
Sample Complexity of Hierarchical Decompositions
in Markov Decision Processes

Arnaud Robert 1 Ciara Pike-Burke 2 Aldo A. Faisal 1

Abstract

Hierarchical Reinforcement Learning (HRL) al-
gorithms perform planning at multiple levels of
abstraction. Algorithms that leverage states or
temporal abstractions have empirically demon-
strated a gain in sample efficiency. Yet, the basis
of those efficiency gains is not fully understood
and we still lack theoretically-grounded design
rules to implement HRL algorithms. Here, we de-
rive a lower bound on the sample complexity for
the proposed class of goal-conditioned HRL algo-
rithms (such as Dot-2-Dot (Beyret et al., 2019))
that inspires a novel Q-learning algorithm and
highlights the relationship between the properties
of the decomposition and the sample complex-
ity. Specifically, the proposed lower bound on
the sample complexity of such HRL algorithms
allows to quantify the benefits of hierarchical de-
composition. These theoretical findings guide
the formulation of a simple Q-learning-type al-
gorithm that leverages goal hierarchical decom-
position. We then empirically validate our lower
bound by investigating the sample complexity of
the proposed hierarchical algorithm on a spec-
trum of tasks. Our tasks were designed to allow
us to dial up or down their complexity over mul-
tiple orders of magnitude. Our theoretical and
algorithmic results provide a clear step towards
understanding the foundational question of quan-
tifying the efficiency gains induced by hierarchies
in reinforcement learning.

1Brain & Behaviour Lab: Department of Computing, Impe-
rial College London, UK 2Department of Mathematics, Impe-
rial College London, UK. Correspondence to: Arnaud Robert
<ar4220@ic.ac.uk>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

1. Motivation
Hierarchical Reinforcement Learning (HRL) (Sutton et al.,
1999b; Dayan & Hinton, 1992; Dietterich, 2000; Beyret
et al., 2019) leverages the hierarchical decomposition of
a problem to build algorithms that are more sample effi-
cient. While there is significant empirical evidence that
hierarchical implementations can drastically improve the
sample efficiency of Reinforcement Learning (RL) algo-
rithms (Nachum et al., 2018; 2019; Vezhnevets et al., 2017;
Dayan & Hinton, 1992), there are also cases where temporal
abstraction worsens the empirical sample complexity (Jong
et al., 2008). Therefore, a natural question to ask is when
does HRL lead to improved sample complexity and how
much of an improvement can it provide?

Previous theoretical work on sample-complexity bounds
in Machine Learning has been integral to the development
of the field. Understanding sample complexity in RL is
particularly beneficial because, in contrast to supervised
learning, RL is substantially more expensive to train, more
sample inefficient and uses more expensive interaction-type
data.

In addition, theoretical results (such as (Dann & Brunskill,
2015; Li et al., 2022; Auer & Ortner, 2005; Jin et al., 2018;
Sutton et al., 1999a)) often uncover interesting principles
that are useful for improving algorithm design. For exam-
ple, the analysis of the Q-learning algorithm in (Jin et al.,
2018) improved our understanding of exploration strategies
in model-free RL and the derivation of the policy gradient
theorem (Sutton et al., 1999a) gave birth to a wide range
of new RL methods. In contrast, there are few theoretical
results in hierarchical RL and many key studies are empir-
ical in nature, e.g. hierarchies of states (Dayan & Hinton,
1992; Dietterich et al., 1998), time (Precup & Sutton, 1997),
or action (Vezhnevets et al., 2016; Pickett & Barto, 2002;
Abramova et al., 2012).

