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Abstract
Real-world decision making systems require background information about the1

environment to take effective actions. However, this information is frequently2

incomplete or costly to acquire. Rather than presuming complete context, an effec-3

tive decision maker must actively gather relevant information through a sequence4

of targeted follow-up questions before making decisions. This paper presents a5

framework for adaptive information gathering using large language models (LLMs)6

as interactive decision-making agents. Guided by an information-theoretic objec-7

tive, the LLM selects questions that minimize the entropy of the predicted optimal8

action distribution, effectively prioritizing information that reduces uncertainty.9

Our method enables instance-specific reasoning under uncertainty and improves10

decision quality through principled context acquisition. We evaluate our approach11

on modified versions of three standard benchmarks—1D-ARC, GSM8K, and12

Fermi—adapted to study partially observable contexts where relevant information13

must be actively gathered. We assess performance using state-of-the-art LLMs.14

Empirically, we find that our proposed Entropy Search strategy consistently out-15

performs strong baselines, demonstrating the effectiveness of uncertainty-guided16

information gathering for LLM-based decision support1.17

1 Introduction18

In everyday interactions with large language models (LLMs), users often provide incomplete problem19

descriptions. This is not a shortcoming of the models alone; rather, it reflects a fundamental20

limitation in how humans communicate—users frequently omit relevant contextual details, either due21

to cognitive constraints or implicit assumptions about shared knowledge. As a result, the model must22

reason under uncertainty, which can result in suboptimal responses [Jiang et al., 2023]. Moreover,23

task underspecification can pose a significant AI safety and alignment risk [Amodei et al., 2016,24

Ngo et al., 2024, Dalrymple et al., 2024]. These limitations and risks point to a broader challenge in25

human-AI collaboration: effective decision support often requires adaptive information gathering.26

This interactive paradigm is especially valuable in high-stakes or data-scarce domains, such as27

forecasting [Tetlock and Gardner, 2016, Schoenegger et al., 2025], personalized medicine [Hamburg28

and Collins, 2010] and education [Ericsson and Pool, 2016, Vygotsky and Cole, 1978, Robinson and29

Aronica, 2009], where acquiring information is costly and outcomes depend critically on a limited set30

of key features.31

In this work, we formalize this interactive decision-support setting as a two-stage sequential decision-32

making problem: An agent observes a user with a query and can ask several follow-up questions, and33

after gathering the user’s answers to these questions, the agent selects an action that maximizes the34

expected outcome. The core research question is: Which questions should the agent ask to inform35

its final decision best? The key technical challenge lies in identifying informative, non-redundant36

1Our implementation is available at https://anonymous.4open.science/r/info-gathering-047B/

Submitted to the First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025). Do not distribute.
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questions that reduce uncertainty about the optimal action, especially when features are correlated.37

Our method uses entropy minimization to determine the next most informative question, conditioned38

on previous responses. By minimizing uncertainty over optimal actions, our approach allows the agent39

to prioritize questions that elicit the most information about the best action. This principled strategy40

enables the agent to gather just enough information to act effectively, balancing informativeness with41

efficiency. Building on this foundation, we make the following contributions:42

• We introduce entropy search, a method that enables language model agents to ask targeted questions43

that reduce outcome entropy and improve decisions under partial information. We theoretically44

characterize its optimality and identify conditions under which it ensures optimal actions.45

• We experiment on four state-of-the-art language models on partially observable variants of three46

popular reasoning benchmarks, showing that the entropy minimization strategy consistently out-47

performs competitive baselines.48

2 Background49

Algorithm 1 defines our typical information-gathering setting where an LLM agent interacts with50

an external user. At each step, the agent observes the problem and current context H = (qt, at)
t−1
t=1,51

selects a follow-up question q, and receives an answer a from the user. This interaction continues52

until the budget is exhausted. The agent finally responds with an action A. The different algorithms53

compared in the experiments only differ in how the agent selects a follow-up question.54

Next, we introduce some notation for a Bayesian formulation of the information-gathering prob-55

lem. A language model acts as a decision-making agent that interacts with a sequence of T users56

u1, u2, . . . , uT . Each user ut arrives with a hidden context vector Xt ∈ XK , where K is the total57

number of features (potentially large). This contrasts with the standard contextual bandit setting58

[Neu et al., 2022, Agrawal and Goyal, 2013], in which the full context is known to the agent. At the59

beginning of each interaction, the user poses a query that reveals a subset of features—modeled as a60

binary vector S0
t ∈ {0, 1}K , corresponding to the initially observed context Xt,S0

t
. The agent can61

then ask a sequence of follow-up questions, with the user giving an answer that reveals additional62

features one at a time. This process results in a final observed subset St ∈ {0, 1}K , which defines63

the gathered context Xt,St
. Based on this partial context, the agent selects an action At ∈ A from a64

finite (potentially large) set of possible actions. After the action is taken, the agent observes a binary65

outcome Yt,At ∈ {0, 1}.66

The agent maintains two learnable parameters: (ω, θ). Let Yt ∈ {0, 1}A denote the potential outcome67

vector over all possible actions. In the contextual bandit literature [Neu et al., 2022, Agrawal and68

Goyal, 2013], θ typically parameterizes the reward model, encoding the agent’s belief over outcomes69

conditioned on the full context: pt(Yt | Xt, θ). We generalize this definition and let θ parameterize70

the full joint distribution pt(Yt, Xt | θ), capturing both the agent’s world knowledge about user71

context distributions pt(Xt | θ) and the conditional outcome model pt(Yt | Xt, θ).72

The expected reward for a selected action is given by: rt(θ,At, Xt) = Et[Yt,At | θ,Xt]. The optimal73

action under the true model θ∗ is: A∗
t = argmaxa∈A rt(θ

∗, a,Xt). After taking action At and74

observing outcome Yt,At and context Xt,St , the agent updates its posterior over θ via:75

qt+1(θ) =
qt(θ) pt(Yt,At | θ,At, Xt,St)∑
θ′ qt(θ′) pt(Yt,At

| θ′, At, Xt,St
)

We assume a categorical outcome distribution:
∑

a∈A Et[Yt,a | θ,Xt] =
∑

a∈A rt(θ, a,Xt) = 176

which differs from the Bernoulli setting where multiple actions can yield positive outcomes. In77

practice, posterior updates over θ can be implemented via supervised fine-tuning [Ouyang et al., 2022].78

As θ → θ∗, the expected outcome Et[Yt,At
| θ,Xt] converges to the true expected outcome.79

To estimate the optimal action, the agent first engages in a sequence of Qt follow-up questions80

{Sq
t }q∈[Qt] with the user. Each question Sq

t ∈ {0, 1}K specifies the indices of additional user context81

to be revealed at step q, resulting in observed context Xt,Sq
t
. The agent’s policy for generating these82

questions is parameterized by ω, and is conditioned on the context revealed so far: pt(S
q
t | ω,Xt,S<q

t
).83

The interaction terminates after Qt follow-up queries, at which point the agent has accumulated84

a final observed subset St =
⋃Qt

q=1 S
q
t corresponding to context Xt,St

. Based on this gathered85

context, the agent selects an action: At = argmaxa rt(θt, a,Xt,St
) and incurs instantaneous regret86
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∆t = rt(θ
∗, A∗

t , Xt)− rt(θ
∗, At, Xt). Here, A∗

t is the optimal action under the true model θ∗. The87

agent’s objective is to minimize the expected cumulative regret over T episodes:88

RT =

T∑
t=1

E [rt(θ
∗, A∗

t , Xt)− rt(θ
∗, At, Xt)] =

T∑
t=1

E [∆t]

where the expectation is taken over all randomness: environment parameters and agent policy.89

While regret can be used as a learning signal to update both (ω, θ), optimizing ω directly from regret90

suffers from the sparse rewards problem: the agent receives feedback only after completing the91

entire sequence of follow-up questions, based on the final outcome for its action, as is done in prior92

works [Andukuri et al., 2024]. Delayed supervision makes it difficult to attribute success or failure to93

individual follow-up queries. We don’t assume gold supervision for follow-up questions.94

To overcome this, we propose an entropy search algorithm that evaluates each potential follow-up95

question before it is asked. This approach assigns a score to every candidate query based on its96

expected reduction in uncertainty over the outcome. Prior works have used similar intrinsic scores97

based on information-gain [Houthooft et al., 2016, Mohamed and Jimenez Rezende, 2015] to tackle98

sparse rewards. These scores are then used both to select the next follow-up question and to update99

the policy parameters ω, providing a more informative and dense supervision signal during training.100

For reference, we summarize all the notation in Appendix 6.101

3 Entropy Search Algorithm102

We now present the Entropy Search algorithm 2. Following this strategy at each iteration, the decision103

maker asks the question with the greatest reduction in posterior uncertainty about the optimal action,104

on average, i.e., the question that elicits the most information.105

To understand why this algorithm is optimal for the information-gathering task, we begin with a106

formal definition of optimal follow-up questions and an associated objective for scoring and selecting107

them. We then establish theoretical guarantees for this entropy-based objective. Finally, we provide a108

regret analysis for the entropy search procedure’s exact and approximate implementations.109

Definition 3.1 (Optimal qth follow-up question Sq
t for user ut). Before the qth follow-up question,110

the agent has already observed a subset of user context indices denoted by S<q
t =

⋃q−1
j=0 S

j
t . The111

ideal query Sq
t would reveal just enough additional context to fully recover the potential outcome112

distribution: pt(Yt | Xt,S<q
t

, Xt,Sq
t
) = pt(Yt | Xt) = pt(Yt | Xt,S<q

t
, Xt,(S<q

t )−), where (S<q
t )− =113

1 \ S<q
t denotes the unobserved context indices.114

Among all such queries, we aim to select one that requires minimal user effort to answer—formally,115

the smallest number of new context features—while avoiding redundancy. Using a statistical distance116

measure d, the optimal query is defined as:117

Sq
t = argmin

S∈{0,1}K

|S| s.t. d
(
pt(Yt | Xt,S<q

t
, Xt,S)

∥∥∥ pt(Yt | Xt)
)
= 0,

= argmin
S

{
|S|
∣∣∣S ∈ argmin

S′
d
(
pt(Yt | Xt,S<q

t
, Xt,S′)

∥∥∥ pt(Yt | Xt)
)
, S ∈ {0, 1}K

}
.

The two formulations are equivalent because the minimum distance d is zero for at least one118

solution—namely, Sq
t = (S<q

t )−, which reveals all remaining context. However, this may not119

be the minimal-norm solution. Once the distance is reduced to zero, further follow-up queries cannot120

improve the prediction, and the agent can terminate questioning and respond with its final action.121

In practice, the posterior pt(Yt | Xt) is not directly observable, making it infeasible to minimize122

divergence-based objectives such as total variation or KL divergence. Instead, we use conditional123

entropy difference as a surrogate distance measure, which has the key advantage of not requiring124

access to the full posterior:125

Sq
t = argmin

S∈{0,1}K

Ht(Yt | Xt,S<q
t

, Xt,S)−Ht(Yt | Xt) = argmin
S∈{0,1}K

Ht(Yt | Xt,S<q
t

, Xt,S)

We follow a greedy procedure that selects one context feature at a time per follow-up question,126

i.e., |Sq
t | = 1. This choice makes the optimization tractable, reducing the search complexity from127
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combinatorial O(2K) to linear O(K). To do so, we assign a score to each candidate question:128

vqt (S) = −Ht(Yt|Xt,S<q
t

, Xt,S) and select the context feature that maximizes this score. Thus, our129

optimization becomes:130

Sq
t = argmin

S∈{0,1}K ,|S|=1

Ht(Yt|Xt,S<q
t

, Xt,S) = argmax
S∈{0,1}K ,|S|=1

vqt (S)

We continue this procedure until the marginal entropy reduction Ht(Yt|Xt,S<q
t

) −131

Ht(Yt|Xt,S<q
t

, Xt,Sq
t
) is sufficiently small—that is, when the new question contributes little132

additional information. We assume a budget B that bounds the total number of follow-up133

questions allowed per user. The final gathered context is: St =
⋃Qt

j=0 S
j
t . The entropy score134

vqt (S) = −Ht(Yt | Xt,S<q
t

, Xt,S) is estimated using Monte Carlo sampling, by generating potential135

outcome distributions under each candidate question S. In practice, due to limited compute, we136

sample only a subset of k ≪ K candidate follow-up questions from the policy pt(S
q
t | ω,Xt,S<q

t
)137

prior to estimating the scores.138

In our setting, outcomes are modeled as a categorical distribution over actions, where exactly one139

action is correct. This structure allows us to estimate entropy more efficiently. Rather than computing140

the full distribution over potential outcomes and then selecting the best action, we directly compute141

the entropy over the action distribution induced by the model. This approach avoids a separate142

outcome prediction step and simplifies entropy estimation within our algorithm. The following143

lemma formalizes this equivalence (proof in Appendix 7.1):144

Lemma 3.2 (Equivalence of Action and Outcome Entropy). For a categorical distribution over145

outcomes, minimization of outcome entropy is equivalent to minimization of action entropy:146

argmin
S

Ht(Yt|Xt,S) = argmin
S

Ht(At|Xt,S)

