical experiments of Section VI. However, the analysis
of graph learning methods for collections of local datasets is
beyond the scope of this paper (see Section VII).

A. Related Work

Similar to [9], [10], [16], [28], [29], we use regularized
empirical risk minimization (RERM) to learn tailored models
for local datasets. For each local dataset, we obtain a separate
learning task that amounts to finding an (approximately) opti-
mal choice for the parameters of a local model. These individual
learning tasks are coupled via the undirected weighted edges of
an empirical graph (see Section II). In contrast to [29], which
uses a probabilistic model for the empirical graph, we consider
the empirical graph as fixed and known (non-random).

To capture the intrinsic cluster structure of networked data,
we use the GTV of the local model parameters as the regu-
larizer. GTV unifies and extends several existing notions of
total variation [9], [10], [16], [28]. GTV is parametrized by a
penalty function, which is used to measure the difference of
local model parameters at neighbouring nodes in the empirical
graph. Computationally, the main restriction for the choice of
penalty function is that it must allow for efficient computation
of the corresponding proximal operator (3). Some authors refer
to such functions as “proximable” [30].
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Our analysis reveals conditions on the network structure
between local datasets and their local models such that GTV
minimization is able to identify the cluster structure of the
empirical graph. This is relevant for the application of GTV
minimization to clustered FL [19], [21]. In contrast to existing
work on clustered FL, we exploit a known similarity structure
between local datasets. We represent these similarities by the
edges of an empirical graph.

GTV minimization unifies and considerably extends popular
optimization models for FL [9], [10], [16], [21], [28]. A convex
formulation of clustered FL has been proposed in [21]. Dis-
tributed gradient (primal) and primal-dual methods have been
studied in FL settings, including unreliable and limited com-
munication and computational resources [16], [28], [31], [32].
Fundamental lower bounds on the computational complexity of
non-smooth optimization have been derived recently in terms of
the network diameter [33]. Our analysis uses more fine-grained
properties of the empirical graph and aims at the estimation
error instead of the convergence speed of optimization methods.

We obtain practical FL. methods by solving GTV minimiza-
tion using an established primal-dual method for non-smooth
convex optimization [34, Alg. 6]. As the name suggests, this
primal-dual method jointly solves GTV minimization and a
dual problem. This method is widely used in image processing
(see [34] and references therein) and has been applied to a
special case of GTV minimization in our previous work [9].
This paper generalizes the methods and analysis of [9] to a
significantly larger class of local models and total variation
measures. In particular, [9] studies the special case of GTV
minimization obtained for local linear models and absolute
error loss. Here, we consider GTV minimization methods that
can be combined with a wide range of (potentially non-linear)
parametrized models including graphical Lasso or deep neural
networks [35], [36].

The primal-dual method [34, Alg. 6] is well-suited for FL
applications in several aspects. First, as we show in Section IV,
the primal-dual method [34, Alg. 6] can be implemented as a
message-passing protocol over the empirical graph. Message-
passing algorithms are scalable to massive collections of lo-
cal datasets as long as their empirical graph is sparse (e.g.,
a bounded degree network) [37]. Moreover, the primal-dual
method [34, Alg. 6] also offers robustness against limited com-
putational resources and imperfections [38]. This robustness
is crucial for the applicability of our FL. method as its basic
computational step is a (separate) regularized model training
for each local dataset. Given finite computational resources, this
regularized model training will incur numerical (optimization)
errors [38].

This paper develops and exploits a duality between GTV
minimization and network flow optimization [39]. It lends natu-
rally to the design and analysis of primal-dual methods for solv-
ing instances of GTV minimization arising in FL. Our approach
differs conceptually and algorithmically from existing primal-
dual methods for FL [10], [16], [31]. Moreover, it significantly
generalizes our previous work [9] on a primal-dual method for
a special case of GTV minimization.

Algorithmically, our method is an instance of the proximal-
point algorithm [40], which is different from the dual
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coordinate ascent method in [16], [41] and also different from
the alternating direction method of multipliers (ADMM) used
in [10]. We refer to [34], [42] for more discussion of the
differences and similarities between duality-based methods,
including ADMM [31].

Another main difference between [10], [16] and our method
is that we allow for a wider range of penalty functions to
measure the variation of local model parameters across an edge
in the empirical graph. Indeed, our method can be combined
with any penalty function that is proximal in the sense of having
a proximal operator that can be computed efficiently. The FL
method in [16] uses a fixed choice for the penalty function,
which is the squared Euclidean norm.

We like to point out the different notions of duality used
in our approach and in [16]. Indeed, we show that the dual
problem of GTV minimization is an instance of a network flow
optimization. In particular, this dual problem optimizes (vector-
valued) flows along edges in the empirical graph (see Sec-
tion III-C). These flows are injected and absorbed at the nodes
via the gradient of the loss function used to train the local mod-
els. On the other hand, the dual problem in [16] does not allow
for an obvious interpretation as a network flow optimization. As
a case in point, the dual variables in [16] are associated with the
nodes of the empirical graph, their dimension being the local
sample size. In contrast, we introduce a dual variable (vector)
for each edge in the empirical graph. These dual vectors have a
fixed length, which is equal to the (common) dimension of the
local models at the nodes of the empirical graph.

In contrast to its computational aspects, the statistical aspects
of GTV minimization are far less understood. It is possible to
frame GTV minimization as the learning or recovery of group-
sparse models which have been thoroughly studied within high-
dimensional statistics [43], [44]. However, it is unclear how the
group-sparse models underlying GTV minimization are related
to the fine-grained properties (such as cluster structure) of the
empirical graph. Our main contribution is an upper bound on
the estimation error of GTV minimization. This upper bound
reveals sufficient conditions on the empirical graph and the local
models such that GTV minimization is able to correctly pool
local datasets with similar statistical properties (distributions).

In terms of mathematical tools, the closest to our work is the
recent analysis [45] of convex clustering, which is a special
case of GTV minimization (see Section III-C). Like the authors
of [45], we use a primal-dual witness approach [46, Sec II] to
characterize the solutions of GTV minimization. This approach
uses a carefully crafted dual solution to the dual problem of
GTV minimization which serves as a certificate for the cluster
structure of any (primal) solution to GTV minimization.
The construction of the dual solution uses a modified GTV
minimization on a cluster graph, which is obtained from the em-
pirical graph by merging all nodes in the same cluster (see Ap-
pendix IX-A in the supplementary material and [45, Eq. (12)]).
In contrast to [45], we characterize the cluster structure of GTV
minimization using network flows. These flows, which must
respect capacity constraints along the edges of the empirical
graph, are injected and absorbed as the gradients of local
loss functions.
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Finally, we would like to put our work into context of graph
clustering methods [47], [48], [49], [50]. In particular, GTV
minimization generalizes graph clustering methods in the sense
of not only taking into account the connectivity (edges) in the
empirical graph but also the shape of local loss functions (which
are used to train the local models). The main theme of this
paper is the interplay between the edge connectivity of the
empirical graph and the shape of local loss functions within
GTV minimization.

B. Contribution

We next enumerate the main contributions of this paper.

o We propose GTV minimization as a flexible design prin-
ciple for distributed FL algorithms. GTV minimization is
an instance of RERM using the variation of local model
parameters as a regularizer. GTV minimization unifies and
extends existing optimization models for FL, including
nLasso [9], [10], MOCHA [16] and clustering methods
[45], [50].

o We show that GTV minimization is dual (in a very precise
sense) to vector-valued network flow optimization [51].
This duality generalizes some well-known duality results
for network optimization [52] and our own recent work on
special cases of GTV minimization [39].

o We present a novel FL algorithm, which is obtained by
applying an established primal-dual method to solve GTV
minimization and its dual [30], [34, Alg. 6]. The result-
ing Algorithm 1 can be combined with a wide range of
parametric local models and variants of TV (obtained for
different GTV penalty functions). From a computational
perspective, the only requirement on the local models is the
existence of efficient RERM implementations (see (32)).
Likewise, Algorithm I can be implemented for any GTV
penalty function that allows the computationally efficient
evaluation of its convex conjugate (see (33)).

o Using a clustering assumption on the local datasets, we
derive an upper bound on the estimation error incurred
by GTV minimization. This upper bound reveals sufficient
conditions on the local models and their network structure
such that GTV minimization is able to pool local datasets
in the same cluster. We hasten to note that our analysis
only applies to GTV minimization (i) using a penalty
function being a norm and (ii) local models resulting in
convex training problems. Thus, our bounds do not apply
to methods that either use graph Laplacian quadratic form
as regularizer (such as MOCHA) or local models resulting
in non-convex loss functions (deep nets).