To address this gap in the literature, we consider a tabular
version of the goal-based approach to HRL (Nachum et al.,
2018; Beyret et al., 2019) and we analyze the induced MDP
decomposition to derive a lower bound on the sample com-
plexity of this specific HRL framework. The lower bound
we establish provides insights into the circumstances where
a hierarchical decomposition proves advantageous. Those

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

Environment

high-level policy
πh

low-level policy
πl

(sh, rh)

gsub

a

(s
l ,r

l)

MO = ⟨S,A, P, r, p0, H⟩

Mh = ⟨Sh,Ah, Ph, rh, p0,h, Hh⟩Ml = ⟨Sl ×Ah,A, Pl, rl, p0,l, Hl⟩

Figure 1. The top diagram illustrates the interaction between the
different components of a goal-conditioned hierarchical agent. The
pair (sh, rh) denotes the high-level state and reward, while gsub
and rl denote the sub-goal chosen by the high-level policy as well
as the reward associated with it. Sl is the low-level state space
and lastly, a is the primitive action used by the low-level policy
to interact with the environment. The bottom diagram depicts the
MDP decomposition considered.

insight drives the development of a novel hierarchical Q-
learning algorithm, specifically designed to leverage the hier-
archical structure and improve the sample efficiency. In the
goal-based HRL framework that we consider, a high-level
policy and a low-level policy are jointly learned to solve
an overarching goal together. In such a goal-hierarchical
RL system, the high-level policy chooses a sub-goal for the
low-level policy, which in turn executes primitive actions in
order to solve the sub-goal (Fig. 1, top diagram). This natu-
ral way to break down tasks is universal (i.e. can be applied
to a wide range of tasks) and it induces a decomposition of
the original MDP into two sub-MDPs (detailed in Sec. 2.2).

This paper improves our understanding of HRL through the
following contributions:

• We derive a lower bound on the sample complexity
associated with the hierarchical decomposition (see
Sec. 3). This lower bound allows practitioners to quan-
tify the gain in efficiency they might obtain from de-
composing their task.

• We propose a simple, yet novel, algorithm that per-
forms Q-learning-type updates for goal-hierarchical
RL, inspired by the type of decomposition considered
(see Sec. 4).

• We empirically validate our theoretical findings using
a set of synthetic tasks with hierarchical properties
that can be scaled in complexity (see Sec. 5). Our
experiments confirm that the derived bound is able to
successfully identify instances where a hierarchical
decomposition could be beneficial (see Sec. 5).

2. Background
Online reinforcement learning (Sutton & Barto, 2018) al-
gorithms aim to learn an optimal policy (i.e. a policy that
maximizes the sum of observed rewards) only through inter-
actions with their environment. When a task is too complex,
the number of interactions required to learn a near-optimal
policy becomes prohibitive. The complexity of the task
typically depends on the difficulty of temporal credit assign-
ment (which is directly related to the episode length) and the
size of the state space (McGovern et al., 1997). To address
this difficulty, HRL leverages temporal abstractions (Sutton
et al., 1999b) and state abstractions (Dayan & Hinton, 1992)
to reduce the number of interactions required to learn an op-
timal policy. There exists a wide range of HRL frameworks,
see (Hutsebaut-Buysse et al., 2022) for a survey. In this
paper, we focus on the goal-conditioned HRL framework
(Nachum et al., 2018; Beyret et al., 2019). Of the other
HRL frameworks, only the options framework (Sutton et al.,
1999b) and it’s associated semi-Markov Decision Process
(Fruit et al., 2017; Wen et al., 2020; Brunskill & Li, 2014;
Fruit & Lazaric, 2017) are supported by a well-developed
theory. However, in practice, the goal-conditioned hierar-
chical framework presented in figure 1 is much more com-
mon. Unlike the options framework, the goal-conditioned
HRL framework requires no prior knowledge about the task
(Hutsebaut-Buysse et al., 2022) and introduces the opportu-
nity to generalize over the goal space, leading to significant
performance gains in benchmark tasks (Vezhnevets et al.,
2017; Nachum et al., 2018; Haarnoja et al., 2018). Ad-
ditionally, the option framework does not directly allow
for state abstraction and often considers that the transition
function is known. These differences mean that we cannot
directly apply the analysis in the options literature (Fruit
& Lazaric, 2017; Fruit et al., 2017; Wen et al., 2020) to
our goal-conditioned HRL setting, where we consider state
abstraction, action abstraction, time abstraction and jointly
learn all levels of the hierarchy through interaction with the
environment.