3.1 Optimality of Entropy Search147

Matching entropy does not imply matching distributions in general. However, since we minimize148

entropy only by expanding the conditioning set, it decreases strictly unless the conditional distributions149

match. This justifies entropy as a surrogate loss for the distribution matching objective. The following150

lemma formalizes this via a bound on total variation distance:151

Lemma 3.3 (Upper Bound on Total Variation). For any ϵ > 0, we have

Ht(Yt|Xt,St)−Ht(Yt|Xt) ≤ ϵ⇒ ||pt(Yt|Xt,St)− pt(Yt|Xt)||1 ≤
√

ϵ

2

In particular, Ht(Yt|Xt,St
) = Ht(Yt|Xt)⇒ pt(Yt|Xt,St

) = pt(Yt|Xt)152

The proof follows from Pinsker’s inequality, and we provide the details in the Appendix 7.2.153

3.2 Convergence Analysis154

We show that the minimal entropy-minimizing context subset S∗
t suffices for the posterior sampling155

of the optimal action. In particular, conditioning on Xt,S∗
t

is equivalent to conditioning on the full156

context Xt for both the current parameters θt and the true parameters θ∗. This means no additional157

context is needed once outcome entropy is minimized. The same holds for any St ⊇ S∗
t .158

Lemma 3.4. Following the information-gathering procedure and posterior sampling for action159

selection, the following equalities hold under exact entropy search:160

Pt(A
∗
t , θ

∗ | Xt,S∗
t
) = Pt(At, θt | Xt,S∗

t
) = Pt(A

∗
t , θ

∗ | Xt) = Pt(At, θt | Xt)

The proof in Appendix 7.3 follows from posterior sampling and Lemma 3.3.161

We state a key lemma extending the information ratio framework of Neu et al. [2022] to partial162

context settings, yielding an analogous regret bound:163

Lemma 3.5 (Bounded Information Ratio). The information ratio for the observed set St is defined164

as follows:165

ρt(St) =
(Et [rt(θt, At, Xt,St

)− rt(θ
∗, At, Xt,St

)|Xt,St
])2

It (θ∗;Yt,At
|At, Xt,St

)

admits the bound ρt(St) ≤ 2
∑

a∈A E [r̄t(a,Xt,St
)]166
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The proof technique is similar to [Neu et al., 2022], and more details are in Appendix 7.4.167

Theorem 3.6 (Regret of Exact Entropy Search). Exact entropy search achieves the regret bound:168

RT ≤
√
2TH(θ∗)169

We provide a detailed proof in Appendix 7.7.170

At each turn t, we update the ω parameters using the sampled entropy scores. This process can be171

viewed as transferring knowledge from System-2 (deliberate, exhaustive evaluation) to System-1 (fast,172

heuristic-based selection) over time, consistent with the dual-process theory of cognition [Booch173

et al., 2021]. The key idea is that we are learning a policy that learns how to gather information174

efficiently. Since evaluating all K follow-up questions (a full System-2 search) is computationally175

infeasible, we instead train ω to generate a smaller, high-quality subset of k ≪ K candidate questions176

using System-1-style inference. We then apply System-2 reasoning within this restricted subset by177

selecting the candidate with the lowest estimated entropy. As ω improves, the quality of this subset178

increases, yielding better candidates more often. This motivates our assumption that the entropy gap179

ϵt diminishes over time—a property we exploit in Theorem 3.7 to establish sublinear regret despite180

constrained computational resources.181

The main contributor to non-zero gap ϵt is failing to include the optimal question S̄q
t =182

argminSq
t
Ht(Yt|Xt,S<q

t
, Xt,Sq

t
) in the candidate set for entropy estimation, not poor outcome183

estimation. While updates to θ do refine entropy estimates through calibrated outcome prediction,184

they are unlikely to significantly reduce ϵt, as most language models have a strong enough prior to185

choosing the optimal question if all options were considered.186

Theorem 3.7 (Regret). Approximate entropy search achieves the regret bound: RT ≤
√
2TH(θ∗) +187

O(T 1−α/2) in the one-hot outcome setting.188

We assume that Entropy Search learns to select the optimal subset with diminishing error ϵt =189

Ht(Yt|Xt,St , θ)−Ht(Yt|Xt, θ),E[ϵt] = O
(

1
tα

)
. In particular, for α = 1, we obtain RT = O(

√
T ),190

identical to the exact entropy search setting.191

We provide a detailed proof in Appendix 7.8.192

Lemma 3.8 (Entropy Search Lowers Per-Question Suboptimality over ReAct). We define the per-
question suboptimality of an algorithm as ϵqt = Ht(Yt|Xt,S<q

t
, Xt,Sq

t
)−Ht(Yt|Xt,S<q

t
, Xt,S̄q

t
) where

S̄q
t is the optimal qth question that minimizes the outcome entropy. Let p∗t,q = pt(S

q
t = S̄q

t |ω,Xt,S<q
t

)

be the probability that the policy selects the optimal qth follow-up question. For a budget of k ≪ K
candidate questions in Entropy Search (ES), we achieve lower suboptimality than the ReAct baseline:

(ϵqt )ES ≤ (1− p∗t,q)
k−1(ϵqt )ReAct

We defer the proof to Appendix 7.9 along with a discussion of this result.193

4 Experiments194

We have presented a theoretical framework for deriving a training objective that encourages a language195

model to seek information for decision-making. In this section, we experiment with three benchmarks,196

each comprising 1000 data points, to facilitate empirical studies. We go into detail on each of the197

benchmarks GSM8K-Q, 1D-ARC, and Fermi Problems, in Appendix 9.198

4.1 Algorithms199

We compare ENTROPY SEARCH to two other agent baselines:200

1. REACT: the agent first produces a chain-of-thought conditioned on (problem, H) and emits the201

next question greedily at the point where reasoning requires a missing fact.202

2. REFLEXION: The reflexion agent [Shinn et al., 2023] includes a dedicated reflection component,203

where after each interaction, the agent evaluates what it has learned, assesses the effectiveness of its204

previous queries, identifies missing information, and adjusts its questioning strategy accordingly.205

The prompt structure incorporates a dedicated “Reflection” section, includes past reflections for206

continuity, and instructs the agent explicitly to reflect before reasoning. Memory stores and207

displays reflections in subsequent interactions, enabling learning and strategic adjustments.208
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Figure 2: Example of the ENTROPY SEARCH agent interacting on a Fermi estimation task. The
agent selects targeted follow-up questions (e.g., requesting values for Variables F8 and F13) to reduce
uncertainty and gather key facts incrementally. Using the retrieved values, the agent composes a final
answer by chaining units and performing multi-step reasoning, highlighting the interpretability and
structured nature of the entropy-guided decision process.

REACT procedure

REFLEXION procedure

ENTROPY SEARCH procedure

Figure 1: Comparison of question
selection mechanisms

We also compare against a FULL INFORMATION setting with209

access to the entire user context.210

We primarily used the Gemma-3 12B [Team et al., 2025] model211

to balance performance and computational efficiency. We also212

ran evaluations using multiple state-of-the-art language models213

to assess robustness across architectures. These additional details214

and results are in Appendix 14.1.215

4.2 Results216

Figure 12 presents the comparative evaluation of method perfor-217

mance across three challenging datasets: 1D-ARC, GSM8K, and218

Fermi. As expected, the FULL INFORMATION baseline serves219

as a practical performance ceiling due to its complete contex-220

tual details. Crucially, ENTROPY SEARCH substantially narrows221

this gap more effectively than agentic reasoning methods like222

REFLEXION and REACT, highlighting the value of strategically223

prioritizing uncertainty reduction.224

In principle, one might expect sufficiently intelligent agents could225

infer complete symbolic solutions directly from GSM and Fermi226

question statements, reducing the need for additional information.227

However, our empirical findings robustly contradict this hypoth-228

esis, showing that entropy-guided information gathering significantly enhances performance even229

when symbolic solutions might seem inferable initially.230

Moreover, the performance on Fermi problems underscores another dimension of our method’s231

strength: its ability to handle real-world estimation tasks that require nuanced common-sense reason-232

ing. Remarkably, ENTROPY SEARCH not only outperformed the competing methods but matched the233

performance of the FULL INFORMATION scenario. This is particularly compelling given the inherent234

uncertainty and complexity involved in Fermi estimations.235

Further granularity is provided by the turn-based evaluation depicted in Figure 4, confirming that236

ENTROPY SEARCH consistently improves with more turns and outperforms baselines at every stage.237

These findings collectively underscore ENTROPY SEARCH’s effectiveness in strategically acquiring238

context under uncertainty, thus significantly enhancing decision-making quality in partially observable239

environments. Additional detailed turn-based analyses for the 1D-ARC and GSM8K benchmarks are240

available in Appendix 14.2, further validating these insights.241
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Figure 3: Method performance comparison across three benchmarks. FULL INFORMATION represents
the upper bound with complete context. ENTROPY SEARCH consistently outperforms REACT and
REFLEXION across all datasets and approaches the performance of the FULL INFORMATION baseline,
demonstrating the value of principled, entropy-guided question selection.

5 Conclusion, Limitations, and Future Work242

Figure 4: Turn-based evaluation for Fermi Prob-
lems. We conduct detailed comparisons across methods
(ENTROPY SEARCH, REFLEXION, REACT) and turns,
revealing that ES consistently closes the performance
gap with the full information setting with each addi-
tional question. This highlights both the generality and
efficiency of entropy-guided information acquisition.

We introduce an entropy search for context243

gathering in LLMs agents, enabling the se-244

lection of questions that reduce uncertainty245

and improve downstream decision-making.246

Our framework is model-agnostic and may247

be paired with a variety of models. By248

applying this method across various rea-249

soning tasks, we demonstrate that entropy250

search leads to superior performance over251

state-of-the-art baselines. One limitation of252

our work is the computational cost associ-253

ated with the Monte Carlo estimation of en-254

tropy. Future work could address this by us-255

ing value network estimation to reduce the256

computational burden. Further, our work257

did not consider information gathering in258

the context of safe exploration [Ray et al.,259

2019, Garcıa and Fernández, 2015, Wachi260

et al., 2023], which is an important direc-261

tion for future work. This work also opens262

several other promising directions for fu-263

ture research. Applying this framework to interactive human-AI collaboration in domains such as264

scientific discovery, diagnostic reasoning, and judgemental forecasting could yield both practical ben-265

efits and deeper insights into the role of adaptive information gathering in complex decision systems.266

Information seeking is also a key capability that should be monitored for AI safety and alignment;267

future frontier models can be benchmarked against our work to monitor information seeking capa-268

bility development. By endorsing language models with information seeking capabilities, our work269

contributes a framework for a cooperative, interactive intelligent system, highlighting the broader270

potential of LLMs as strategic agents in sequential decision-making under uncertainty.271
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6 Notation362

Table 1: Notation
t Index of user interacting with the agent
T Total number of users the agent interacts with
ut The tth user
Xt Random variable representing full context for user ut

K Total number of features in a user’s context (potentially large)
X Set of values from which a user’s context feature is drawn, Xt ∈ XK

At Final action performed by agent in response to user ut

A Finite set of actions that agent can perform
A |A|, number of actions in agent’s action space (potentially large)
Yt,At Outcome in {0, 1} for user ut given action At

Yt Potential outcomes under different actions, in {0, 1}A
S0
t Binary random variable representing the set of context feature indices initially revealed

by the user, in {0, 1}K
Sq
t Binary random variable representing the set of additional context feature indices gathered

by asking the qth follow-up question
Xt,Sq

t
Partial context of ut revealed by question asking about features in Sq

t

St Binary random vector representing the entire set of user feature indices that are gathered
by asking all the follow-up questions

⋃
q≥0 S

q
t

Xt,St Random variable representing the partial user context that is observed by the agent at
the time of performing an action

Qt Total number of follow-up questions that the agent asks the user ut

B Budget for maximum number of follow-up questions that the agent can ask the user ut

S<q
t

⋃q−1
j=0 S

j
t , set of user feature indices observed before asking the qth question

1 Set of all user feature indices {1}K
(S)− 1 \ S, complement of user context features in set S, possibly unobserved feature indices
θ Random variable representing agent parameters for the joint distribution of user context

X and potential outcomes Y
ω Random variable representing agent parameters for follow-up question generation policy
Ft Filtration / History prior to user t, equals {X1,S1

, A1, Y1,A1
, · · · , Xt,St

, At, Yt,At
}

pt Probability distribution conditioned on Ft

rt Reward / Expected outcome model for user ut, rt(θ,At, Xt,S) = Et[Yt,At
|θ,Xt,S ]