C. Outline

Section II introduces the concept of an empirical graph to
represent collections of local datasets, the corresponding local
models as well as their similarity structure. Section III intro-
duces GTV as a measure for the variation of local model param-
eters across the edges in the empirical graph. As discussed in
Section III-A, GTV minimization balances the variation of local
model parameters over well-connected local datasets (forming
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a cluster) and incurring a small loss (training error) for each
local dataset. The dual problem of GTV minimization is then
explained in Section III-B. Section III-C presents several useful
interpretations of GTV minimization and its dual. Section IV
applies a well-known primal-dual optimization method to solve
GTV minimization and its dual in a fully distributed fash-
ion via message passing over the empirical graph (see Algo-
rithm 1). The results of numerical experiments are discussed
in Section VI.

D. Notation

The identity matrix of size n x n is denoted I,,, with the sub-
script omitted if the size n is clear from the context. We use || - ||
to denote some norm defined on the Euclidean space R? and
| - ||« to denote its dual norm [53, Appx. 1.6.]. Two important

examples are the Euclidean norm ||w||o:=4/ Z;l:l w? and the

¢1 norm ||w||1::Z:;l=1 |w;| of a vector w=(wy,...,wq)" €
R?. Tt will be convenient to use the notation (1/27) instead of
(1/(27)). We will need the (vector-wise) clipping operator

yw/llwllz - for [wlla>7

w otherwise.

T (w):= (1)

The scalar clipping operator 7 (%) (w) is obtained as a special
case of (1) by considering the scalar w as a vector with a
single entry (where ||w||, = |w|). Given a closed proper convex
function f(x) with domain being a subset of R?, we define its
associated convex conjugate function as [53]

fH(x) = sup x"z — f(z). )

zcRd

We will use the proximal operator of a closed proper convex
function f(x), defined as [31]

prox; ,(x) := argxr/nin f(x")
+(p/2)|x = x'[|3 with p> 0. (3)

Note that the minimum in (3) exists and is unique since the
objective function is strongly convex [53].

II. PROBLEM FORMULATION

We find it useful to represent networked data by an undi-
rected weighted empirical graph G = (V,&). For notational
convenience, we identify the nodes of an empirical graph with
natural numbers, V = {1,...,n}. Each node i € V of the em-
pirical graph G carries a separate local dataset X'(*). It might be
instructive to think of a local dataset X'(*) as a labeled dataset

X(” — {(X(ivl)’y(i71))) o (X(i,mi)’ y(l,m7))} . (4)

Here, x(") and y(T) denote, respectively, the feature vector and
true label of the r-th data point in the local dataset X'(*). Note
that the size m; of the local dataset might vary across nodes
1 € V. Fig. 1 depicts an empirical graph with n=11 nodes V =
{1,...,n}, each carrying a local dataset X'(*).

We highlight that our method (see Section IV) is not re-
stricted to local datasets of the form (4). Indeed, Algorithm 1
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Fig. 1. We represent networked data and corresponding models using an
undirected empirical graph G = (V, €). Each node i € V of the graph carries
a local dataset X(9) and model parameters w(%), which are scored using
a local loss function L; (w(i)) (that encapsulates the local dataset X’ (@),
Two nodes are connected by a weighted edge {7,:'} if they carry datasets
with similar statistical properties. The amount of similarity is encoded in
an edge weight A; ;7 > 0 (indicated by the thickness of the links). We rely
on a clustering assumption, requiring optimal parameter vectors for nodes
in the same cluster C(9) CV to be nearly identical. The empirical graph
is partitioned into three disjoint clusters C(1),C(2),¢(3). Note that our FL
method does not require the (typically unknown) partition but rather learns
the partition based on the local datasets and network structure of G.

and its analysis (see Section V) only requires indirect access
to X() via the evaluation of some local loss function L; (V).
The value L; (v) measures how well a model with parameters
v fits the local dataset X'(©) (see Section II-A). We will study
different choices for the local loss function in Section VI.

Let us point out two particular aspects of our data-access
model via the evaluation of local loss functions. First, it lends
naturally to privacy-friendly methods as they do not need to
share raw data X'(¥). Instead, our methods only exchange (local)
information about local loss function L; (), such as the gradient
VL; (v) or the proximal operator value prox;, (,)(v) (3) for
a given choice w(*) = v for the local model parameter vector.
This information is typically obtained from averages over data
points and therefore revealing only a little information about
individual data points (if the sample size is not too small).

Besides its privacy-friendliness, our data access model also
handles applications where only a fraction of local datasets
are accessible. This is relevant for wireless sensor networks
that consist of battery-powered devices for computation and
wireless communication [54]. The lack of access to the local
dataset at some node 7 can be taken into account by using a
trivial loss function L; (v) = 0 for all parameter vectors v € R¢
(see Section VI).

An undirected edge {7, ¢} € £ indicates that the correspond-
ing local datasets X' (") and X’ (i) have similar statistical proper-
ties. In particular, two connected local datasets X’ () and X
might be pooled together to obtain a training set for a single
model. The strength of the similarity between two connected
nodes 7,7’ is quantified by the edge weight A, ;>0. We also
use A, := A; ; for an edge e = {7,4'}. It will be convenient to
indicate the absence of an edge between by a zero weight, i.e.,
A; i =0if and only if {i,i'} ¢ £.

Our main analytical contribution (see Theorem 2) charac-
terizes how the choice of £ influences the cluster structure
of the local model parameters learnt by GTV minimization.
The clustering of the learnt model parameters corresponds to
a pooling of local datasets within the same cluster. For GTV
minimization to be successful, the nodes in the same cluster
should carry local datasets with similar statistical properties.
We make this clustering assumption precise in Assumption 1
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and Definition 1 which is used in Theorem 2 to characterize
the estimation error of GTV minimization.

The undirected edge {i,4'} € £ encodes a symmetric notion
of similarity between local datasets. If the local dataset at node ¢
is (statistically) similar to the local dataset at node 7’ then also
vice-versa. The symmetric nature of the similarities between
local datasets is also reflected in the edge weights,

A; iy = Ay ,; for any two nodes i,7" € V.

It will be convenient for the formulation and analysis of our
FL method (see Algorithm 1) to orient the edges in £. In
particular, we define the head and tail of an undirected edge e =
{i,i’} €& as ey :=min{4,7'} and e_ := max{i,i'}, respec-
tively. The entire set of directed edges for an empirical graph is
obtained as

T o= {(ii) i, €V,i<i and {i,i'} €E}.  (5)

We abuse notation and use £ not only to denote the set of
undirected edges but also to denote the set (5) of directed edges
in the empirical graph G.

There are two vector spaces that are naturally associated with
an empirical graph G. The “node space” WV consists of maps w :
VY — R%: i+ w(® that assign each node i € V a vector w(?) €
R<. The “edge space” U of all maps u: £ — R?: e — ul® that
assign each edge e € £ a vector u(®) € R?. These two spaces are
linked via the block-incidence matrix D with entries D, ; =1
fori=e4, Doy =—1fori=e_,and D, ; = 0 otherwise. The
block-incidence matrix D represents a linear map

D:W —U:w—u with ul® = we+) — wle-)

(6)

with the adjoint (transpose) D7 representing another linear
map,

DT U—-W u—sw, w) = Z Z ul®— Z ul®. (7

ecf i=ey i=e_

Let us emphasize once more that we consider the empirical
graph and its weighted edges as a given design choice. This
design choice will influence the statistical and computational
properties of GTV minimization (see Algorithm 1). Section V
will provide conditions for the edges £ to capture the underlying
clustering structure of local datasets (see Definition 1). We
argue that many important application domains offer a natural
choice or construction for the edge set £. As a case in point,
consider applications where the local datasets X' () are gener-
ated by observing an underlying physical process at different
geographic locations. Here, the local datasets at nearby nodes
tend to have similar statistical properties (distributions) and,
in turn, the edge weights A; ;; can be determined from the
geographic locations of nodes i, [9], [10], [11], [12], [13].

A useful choice for the edges (and its weights) might also
be constructed from probabilistic models for the local datasets
X ie., interpreting data points in local datasets as i.i.d. real-
izations from a probability distribution p(*) (-). We can then use
estimators for the similarity between probability distributions
@ (), p)(-) to compute a useful edge weight A; ;7. Such esti-
mators include parametric methods for comparing sample mean
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and sample covariance [55], [56], and non-parametric methods
for estimating distances between probability distributions (see
[27], [57] and Section VI-C). However, we like to emphasize
that the study of efficient graph learning methods is beyond the
scope of this paper.