For the remainder of this section, we formally define the
episodic finite-horizon MDPs setting and the hierarchical
decomposition we consider.

2.1. Episodic finite-horizon Markov Decision Process

An episodic finite-horizon Markov Decision Process
(MDP) is described by the following tuple: M =
⟨S,A, r, P, p0, H⟩. Where S is a finite state space of size
|S| and A is a finite action space of size |A|. The goal
of the task is encoded in a terminal state g ∈ S. We as-
sume the reward function r(s, g) ∈ [−a, b] (for a, b ≥ 0) is
known ∀s ∈ S, g ∈ S. The initial state distribution p0 is a
distribution over states that is used to sample the starting
state of an episode. The learner interacts with the MDP

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

in episodes that last at most H time steps. In each time
step t = 0, . . . ,H − 1 the learner observes a state st and
chooses an action at. Given a state action pair (st, at) the
next state st+1 ∼ P (·|st, at) is drawn from the transition
kernel. Eventually, the episode ends either because the agent
interacted with the environment for H time-steps, or because
it reached the terminal state.

The objective of the agent is to select actions that maximize
the expected return over the duration of an episode. Actions
are chosen according to a policy, at ∼ π(st), where π
is a function that maps each state and time step pair to a
distribution over actions π : S × [H − 1] → ∆A, and
∆A is the set of all probability distributions over A. The
agent’s aim is to select a policy π to maximize the sum
of expected rewards, E[

∑H
t=1 rt|at ∼ π(st)], where the

expectation is over the initial state distribution, the policy
and the stochastic transitions. Note, that it is often the
case for finite-horizon MDPs that the policy depends on the
current time step. To simplify notation we do not make this
relation explicit.

For a given policy π, we write the value function, V π
τ (s),

and the Q-function, Qπ
τ (s, a), at time step τ ∈ [H − 1] as

follows:

V π
τ (s) = E

[H−1∑
t=τ

rt|sτ = s, aτ :H−1 ∼ π

]
, (1)

Qπ
τ (s, a) = E

[H−1∑
t=τ

rt|sτ = s, aτ = a, aτ+1:H−1 ∼ π

]
,

(2)

where s ∈ S and a ∈ A represent the current state and
action. The notation aτ :H−1 ∼ π is used to specify that
actions between time step τ and time step H − 1 were
selected using π. The optimal policy, π∗, is the policy with
the highest value function for every time step and every state,
V π∗

τ (s) = V ∗
τ (s) = maxπ V

π
τ (s)∀τ ∈ [H − 1],∀s ∈ S.

Note that there always exists a deterministic Markov policy
that maximizes the total expected reward in a finite-horizon
MDP (Puterman, 2014).

In this article, we evaluate the quality of a policy by its
expected value at the beginning of an episode. To lighten
the notation, we define V π = Es0∼p0

[V π
0 (s)] to be the

expected value from the beginning of an episode where the
expectation is taken over initial states.

2.2. Episodic finite-horizon hierarchical MDP

For a given episodic finite-horizon MDP Mo we assume
it can be hierarchically decomposed into a pair of MDPs
(Ml,Mh) as depicted on the bottom diagram of figure 1. To
avoid any ambiguity, when necessary, we use the following
notation: the subscript o is used to denote the original MDP,

while subscripts l and h are used to denote low-level and
high-level MDPs, respectively.

The low-level and high-level MDPs consist of the fol-
lowing tuples Ml = ⟨Sl × Ah,A, rl, Pl, p0,l, Hl⟩ and
Mh = ⟨Sh,Ah, rh, Ph, p0,h, Hh⟩, respectively. In order to
be a valid hierarchical decomposition we enforce the MDPs
to satisfy the following set of conditions:

Action space: The low-level action space is equal to the
set of primitive actions that the agent can use to interact
with the environment. It is then equivalent to the original
MDP action space A. The high-level action space Ah is
the set of sub-goals the high-level agent can instruct to
the low-level agent. Note that the set of available actions
Ah(sh) depends on the current high-level state sh. For the
sake of simplicity, we do not make this relationship explicit
in our notation.