θ∗ Random variable representing optimal parameters for reward / expected outcome model
A∗

t Random variable representing optimal action that maximizes expected outcome
rt(θ

∗, A,Xt) given full context
qt(θ) Posterior distribution over parameter θ after observing Ft

∆t Instantaneous regret for action selected for user ut

RT Expected cumulative regret
d(·||·) Statistical distance measure on two distributions
Ht Entropy of distribution conditional on Ft

vqt (S) Entropy score for candidate qth question, negative of expected outcome entropy condi-
tional on observations before q

k Budget for number of candidate follow-up questions that are evaluated with the entropy
score prior to selecting one to ask the user

ρt(St) Generalization of the information ratio of Neu et al. [2022] to partial context in St

It Mutual information conditional on Ft

ϵt Gap between the outcome entropy for the selected subset St and the full context
α Rate of exponential decay of ϵt
ϵqt Gap between outcome entropy for selected qth follow-up question for user ut and the

optimal entropy minimizing question
pt,q Probability distribution conditional on Ft and user context observed prior to the qth

question
P Probability measure
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7 Theoretical Results363

Lemma 7.1 (Equivalence of Action and Outcome Entropy). For a categorical distribution over364

outcomes:365

argmin
S

Ht(Yt|Xt,S) = argmin
S

Ht(At|Xt,S)

Proof. The model selects actions with the same likelihood as the expected outcome366

pt(At = a|Xt,S) = pt(Yt,a = 1|Xt,S)

Let ea ∈ {0, 1}A denote the one-hot vector that is one at index a.367

Ht(Yt|Xt,S) = −
∑

y∈{0,1}A

pt(Yt = y|Xt,S) log(pt(Yt = y|Xt,S))

= −
∑

y∈{ea|a∈A}

pt(Yt = y|Xt,S) log(pt(Yt = y|Xt,S)) (one only correct action)

= −
∑
a∈A

pt(Yt,a = 1|Xt,S) log(pt(Yt,a = 1|Xt,S))

=
∑
a∈A

pt(At = a|Xt,S) log(pt(At = a|Xt,S))

= Ht(At|Xt,S)

368

Lemma 7.2 (Upper Bound on Total Variation). For any ϵ > 0, we have

Ht(Yt|Xt,St)−Ht(Yt|Xt) ≤ ϵ⇒ ||pt(Yt|Xt,St)− pt(Yt|Xt)||1 ≤
√

ϵ

2

In particular, Ht(Yt|Xt,St
) = Ht(Yt|Xt)⇒ pt(Yt|Xt,St

) = pt(Yt|Xt)369

Proof.

||pt(Yt|Xt,St
)− pt(Yt|Xt)||1 ≤

√
1

2
DKL(pt(Yt|Xt,St

)||pt(Yt|Xt)) (Pinsker’s Inequality)

=

√
1

2
DKL(pt(Yt|Xt,St

)||pt(Yt|Xt,St
, Xt,S−

t
))

=

√
1

2
It(Yt;Xt,S−

t
|Xt,St

) =

√
1

2

(
Ht(Yt|Xt,St)−Ht(Yt|Xt,St , Xt,S−

t
)
)

=

√
1

2
(Ht(Yt|Xt,St)−Ht(Yt|Xt)) ≤

√
ϵ

2

For ϵ = 0, we have a simpler argument:370

St = argmin
S

Ht(Yt|Xt,S)⇒ Ht(Yt|Xt,St) = Ht(Yt|Xt)

⇒ Yt ⊥ Xt | Xt,St
⇒ pt(Yt|Xt,St

) = pt(Yt|Xt)

In particular, this also holds for the smallest norm set of user features S∗
t that satisfies this condition.371

372

Lemma 7.3. Following the information-gathering procedure and posterior sampling for action373

selection, the following equalities hold under exact entropy minimization:374

Pt(A
∗
t , θ

∗ | Xt,S∗
t
) = Pt(At, θt | Xt,S∗

t
) = Pt(A

∗
t , θ

∗ | Xt) = Pt(At, θt | Xt)
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Proof. Exact entropy minimization implies that the outcome distributions conditioned on the minimal375

sufficient context S∗
t match those conditioned on the full context by Lemma 3.3:376

Pt(Yt | θt, Xt,S∗
t
) = Pt(Yt | θt, Xt)

Since posterior sampling draws θt from the same distribution as θ∗, we also have:377

Pt(Yt | θ∗, Xt,S∗
t
) = Pt(Yt | θ∗, Xt)

Therefore, under both θt and θ∗, conditioning on Xt,S∗
t

is equivalent to conditioning on Xt for378

predicting Yt.379

Because the action is selected deterministically to maximize the expected outcome, the distribution380

over actions must also be identical:381

Pt(At | θt, Xt,S∗
t
) = Pt(At | θt, Xt)

Pt(A
∗
t | θ∗, Xt,S∗

t
) = Pt(A

∗
t | θ∗, Xt)

Finally, combining the equivalence of action distributions with that of θ under posterior sampling382

gives:383

Pt(At, θt | Xt,S∗
t
) = Pt(At, θt | Xt)

Pt(A
∗
t , θ

∗ | Xt,S∗
t
) = Pt(A

∗
t , θ

∗ | Xt)

which proves the lemma.384

Lemma 7.4 (Bounded Information Ratio). Information ratio for observed set St defined as follows:385

ρt(St) =
(Et [rt(θt, At, Xt,St

)− rt(θ
∗, At, Xt,St

)|Xt,St
])2

It (θ∗;Yt,At |At, Xt,St)

admits the bound ρt(St) ≤ 2
∑

a∈A E [r̄t(a,Xt,St)]386

Proof. Following the proof technique in Neu et al. [2022], we bound a quantity analogous to the387

instantaneous regret ∆t = rt(θt, At, Xt,St
)− rt(θ

∗, At, Xt,St
).388

It is easy to see that for St ⊇ S∗
t , this simplifies to the instantaneous regret:389

∆t = rt(θ
∗, A∗

t , Xt,S∗
t
)− rt(θ

∗, At, Xt,S∗
t
)

(under posterior sampling conditional distribution (θ∗, A∗
t ) matches (θt, At))

= rt(θ
∗
t , A

∗
t , Xt)− rt(θ

∗, At, Xt)

(Using Pt(Yt,A∗
t
|θ∗, Xt,S∗

t
) = Pt(Yt,A∗

t
|θ∗, Xt))

Define r̄t(at, Xt,S∗
t
) = Et[rt(θ

∗, at, Xt,S∗
t
)] and g(p|q) = p log p

q + (1− p) log 1−p
1−q .390

The Fenchel-Young inequality states: f(x) + f∗(y) ≥ ⟨x, y⟩, where f∗ is the convex conjugate of f :391

f∗(a) = supx∈X {⟨a, x⟩ − f(x)}. Hence, g∗(u||q) = supp∈[0,1]{pu− g(p||q)} = log(1 + q(eu −392

1)) ≤ q
(
u+ u2

2

)
.393

Et [∆t|Xt,St ] = Et,Xt,St
[rt(θt, At, Xt,St)− rt(θ

∗, At, Xt,St)]

= Et,Xt,St
[rt(θt, At, Xt,St

)− r̄t(At, Xt,St
)]

= Et,Xt,St

[∑
a∈A

1[At = a]
ηpt(At = a|Xt,St)

ηpt(At = a|Xt,St
)
rt(θt, a,Xt,St

)− r̄t(At, Xt,St
)

]

= Et,Xt,St

[
η
∑
a∈A

pt(At = a|Xt,St)

(
1[At = a]

ηpt(At = a|Xt,St)
rt(θt, a,Xt,St)

)
− r̄t(At, Xt,St)

]

≤ Et,Xt,St

[
η
∑
a∈A

pt(At = a|Xt,St
)

(
g (rt(θt, a,Xt,St

)||r̄t(At, Xt,St
))
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+ g∗
(

1[At = a]

ηpt(At = a|Xt,St)
||r̄t(At, Xt,St)

))
− r̄t(At, Xt,St)

]

≤ Et,Xt,St

[
η
∑
a∈A

pt(At = a|Xt,St
)

(
g (rt(θt, a,Xt,St

)||r̄t(At, Xt,St
))

+
1[At = a]

ηpt(At = a|Xt,St
)
r̄t(At, Xt,St

) +
1[At = a]

2η2p2t (At = a|Xt,St
)
r̄t(At, Xt,St

)

)
− r̄t(At, Xt,St

)

]

= Et,Xt,St

[
η
∑
a∈A

pt(At = a|Xt,St)g (rt(θt, a,Xt,St)||r̄t(At, Xt,St)) +
1

2η

∑
a∈A

r̄t(a,Xt,St)

]

= Et,Xt,St

[
η
∑
a∈A

pt(At = a|Xt,St)g (rt(θ
∗, a,Xt,St)||r̄t(At, Xt,St)) +

1

2η

∑
a∈A

r̄t(a,Xt,St)

]

= ηIt (θ∗;Yt,At
|At, Xt,St

) +
1

2η

∑
a∈A

Et [r̄t(a,Xt,St
)]

Choosing the value of η > 0 which minimizes the above expression, we obtain394

Et [∆t|Xt,St
] ≤

√
2It (θ∗;Yt,At

|At, Xt,St
)
∑
a∈A

Et [r̄t(a,Xt,St
)]

Rearranging terms, we get ρt(St) =
(Et[∆t|Xt,St ])

2

It(θ∗;Yt,At |At,Xt,St)
≤ 2

∑
a∈A Et [r̄t(a,Xt,St

)]395

The following Lemma is a precursor to the bound on conditional mutual information396

(Lemma 7.6)397

Lemma 7.5 (Recursive Property of Posterior Sampling).
∏T

t=1

∑
θ qt(θ)pt(Yt,At

|θ,At, Xt,St
) =398 ∑

θ q1(θ)
∏T

t=1 pt(Yt,At
|θ,At, Xt,St

)399

Proof. We repeat the proof in Neu et al. [2022] for easy reference:400

From posterior sampling, qt+1(θ) =
qt(θ)pt(Yt,At |θ,At,Xt,St )∑

θ′ qt(θ
′)pt(Yt,At |θ′,At,Xt,St )

401

∑
θ

q1(θ)

T∏
t=1

pt(Yt,At
|θ,At, Xt,St

) =

T∏
t=1

∑
θ q1(θ)

∏t
k=1 pk(Yk,Ak

|θ,Ak, Xk,Sk
)∑

θ′ q1(θ′)
∏t−1

k=1 pk(Yk,Ak
|θ,Ak, Xk,Sk

)

=

T∏
t=1

∑
θ

qt(θ)pt(Yt,At
|θ,At, Xt,St

)

402

Lemma 7.6 (Bounded Conditional Mutual Information). The cumulative mutual information for any403

observation set St admits the following bound: E
[∑T

t=1 It(θ∗, Yt,At
|At, Xt,St

)
]
≤ H(θ∗)404

Proof. We generalize the proof of Neu et al. [2022] to an arbitrary subset of features St. Let405

qt+1(θ) =
qt(θ)pt(Yt,At |θ,At,Xt,S∗

t
)∑

θ′ qt(θ
′)pt(Yt,At |θ′,At,Xt,S∗

t
) be the posterior sampling update of our belief of the value406

of optimal parameter θ∗. q1(θ) is our initial prior before any interactions.407

E

[
T∑

t=1

It(θ∗;Yt,At
|At, Xt,St

)

]
= E

[
T∑

t=1

EtDKL [pt(Yt,At
|θ∗, At, Xt,St

) | pt(Yt,At
|At, Xt,St

)]

]
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= E

[
T∑

t=1

Et

[
log

pt(Yt,At
|θ∗, At, Xt,St

)

pt(Yt,At
|At, Xt,St

)

]]

= E

[
T∑

t=1

Et

[
log

pt(Yt,At
|θ∗, At, Xt,St

)∑
θ qt(θ)pt(Yt,At |θ,At, Xt,St)

]]

= E

[
log

∏T
t=1 pt(Yt,At |θ∗, At, Xt,St)∑

θ q1(θ)
∏T

t=1 pt(Yt,At |θ,At, Xt,St)

]
(by Lemma 7.5)

≤ E

[
log

∏T
t=1 pt(Yt,At

|θ∗, At, Xt,St
)

q1(θ∗)
∏T

t=1 pt(Yt,At |θ∗, At, Xt,St
)

]
= E[− log(q1(θ

∗))] = H(θ∗)

408

Theorem 7.7 (Regret of Exact Entropy Minimization). Exact entropy minimization achieves the409

regret bound: RT ≤
√
2TH(θ∗)410

Proof. In the exact entropy minimization setting we assume St ⊇ S∗
t , which is the smallest entropy-411

minimizing subset of user features, and therefore, the information ratio ρt(St) = ρt(S
∗
t ) can simply412

be denoted as ρt.413

ρt =
(Et

[
rt(θ

∗, A∗
t , Xt)− rt(θ

∗, At, Xt,S∗
t
)
]
)2

It(θ∗;Yt,At |At, Xt,S∗
t
)