A. Networked Models

A networked model consists of a separate local model for
each local dataset X'(*). Our approach to FL allows for a large
variety of design choices for the local models. We only re-
quire all local models to be parametrized by a common finite-
dimensional Euclidean space R?. This setting covers some
widely used ML models, such as (regularized) generalized lin-
ear models or linear time series models [9], [58]. However,
our setting does not cover non-parametric local models such
as decision trees.

Networked models are parametrized by a map w € W that
assigns each node 7 € V in the empirical graph G a local model
parameter vector w(* € R%'w:V — R?: i+ w(®. We mea-
sure the usefulness of a particular choice for the local model
parameters w() by some local loss function L; (w(i)). Un-
less stated otherwise, we consider local loss functions that
are convex and differentiable. The FL method proposed in
Section IV allows for different choices for the local loss
functions. These different choices might be obtained, in turn,
from different combinations of ML models and performance
metrics [20, Ch. 3].

From a computational perspective, our main requirement on
the choice for the local loss function L; (w(?) is that it allows
for an efficient solving of the regularized problem,

min L; (w') + \|w' —w"||%. (8)
w’eR?

The computational complexity of our FL method (see Algo-
rithm 1) depends on the ability to efficiently solve (8) for any
given A € R, and w” € R?. Note that solving (8) is equivalent
to evaluating the proximal operator proxy, . o A(w).

Optimization methods for (8) have been implemented for
some widely used combinations of local models and loss func-
tions [59], [60]. In general, these optimization methods are
able to solve (8) only up to some non-zero optimization error.
However, our method is robust against such optimization errors
(see our discussion below Algorithm 1).

The FL method in Section IV applies to parametric models
that can be trained by minimizing a loss function L; (-) whose
proximal operator can be evaluated efficiently. Convex func-
tions for which the proximal operator can be computed effi-
ciently are sometimes referred to as “proximable” or “simple”
[30]. Note that the shape of the loss function typically depends
on both, the choice for the local model and the metric used to
measure prediction errors [20, Ch. 4].

Our focus is on applications where the local loss functions
L; (w(i)) do not carry sufficient statistical power to guide the
learning of model parameters w(?). As a case in point, con-
sider a local dataset X'V of the form (4), with feature vectors

'With a slight abuse of notation we will refer by w(?) also to the entire
collection of local model parameters.
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x(") € R? with m; < d. We would like to learn the parameter
vector w(?) of a linear hypothesis h(x) = (W(i))TX. Linear re-
gression methods learn the parameter vector by minimizing the
average squared error loss L; (w¥) = (1/m;) > (y) —
(w(i))Tx(T))2. However, for m; < d (the “high-dimensional”
regime) the minimum of L; (-) is not unique and might also
provide a poor hypothesis incurring large prediction errors on
data points outside X'(9) [20, Ch. 6]. Training linear models in
the high-dimensional regime requires regularization, such as in
ridge regression or Lasso [56].

The main theme of this paper is to use the empirical graph G
to regularize the learning of local model parameters by requir-
ing them not to vary too much over edges with large weights.
Section Il introduces the concept of GTV as a quantitative mea-
sure for the variation of local parameter vectors. Regularization
by requiring a small GTV is an instance of the smoothness
assumption used in semi-supervised learning [22].

Our analysis of GTV minimization in Section V relates its
underlying smoothness assumption to a clustering assumption.
Section II-B formalizes this clustering assumption, which re-
quires local model parameters to be constant over subsets (clus-
ters) of nodes in the empirical graph. Theorem 2 then offers
precise conditions on the empirical graph and local loss func-
tions such that GTV minimization successfully recovers the
clusters of nodes.

B. Clustering Assumption

Consider networked data with empirical graph G = (V,&).
Each node i in the graph carries a local dataset X'(*) and a local
model with parameters w(*). Our goal is to learn the local model
parameters w(?) for each node i € V. The key assumption of
clustered FL is that the local datasets form clusters with local
datasets in the same cluster having similar statistical properties
[21]. Given a cluster C of nodes, it seems natural to pool their
local datasets or, equivalently, add their local functions to learn
a cluster-specific parameter vector

= Li(

w(© = argmin f(© (v) with f©
i€C

veR?

Note that (9) cannot be implemented in practice since we typi-
cally do not know the cluster C. The main analytical contribu-
tion of this paper is an upper bound for the deviation between
solutions of GTV minimization and the cluster-wise (but im-
practical) learning problem (9). This bound characterizes the
statistical properties of FL algorithms that are obtained by ap-
plying optimization techniques for solving GTV minimization
(see Section IV).

The solution W(©) of (9) minimizes the aggregation (sum) of
all local loss functions that belong to the same cluster C C V.
Thus, W©) is the optimal model parameter for a training set
obtained by pooling all local datasets that belong to the cluster
C. As indicated by our notation, we tacitly assume that the
solution to (9) is unique. The uniqueness of the solution in (9)
will be ensured by Assumption 2 below.

We now make our assumption of datasets in the same cluster
“having similar statistical properties” precise. In particular, we
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require the local loss functions at nodes ¢ € C in the same cluster
C to have nearby minimizers. Thus, we require a small deviation

v — W(C)H between the minimizer v(*) of L; (-) and the
corresponding cluster-wise optimal parameter vector (9). This
requirement is, for differentiable and convex loss functions,
equivalent to requiring a small gradient of the local loss func-
tions at the cluster-wise minimizer (9). It will be convenient for
our analysis to formulate this requirement by upper bounding
the dual norm HVL (w(c))'

Assumption 1: (Clusterlng) Consider some networked data
represented by an empirical graph G whose nodes carry local
loss functions L; (v), for i € V. There is a partition of the nodes
V into disjoint clusters

of the local loss gradient.

P={cM,...,c™} with ¢9 ncl) =,
for c£¢ and V=CP U...uc®. (10)
Moreover, for each cluster C(¢) € P,
HVLZ- (W(C)) < 6@ forallieC©. (11)

Here, W©) € R? denotes the solution of the cluster-wise mini-
mization (9) for cluster C(9).

The clusterlng assumption
oz ("
nodes i € V in the empirical graph. We can interpret this norm
as a measure for the discrepancy between the cluster-wise
minimizer W (see (9)) and the minimizers of the local loss
w(®)) for each node i € C(©)

Section IV uses the cluster-wise minimization (9) as a the-
oretical device to analyze the solutions of GTV minimization
(16). It is important to note that (9) does not inform a practical
FL method, as it requires knowledge of the clusters in the par-
tition (10). It might be unrealistic to assume perfect knowledge
of the partition (10) postulated by Assumption 1. Rather, we
show that GTV minimization is able to recover this partition
using solely the edges of the empirical graph G.

Section III formulates FLL as GTV minimization, which is an
instance of RERM. GTV minimization enforces a clustering of
local model parameters by requiring a small variation across
edges in the empirical graph. Under Assumption 1, this regu-
larization strategy will be useful if many (large weight) edges
connect nodes in the same cluster but only a few (small weight)
edges connect nodes in different clusters. Section V presents
a precise condition on the network structure such that GTV
minimization succeeds in capturing the true underlying cluster
structure of the local loss functions.

The analysis of the FL. method proposed in Section V requires
the local loss functions to be convex and smooth. Moreover, we
require their (partial) sums in the cluster-wise objective f(¢) (-)
(9) to be strongly convex [61, Exercise 1.9].

Assumption 2: (Convexity and Smoothness). For each node
i €V, the local loss function L; (w(?)) is convex and differen-
tiable with gradient satisfying

the dual
to be bounded by a constant 6() for each

requires norm

functions L;

IVLi (v') = VL (V)| < 89 IV =] (12)

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on September 26,2025 at 05:49:23 UTC from |IEEE Xplore. Restrictions apply.



4246

For each cluster C(¢) € P in the partition (10), the cluster-wise
objective f(%) (-) (9) is strongly convex,

FO) 21O () + (v —v) 05O (v)+ () /2) v —v|?,
(13)

for any v/, v € R%.

Here, a9 >0isa positive constant that might be different for
different clusters C(®). The norm ||-|| in (12), (13) is the dual of
the norm ||-||, used in (12) and (11).

Assumption 2 is rather standard in FL literature [19], [28].
In particular, Assumption 2 is satisfied by many important ML
models [9]. Assumption 2 does not hold for many deep learning
models that result in non-convex loss functions [14]. Neverthe-
less, we expect our theoretical analysis to provide useful insight
also for settings where Assumption 2 is violated.