State spaces: The low-level state sl and the high-level
state sh combined contain all the necessary information
to reconstruct the corresponding state, s, in the original
MDP. States s ∈ S ⊂ Rd are usually described as
multi-dimensional vectors, where each dimension encodes a
specific feature of the state. For example, a state description
can be factored in a tuple (sl, sh) ∈ Sl × Sh with a part
of the state description that belongs to the low-level MDP
and another part to the high-level MDP. Hence any state
s ∈ So can be represented by a tuple (sl, sh) ∈ Sl × Sh.
Additionally, since the low-level policy is goal conditioned,
its state space also contains the goal description leading to
the following state space for the low-level MDP: Sl ×Ah, a
complete low-level state consists of the concatenation of the
low-level state description sl and the sub-goal description
ah.

Initial state distribution: The high-level initial state
distribution p0,h is a restriction of the original state
distribution p0 on Sh. The low-level initial state distri-
bution p0,l(·|sh,0) is conditioned on the initial high-level
state sh,0 and spans the low-level space, ensuring that
p0(s) = p0,h(sh)p0,l(sl|sh), where sl and sh are the
corresponding decomposition of s.

Transition functions: The low-level transition function
Pl is the restriction of P on Sl × Ah. One important
challenge in HRL is that the high-level transition function,
Ph, depends on the low-level policy since the quality of
the low-level policy influences the likelihood of reaching
a sub-goal state. The high-level transition probability
Ph(s

′
h|sh, ah, πl) is the probability that the agent transitions

to s′h given the current high-level state sh, the sub-goal ah

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

and low level policy πl. Since Ph depends on the low-level
policy it is non-stationary because the low-level policy will
change as it learns to respond to sub-goals. This makes the
learning task more challenging for the high-level policy.

Reward functions: Since the terminal states for the original
MDP belong to S and the sub-goals for the low-level MDP
lie in Sl. The low-level reward function can be obtained
from the original reward function, rl(sl, gsub) = 2r(s, g),
where s and g are the reconstruction of the low-level state
and the sub-goal in the original MDP, using the current
high-level state. The high-level reward function is the sum
of rewards obtained by the low level during the sub-episode,
where the high-level action plays the role of a sub-goal:
rh(s, ah) =

∑Hl

t=1 rl(st, ah).

Horizons: The original MDP allows for an episode to last at
most H steps. Consequently, the horizons of the high-level,
Hh, and low-level, Hl, MDPs must satisfy the following
equality H = HhHl.

Note that we can always produce a decomposition that satis-
fies these assumptions; a naive way to decompose any MDP
would be to consider a high-level agent whose only action
encodes the end goal of the task and a low-level with com-
plete state information (i.e. it does not use state abstraction).
While the above decomposition is valid, it is not necessarily
useful. Here, our goal is to identify when a decomposition
is useful (i.e. when it leads to an improvement in sample
efficiency).

We denote by πl a policy that interacts with the low-level
MDP Ml, and πh a policy that interacts with the high-
level MDP Mh. In goal-conditioned HRL, the low-level
policy maps a pair (low-level state, sub-goal) to an action:
πl : Sl ×Ah → Al and the high-level policy maps a high-
level state to a high-level action: πh : Sh → Ah. Each
policy can be assessed using the corresponding high and
low-level value functions V πl

l and V πh

h . Similar to the
non-hierarchical case, we can define optimal high-level and
low-level policies as π∗

l = argmaxπl
V πl

l for the low-level
policy and π∗

l = argmaxπh
V πh

h for the high-level policy.
Moreover, as we show below, every pair of policies (πl, πh)
can be combined to produce a policy π that interacts with
the original MDP Mo.
Definition 2.1. A hierarchical policy consists of a pair
(πl, πh) that can be mapped to a policy π in the original
MDP Mo as follows:

π(a|s) = π(a|sl, sh) =
∑

ah∈Ah

πh(ah|sh)πl(a|ah, sl).