The cumulative regret of the decision maker can be bounded414

RT = E

[
T∑

t=1

(rt(θ
∗, A∗

t , Xt)− rt(θ
∗, At, Xt,S∗

t
))

]
= E

[
T∑

t=1

Et

[
rt(θ

∗, A∗
t , Xt)− rt(θ

∗, At, Xt,S∗
t
)
]]

= E

[
T∑

t=1

√
ρtIt(θ∗;Yt,At

|At, Xt,S∗
t
)

]
≤

√√√√E

[
T∑

t=1

ρt

]
E

[
T∑

t=1

It(θ∗;Yt,At
|At, Xt,S∗

t
)

]

The last step follows by Cauchy-Schwarz Inequality. We proceed by deriving bounds for each of415

E
[∑T

t=1 ρt

]
and E

[∑T
t=1 It(θ∗;Yt,At

|At, Xt,S∗
t
)
]
.416

To bound E
[∑T

t=1 ρt

]
, we invoke Lemma 3.5:417

ρt ≤ 2E

[∑
a∈A

r̄t(a,Xt,St)

]
= 2 (categorical distribution over actions)

Next, we invoke Lemma 7.6 which says E
[∑T

t=1 It(θ∗, Yt,At
|At, Xt,S∗

t
)
]
≤ H(θ∗).418

Combining these two bounds we obtain:419

RT ≤

√√√√E

[
T∑

t=1

ρt

]
E

[
T∑

t=1

It(θ∗;Yt,At
|At, Xt,S∗

t
)

]
≤
√

2TH(θ∗)

420

Theorem 7.8 (Regret). Approximate entropy minimization achieves the regret bound: RT ≤421 √
2TH(θ∗) +O(T 1−α/2) in the one-hot outcome setting.422

We assume that entropy minimization learns to select the optimal subset with diminishing error ϵt =423

Ht(Yt|Xt,St
, θ)−Ht(Yt|Xt, θ),E[ϵt] = O

(
1
tα

)
. In particular, for α = 1, we obtain RT = O(

√
T ),424

identical to the exact entropy minimization setting.425
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Proof. Let us define ∆t = rt(θ
∗, A∗

t , Xt) − rt(θ
∗, At, Xt) and ∆̃t = rt(θt, At, Xt,St) −426

rt(θ
∗, At, Xt,St). We use the definition of information ratio from Lemma 3.5 and define ρ̃t = ρt(St):427

ρ̃t =
(Et

[
∆̃t|Xt,St

]
)2

It (θ∗;Yt,At |At, Xt,St)

Define γt = Et

[
∆t|Xt,S∗

t

]
− Et

[
∆̃t|Xt,St

]
. Regret RT can be decomposed as follows:428

RT = E

[
T∑

t=1

∆t

]
= E

[
T∑

t=1

Et

[
∆t|Xt,S∗

t

]]
= E

[
T∑

t=1

Et

[
∆t|Xt,S∗

t

]
− Et

[
∆̃t|Xt,St

]
+ Et

[
∆̃t|Xt,St

]]

= E

[
T∑

t=1

γt +
√
ρ̃tIt (θ∗;Yt,At |At, Xt,St)

]

≤ E

[
T∑

t=1

γt

]
+

√√√√E

[
T∑

t=1

ρ̃t

]
E

[
T∑

t=1

It (θ∗;Yt,At
|At, Xt,St

)

]

≤ E

[
T∑

t=1

γt

]
+
√
2TH(θ∗)

Where we bound the second term in a similar manner to Theorem 3.6. E
[∑T

t=1 ρ̃t

]
≤ 2T from429

Lemma 3.5. E
[∑T

t=1 It (θ∗;Yt,At |At, Xt,St)
]
≤ H(θ∗) from Lemma 7.6.430

Now we bound γt = Et

[
∆t|Xt,S∗

t

]
− Et

[
∆̃t|Xt,St

]
:431

Note that, under the exact entropy search setting, we have St = S∗
t which yields γt = 0.432

γt = Et

[
∆t|Xt,S∗

t

]
− Et

[
∆̃t|Xt,St

]
= rt(θ

∗, A∗
t , Xt,S∗

t
)− rt(θ

∗, At, Xt,S∗
t
)− (rt(θt, At, Xt,St)− rt(θ

∗, At, Xt,St))

= rt(θt, At, Xt,S∗
t
)− rt(θ

∗, At, Xt,S∗
t
)− (rt(θt, At, Xt,St

)− rt(θ
∗, At, Xt,St

))

(Conditional distribution of (θ∗, A∗
t ) and (θt, At) are same)

= rt(θt, At, Xt,S∗
t
)− rt(θt, At, Xt,St

)− (rt(θ
∗, At, Xt,S∗

t
)− rt(θ

∗, At, Xt,St
))

Let δt(θ) = rt(θ,At, Xt,S∗
t
)− rt(θ,At, Xt,St) = pt(Yt,At = 1|Xt,S∗

t
, θ)− pt(Yt,At = 1|Xt,St , θ).433

Then, we have γt = δt(θt)− δt(θ
∗).434

|δt(θ)| = |pt(Yt,At
= 1|Xt,S∗

t
, θ)− pt(Yt,At

= 1|Xt,St
, θ)|

≤ sup
a∈A
|pt(Yt,a = 1|Xt,S∗

t
, θ)− pt(Yt,a = 1|Xt,St , θ)|

= sup
Yt

|pt(Yt|Xt,S∗
t
, θ)− pt(Yt|Xt,St

, θ)| (Total Variation (TV) distance)

≤
√

1

2
ϵt (by Lemma 3.3)

Where we assume that ϵt = Ht(Yt|Xt,St
, θ)−Ht(Yt|Xt,S∗

t
, θ) is bounded.435

Now we derive a bound on E
[∑T

t=1 γt

]
.436

E

[
T∑

t=1

γt

]
= E

[
T∑

t=1

δt(θt)− δt(θ
∗)

]
≤ E

[
T∑

t=1

|δt(θt)|+ |δt(θ∗)|

]
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≤
√
2E

[
T∑

t=1

√
ϵt

]

Assuming that the entropy gap decays as E [ϵt] = O
(

1
tα

)
, we achieve the following bound:437

E

[
T∑

t=1

γt

]
= O(

T∑
t=1

1

tα/2
) = O(T 1−α/2)

Replacing this in the regret bound we obtain:438

RT ≤ O(T 1−α/2) +
√
2TH(θ∗) = O(

√
T ) (for α = 1)

439

Lemma 7.9 (Entropy Minimization Lowers Per-Question Suboptimality over ReAct). We define the
per-question suboptimality of an algorithm as ϵqt = Ht(Yt|Xt,S<q

t
, Xt,Sq

t
)−Ht(Yt|Xt,S<q

t
, Xt,S̄q

t
)

where S̄q
t is the optimal qth question that minimizes the outcome entropy. Let p∗t,q = pt(S

q
t =

S̄q
t |ω,Xt,S<q

t
) be the probability that the policy selects the optimal qth follow-up question. For a

budget of k ≪ K candidate questions in Entropy-Search (ES), we achieve lower suboptimality than
the ReAct baseline:

(ϵqt )ES ≤ (1− p∗t,q)
k−1(ϵqt )ReAct

Proof. Let S̄q
t = argminSq

t
Ht(Yt|Xt,S<q

t
, Xt,Sq

t
) be the optimal next follow-up question to the440

user for a given observed context Xt,S<q
t

. The per-question suboptimality of an algorithm ϵqt =441

Ht(Yt|Xt,S<q
t

, Xt,Sq
t
)−Ht(Yt|Xt,S<q

t
, Xt,S̄q

t
) measures how much more entropy could have been442

minimized if the optimal question was selected.443

Under the ReAct baseline, we sample a follow-up question Sq
t ∼ pt(S

q
t |ω,Xt,S<q

t
). Let p∗t,q =444

pt(S
q
t = S̄q

t |ω,Xt,S<q
t

) be the probability that the policy selects the optimal qth follow-up question.445

For compactness, let us use subscript (t, q) to denote conditioning over (Ft, Xt,S<q
t

). Then the per-446

question suboptimality of ReAct can be re-written as (ϵqt )ReAct = Ht,q(Yt|Xt,Sq
t
)−Ht,q(Yt|Xt,S̄q

t
).447

(ϵqt )ReAct = Ht,q(Yt|Xt,Sq
t
)−Ht,q(Yt|Xt,S̄q

t
)

=

∑
S ̸=S̄q

t

pt,q(S
q
t = S|ω)Ht,q(Yt|Xt,S) + (p∗t,q)Ht,q(Yt|Xt,S̄q

t
)

−Ht,q(Yt|Xt,S̄q
t
)

= (1− p∗t,q)

∑
S ̸=S̄q

t
pt,q(S

q
t = S|ω)Ht,q(Yt|Xt,S)

1− p∗t,q
+ (p∗t,q − 1)Ht,q(Yt|Xt,S̄q

t
)

= (1− p∗t,q)Hsub
t,q + (p∗t,q − 1)Hmin

t,q = (1− p∗t,q)(Hsub
t,q −Hmin

t,q )

where Hsub
t,q is the expected outcome entropy in suboptimal cases, Hmin

t,q is the minimum outcome448

entropy possible after selecting the qth follow-up question.449

Now let us compare this with the per-question suboptimality for Entropy Search (ES). Under ES,450

we first sample k candidate follow-up questions S1, S2, · · · , Sk ∼ pt,q(S
q
t |ω). Then amongst these451

candidates, we select the entropy minimizing question Sq
t = argminS∈{S1,S2,··· ,Sk} Ht,q(Yt|Xt,S).452

Assume that the primary limiting factor for ES is the budget k ≪ K: with probability (1− p∗t,q)
k,453

the candidate set does not contain S̄q
t which is the entropy minimizing solution. Then we have:454

(ϵqt )ES = Ht,q(Yt|Xt,Sq
t
)−Ht,q(Yt|Xt,S̄q

t
)

≤
(
(1− p∗t,q)

kHsub
t,q + (1− (1− p∗t,q)

k)Ht,q(Yt|Xt,S̄q
t
)
)
−Ht,q(Yt|Xt,S̄q

t
)

(In suboptimal cases, ES still achieves lower entropy than ReAct as it minimizes entropy over the k subset)
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= (1− p∗t,q)
k(Hsub

t,q −Hmin
t,q )

Combining the results for per-turn suboptimality for ReAct and ES, we obtain:

(ϵqt )ES ≤ (1− p∗t,q)
k−1(ϵqt )ReAct

455

Discussion: Selecting optimal follow-up questions is crucial because observing the answer to these456

questions can help the model predict the correct action in fewer questions and more accurately. We457

observe in Lemma 3.8 that the per-question suboptimality of Entropy Search depends on the compute458

budget k in the exponent. Therefore, the more candidate questions we consider for inference-time459

search, the more likely we are to select the optimal follow-up question, as we would expect. Moreover,460

this bound assumes that both ES and ReAct share the same question-selection policy ω. However, we461

expect p∗t,q to grow much faster for ES than for ReAct since (1) inference time selection based on462

the entropy score vqt (S) = −Ht(Yt | Xt,S<q
t

, Xt,S) increases the frequency of selecting the correct463

follow-up question, and (2) vqt (S) serves as a dense, per-step training signal to optimize ω, that464

directly maximizes p∗t,q whenever a correct follow-up question is selected in the candidate set. As a465

result, we expect ES to select optimal queries much more often than ReAct, leading to better actions466

and, therefore, better user outcomes.467

8 Baseline Methods468

Now we compare several baseline strategies for information gathering with language models, some469

of which we compare to ENTROPY SEARCH in our experiments (Section 4).470

8.1 Random Sampling471

A naive alternative is to start with random question selection and rely on observed outcomes to guide472

future decisions. This approach assumes that information-seeking behavior will emerge naturally473

through reward maximization over a sufficiently large number of interactions. While conceptually474

simple, such a strategy has notable drawbacks, particularly in its inefficiency due to the lack of475

prioritization of informative questions. To illustrate the limitations of random sampling, consider the476

following example: Let B ≪ K be the budget for total questions the agent is allowed to ask per user477

before performing an action, where K is the total number of features in the user’s context. Assume478

that the user’s reward model depends on a sparse subset of d≪ K relevant features. The probability479

that random sampling selects all d relevant features in a single round is:480

P(|St ∩ S∗
t | = d) =

(
d
d

)(
K−d
B−d

)(
K
B

) ,

where S∗
t is the minimal set of relevant context features. This probability becomes exponentially481

small for large K and small d. Consequently, the agent is unlikely to collect sufficient context to482

make optimal decisions, leading to a high likelihood of suboptimal outcomes, hence incurring linear483

regret. This sparse signal provided by random sampling exacerbates the challenges for reinforcement484

learning algorithms, which depend on meaningful feedback to improve their policies. Without485

effective strategies for sampling follow-up questions, the agent may fail to uncover the structure of486

the reward model, limiting the potential for learning and adaptation.487

8.2 REACT488

A natural improvement to random follow-up questions is to utilize the LLM agent’s world knowledge489

to come up with meaningful and relevant questions. REACT is a popular agentic framework that490

prompts the model to Reason then Act. The agent is prompted with the user’s questions and the491

context gathered through previous follow-up questions and is asked to produce Chain-of-Thought492

reasoning prior to selecting the next best question. This approach is better than random sampling,493

since the model can reason about what facts and features are relevant to the problem and selectively494

query those from the user. However, a key limitation of REACT is that the model is unable to495

look far ahead into the future and anticipate the user’s potential responses to subsequent follow-up496

questions S>q
t while selecting the current follow-up question Sq

t . However, as we show in Section 3,497

such System-2 thinking is crucial for making optimal decisions and reliably estimating the outcome498

distribution. This is particularly important for problem domains where there are complex conditional499
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interdependencies between different follow-up questions where some questions are strictly more500

informative than others and the answer to these questions can make other questions irrelevant. We501

demonstrate that explicitly searching over candidate questions significantly lowers the per-question502

suboptimality of ENTROPY SEARCH when compared to REACT in Lemma 7.9.503

Now we discuss another Lemma that gives a lower bound on the suboptimality ϵt for REACT504

and ENTROPY SEARCH and we show that this gap decreases significantly faster for ENTROPY505