We emphasize that Assumption 2 does not require strong
convexity for each local loss function L, (-) individually.
Rather, it only requires their cluster-wise sums (9) to be strongly
convex. We also allow for trivial local loss functions that are
constant and might represent the inaccessibility of local datasets
due to privacy constraints or lack of computational resources.
The FL method in Section IV can tolerate the presence of
non-informative local loss functions by exploiting the similar-
ities between local datasets as reflected by the edges in the
empirical graph G.

III. GENERALIZED TOTAL VARIATION MINIMIZATION

The clustering Assumption 1 suggests to learn the model pa-
rameters w(®) via cluster-wise optimization (9). For each cluster
C(9) in the partition (10), we use the solution of (9) as the local
model parameters at all nodes 7 € C(®). However, this approach
is not practical since the partition (10) is typically unknown
and therefore we cannot directly implement (9). Instead, we
use the empirical graph G to penalize variations of local model
parameter w(?) over well-connected nodes (see Section III-A).

We hope that penalizing their variation (over the edges in
the empirical graph) favours local model parameters that are
approximately constant over nodes in the same cluster (10).
For this approach to be successful, the nodes in the same clus-
ter must be densely connected by many edges (having large
weights) in the empirical graph, while there should be only
a few edges (with small weights) between nodes in different
clusters. We will make this informal assumption precise in
Section V. For now, we use the informal clustering assumption
to motivate GTV as a useful regularizer for learning the local
model parameters.

If the cluster structure of G is reflected by a high density of
edges within clusters and few boundary edges between them, it
seems reasonable to require a small variation of local parameter
vectors w(?) across edges. We measure the variation of local
parameter vectors w € WV across the edges in G via the variation
u:ee&—ul®.=wl+) - wl-) Using the block-incidence
matrix (6) we can express the variation of w more compactly
as u=Dw.
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A quantitative measure for the variation of local model pa-
rameters w is the GTV

Wlgry = . Aiwd(wl) —w)
{i,4'}€&

(14)

with some convex penalty function ¢(-): R? — R. We also
define the GTV for a subset of edges S C £ as

Iwlls = > Aiso(w —w).

{i,i’}€S

5)

The GTV (14) provides a whole ensemble of variation mea-
sures. This ensemble is parametrized by a penalty function
¢(v) € R, which we tacitly assume to be convex. The penalty
function ¢(+) is an important design choice that determines the
computational and statistical properties of the resulting GTV
minimization problem (see Sections IV and V). Two popular
choices are ¢(v) :=||v||2, which is used by nLasso [10], and
é(v) := (1/2)||v]|3 which is used by the method MOCHA [16].
Another recent FL method uses the choice ¢(v) := ||v||1 [62].

Different choices for the penalty function offer different
trade-offs between computational complexity and statistical
properties of the resulting FL algorithms. As a case in point,
the penalty ¢(u) = ||u||2 (used in nLasso) is computationally
more challenging than the penalty ¢(u) = (1/2)|lul|3 (used in
MOCHA [16]). On the other hand, nlLasso is more accurate in
learning models for data with specific network structures (such
as chains) that are challenging for GTV minimization method
using the smooth penalty ¢(v) := (1/2)||v||3 [63].

Section IV designs FL methods whose main computa-
tional steps include the computation of the proximal operator
prox,. ,(-) for the convex conjugate ¢* of the GTV penalty
function ¢(-). Thus, for these methods to be computationally
tractable we must choose ¢(-) such that the proximal operator
prox,. ,(-) can be computed (evaluated) efficiently.”

A. The Primal Problem

GTV minimization learns the local model parameters w (%)
by balancing (the sum of) local loss functions and GTV (14),

W Earg min ZLi (w(i)) +A||lw||gTv with some A>0. (16)
wew =

The regularization parameter A >0 in (16) steers the preference
for learning parameter vectors w(*) with small GTV versus
incurring small local loss >, ., L; (w(i)). The choice of A
can be guided by cross-validation [56] or by our analysis of
the solutions of (16) in Section V. We hasten to add that this
analysis only applies for specific choices or local loss functions
(see Assumption 2).

Increasing the value of A results in the solutions of (16)
becoming increasingly clustered, with local model parameters
w (%) being constant over (increasingly) large subsets of nodes.
Choosing A larger than some critical value - that depends on the

2The difficulty of computing the proximal operator Prox,« ,(u) is
essentially the same as that of computing the proximal operator prox p(u).
Indeed, these two proximal operators are related via the identity u=
prox, 1 (u) + prox,- 1 (u) [64].
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shape of the local loss functions and the edges of G - results
in w(® being constant over all nodes i € V. Section V offers
precise conditions on the local loss functions and the empirical
graph such that the solutions of (16) capture the (unknown)
underlying partition (10).

The computational and statistical properties of GTV mini-
mization depend on the design choices for local models (which
determine the shape of local loss functions) and GTV penalty
function (see (14)). Section III applies the primal-dual method
[34, Alg. 6] to compute (approximate) solutions of (16) when
L; (+) and ¢(+) allow for an efficient computation of their proxi-
mal operators (see (3)). For convex L; (-) and ¢(-) being a norm,
we will characterize the solutions of (16) in our main result
Theorem 2.

GTV minimization (16) is an instance of RERM, using
the scaled GTV A||w||gTv as regularizer. The empirical risk
incurred by the local model parameters w € JV is measured
by the sum of the local loss functions ), L; (W(i)). GTV
minimization (16) unifies and considerably extends some well-
known methods for distributed optimization and learning. In
particular, the nLasso [10] is obtained from (16) for the choice
¢(v) := ||v||5. The MOCHA method [16] is obtained from (16)
for the choice ¢(v):=(1/2) ||v||2 Another special case of
(16), obtained for the choice ¢(v) :=||v||;, has been studied
recently [62].

B. The Dual Problem

The solutions of GTV minimization (16) can be conveniently
characterized and computed by introducing another optimiza-
tion problem that is dual (in a sense that we make precise
promptly) to (16). We obtain this dual problem by using the
convex conjugate h* (see (2)) of a convex function h(x) (see
[53]). The convex conjugate offers an alternative (or dual) rep-
resentation of a convex function h(x) via

h(x):=supx’z — h*(z).

z

A7)

This alternative (or dual) representation of convex functions
lends naturally to a dual problem for GTV minimization (16).

While the domain of GTV minimization (16) is given by
the local model parameters w(® € R?, for all nodes i € V, the
domain of the dual problem will be flow vectors ul® e RY,
for each e € £. To formulate the dual problem of GTV min-
imization (16), we first rewrite it more compactly as (see (6)
and (14)),

w € arg min f(w)+g(Dw)

wew
with f(w L;
Z (v )
and g(u):=\ Z Acp(u (18)
ecf

The objective function in (18) is the sum of two convex func-
tions f(w) and g(u) whose arguments are coupled as u = Dw.
Representing f(w) and g(u) via their convex conjugates (see
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(17)) and interchanging the minimization with the maximiza-
tion (“taking the supremum”) in (17) results in the dual problem

f*(—=DTu). (19)

The domain of the dual problem (19) is the space ¢/ of maps
u: £ — RY that assign a flow vector u(®) to each edge e € £ of
the empirical graph G.

The objective function of the dual problem (19) is composed
of the convex conjugates

gt o -

g () :=sup Y (u) 5 — g(z)
zclU ecE
W sup 37 (u) 2 — A4, (2©)
zeL{ ce
—ZAA ¢* (u9/(\A.)), (20)
ecf
and
_ w®)T
::3@; I
(18) (4) _
=" sup Ty ZL
ZEW iev eV ( )
-3 (w<i>) . @n

icy

Note that the convex conjugate in (20) is constituted by the val-
ues of the convex conjugate of the penalty function ¢, evaluated
at the flow vectors u(®) across each edge e € £. Similarly, the
convex conjugate in (21) is constituted by the convex conju-
gates of the local loss functions, evaluated at the local model
parameters.