(3)

The optimal hierarchical policy denotes the policy obtained
when combining the optimal pair (π∗

l , π
∗
h). It is important

to note that not all policies π in the original MDP have a cor-
responding decomposition (πl, πh), and in particular, there
is no guarantee that the decomposition of the optimal policy
in the original MDP exists. Intuitively, this is principally
due to the absence of an interruption mechanism. After sev-
eral steps in a stochastic MDP, the current sub-goal might
not remain the most valuable sub-goal. A non-hierarchical
policy will immediately be able to adapt its trajectory, while
the hierarchical policy will first have to complete the current
sub-goal before being able to make adjustments.

Our goal is to understand when a hierarchical decomposition
of the MDP allows us to learn a near-optimal policy with
fewer interactions with the environment. Therefore, we are
interested in assessing the performance of the combination
of πl and πh while they interact with the original MDP Mo.
To convey the fact that we are evaluating a hierarchical
policy in the original MDP, we use the following notation:
given a pair of policies (πl, πh) and their associated policy
in the original MDP, π, the value function of the hierarchical
policy is denoted by V πl,πh

o = Es0∼p0
[V π

o,0(s0)], where the
subscript o is a reminder that we are evaluating a policy
while it interacts with the original MDP Mo.

When learning in a decomposed MDP, the algorithm has to
learn two policies, the high-level policy, πh, and the low-
level policy, πl. This is done in an episodic setting where
an episode unfolds as follows. The learner first observes the
initial state and uses the high-level policy to find the most
appropriate sub-goal. For the next Hl time steps the low-
level policy attempts to solve the sub-goal. The low-level
agent updates its policy at the end of each low-level step.
Once the Hl time steps are over or if the sub-goal has been
reached, the high-level agent observes a new high-level state
and can finally perform an update to its policy. If the overall
task is not completed, the high-level agent instructs a new
sub-goal. These interactions are repeated until the task is
completed or the horizon H is reached. We can now think
of HRL as two agents that interact with the environment.
Where the objective is to find a hierarchical policy that
maximizes the value in the original MDP. To approximate
this, each agent can find the policy that maximizes their own
value function, maxπl

V πl

l and maxπh
V πh

h .

2.3. Probably-Approximately Correct RL

Our aim is to find, in as few episodes as possible, a pair
of policies (πl, πh) which have a near-optimal value. To
formalize this, we introduce the Probably-Approximately
Correct (PAC) RL notion. We denote by ∆k the sub-
optimality gap, that is the difference between the optimal
(non-hierarchical) policy π∗ and the current hierarchical

policy (πk
l , π

k
h): ∆k = V ∗

o − V
πk
l ,π

k
h

o . When defining the
sub-optimality gap both policies are evaluated on the origi-
nal MDP Mo. We use the PAC guarantee defined in (Dann,

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

2019), for completeness, we recall its definition below.

Definition 2.2. An algorithm satisfies a PAC bound N if for
a given input ϵ, δ > 0, it satisfies the following condition for
any episodic fixed-horizon MDP: with probability at least
1− δ, the algorithm plays policies that are at least ϵ-optimal
after at most N episodes. That is, with probability at least
1− δ,

max{k ∈ N : ∆k > ϵ} ≤ N,

where N is a polynomial that can depend on the properties
of the problem instance.

In Section 3, we bound the sample complexity of HRL
algorithms. In this context, the sample complexity refers to
the number of episodes, N , during which the algorithm may
not follow a policy that is at least ϵ-optimal with probability
at least 1− δ.

2.4. Running Example

In order to concretise our setting, we consider the following
companion example. The original MDP describes the task
of solving a maze in a grid-world environment. The state
consists of a tuple (R,C) that indicates in which room, R,
and which cell within that room, C, the agent is currently in.
The reward function incurs a small cost, −a, at each time
step unless the agent reaches the absorbing goal state. Once
the goal state is reached, the agent stops receiving penalties
and receives a reward of 0 for all the remaining time steps.
Mathematically, r(s) = −a1{s ̸= g} where g ∈ S denotes
the goal state, and 1 denotes the indicator function.