SEARCH.506

Lemma 8.1 (Lower Bound on Suboptimality Gap). The entropy gap (suboptimality) ϵt =507

Ht(Yt|Xt,St
)−Ht(Yt|Xt) admits the following lower bound for REACT and ENTROPY SEARCH508

under a budget of B follow-up questions with R underlying entropy-minimizing questions.509

E[ϵReAct
t ] ≥ Hsub

R−1∑
r=0

(
B

r

)
pr(1− p)B−r

E[ϵES
t ] ≥ Hsub

R−1∑
r=0

(
B

r

)
p̄r(1− p̄)B−r

p denotes the maximum probability that REACT selects a good follow-up question and p̄ = 1−(1−p)k510

is the corresponding upper bound on probability for ENTROPY SEARCH under a search budget of k511

candidate questions. Hsub denotes the minimum entropy gap over suboptimal trajectories that are512

missing one or more key questions about the user.513

Proof. Let B be the budget for maximum number of follow-up questions that can be asked to514

the user. Let R be the minimum number of queries needed to minimize the outcome entropy515

Ht(Yt|Xt,St
). In general, there may be multiple queries that are equivalent in the sense that the516

corresponding context features are highly correlated and knowing one is as good as knowing another.517

Let S∗
t = argminS Ht(Yt|Xt,S) be an entropy-minimizing subset of questions. At any given turn q,518

the agent picks a question Sq
t , while q ≤ B. A query Sq

t is entropy-reducing if it is equivalent to any519

of the queries in S∗
t and is not equivalent to any previously asked queries S<q

t .520

Let the probability that Sq
t is an entropy-minimizing query be ≤ p. Then the probability that the521

set of questions asked by the agent St ⊇ S∗
t (upto any equivalent questions) is pt(ϵt = 0) ≤522 ∑B

r=R

(
B
r

)
pr(1− p)B−r. This follows from the fact that this is an increasing function of p and the523

actual probabilities of selecting an entropy reducing question at any given turn q are lower than p,524

which means pt(ϵt = 0) would be lower.525

Now let us turn our attention to the case where a suboptimal set of questions is asked within the526

budget B. This means that atleast one question from S∗
t or equivalent has not been asked by the527

agent. Let Hsub = minSt⊉S∗
t
Ht(Yt|Xt,St

) = minSt⊉S∗
t
ϵt be the minimum suboptimality gap in528

the instances where the agent does not cover all entropy minimizing questions. This happens with529

probability≥
∑R−1

r=0

(
B
r

)
pr(1− p)B−r because this quantity is decreasing in p (intuitively, this is the530

CDF of a binomial distribution, and as p increases, the mass of the distribution shifts right, reducing531

the CDF). Thus, it follows that E[ϵReAct
t ] ≥ Hsub

∑R−1
r=0

(
B
r

)
pr(1− p)B−r.532

In contrast to REACT, the probability of selecting an entropy minimizing question is directly linked to533

the computational budget for search which determines how many candidates questions k are sampled534

from the agent policy pt(S
q
t |ω,Xt,S<q

t
). The probability that Sq

t is an entropy-minimizing query is535

≤ p̄ = 1− (1− p)k. The corresponding bound on suboptimality for ENTROPY SEARCH is given by536

Et[ϵ
ES
t ] ≥ Hsub

∑R−1
r=0

(
B
r

)
p̄r(1− p̄)B−r.537

We consider a simple case where B = 50, R = 25 and plot the upper bound on pt(ϵt = 0) against538

p for different values of k. We can see in Figure 5 that even for moderate values of k, ENTROPY539

SEARCH achieves significantly lower ϵt (practically zero) even when REACT selects an entropy-540

minimizing question Sq
t with p = 0.5 probability. This shows that ENTROPY SEARCH effectively541

lowers Et[ϵt] by utilizing test-time compute. Moreover, we expect Et[ϵt] to approach zero much542

faster even with marginal improvements in p as we update ω which can be seen from Figure 5.543
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Figure 5: Upper bound, pt(ϵt = 0) ≤
∑B

r=R

(
B
r

)
pr(1− p)B−r vs p: REACT is k = 1, ENTROPY

SEARCH is k > 1

8.3 REFLEXION544

REFLEXION Shinn et al. [2023] builds on top of REACT and adds a dedicated reflection component545

before the reasoning block in REACT. The agent is explicitly prompted to reflect on what it has546

learned from the previous interactions and assess the effectiveness of its information gathering547

strategy. The prompt also includes past reflections for improved continuity between questions. As548

seen in Section 4, REFLEXION does slightly better than REACT due to added backward reflection.549

However, as we demonstrate with ENTROPY SEARCH, looking forward is crucial for optimal question550

selection.551

9 Benchmarks552

GSM8K-Q We utilized the GSM8K-Q benchmark from QuestBench [Li et al., 2025], which553

contains human-annotated grade school math problems designed with one missing variable assign-554

ment necessary for solving each problem. This benchmark provides clear, structured scenarios for555

evaluating the agent’s ability to identify and acquire the minimal information required to resolve556

underspecified reasoning tasks. The controlled yet challenging nature of GSM8K-Q makes it ideal557

for rigorously assessing our algorithm’s capability to ask targeted, informative questions.558

1D-ARC The 1D-ARC benchmark [Xu et al., 2024], a widely studied adaptation of the Abstraction559

and Reasoning Corpus (ARC), is designed to evaluate abstract reasoning in language models. We560

further adapt it to test sequential information gathering by masking the output sequence. Each561

task presents an input sequence and a partially hidden output generated via transformations such as562

recoloring based on token frequency, repeating patterns, dynamic shifts, and conditional replacements.563

To uncover the transformation rule, the agent must query specific output indices, receiving exact564

values from an oracle. This setup provides a controlled and interpretable environment for evaluating565

how effectively an agent can reduce uncertainty and reason under partial information.566

Fermi Problems The Fermi problems [Kalyan et al., 2021] evaluate algorithms through567

commonsense-based estimation tasks, such as estimating coffee consumption at EMNLP 2019568

or the potential rise in sea levels from melting ice. Problems are designed with an oracle that provides569

answers from a mix of relevant and distractor facts, totaling 20 variables, but without indicating which570

facts are necessary. Solving Fermi problems requires recursively breaking down complex queries,571

abstracting details, and synthesizing multiple reasoning steps, aligning well with our interactive572

decision-making framework. These problems challenge even advanced fine-tuned models, which573

typically exhibit substantial errors; the best fine-tuned T5 model only reached a score of 0.23 [Kalyan574

et al., 2021]. To ensure the necessity for interactive information gathering, we filtered out easily575

solvable questions and manually removed inaccurately annotated ones, resulting in 1000 high-quality576

tasks from an initial pool of 5000. Figure 2 illustrates an example interaction, where the ENTROPY577

SEARCH agent selects informative questions to arrive at an accurate estimate.578
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10 Algorithms579

Algorithm 1 Interactive Question Answering

1: procedure INTERACTIVEQA(Problem, User, LLMAgent)
2: H ← {} ▷ Instantiate context
3: for b to budget do
4: question q = LLMAgent(Problem, H)
5: answer a = User(q) ▷ Query user
6: H ← H ∪ {(q, a)} ▷ Append to context
7: end for
8: return action A = LLMAgent(Problem, H)
9: end procedure

Algorithm 2 Entropy Search

1: procedure ENTROPYSEARCH(problem, history H)
2: H ← {}
3: Q = LLMAgent.sample(problem, sample size = k, H) ▷ Sample k questions
4: for q in Q do
5: answers = LLMAgent.sample(q, sample size, history) ▷ Sample answers
6: for answer in answers do
7: actions = LLMAgent.sample((q, answer), sample size, history)
8: end for
9: H ← H∪ {ComputeAvgEntropy(actions | q, answer)} ▷ Compute using Lemma 3.2

10: end for
11: return argminQH
12: end procedure

11 Other Related Works580

Our work integrates ideas from contextual bandits and experiment design in a novel manner. In the581

following subsections, we examine relevant threads in prior art, including derived settings such as582

survey bandits and combinatorial bandits. We conclude by explaining how these ideas come together583

in ENTROPY SEARCH.584

11.1 Experiment Design585

Experimental design addresses the problem of selecting the most informative set of measurements to586

reveal a hidden quantity of interest. Prior work has approached this task from a decision-theoretic587

perspective [Chaloner and Verdinelli, 1995, DeGroot, 1962]. A central tool in this literature is588

Shannon information (entropy), which is equivalent to the expected KL divergence between the prior589

and the posterior after incorporating new information from the experiment. This criterion, also known590

as Expected Information Gain (EIG), has been widely adopted to select optimal experiments. It591

motivates our use of entropy minimization as the objective for selecting the next follow-up question592

in ENTROPY SEARCH.593

11.2 Contextual Bandits594

Contextual bandits are a class of Multi-Armed Bandit (MAB) problems where the decision maker595

observes a context Xt before selecting an action At and receiving the corresponding outcome Yt596

[Agrawal and Goyal, 2013]. The decision maker leverages both the current context and the history of597

past interactions—i.e., tuples (Xj , Aj , Yj)j<t—to estimate the optimal action. Thompson sampling598

is a popular strategy in this setting, known for its strong theoretical guarantees [Agrawal and Goyal,599

2013]. Neu et al. [2022] extend the information-theoretic analysis of regret developed in Russo and600

Van Roy [2016] to the contextual bandit case. Their key contribution is the notion of an information601

ratio, quantifying the trade-off between incurred regret and knowledge gained about the optimal action.602

Our work builds on this idea by introducing an analogous quantity in our setting (Lemma 3.5).603
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11.3 Combinatorial Bandits604

Combinatorial bandit problems involve selecting combinations of arms, where the reward depends605

on the joint set of chosen arms [Durand and Gagné, 2014]. This is a more general setting than606

our information-gathering problem, as the outcome can be an arbitrary function of the selected arm607

features. In contrast, our setting has a key property: outcome uncertainty necessarily decreases as more608

features are added to the observed context subset. This enables the use of greedy selection strategies,609

such as ENTROPY SEARCH, which are significantly more tractable than general combinatorial610

optimization.611

11.4 Survey Bandits612

The survey bandit framework introduced by Krishnamurthy and Athey [2020] studies how to gather613

subsets of context before identifying the best arm in contextual bandits. Earlier, Bouneffouf et al.614

[2017] proposed a related problem—contextual bandits with restricted context—where the agent615

selects a fixed-size subset of the user context prior to choosing an arm. While inspired by combi-616

natorial bandits, their setting imposes additional assumptions on the reward distribution to make617

subset selection tractable. Related efforts in personalization have also explored feature relevance618

in contextual bandits [Tomkins et al., 2021, Yao et al., 2021]. However, a key limitation of these619

approaches is their reliance on strong structural assumptions about the context or reward, which620

restricts general applicability.621

11.5 Combining Ideas622

While prior work in sequential experimental design has focused on selecting sets of experiments to623

maximize information about outcomes, this approach has not been rigorously applied to the survey624

bandit setting. In reinforcement learning, information gain has been used as an intrinsic reward625

to encourage exploration [Houthooft et al., 2016, Mohamed and Jimenez Rezende, 2015]. To our626

knowledge, ENTROPY SEARCH is the first method to formalize entropy-based question selection in627

online reinforcement learning, particularly in the survey bandit context.628

12 Chain-of-Though & Min-Entropy Search Prompt629

12.1 ARC-1D:630

Task description:631

You are solving a binary sequence puzzle. Problem: You have a {n}-bit input sequence: {632
↪→ input -seq}. A hidden output sequence was created by applying an unknown number of633
↪→ right circular shifts. A right circular shift moves the last bit to front and634
↪→ shifts all others right.635