The duality between (16) and (19) is made precise in [65, Ch.
31] (see also [34, Sec. 3.5]). First, the optimal values of both
problems coincide [65, Cor. 31.2.1],

i Dw)=max —¢*(u)— f*(-D%u). (22
mnin f(w)+g(Dw)=max —g*(u)~f*(-D"u). (22)
A necessary and sufficient condition for w to solve (16) and u
to solve (19) is [65, Thm. 31.3] (see also [61, Ch. 7])

~D”d € 9f(W), and Dw € dg* (7). (23)

The identity (22) (which is an instance of “strong duality”
[53, Ch. 5]) allows to bound the sub-optimality of some given
local model parameters w(?) . Indeed, for any given dual variable
U €U, the objective function value —g*(d)— f*(—DT1) is
a lower bound for the optimal value of (16). Such a bound
on the sub-optimality of given local model parameters can be
useful for defining a stopping criterion for iterative optimization
methods (see Section IV)

It is instructive to rewrite the dual problem (19) and the
optimality condition (23) in terms of the local parameter vectors
w(®_ for each node 7 € V, and the local flow vectors u(®, for
each e € £. Indeed, the final expressions in (21) and (20) allow
us to rewrite the dual problem (19) as

L; (W) =23 Aue'(

% ecf

max—
ueld

(u@/(AAL))
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subject to — w'?) = Z Z ul® _ Z u®

ec i=ey i=e_

for all nodes ¢ € V. 24)

Using the block-incidence matrix (6) and its transpose (7),
we can also rewrite the optimality condition (23) as

Z Z al®) — Z i) =-vIL, (vAv(i)) for each icV

ecf i=eq i=e_

W) R () e 4,00 (W) /(AA,)) for each ecE.  (25)

Let us now specialize the dual problem (24) for a GTV
penalty function ¢ being a norm || - || on R [66]. For such a
penalty function ¢(u(®)) = ||u(®||, the convex conjugate is the
indicator of the dual-norm ball [53, Example 3.26],

0 f @ <1
(b* (u(f)) — { or ||u ||* — (26)
oo else.
Inserting (26) into (24),
_ * (%)
max— L7 (wt")
ey
subject to — w'?) = Z Z ul® — Z ul®
ecf i=ey ecii=e_
for each 1€V
[u®|, < XA, for each ec&. (27)

Thus, when the GTV penalty function is a norm ¢(-) = || -
the optimality condition (25) becomes (see [65, p. 215])

Z e _ Z i) = -V, (vAv(i)> for each i€V,

e€&i=e
69|, <AA, for each e€&,
w(e+) = %) for each e € £ with [|0(®) ]|, <AA.. (28)

s

ec&ii=e_

The last line of (28) hints at the effect of using a strictly
positive regularization parameter A > 0 in GTV minimization
(16). In particular, the learnt local parameters w(® are constant
across any edge e = {¢,¢'} that is not saturated by an optimal
dual flow G(%, i.e., for any edge with ||TG(*)||. <AA.. Loosely
speaking, by increasing the value of \ this saturation becomes
less likely to happen and, in turn, the local model parameters
learnt by GTV minimization will become increasingly clus-
tered, i.e., piece-wise constant over increasingly large subsets of
nodes). We make this statement more precise in Section V (see
Theorem 2).

C. Interpretations

We next discuss some useful interpretations of GTV mini-
mization (16). These interpretations relate GTV minimization
with some well-known ML principles [20], [22], [56] and net-
work optimization [51], [65].

Generalization of Graph Clustering. Our main result The-
orem 2 bounds the deviation between the solutions of GTV
minimization (16) and local model parameters that are constant
over well-connected (see Definition 1) subsets of nodes in the
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empirical graph. Thus, we can interpret GTV minimization (16)
as a method for clustering the nodes in the empirical graph.
In contrast to basic graph clustering methods [67], [68], GTV
minimization (16) does not solely depend on the edge connec-
tivity of the empirical graph but also on the shape of the local
loss functions L; (W(i)) at its nodes. In particular, our method
might deliver different clusters for two empirical graphs having
identical edge sets but carrying different local loss functions at
its nodes.

Generalization of Convex Clustering. GTV minimization
generalizes convex clustering [45] which is a special case of
(16), obtained for the specific local loss functions

L; (w(i)> = |w® —a® |2, for all nodes i € V (29)

and GTV penalty ¢(u)=[[uf[, being a p-norm |[ful|,:=
( Zj‘:l |u;|P) 7 \yith some p > 1. The vectors a”) in (29) are
the observations that we wish to cluster. In its most basic form,
convex clustering uses a fully connected empirical graph in (16)
with uniform edge weights [69]. However, there is also recent
work that studies a more general convex clustering model, still
using a fully connected graph but taking into account potentially
varying edge weights A; ;» [45].

Vector-Valued Network Flow Optimization. The dual prob-
lem (19) of GTV minimization (16) is closely related to net-
work flow optimization. Indeed, the dual problem in the form
(24) generalizes the optimal flow problem [52, Sec. 1J] to
vector-valued flows. The special case of the dual problem (27),
obtained when the GTV penalty function ¢ is a norm, is equiv-
alent to a generalized minimum-cost flow problem [51, Sec.
1.2.1]. Indeed, the maximization problem (27) is equivalent to
the minimization

min » L7 (w(i))
ueld
%

subject to — w(¥) = Z Z ul® — Z ul®

ecf i=e i=e_
for each 1€V

[ul®]|, < AA, for each ecE.  (30)

The optimization problem (30) reduces to the minimum-cost
flow problem [51, Egs. (1.3)—(1.5)] for local model parameters
of length d =1 (i.e., local models parametrized by a scalar).

Locally Weighted Learning. Yet another interpretation of
GTV minimization is as an instance of locally weighted learn-
ing [70]. Indeed, our analysis in Section V reveals that, under
certain conditions on the connectivity of the empirical graph
and local loss functions, GTV minimization effectively imple-
ments cluster-wise optimization (9). In other words, if the node 7
belongs to the cluster C, the solution w(*) of GTV approximates
the solution w(©) of ), w(® ~ W) The deviation between
w(® and W(©) will be bounded by Theorem 2. The cluster-
wise optimization (9) is a locally weighted learning problem
[70, Sec. 3.1.2]

w©) = argmin Z pil; (w) . 31)

weRT ey
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with p;=1forie€C and p; =0 for i€V \ C. Note that (31) is an
adaptive pooling of local datasets into a cluster C. The pooling
of local datasets is driven jointly by the geometry (connectivity)
of the empirical graph G and the geometry (shape) of local loss
functions (see Theorem 2).

Multitask-Learning. GTV minimization implements a form
of multi-task learning [71]. Indeed, each cluster (see Assump-
tion 1) of local datasets gives rise to a separate learning task,
i.e., to learn cluster-wise model parameters (9). These cluster-
wise learning tasks are determined by the shape of the local
loss functions and the connectivity of the empirical graph (see
Theorem 2).

IV. A PRIMAL DUAL METHOD FOR GTV MINIMIZATION

The GTV minimization problem (16) is a non-smooth
convex optimization problem that could be solved
using sub-gradient methods [34, Sec. 4]. However, sub-
gradient methods tend to converge slower than primal-dual
methods that exploit the specific structure of GTV minimization
(16) [34, Fig. 5.3.]. In particular, the objective function in (16)
consists of two components that could be easily optimized when
considered separately: The first component Y, ,, L; (w("))
is minimized trivially by separately minimizing L; (w(i)),
for each node i€ V. The second component A|w| v
is minimized trivially by wusing constant networked
model parameters.

Primal-dual methods use tools from convex duality to solve
problems with a composite objective function such as (16)
[34], [65]. We obtain Algorithm 1 by applying the primal-dual
method [34, Alg. 6] to jointly solve (16) and (19). Note that
Algorithm 1 is parametrized by the local loss function L; (-)
and the GTV penalty function ¢(-) (see (14)).

At its core, Algorithm 1 computes and distributes (via
the edges of the empirical graph G) the node-wise primal
and the edge-wise dual updates in steps (4) and (8), re-
spectively. The primal update (operator) at node ¢ €V in
step (4) is

PUD {v}:=argmin L; (z)+ (W“)Vz) lv—zl*. (32
zERY

Here, we used the neighbourhood N := {i € V: {i,i'} € £}
of anode ¢ € V. Comparing (32) with (3) reveals that the primal
update PU ) {-} is exactly the proximal operator of the local
loss function L; (-).

PUD (v} = prox;, . ,(v) with p = ’N(i)|.

The primal update (32) is an instance of RERM using the
local loss L; (+) as a training error. The regularization term in
(32) is the squared Euclidean distance between local model
parameters and the argument v of the primal update. It enforces
similar local model parameters at well-connected nodes in the
same cluster. The amount of regularization is controlled by the
node degree |N () | In particular, the larger the node degree, the
smaller the influence of the local loss function on the resulting
of the primal update (32).

4249

Algorithm 1 alternates between the primal updates (32), for
each node 7 € V, and dual updates

DU {v} := argmin AA.¢* (z/(AAe)) +(1/20.)||v—2z|]?
z€eR?

for each e € £. (33)

Here, we used the convex conjugate ¢*(v) := sup,cpa vz —
¢(z) of the GTV penalty function ¢(v) (see (14)). A compar-
ison of (33) with (3) reveals that the dual update DU is es-
sentially the (scaled) proximal operator of the convex conjugate

9" (v),
DU {v} = A prox,. ,(v/(AA.)) with p=AA./o..

We can interpret the dual update operator (33) as a reg-
ularized minimization of the convex conjugate ¢*(v) of the
GTV penalty function. The regularization term in (33) forces
the update to not deviate too much from its argument v. Note
that the dual update (33) is parametrized by the GTV penalty
function ¢(v) (14) (via its convex conjugate). Some widely
used FL. methods are obtained from GTV minimization for
specific choices of GTV penalty function [9], [10], [16], [62].

The “MOCHA penalty” ¢(v) := (1/2)||v||2 [16], lends to
the dual update operator DU'“ {v} :=v/(1 + (0./(AA.))).
An obvious generalization of the MOCHA penalty is
#(v):=(1/2)vI'Qv with a fixed positive semidefinite
matrix Q. The corresponding dual operator is
DU v} = ((0./(AA))Q ' +T) 'v, which is a
linear operator.

For the “nLasso penalty” ¢(v):=|v|]2 [9], [10], the dual
update operator becomes the (vector) clipping operator
DZ/{(E){V} = T Iy) (see (1)). The nLasso penalty is
the Euclidean norm |v||, of the flow vector v across an
edge. Using instead the ¢; norm yields the GTV penalty
function ¢(v):=||v]jy [62] whose associated dual update
operator Du(e){v} = (T4 (vy), ... 77'(’\’48)(11(1))71 is an
element-wise application of the scalar clipping operator.

Algorithm 1 can be implemented as message passing over
the edges of the empirical graph G. During each iteration of
Algorithm 1, local computations are carried out at each node
and each edge. These local computations are applied to local
quantities ﬁff), V’O,(;) € R? that are stored at each edge e € £ and
at each node 7 € 1, respectively. If we equip only nodes with
computational resources, we need to maintain a copy of ﬁgf)
at the incident nodes e, e_ €V for each e € £. The resulting
memory requirement at each node ¢ is then proportional to its
degree [N,

The primal update step (4), which is executed in parallel
for each node i € V, amounts to a RERM (32). For each node
1 €V, this RERM involves the local loss function L; (w(i))
and a regularization term that is determined by the current
model parameters at the neighbours A/, The dual update
step (8), which is executed in parallel for each edge e € &, is
parametrized by the GTV penalty function ¢ (see (14)).

The results of the node-wise primal and edge-wise dual up-
dates in step (4) and (8) are spread to neighbouring (incident)
edges and nodes during steps (3) and (7) of Algorithm 1.
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Trivially, the number of basic computational steps required by
Algorithm 1 is directly proportional to the number of edges in
the empirical graph G.

It can be shown that Algorithm 1 is robust against errors oc-
curring during the updates in steps (4) and (8) [30], [38]. This is
important for applications where the update operators (32) and
(33) can be evaluated only approximately or these updates have
to be transmitted over imperfect wireless links. Let us denote
the perturbed update (e.g., obtained by a numerical optimization
method for solving (32)) by Wy and the exact update by ?v,(;ll ,
respectively. Then, Algorithm 1 is still guaranteed to converge
to a solution of (16) as long as >~ , Hwkﬂ Wk_HH <00
(see [30, Sec. 3)).

Possible stopping criteria in step (1) of Algorithm 1 include
the use of a fixed number of iterations. It might also be useful to
stop iterating when the decrease in the objective function (16)
falls below a threshold. The construction of a stopping criterion
can also be based on the primal-dual gap

gapy, ==Y _ L; (A;(CZH) + AWt llaTv—

2%
<_ZL; ( () ) A At (B /(A4 )))
% 665
with s := Z Z k+1 Z Afjﬁl (34)
ecfi=ey i=e_

By comparing (34) with (22), we can bound the sub-optimality
of the iterate W,/ as

> L (A/(ﬁzl) + Al[Wit1llaTv
AS2%

— vrvxg)r/lv l; L; (w(i)) + )\||W||GTV‘| < gapy,.

Thus, to ensure that Algorithm 1 delivers local model param-
eters with sub-optimality no larger than 7, we only stop when
gap;, < n. If the local loss functions L; (-) and the GTV penalty
¢ are convex, this condition is always fulfilled after a finite
number of iterations [34, Thm. 5.1].

V. WHEN DOES IT WORK?

Section III developed Algorithm 1 as a novel FL method for
distributed training of tailored models from collections of local
datasets. We obtained Algorithm 1 by using the primal-dual
method [34, Alg. 6] to solve the GTV minimization problem
(16) jointly with its dual (24). The rationale behind GTV mini-
mization (16) is that local loss functions are clustered according
to Assumption 1 and that this cluster structure is reflected by
the connectivity of the empirical graph G.

To analyze the statistical properties of GTV minimization
(16), we must make precise the relation between the network
structure of G and the cluster structure (see (10)) of local loss
functions. To this end, we introduce the notion of a well-
connected cluster C €V whose nodes share (approximately)
a common optimal choice for local model parameters (see
Assumption 1).
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Definition 1: (Well-Connected Cluster). Consider an empir-
ical graph G = (V, £) with edge weights A, ;- for i,7’ € V. The
nodes ¢ € V carry local loss functions L; (W(i)). that are parti-
tioned into clusters P = {C(V), ..., C®)} according to Assump-
tion 1 with clustering error 5 (see (11)). By Assumption 2,
we also require local loss functions to be smooth with Lipschitz
constant 3 (see (12)) and their cluster-wise sum to be strongly
convex with parameter a9 (see (13)). A cluster cloep (see
(10)), with weighted boundary [0C()| := 37, _o(c) sigee Aiirs
is well-connected if it contains a node iy € C (¢) such that

S Ave] +8900ct9) /ol
€A jrgcle
HOON<I DT A

1€A G eC(e)\ A
\ {io}-

for every subset A C C ()

Definition 1 relates the connectivity of the nodes in the em-
pirical graph to the partition used in Assumption 1. Indeed,
the condition (35) is a precise formulation of the informal
requirement that an edge {4, '} € £ should connect nodes that
carry local datasets X'(9) | X (') with similar statistical properties
(see Section II).

Note that the condition (35) includes not only the empir-
ical graph (via its edge weights A; ;) and the parameters
6@ a9 () of Assumptions 1, 2 but also the GTV mini-
mization parameter A (see (16)). To better grasp the interplay
between these quantities, let us next evaluate (35) for a specific
subset A C C9\ {ig

The LHS of the inequality in (35) is a sum the nodes in A.
Each node i € A contributes three non-negative components:
[Zilgc(c) Aiir], BP0t /al®) and component 5)/A. To
satisfy the condition (35), these components should have small
values. The first two components tend to be small if there
are only a few edges (with small weight) between A C C(¢)
and the nodes outside C(®). The third component §(9 /X is
small if the GTV minimization parameter \ is large compared
to the parameter (") which measures the deviation between
the optimizer of the local loss function and the cluster-wise
optimizer (see (9)).

Our main result is that GTV minimization (16) captures an
underlying partition of local datasets into nearly homogeneous
data (see Assumption 1) if every cluster is well-connected ac-
cording to Definition 1. More precisely, we have the following
upper bound on the deviation between the solutions of GTV
minimization (16) and the cluster-wise optimizers (9).

Theorem 2: Consider networked data with empirical graph
G whose nodes carry local loss functions that are clustered into
P={c®,...,c™} according to Assumption 1 and satisfy
Assumption 2. We learn local model parameters W) by solving
GTV minimization (16) with penalty function ¢ being a norm.
If every cluster C(®) € P is well-connected, then

o the learnt parameter vectors are constant over nodes in the

same cluster C(¢) € P,

(35)

w®) =) for i,i' € C(9), (36)
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o the deviation between the GTV solution w(*) at some node
i € C(°) and the cluster-wise optimizer W in (9) (for C =
C(9)) is bounded as

<2|aC9|x/al?. 37

H@(i) _w©

Proof: See the supplementary material IX-A. 0

The error bound (37) involves the shape of the local loss
functions via the strong convexity parameter () for cluster
C(©), Note that Assumption 2 requires, for each cluster C(¢) € P
of the partition (10), the cluster-wise aggregate loss function
Y icet Li (w(i)) to be strongly convex.

It is important to note that the bound (37) only applies if the
cluster C(© is well-connected in the sense of (35). There is a
trade-off between having a tight bound (37) (favouring small
A) and ensuring the validity of (35) (favouring large \).