The previously gathered information follows this segment of the prompt. Here, we choose to include636

the previously gathered context in the initial prompt rather than in the chat history. We include this as637

follows:638

Known output bits: {"(new line)".join(f"- Index {q} -> Value {v}" for q, v in seen)}639

For Chain-of-Thought:640

Instructions: Do not query the indices for which output is known.641
You have EXACTLY two options:642

643
If you have sufficient information to determine the number of right circular shifts:644
1) Submit your final answer in this format:645
Reasoning: <step -by-step reasoning >646
Answer: <number of right circular shifts to transform the input into the output >647

648
Else if you need to gather more information to find the number of right circular shifts:649
2) Ask a query in this format:650
Reasoning: <step -by-step reasoning >651
Query: <index 0-{n-1}>652

653
Use EXACTLY one of these two formats , and NOTHING ELSE (no markdown , no extra text).654

For MES:655

Instructions: Do not query the indices for which output is known.656
You have EXACTLY two options:657

658
If you have sufficient information to determine the number of right circular shifts:659
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1) Submit your final answer in this format:660
Reasoning: <step -by-step reasoning >661
Answer: <number of right circular shifts to transform the input into the output >662

663
Else if you need to gather more information to find the number of right circular shifts:664
2) Ask a query in this format:665
Reasoning: <step -by-step reasoning >666
Query: <index 0-{n-1}>667
Value: <possible output value at the queried index >668
Answer: <number of right circular shifts to transform the input into the output >669

670
Use EXACTLY one of these two formats , and NOTHING ELSE (no markdown , no extra text).671

12.2 Fermi672

Both approaches have shared an initial prompt segment describing the task673

You are a methodical math problem solver. Your goal is to solve the word problem below.674
↪→ You have the problem text , a history of questions you previously asked and the675
↪→ answers you received , and a list of variables that can be related to the problem.676

677
** Problem Text**678
Question: How many individual life forms are there on Earth?679

680
** Variable list**681
Variables :{"F1": "number of timezones where it is meal time at any given point.", "F2": "682

↪→ total number of animals living in inhabitable areas.", "F3": "average number of683
↪→ people living in a single timezone .}684

685
** History of Questions Asked and Answers Received:686
--- Interaction 1 ---687
Your Question: What is the total animal population (F13) on Earth?688
Answer Received: The total animal population on Earth is 2e+19.689
--- End of History ---**690

Following the problem context and past history, the agent needs to decide which variable to query691

based on CoT and MES Algorithm692

For CoT:693

**Your Task :**694
1. Analyze the problem text and the interaction history carefully.695
2. Reason step -by-step towards solving the problem. Show your thinking process clearly.696
3. Use the information from the problem text and any answers received from previous697

↪→ questions.698
4. Determine if you can calculate the final answer based on your current understanding.699

700
** Choose EXACTLY ONE of the following actions :**701

702
A) If you can calculate the final answer:703

Provide your step -by-step Chain -of-Thought reasoning , explaining how you derived the704
↪→ answer using the problem text and previous answers received.705

** Output Format (Required):**706
Reasoning: <Your step -by -step derivation >707
FinalAnswer: <The final numerical answer >708

709
B) If you are stuck or need more specific information to proceed:710

Identify the *single , specific question* you need to ask to get the necessary711
↪→ clarification or missing piece of information required for your reasoning.712

Provide reasoning explaining *why* you need to ask this question based on your current713
↪→ reasoning progress.714

** Output Format (Required):**715
Reasoning: <Explain why this question is necessary for your next step >716
QueryOracle: <Your single , specific question >717

718
** Important :**719
- Perform calculations step -by-step in your reasoning.720
- Ask focused , specific questions based on gaps in your understanding or missing721

↪→ information identified in your reasoning.722
- Do not ask for information you can deduce yourself from the text or history.723
- Use only one output format (Reasoning + FinalAnswer OR Reasoning + QueryOracle).724
- for large number that needs scientific notation , use scientific notation in format Xe+Y725

↪→ , DO NOT DO 10^{ -10}726
727

e.g. \(8.26 \times 10^{6}\) meters should be written as 8.26e+6728
729

Begin your Chain -of -Thought reasoning and determine your next action.730

For MES, We have different prompt for two steps: Query step and rollout step:731
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Query step:732

** Instructions :**733
1. Review the problem context (text , variables) and interaction history.734
2. think of what is the formula involving the variables to compute the end result735
3. Identify variables whose values are *missing* but are *required* to solve the problem736

↪→ based on the equations.737
3. **Do NOT ask about any variable that has already been asked in the interaction history738

↪→ - regardless of whether it was answered **739
4. For each new question:740

* Provide brief reasoning explaining *why* this specific value is needed for the741
↪→ calculation based on the equations.742

* Avoid asking for the same variable again.743
* Make a reasonable estimation for the variable744
* Ask concise , clear natural language questions (e.g., "What is the value of N?", "745

↪→ How many customers were there ?").746
5. Output *only* the JSON object and conform exactly to the provided schema.747

748
** IMPORTANT: Your response MUST be valid parseable JSON that exactly matches the schema749

↪→ below. DO NOT include any explanations or text outside the JSON structure .**750
- The response must start with {{ and end with }}751
** Required JSON Schema :**752
{schema_json}753
Generate the JSON object:754

Rollout step:755

**Your Task & Decision Logic :**756
757

1. ** Analyze :** Review all provided information (Problem , History , Hypothetical Answer)758
2. ** Decide :**759

* ** Scenario 1: Numeric Answer Possible **760
* If you *can* calculate a final numeric answer:761

* Perform the calculation step -by-step in your reasoning.762
* Your primary output is the ** numeric value **.763

* ** Scenario 2: Numeric Answer NOT Possible **764
* If you *cannot* calculate a final numeric answer (because some values are765

↪→ still unknown even with the hypothetical answer):766
* Explain *why* a numeric calculation isn ’t possible in your reasoning.767
* Derive the most simplified ** symbolic expression ** for the answer based768

↪→ on knowns and unknowns.769
* Your primary output is the ** symbolic expression **.770

771
** Output Format (Based on Decision):**772

773
* **‘ simulated_reasoning ‘ (Required for BOTH scenarios):**774

* Provide clear , step -by-step reasoning.775
* If Scenario 1: Show the derivation and calculation leading to the numeric answer.776
* If Scenario 2: Explain the derivation of the symbolic expression and state why a777

↪→ numeric value cannot be determined.778
779

* **‘ symbolic_expression ‘ (Required for BOTH scenarios):**780
* Provide the final symbolic formula representing the answer.781
* Must include only variables and Python/SymPy -style operators (‘+‘, ‘-‘, ‘*‘, ‘/‘,782

↪→ ‘**‘).783
* No assignment (‘=‘), units , or descriptive text. Just the pure expression.784
* *Even if you provide a ‘numeric_value ‘, this field should contain the underlying785

↪→ symbolic formula used.*786
* Correct Examples: ‘N * A‘, ‘(X + Y) / Z‘, ‘1800 - 900 - C - 2*R‘787
* Wrong Examples: ‘Cost = X + Y‘, ‘X = 5 + N‘, ‘Final = 40‘788

789
* **‘numeric_value ‘ (Conditional):**790

* ** Scenario 1:** Provide the ** single calculated number ** (int or float).791
* Correct Examples: ‘40‘, ‘12.5‘, ‘-100‘, ‘40.0‘792
* ** CRITICALLY WRONG Examples (NEVER USE THESE):** ‘"40"‘, ‘"7 + 3*7 + 12"‘, ‘7793

↪→ + 3*7 + 12‘, ‘[40]‘, ‘10 * 4‘794
* for large number that needs scientific notation , use scientific notation in795

↪→ format Xe+Y , DO NOT DO 10^{{ -10}}796
e.g. \(8.26 \times 10^{{6}}\) meters should be written as 8.26e+6797

* ** Scenario 2:** Set this field to **‘null ‘**.798
799
800

** IMPORTANT: Your response MUST be valid parseable JSON that exactly matches the schema801
↪→ below. DO NOT include any explanations or text outside the JSON structure .**802

The response must start with {{ and end with }}803
804

** Required JSON Schema :**805
{schema_json}806
Generate the JSON object:807
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12.3 GSM8K808

Stop condition:809

You are a methodical math problem solver using Chain -of-Thought reasoning. Your goal is810
↪→ to solve the word problem below. You have the problem text and a history of811
↪→ questions you previously asked and the answers you received. You have access to812
↪→ the original problem , all variable definitions , all equations , and the history of813
↪→ your interactions with an Oracle (questions you asked and answers you received).814

815
** Problem Context :**816
{problem_context}817

818
**Full Interaction History (including latest Oracle answer):**819
{history_string}820

821
**Your Task :**822
Based on ALL the information currently available (problem text , variable definitions ,823

↪→ equations , and the entire interaction history), critically assess if you have824
↪→ sufficient information to calculate a definitive , single numerical answer to the825
↪→ problem.826

827
1. ** Reasoning :** Explain your thought process.828

* Consider the goal of the problem.829
* Review the necessary equations.830
* Check if all variables in those equations either have known values (from context831

↪→ or Oracle answers) or can be derived from other knowns.832
2. ** Decision (‘can_solve_now ‘):**833

* Set to ‘true ‘ if you are confident you can now proceed to calculate the final834
↪→ numerical answer without needing further Oracle input.835

* Set to ‘false ‘ if you believe crucial numerical information is still missing , or836
↪→ if there ’s critical ambiguity in definitions/equations that prevents a final837
↪→ numeric solution.838

839
Output your decision strictly as a JSON object conforming to the schema below.840

Query Step:841

# ROLE: Strategic Question Generator for Math Problems842
You are analyzing a math word problem to identify the *most useful questions* an agent843

↪→ could ask an Oracle to obtain ** missing numerical values ** required to solve the844
↪→ problem based on the provided equations and variables.845

** Problem Context :**846
{problem_context}847

848
** Interaction History (Up to Query):**849
{history_string}850

851
** Instructions :**852
1. Review the problem context (text , variables , equations) and interaction history.853
2. Identify variables whose values are *missing* but are *required* to solve the problem854

↪→ based on the equations.855
3. **Do NOT ask about any variable that has already been asked in the interaction history856

↪→ - regardless of whether it was answered - with only one exception :**857
- You may ask again about a previously asked variable **only if you are certain that858

↪→ obtaining this one value will allow you to complete the problem .** This859
↪→ exception should be used sparingly and only when absolutely justified.860

4. For each new question:861
* Provide brief reasoning explaining *why* this specific value is needed for the862

↪→ calculation based on the equations.863
* Use ’value ’ as the query type unless clarification of a symbol is essential (in864

↪→ that case , use ’definition ’ or ’equation ’).865
* Avoid asking for the same variable again.866
* Ask concise , clear natural language questions (e.g., "What is the value of N?", "867

↪→ How many customers were there ?").868
5. Output *only* the JSON object and conform exactly to the provided schema.869

Symbolic equation generation step:870

# ROLE: Symbolic Problem Solver (Initial Expression)871
872

You are tasked with deriving an initial symbolic expression to solve a math word problem.873
You have been given a problem context , the actual interaction history with an Oracle so874

↪→ far ,875
and a hypothetical first query to the Oracle along with its hypothetical answer for THIS876

↪→ simulation.877
878

** Problem Context :**879
{problem_context}880

881

24



** Actual Interaction History (Overall Agent -Oracle):**882
{base_interaction_history}883

884
Question Asked: {initial_query_text}885

886
** Instructions :**887
1. Incorporate the hypothetical Oracle answer into your understanding , along with the888

↪→ actual history.889
2. Perform step -by-step reasoning to derive a **single , final symbolic mathematical890

↪→ expression ** that represents the solution to the problem.891
3. This expression may contain known numbers and variable names from the problem context892

↪→ or history.893
4. Use standard Python/SymPy math notation (‘+‘, ‘-‘, ‘*‘, ‘/‘, ‘**‘).894
5. Use the variable in the initial_query_text to create a symbolic expression.895
6. **DO NOT evaluate to a number yet , even if you think you can.** The goal is the896

↪→ symbolic form.897
7. Output ONLY the JSON object strictly following the schema.898

899
Example Output: ‘(A * B) + C - D/2‘900

901
Generate the Symbolic Expression:902

Rollout step:903

# ROLE: Math Problem Solver (Internal Hallucination Step)904
905

You are in a multi -step simulation to solve a math problem.906
This simulation started after a hypothetical query (’{ initial_query_text }’) was907

↪→ hypothetically answered (’{ initial_hypothetical_answer }’).908
You are now at an internal step of this simulation.909