We stress that Theorem 2 only applies to GTV mini-
mization (16) with strictly positive GTV regularization pa-
rameter A > 0. Note that for A =0, GTV minimization (16)
does not involve any coupling across nodes of the empirical
graph and, in turn, breaks into independent training problems
ming, ) cpe Li (w(i)) for each i € V.

The presence of the GTV term in (16) for A > 0 results in a
clustering (or pooling) of the local model parameters according
to (36). It is instructive to consider the extreme of case of
Assumption 1 when the partition consists of a single cluster
P = {C} that includes all nodes of the empirical graph, C = V.
For this extreme case of a single cluster, a sufficient condition
for (35) is

@) / mi
A>Z_€Zva /min A, (38)

Thus, GTV minimization with A satisfying (38) learns local
parameters that are constant over connected components of the
empirical graph.’?

Theorem 2 offers some guidance for the choice of the GTV
parameter A (see (16)). Indeed, according to (37), A should
be small compared to the strong convexity parameter o(®) in
order to ensure a small estimation error ‘VAV(“ —w|. On
the other hand, A\ should be sufficiently large such that the
cluster C(¢) is well-connected in the sense of (35) and, in turn,
GTV minimization is guaranteed to deliver identical model
parameters for all nodes in C(¢).

Besides the choice for )\, the validity of the condition (35)
also depends on the choice for the partition in Assumption 2. We
stress that the partition 7 = {C"), ..., C*)} in Assumption 1
is only used to analyze the solutions of GTV minimization (16).
Algorithm 1 only requires the empirical graph as input, but it
does not require any specification of a partition. Theorem 2
provides a sufficient condition for the solutions of Algorithm 1
to conform with a partition ? = {C1), .. .} that satisfies (35). In
general, GTV minimization (16) might have several solutions,
each having a different cluster structure [72].

3GTV minimization (16) decomposes into separate (smaller) instances of
GTV minimization for each connected component of the empirical graph.
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VI. NUMERICAL EXPERIMENTS

This section reports the results of some illustrative numerical
experiments to verify the performance of Algorithm 1. We
provide the code to reproduce these experiments in the supple-
mentary material. The experiments discussed in Section VI-A
- Section VI-B revolves around synthetic datasets whose
empirical graph is either a chain graph, a star graph or a
realization of a Stochastic Block Model (SBM) [73]. A nu-
merical experiment with a handwritten digit image dataset
(“MNIST”) is discussed in Section VI-C.

A. Stochastic Block Model

This experiment revolves around synthetic data whose em-
pirical graph G(SBM) is partitioned into two equal-sized clusters
P ={CM,c@}, with |CV| = |C?|. We denote the cluster
assignment of node i € V by ¢(¥) € {1, 2}. The edges in G(SBM)
are generated via realizations of independent binary random
variables b; € {0, 1}. These random variables are indexed by
pairs 4,4’ of nodes that are connected by an edge {i,i'} € £
if and only if b; ;; =1. Two nodes in the same cluster are
connected with probability Prob{b; ;; =1} :=p;, if ¢,7'. In
contrast, Prob{b; ; = 1} := poy if nodes i, i’ belong to differ-
ent clusters. Every edge in G(SBM) has the same weight, A, = 1
forall e € £.

Each node i € V of the empirical graph G holds a local
dataset X'(*) of the form (4). Thus, the dataset X'(¥) consists of
m; data points, each characterized by a feature vector x(") €
R? and a scalar label ("), for r =1,...,m,. The feature
vectors x (&) ~N(0,I4%4), are drawn i.i.d. from a standard
multivariate normal distribution. The labels of the data points
are generated by a noisy linear model

SBM)

Yy = (W) x4 gelin), (39)

The noise "), for i€V and r=1,...,m;, are ii.d. real-
izations of a standard normal distribution. The true underlying
weight vectors W'*) are piece-wise constant over the clusters in
the partition P = {C(1), ¢}, ie., w?) =w() if i,i € C®),

To study the robustness of Algorithm 1 against node failures,
we assume that local datasets are only accessible in a subset
M C V. The set M is selected uniformly at random among all
nodes V. We can access local datasets X'(?) only in the subset
M of relative size p := |M|/|V|. The inaccessibility of a local
dataset X for ¢ M, can be modelled by using a trivial loss
function. Thus, we learn local model parameters w(*) using
Algorithm 1 with local loss functions

) ;™ (i,7) T G) (i) 2f e M
L (w)e={ 7 2 ()T =y ) for e M.
0 otherwise.
(40)

The special case p =1 is obtained when all local datasets
are accessible, i.e., when M = V. For the stopping criterion in
Algorithm 1, we use a fixed number R of iterations, which is
R = 3000 for the results depicted in Fig. 9 and R=2000 for the
results depicted in Fig. 10. The GTV regularization parameter
has been set to A=10"2 (see (8)). We measure the estimation
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TABLE I
MSE (41) OF THE ESTIMATION ERROR
INCURRED BY ALGORITHM 1, IFCA
[19] AND FEDAVG [74]

Method MSE
Algorithm 1 1.42e-05
IFCA 2.82
FedAvg 2.86
T
wh i
—@— Algorithm 1
—%—  IFCA
m 1072+ —+— FedAvg -
78} -E3- C_FedAvg
< ]
107 - 7
1070 @--B--8--B----s e 8
Il Il Il Il Il

2 4 6 8 10
number of clusters k&

Fig. 2. MSE (41) of Algorithm 1, IFCA [19], FedAvg [74], and clustered
FedAvg (C_FedAvg) as a function of the number of clusters in G (SBM)

error incurred by the learnt parameter vectors w(*) using the
average squared estimation error (MSE),

MSE:= (1/[V)) ) [w® - w5,
i€V

(41)

1) High-Dimensional Linear Regression With Two Clusters:
Table I reports the results obtained by applying Algorithm 1 to
GBEBM) with [CM] = |c?)| = 100, pi, = 0.5, and poy; = 1072,
Each node carries a local dataset of the form (4) with m;=10
data points, having a feature vector x(»") € R190 and labels
generated according to (39) with noise strength o = 10~3. The
true underlying parameter vectors in (39) are cluster-wise con-
stant, w'*) = w(® for all i € C(©). The cluster-wise parameter
vector ¢ € {0,0.5}1%° is constructed entry-wise using i.i.d.
realizations of standard Bernoulli variables B € {0,0.5} with
Prob(B=10)=1/2.

We learn local model parameters using Algorithm 1 using
the local loss functions in (4). Table I reports the MSE (41)
incurred by Algorithm 1 using a fixed number of R = 1000
iterations. Table I also reports the MSE (41) incurred by the
model parameters learnt by IFCA [19] and FedAvg [74].

2) High-Dimensional Linear Regression With Multiple
Clusters: The next experiment studies the effect of increas-
ing the number of clusters in GSBM) | which is divided into
k equally sized clusters P =C™1),C® ... C*) The cluster
assignment of node i € V is denoted ¢(¥) € {1,2,--- ,k}. The
local model parameters are learned using Algorithm 1, where
we employ local loss functions (4). Fig. 2 depicts the MSE (41)
of Algorithm 1 (with R = 2000 iterations), IFCA [19], FedAvg
[74]. This figure also depicts the MSE obtained by applying
FedAvg to each cluster separately; we denote this approach
as FedAvgC. Note that FedAvgC cannot be implemented in
practice as the clusters are unknown. Therefore, the MSE of
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o(w) = lufli, A=0.1 6(w) = Jull2; A=0.1 (nLasso)

--p=2/10 - p=2/10
1072 || oo p:4/1() 1072 || e p:4/1()
p=6/10 p=6/10

m m
w) w) H
S 10 = 10
@ d ot
10°% ok A AF B 1078 F % T
*8 *
10 . 10 .
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2
¢(u)=|lul|3, A\=0.05 (“MOCHA”")
10° T T T T T T
02| Y! . *%%;T¥ k|
o
107
m
[22}
= 1w
1070 F -o-p=0.2 |
Hp=0.4
10-10 | p=0.6 ||
0 02 04 06 08 1 1.2
Fig. 3. MSE (41) of the estimation error incurred by Algorithm 1 when

learning local model parameters for a chain graph G(¢hai") in the noiseless
case o = 0.

FedAvgC serves mainly as a benchmark for the MSE of prac-
tical methods such as Algorithm 1.

B. Chain Graph

This experiment uses a dataset with 2n local datasets whose
empirical graph G(°"2") is a chain graph. The edge set of
this graph is given by & ={{i,i +1}:i€{1,...,2n — 1}}.
The nodes ¥V ={1,...,2n} are partitioned into two clusters
CM ={1,...,n} and C® ={n+1,...,2n}. Bvery intra-
cluster edge {4,4'} € £, with ¢, ¢’ in the same cluster, has weight
A; ;s =1. The single inter-cluster edge ¢’ ={n,n + 1} has
weight A,, ,,41 = ¢ with some € > 0.

The nodes of G(chain) carry local datasets with the same
structure as in Section VI-A. In particular, each local dataset
consists of data points that are characterized by feature vectors
drawn from a multivariate normal distribution and a label that
is generated from (39). The local parameter vectors in (39) are
piece-wise constant over clusters C() and C(?),

We use Algorithm 1 to learn the local parameter vectors
in (39) using the average squared error (40) as the local loss
function. The local datasets are only accessible for a subset
M CV of [p|V|] nodes selected uniformly at random among
all nodes V. We apply Algorithm 1 to the local loss func-
tions (40) and using a fixed number R=2000 of iterations and
different choices for the GTV parameter A as indicated in
Figs. 3 and 4.

Figs. 3 and 4 depict the MSE (41) incurred by Algorithm 1
obtained for varying training size p, noise strength o (see
(39)), and inter-cluster edge weight . The curves and bars in
Figs. 3 and 4 represent the average and standard deviation of
MSE values of 5 simulation runs for different choices for p, e
and o. Fig. 3 shows the results in the noise-less case where
o =01n (39), and Fig. 4 shows results for varying noise level
o in (39) and fixed relative training size p = 6/10.
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o(w)=ully. A=01 6(w)=[ulls, A=0.1 (nLasso)
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Fig. 4. MSE (41) incurred by Algorithm 1 when learning the local model

parameters for the chain graph G (chain) using only local datasets at a fraction
of |[M|/|V| = 0.6 nodes (see (40)).

C. Handwritten Digits

This experiment revolves around a collection of n =40
local datasets generated from the handwritten image dataset
(“MNIST dataset”) [75]. and represented by the empiri-
cal graph GIMNIST) — (V(MNIST),E(MNIST)). Each node i €
PMNIST) — (740} carries a local dataset X'(*) which con-
sists of m; =500 data points being images of handwritten
digits. The 7-th data point in X'(*) is characterized by the feature
vector x(#7) € R? and a label that specifies the digit that the dat-
apoint belongs to. The entries of the feature vector x(»") € R?
are greyscale levels of d = 28 x 28 pixels. The nodes VMNIST)
are partitioned into two clusters cM, @ (see Assumption 1),
each with 20 nodes. The nodes in C(!) carry local datasets that
consist of images depicting handwritten digits 0 and 1. The
nodes i € C(?) in the second cluster carry local datasets X'(*
consisting of images that depict handwritten digits 2 and 3.

Besides the local dataset X (9, the node i € V is also assigned
a local model in the form of an artificial neural network (ANN),

h()(x w ) := SoftMax (W (i72)ReLU(W(i>1)X))

with w) = stack{W®D W2} (42)
The ANN (42) consists of two densely connected layers, with
the first layer using rectified linear units ReLU [36]. The second
(output) layer uses a “soft-max” activation function [36]. The
weights of connections between layers are stored in the matrices
WD and W2 respectively. The entries of the weight
matrices are collected in the local model parameter vector w(%).
For learning the local model parameters w(*) of the ANNs
(42), we split each local dataset into a training and validation
set, X0 = x. U X( % of size m(tram) =400 and m(val)

train
100, respectively. The local training sets Xt(rim are also used

for the construction of the edges in GMNIST) a5 described next.
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¢(u)=|lul|> (nLasso)

0.95 -

09}

AcCvah

0.85 -

Fig. 5. The validation accuracy ACC("2) as a function of the number & of
iterations run by Algorithm 1. Different curves correspond to different choices
for the GTV parameter .

For each i € VMNIST) we apply t-SNE [76] to map the
raw feature vector x(*") to the embedding vector z("") € R?,
forr=1,... ,mgtrairl). We then compute a distance dist (i, ")
between any two different nodes 4,i’ € VMNIST) yging a
Kullback-Leibler divergence estimator [26].

Given the pairwise distances dist(¢,4'), for any i, €
YPMNIST) © we construct the edges of EMNIST) and their
weights as follows. Each node i € VMNIST) is connected
with the four other nodes i’ € VIMNIST)\ £} of minimum
distance dist(,4") by an edge e = {4,4'}. The edge weights
are then constructed by an exponential kernel [67], A;; =
eXp( — dist(z, z’))

To learn the local parameters w(*) of (42), we use Algo-
rithm 1 with local loss

>

L () = =1/l
() eX (s,
>

((1-y)log (1
(x,y)eX( ©)

train

(ylogh” (x))

= (1/m) —h9(x))).

As the stopping criterion in Algorithm 1, we use a fixed
number of R = 50 iterations. The GTV parameter has been set
to A =1.0. We measure the quality of the model parameters
learnt by Algorithm 1 via the accuracy ACC™D achieved on
the validation sets X'"). More precisely, ACCH is the fraction

val*
of correctly classified images in the validation sets X’ @) for

i € PMNIST) val?

Fig. 5 shows the validation set accuracy achieved by the local
model parameters learnt by Algorithm 1 for different choices of
A. For the extreme case A = 0, Algorithm 1 ignores the edges
in GAMNIST) and separately minimizes the local loss functions.
The other extreme case is A\ — oo where all local model param-
eters are enforced to be identical, which is equivalent to learning
a single model on all pooled local datasets. Fig. 6 compares the
ACCY and the convergence rate of Algorithm 1 with those
of existing methods for personalized FL and clustered FL. Both
the ACC™ and the convergence rate of the MNIST dataset
is improved by Algorithm 1.

Additionally, we have expanded the numerical experiment
to incorporate more clusters, with each cluster representing
a pair of two digits. We use the same setup as during the
previous experiment, except for the number of clusters. In par-
ticular, this experiment revolves around a set of n = 100 local
datasets generated from the MNIST handwritten image dataset.
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A =1,¢(u)=|ul|2 (nLasso)
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Fig. 6. Comparing the validation set accuracy ACCHD for two clusters
achieved by local model parameters learnt by Algorithm 1 with those learnt
by IFCA [19], pFedMe [77] and the PyTorch optimizer for (16).

TABLE II
THE HANDWRITTEN DIGITS THAT EACH CLUSTER
CONTAINS
Cluster c@ c® c® c@® c®)
Digits 0, 1 2,3 4,5 6,7 8,9
A =1,¢(u)=|lul]2 (nLasso)
T T T
1 - -
09 N
= 0.8 *
g
O
S o7l :
0.6 - —+—  Algorithm 1
—e— IFCA [19]
05| ~= PyTorch optimizer | |
1 1 1 1 1 1

0 10 20 30 40 50
iteration k

Fig. 7. Comparing the validation set accuracy ACC(VaD for five clusters
achieved by local model parameters learnt by Algorithm 1 with those learnt
by IFCA [19], and the PyTorch optimizer.

The nodes in VMNIST) are divided into five clusters, namely
cW.c@ B c® and C®), with each cluster consisting of
20 nodes. Table II represents the handwritten digits each clus-
ter contains. Fig. 7 presents a comparison of the ACctab
and convergence rate achieved by Algorithm 1 with existing
methods for personalized FL and clustered FL. Algorithm 1
demonstrates improvements in both ACC™D and convergence
rate for the MNIST dataset. However, it is worth noting that
due to the lack of computational resources, we could compare
against pFedMe [77].

VII. CONCLUSION

We have studied GTV minimization methods for the dis-
tributed learning of personalized models in networked collec-
tions of local datasets. GTV minimization is an instance of the
RERM principle that is obtained using the GTV of local model
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parameters as the regularization term. This approach is built
on the assumption that the statistical properties or similarities
between collections of local datasets are reflected by a known
network structure. We obtain a highly scalable FL. method by
solving GTV minimization using a primal-dual method for
jointly solving GTV minimization and its dual network flow op-
timization problem. The resulting message-passing algorithm
exploits the known network structure of data to adaptively pool
local datasets into clusters. This pooling allows us to learn
“personalized” models for local datasets that would not pro-
vide sufficient statistical power by itself alone. Future research
directions include a precise analysis of the privacy leakage in
our method and a more fine-grained convergence analysis that
considers the empirical graph’s cluster structure. Moreover, we
plan to extend our method by joint learning of network structure
and local model parameters and to allow for non-parametric
local models such as decision trees.
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