910
** Original Problem Context :**911
{problem_context}912

913
** Actual Interaction History (before this simulation started):**914
{base_interaction_history}915

916
** Simulated History (This Rollout: Initial Query + Internal Hallucinations so far):**917
{internal_hallucination_history_string}918

919
** Current State of Symbolic Expression (if any):** {current_symbolic_expression}920

921
** Instructions (Current Internal Step: {current_internal_step }/{ max_internal_steps }):**922
1. Review ALL information. Perform step -by -step reasoning based on the current state.923
2. Update ‘current_symbolic_expression_after_step ‘ with the symbolic expression after924

↪→ your reasoning for this step.925
3. ** Decision Point :**926

* **IF you can calculate a final , single numeric answer NOW:**927
* Set ‘is_final_numeric_answer_reached ‘ to ‘true ‘.928
* Provide the number in ‘final_numeric_answer ‘.929
* Set ‘next_variable_to_hallucinate ‘ and ‘hallucinated_value_for_next_variable ‘930

↪→ to ‘null ‘.931
* **ELSE IF this IS THE FINAL internal step ({ current_internal_step} == {932

↪→ max_internal_steps }):**933
* **YOU MUST ATTEMPT TO EVALUATE the ‘current_symbolic_expression_after_step ‘934

↪→ to a number .**935
* If evaluation is successful , set ‘is_final_numeric_answer_reached ‘ to ‘true ‘936

↪→ and provide it in ‘final_numeric_answer ‘.937
* If evaluation fails (still symbolic or error), set ‘938

↪→ is_final_numeric_answer_reached ‘ to ‘false ‘ and ‘final_numeric_answer ‘ to939
↪→ ‘null ‘.940

* Set ‘next_variable_to_hallucinate ‘ and ‘hallucinated_value_for_next_variable ‘941
↪→ to ‘null ‘.942

* **ELSE IF this is NOT the final internal step AND you are still blocked by a943
↪→ missing numerical value :**944
* Identify the ‘next_variable_to_hallucinate ‘ (the symbol of the variable).945
* Propose a PLAUSIBLE , SIMPLE ‘hallucinated_value_for_next_variable ‘ (e.g.,946

↪→ small integer).947
* Set ‘is_final_numeric_answer_reached ‘ to ‘false ‘ and ‘final_numeric_answer ‘948

↪→ to ‘null ‘.949
* ** OTHERWISE (e.g., cannot identify a clear next variable to hallucinate before950

↪→ max steps):**951
* Set ‘is_final_numeric_answer_reached ‘ to ‘false ‘, ‘final_numeric_answer ‘ to ‘952

↪→ null ‘.953
* Set ‘next_variable_to_hallucinate ‘ and ‘hallucinated_value_for_next_variable ‘954

↪→ to ‘null ‘.955

Final answer step:956
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Figure 6: arc-1d CoT

Figure 7: arc-1d MES

You are a methodical math problem solver using Chain -of-Thought reasoning. Your goal is957
↪→ to solve the word problem below. You have the problem text and a history of958
↪→ questions you previously asked and the answers you received.959

**This is your final attempt. You MUST provide a final answer .**960
961

You are in the **final internal step** of a multi -step to solve a math problem.962
You have derived a symbolic expression and made several internal value.963

964
** Original Problem Context :**965
{problem_context}966

967
** Interaction History (Overall Agent -Oracle):**968
{history_string}969

970
** Instructions :**971
1. Review ALL known values from the original context , actual history , and ALL values972

↪→ from this.973
2. **YOU MUST ATTEMPT TO EVALUATE the ‘current_symbolic_expression ‘ to a single numeric974

↪→ value .**975
3. Provide step -by-step ‘final_reasoning ‘ showing this evaluation.976
4. You MUST provide a final answer now. Make your best calculation based on the977

↪→ information you have , even if some parts were uncertain or missing.978
5. Output ONLY the JSON object strictly following the schema.979

980
** Output Format (Required):**981
Reasoning: <Your final step -by-step derivation , justifying your answer based on all982

↪→ information >983
FinalAnswer: <Your best calculated numerical answer >984

13 Benchmark Examples985

13.1 ARC-1D:986

Example: Reasoning output after it has queried index 0.987
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Agent Problem Log - ARC-1D - CoT

Agent loaded problem:
Processing CoT: [2, 2, 2, 0, 0, 0, 0]→ [0, 2, 2, 2, 0, 0, 0]
Ground Truth (GT): Move 1
Sequence Length: 7
Masked output sequence: [0, ’?’, ’?’, ’?’, 0, ’?’, ’?’]

— Turn 1 —
Agent’s thought: Let’s analyze the input [2, 2, 2, 0, 0, 0, 0] and output [0, ’?’, ’?’, ’?’, 0,
’?’, ’?’]. The first element is 2, but the output at index 0 is 0, indicating the beginning of the
sequence has changed. The last element is 0, and the output at index 6 is ’?’, giving limited
clues.
Possible transformations considered:

• Flip: Unlikely (first element would stay 2).
• Move 1, 2, 3: Shifts could explain index 0 changing to 0.
• Fill / Padded Fill: No repeated or gapped markers, unlikely.
• Hollow / Denoise / Scaling / Mirror: No match to observed pattern.

Agent query: Reveal index 1 to check if shift occurred.
Oracle’s answer: Index 1 value is 2.

— Turn 2 —
Agent’s thought: Now the output is [0, 2, ’?’, ’?’, 0, ’?’, ’?’]. Considering the non-zero block,
only a shift explains index 0 becoming 0. Reveal index 3 to confirm the shift.
Agent query: Reveal index 3.
Oracle’s answer: Index 3 value is 2.

— Turn 3 —
Agent’s thought: Output is now [0, 2, 2, 2, 0, ’?’, ’?’]. This suggests a shift of the [2, 2, 2]
block. To narrow down the move type, reveal index 2.
Agent query: Reveal index 2.
Oracle’s answer: Index 2 value is 2.

— Turn 4 —
Agent’s thought: With [0, 2, 2, 2, 0, ’?’, ’?’], to distinguish between Move 1/2/3, reveal index
5.
Agent query: Reveal index 5.
Oracle’s answer: Index 5 value is 0.

Final Decision
Agent’s summary reasoning:

• Input block [2, 2, 2] shifted right by 1 position.
• Leading zero at index 0 indicates Move 1.
• Other transformations do not align with the observed pattern.

Predicted final output: [0, 2, 2, 2, 0, 0, 0].
Agent Final Answer: Move 1
Correct Answer?: True (Expected: Move 1)
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Agent Execution Log - ARC-1D - MES

Agent loaded problem:
Processing: [2, 2, 2, 0, 0, 0, 0]→ [0, 2, 2, 2, 0, 0, 0]
Ground Truth (GT): Move 1
Sequence Length: 7
Masked output sequence: [0, ’?’, ’?’, ’?’, 0, ’?’, ’?’]
— Turn 1 —
— Entropy Strategy: Evaluating Queries —
Query candidates: [1]
Evaluating query 1:
Predicted value probabilities: {0: 0.375, 2: 0.625}
- If value 0 (prob 0.38): Trans_Probs: {’Move 1’: 0.125, ’Move 3’: 0.375, ’Move 2’: 0.125,
’Fill’: 0.125, ’Mirror’: 0.125, ’Flip’: 0.125}, Entropy: 2.41
- If value 2 (prob 0.62): Trans_Probs: {’Move 1’: 0.86, ’Move 3’: 0.14}, Entropy: 0.59
Expected entropy: 1.27
Best query chosen: 1 (Entropy: 1.27)
Queried index 1, got value 2
Updated masked sequence: [0, 2, ’?’, ’?’, 0, ’?’, ’?’]
Votes: [False, False, False, False, True]
— Turn 2 —
Query candidates: [2, 3]
Evaluating query 2:
Predicted value probabilities: {2: 0.625, 0: 0.375}
- Value 2 (prob 0.62): Trans_Probs: {’Move 1’: 1.0}, Entropy: 0.00
- Value 0 (prob 0.38): Trans_Probs: {’Move 1’: 0.86, ’Hollow’: 0.14}, Entropy: 0.59
Expected entropy: 0.22
Evaluating query 3:
Predicted value probabilities: {0: 0.625, 2: 0.375}
- Value 0 (prob 0.62): Trans_Probs: {’Move 1’: 1.0}, Entropy: 0.00
- Value 2 (prob 0.38): Trans_Probs: {’Move 1’: 1.0}, Entropy: 0.00
Expected entropy: 0.00
Best query chosen: 3 (Entropy: 0.00)
Queried index 3, got value 2
Updated masked sequence: [0, 2, ’?’, 2, 0, ’?’, ’?’]
Votes: [False, True, False, False, False]
— Turn 3 —
Query candidates: [2, 5]
Evaluating query 2:
Predicted value probabilities: {2: 0.875, 0: 0.125}
- Value 2 (prob 0.88): Trans_Probs: {’Move 1’: 1.0}, Entropy: 0.00
- Value 0 (prob 0.12): Trans_Probs: {’Move 1’: 1.0}, Entropy: 0.00
Expected entropy: 0.00
Evaluating query 5:
Predicted value probabilities: {0: 0.71, 2: 0.29}
- Value 0 (prob 0.71): Trans_Probs: {’Move 1’: 0.88, ’Move 2’: 0.12}, Entropy: 0.54
- Value 2 (prob 0.29): Trans_Probs: {’Move 1’: 0.88, ’Denoise’: 0.12}, Entropy: 0.54
Expected entropy: 0.54
Best query chosen: 2 (Entropy: 0.00)
Queried index 2, got value 2
Updated masked sequence: [0, 2, 2, 2, 0, ’?’, ’?’]
Votes: [False, True, False, True, True]
— Final Reasoning —
Agent’s thought: Observing the input [2, 2, 2, 0, 0, 0, 0] and output [0, 2, 2, 2, 0, ?, ?], the
block of [2, 2, 2] has shifted right by one position, filling index 0 with 0. Other transformations
(Move 2, Move 3, Flip, Fill, Padded Fill, Hollow, Denoise, Scaling, Mirror) do not match the
observed pattern.
Agent Decision: Final transformation selected: Move 1
Agent Log: Final Answer: Move 1
Votes: [’Move 1’, ’Move 1’, ’Move 1’, ’Move 1’, ’Move 1’]
Correct Answer?: True

989 28



Figure 8: GSM CoT

Figure 9: GSM MES
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13.2 GSM8K990

Agent Problem Log - GSM - CoT

Agent loaded problem:
Carla is downloading a file. Normally she can download 2 GB/minute, but 40% of the way
through the download, her computer’s battery level drops to 15%, causing her to plug it into a
power source. At the same time, Windows forces a restart to install updates, which takes 20
minutes. During this time, her computer charges but this doesn’t affect the download speed.
After the restart, Carla has to restart the download from the beginning. How long does it take
to download the file?

— Problem ID 0 | Turn 1/2 —
Agent’s thought: The problem states Carla downloads at 2 GB/minute. She gets 40% of the
way through, then has a 20-minute interruption, and then has to restart the download from the
beginning. We need to find the total time to download the file. Let’s define the variables:

• S = 2 GB/min (Normal download speed)
• P1 = 40% (Percentage downloaded before the issue)
• R = 20 min (Time taken for restart)

We are missing the total file size F . Without F , we cannot calculate the time for the first 40%
or the total time.
Agent’s query: What is the total size of the file to be downloaded (F )?
Oracle’s answer: The total size of the file is 200 GB.

— Problem ID 0 | Turn 2/2 —
Agent’s thought: We now know:

• F = 200 GB
• S = 2 GB/min
• P1 = 0.40× 200 = 80 GB
• T1 = 80/2 = 40 min
• T3 = 200/2 = 100 min (second full download)
• R = 20 min (restart time)

Total time:
T = T1 +R+ T3 = 40 + 20 + 100 = 160 min

Agent Final Answer: 160.0
Correct Answer? : Correct Answer? True (Expected: 160.0)

991
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Agent Execution Log - GSM - MES

Agent loaded problem:
Carla is downloading a file. Normally she can download 2 GB/minute, but 40% of the way
through the download, her computer’s battery drops to 15%, causing her to plug it in. At the
same time, Windows forces a restart to install updates, taking 20 minutes. After the restart,
Carla has to restart the download from the beginning. How long does it take to download the
file?

Agent Log:
=== Variables: {C: Percentage up to which the company takes charge, F: Total size of the
file, P1: Percentage downloaded before issue, R: Time for restart and updates, S: Download
speed, T: Total download time, T1: Time spent downloading first 40%, T3: Time for second
full download} ===

Agent Log:
=== Missing Info: F = 200 GB, C = 0.35 ===

Agent Log:
=== Solution: 160.0 minutes ===

Agent Log:
=== Starting Problem ID: 0 ===

— Turn 1/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 1 group —
— Entropy Strategy: Stage 2: Simulating Rollouts —
Simulating 32 rollouts for cluster: (’F’, ’value’) (Rep Query: ’F’)
Cluster (’F’, ’value’): Outcomes={0.7*F + 20: 30, 27.0: 2}, Entropy=0.3373
— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’F’, ’value’) (Entropy=0.3373)
Most Frequent Outcome: ’0.7*F + 20’ (Count=30/32, Ratio=0.94)

Agent’s thought: We know: - Download speed S = 2GB/min. - File size F . - First 40%
downloaded: P1 = 0.4×F . - Time for first 40%: T1 = P1/S = 0.4F/2 = 0.2F . - Restart
time R = 20min. - Full second download: T3 = F/S = F/2.
Total time T = T1 +R+ T3 = 0.2F + 20 + 0.5F = 0.7F + 20.

Agent Decision: Query (Most frequent outcome is symbolic: ’0.7*F + 20’)

Agent Log:
Strategy selected Query: ’What is the total file size in GB? (Variable: F)’
Agent Log:
Strategy intermediate answer state: ’0.7*F + 20’
Oracle’s answer: ’The total size of the file is 200 GB.’
— Turn 2/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 3 groups —
— Entropy Strategy: Stage 2: Simulating Rollouts —
Simulating 32 rollouts for cluster: (’C’, ’value’) (Rep Query: ’C’)
Cluster (’C’, ’value’): Outcomes={160.0: 15, 100.0: 13, 120.0: 4}, Entropy=1.4153
Simulating 32 rollouts for cluster: (’S’, ’value’) (Rep Query: ’S’)
Cluster (’S’, ’value’): Outcomes={20 + 280/S: 29, 160.0: 1, 20 + 200/S: 1}, Entropy=0.4096
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Figure 10: Fermi CoT

Agent Execution Log (Continued)

— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’S’, ’value’) (Entropy=0.4096)
Most Frequent Outcome: ’20 + 280/S’ (Count=29/31, Ratio=0.94)

Agent’s thought: With F = 200GB, total time:

T =
1.4F

S
+R =

280

S
+ 20

We need S to compute numerically.
Agent Decision: Query (Most frequent outcome is symbolic: ’20 + 280/S’)

Agent Log: Strategy selected Query: ’What is the normal download speed in GB/min?
(Variable: S)’
Agent Log: Strategy intermediate answer state: ’20 + 280/S’
Oracle’s answer: ’The normal download speed is 2 GB/minute.’
— Turn 3/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 2 groups —
— Entropy Strategy: Stage 2: Simulating Rollouts —
Simulating 32 rollouts for cluster: (’P1’, ’value’) (Rep Query: ’P1’)
Cluster (’P1’, ’value’): Various symbolic outcomes, Entropy=3.0097
Simulating 32 rollouts for cluster: (’C’, ’value’) (Rep Query: ’C’)
Cluster (’C’, ’value’): Various symbolic outcomes, Entropy=2.1437
— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’C’, ’value’) (Entropy=2.1437)
Most Frequent Outcome: ’160.0’ (Count=10/32, Ratio=0.31)

Agent’s thought: We now know: - F = 200GB - S = 2GB/min - R = 20min - T1 =
0.4F/S = 80/2 = 40min - T3 = F/S = 200/2 = 100min
Total time:

T = T1 +R+ T3 = 40 + 20 + 100 = 160min

Agent Log: Strategy decided to Answer Numerically.
Agent Log: Strategy Reasoning: We calculated T = 160min.
Agent Log: Strategy Answer: 160.0
Agent Log: Final Status: solved, Correct: 1
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Example Fermi Problem:995
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Figure 11: fermi MES

Agent Problem Log - Fermi - CoT

Agent loaded problem:
On average, across all phones, what’s a rough estimate of battery life consumed just for
receiving a call on vibrate? Regardless of previous unit, YOU MUST answer in terms of
Unit: ampere * second
Below are Variables you should ask info within this list:

• F1: number of fermi problems solved by an average enthusiast each day
• F2: pressure equivalent of 1 atmosphere in pascals
• F3: speed of sound at sea level in kilometers per day
• F4: circumference of the earth in kilometers
• F5: number of days in a year
• F6: calories burned per hour when the phone heats up in the pocket
• F7: energy liberated when the Hiroshima bomb detonated in joules
• F8: battery life consumed per second while vibrating on receiving a call in ampere-

hours
• F9: number of fermi problem enthusiasts in the world
• F10: number of hours in a day
• F11: energy liberated when a pop-it is burst in joules
• F12: average American lifespan in years
• F13: duration of an average phone vibration when receiving a call in seconds
• F14: force contained in a fart in newtons
• F15: average duration a phone stays in a pocket during the day in hours
• F16: normal heartbeats per minute
• F17: number of minutes in an hour
• F18: average life expectancy in years
• F19: impact area of a fart in square meters
• F20: reduction in average lifespan caused by cancer in years

— Problem ID 4 | Turn 1/5 —
Agent Log: Agent asks Oracle: What is the battery life consumed per second while vibrating
on receiving a call in ampere-hours (F8)?
Oracle’s answer: Around 0.0025 ampere-hours of battery life is consumed per second while
vibrating on receiving a call.

— Problem ID 4 | Turn 2/5 —
Agent Log: Agent asks Oracle: What is the duration of an average phone vibration when
receiving a call in seconds (F13)?
Oracle’s answer: An average phone vibration while receiving a call lasts 20 seconds.
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Agent Execution Log (Continued)

— Problem ID 4 | Turn 3/5 —
Agent’s thought: We want to estimate the battery life consumed just for receiving a call on
vibrate, expressed in ampere * second.
From the history, we have two key pieces of information:

• F8: 0.0025 ampere-hours per second
• F13: 20 seconds

Step 1: Calculate total battery consumption (in ampere-hours): Battery consumption =
consumption rate × duration = 0.0025 Ah/s× 20 s = 0.05 Ah
Step 2: Convert ampere-hours to ampere-seconds: 1 Ah = 3600 A · s Battery consumption
= 0.05 Ah× 3600 s/Ah = 180 A · s
Agent Final Answer: 180.0
Correct Answer?: True (Expected: 180.0)
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Agent Execution Log - Fermi - MES

Agent loaded problem: On average, across all phones, what’s a rough estimate of battery life
consumed just for receiving a call on vibrate? Regardless of what unit previously asked,
the answer MUST BE in terms of Unit: ampere * second
Below are Variables you should ask info within this list:

• F1: number of fermi problems solved by an average enthusiast each day
• F2: pressure equivalent of 1 atmosphere in pascals
• F3: speed of sound at sea level in kilometers per day
• F4: circumference of the earth in kilometers
• F5: number of days in a year
• F6: calories burned per hour when the phone heats up in the pocket
• F7: energy liberated when the Hiroshima bomb detonated in joules
• F8: battery life consumed per second while vibrating on receiving a call in ampere-

hours
• F9: number of fermi problem enthusiasts in the world
• F10: number of hours in a day
• F11: energy liberated when a pop-it is burst in joules
• F12: average American lifespan in years
• F13: duration of an average phone vibration when receiving a call in seconds
• F14: force contained in a fart in newtons
• F15: average duration a phone stays in a pocket during the day in hours
• F16: normal heartbeats per minute
• F17: number of minutes in an hour
• F18: average life expectancy in years
• F19: impact area of a fart in square meters
• F20: reduction in average lifespan caused by cancer in years

Agent Log:
=== Variables: ... ===
Agent Log:
=== Solution: 180.0 ===
Agent Log:
=== Starting Problem ID: 4 ===
— Turn 1/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 2 groups —
— Entropy Strategy: Stage 2: Simulating Rollouts in Parallel —
Simulating 32 rollouts for cluster: (’F8’, ’value’) (Rep Query: ’F8’)
Simulating 32 rollouts for cluster: (’F13’, ’value’) (Rep Query: ’F13’)
Cluster (’F8’, ’value’): Outcomes=3600*F13*F8: 32, Entropy=0.0000
Cluster (’F13’, ’value’): Outcomes=3600*F13*F8: 32, Entropy=0.0000
— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’F8’, ’value’) (Entropy=0.0000)
Most Frequent Outcome: ’3600*F13*F8’ (Count=32/32, Ratio=1.00)

Agent Decision: Query (Most frequent outcome is symbolic: ’3600*F13*F8’)

Agent Log:
Strategy selected Query: ’What is the battery life consumed per second while vibrating on
receiving a call in ampere-hours? (Variable: F8)’
Agent Log:
Strategy intermediate answer state: ’3600*F13*F8’
Oracle’s answer: ’Around 0.0025 ampere-hours per second while vibrating on receiving a
call.’
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Agent Execution Log (Continued)

— Turn 2/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 1 group —
— Entropy Strategy: Stage 2: Simulating Rollouts in Parallel —
Simulating 32 rollouts for cluster: (’F13’, ’value’) (Rep Query: ’F13’)
Cluster (’F13’, ’value’): Outcomes=9.0: 3, 3600*F13*F8: 22, 9*F13: 1, 9.0*F13: 2, 27.0: 1,
18.0: 1, Entropy=1.4115
— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’F13’, ’value’) (Entropy=1.4115)
Most Frequent Outcome: ’3600*F13*F8’ (Count=22/30, Ratio=0.73)

Agent’s thought: We want to estimate the battery life consumed (in ampere-seconds) just for
receiving a call on vibrate.

Agent Decision: Query (Most frequent outcome is symbolic: ’3600*F13*F8’)

Agent Log:
Strategy selected Query: ’What is the duration of an average phone vibration when receiving
a call in seconds? (Variable: F13)’
Agent Log:
Strategy intermediate answer state: ’3600*F13*F8’
Oracle’s answer: ’An average phone vibration when receiving a call lasts 20 seconds.’
— Turn 3/5 —
— Entropy Strategy: Stage 1: Generating 32 Queries —
— Strategy: Successfully generated/parsed 32/32 queries —
— Strategy: Clustered 32 queries into 2 groups —
— Entropy Strategy: Stage 2: Simulating Rollouts in Parallel —
Simulating 32 rollouts for cluster: (’F17’, ’value’) (Rep Query: ’F17’)
Simulating 32 rollouts for cluster: (’F13’, ’value’) (Rep Query: ’F13’)
Cluster (’F13’, ’value’): Outcomes=180.0: 32, Entropy=0.0000
Cluster (’F17’, ’value’): Outcomes=180.0: 32, Entropy=0.0000
— Entropy Strategy: Stage 3: Selecting Action —
Min Entropy Cluster: (’F13’, ’value’) (Entropy=0.0000)
Most Frequent Outcome: ’180.0’ (Count=32/32, Ratio=1.00)

Agent’s thought: We want to estimate the battery life consumed just for receiving a call on
vibrate, expressed in ampere * second.

From the interaction history, we have: - F8: 0.0025 ampere-hours per second - F13: 20
seconds

Step 1: Total ampere-hours = 0.0025 × 20 = 0.05 Ah
Step 2: Convert to ampere-seconds = 0.05 × 3600 = 180 A·s

Therefore, the battery life consumed is 180 ampere-seconds.
Symbolic expression: F8 × F13 × 3600

Agent Log:
Strategy decided to Answer Numerically.
Agent Log:
Strategy Reasoning: As above.
Agent Log:
Strategy Answer: 180.0
Agent Log:
Final Status: solved, Correct: 1
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14 More Experimental Details1000

14.1 Multi-Model Evaluation1001

14.2 More Turn Based Evaluation1002

Figure 12: Turn-based evaluation on the GSM8K benchmark. We compare ENTROPY SEARCH (ES)
with REFLEXION and REACT across five question asking turns. ES rapidly reduces the performance
gap to the Full-Information upper bound, already matching the baselines after two questions and
pulling decisively ahead thereafter. This illustrates the generality and efficiency of entropy-guided
information acquisition.

Following from the turned based evaluation for the Fermi dataset in Figure 4, we now present a1003

turn based analysis for the GSM8K dataset in Figure 4. On GSM8K, ENTROPY SEARCH takes1004

an early lead after the very first question (0.29 vs. 0.16 for REACT and 0.00 for REFLEXION) and1005

continues to improve with each turn. By the third question it attains an average score of 0.77—already1006

closing more than 80% of the gap to the full-information ceiling—while REACT and REFLEXION lag1007

behind at 0.63 and 0.66, respectively. After five questions ES reaches 0.82, whereas REACT plateaus1008

around 0.67 and REFLEXION tops out at 0.70. These results confirm that ES not only benefits from1009

additional turns but also outperforms both baselines at every stage, consistently acquiring the most1010

decision-critical context under uncertainty.1011

Collectively, these findings underscore ENTROPY SEARCH’s effectiveness in strategically gathering1012

information on GSM8K, thereby enhancing decision quality in partially observable settings. Detailed1013

turn-based analyses for the 1D-ARC and Fermi benchmarks are provided in Appendix 14.2, further1014

corroborating these insights.1015

15 Extended Results1016
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