We can decompose this MDP as follows. The high-level
MDP describes a similar maze, but instead of moving from
cell to cell, the agent is moving from room to room so the
state is just the current room it is in. The aim of the high-
level agent is to find the sequence of rooms that lead to
the goal. Hence at each (high-level) time step, it indicates
the most valuable exit the low-level agent should take from
the room. As detailed in section 2.2 the high-level reward
for a sub-goal is the sum of the rewards accumulated by
the low-level agent during that sub-episode. The low-level
agent is myopic to other rooms - it only sees the current
room and the exit it has to reach (i.e. its sub-goal), and it
receives a penalty of −2a for each action it takes unless it
reaches the sub-goal, in which case it does not receive any
penalty. Hence, if gsub is the sub-goal, it receives reward
r(s) = −2a1{s ̸= gsub}.

We will return to this example throughout the paper, but it
should be noted that the framework we consider is general
enough to be applied to a wide range of tasks. One such
example is robotics, where the low-level agent would be
tasked to control the joints of the robot to produce move-
ments selected by the high-level policy whose goal is to
perform tasks that require a sequence of distinct movements

(i.e. navigational tasks, manipulation tasks or a combination
of both).

3. Lower bound on the sample complexity of
HRL

It has been proven in (Dann & Brunskill, 2015) that, for
any RL algorithm, the number of sample episodes required
to obtain an (ϵ, δ)-accurate policy (in the original MDP) is
lower bounded by:

E[N] = Ω

(
|S||A|H2

ϵ2
ln

(1

δ + c

))
, (4)

where c is a positive constant.

We now extend this result to hierarchical MDPs. Before do-
ing so, it is important to note that even the best hierarchical
policy (as constructed in Eq. (3)) might be sub-optimal. This
is a direct consequence of the goal-conditioned architecture
and the absence of an interruption mechanism. If while
executing a sub-episode it appears that another sub-goal
becomes more valuable the architecture proposed does not
allow interruptions. The agent will first have to complete the
current sub-episode before being able to adapt its trajectory
to the new circumstances. Let V π∗

l ,π
∗
h

o denote the value of
the optimal hierarchical policy value function in the original
MDP. Then, the sub-optimality gap is larger than the gap
between the current policy pair and the optimal hierarchical

policy ∆k = V ∗
o −V

πk
l ,π

k
h

o ≥ V
π∗
l ,π

∗
h

o −V
πk
l ,π

k
h

o . Therefore,

if for some N , V π∗
l ,π

∗
h

o −V
πk
l ,π

k
h

o ≥ ϵ for at least N episodes,
it must also be the case that ∆k ≥ ϵ for at least N episodes.
Hence, N is a lower bound on the number of episodes where
the algorithm must follow a sub-optimal policy.

In the following theorem, we provide a lower bound on
the number of episodes required to learn a pair of policies
(πl, πh) which are ϵ-accurate with respect to the optimal
hierarchical policy (π∗

l , π
∗
h). By the above argument, this

bound will also be a lower bound on the number of episodes
necessary to learn an ϵ-accurate policy with respect to the
optimal policy π∗.

Theorem 3.1. There exist positive constants cl, ch and δ0
such that for every δ ∈ (0, δ0) and for every algorithm
A that satisfies a PAC guarantee for (ϵ, δ) and outputs a
deterministic policy, there is a fixed horizon MDP such that
A must interact for

E[N] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

(1

δ + cl

)
,

|Sh||Ah|H2
h

ϵ2
ln

(1

δ + ch

)))
(5)

episodes until the policy is (ϵ, δ)-accurate.

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

A complete version of the proof is given in Appendix A.1.
In the following, we simply highlight the main steps of the
proof.

Sketch of the proof: An ϵ-accurate pair of policies must
satisfy the following inequality, |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ. To

find a lower bound on the number of episodes N before
we obtain an ϵ-accurate pair of policies (πl, πh) we use the
following steps:

(i) We decompose the objective applying the triangle in-
equality, |V π∗

l ,π
∗
h

o −V
π∗
l ,πh

o |+ |V π∗
l ,πh

o −V πl,πh
o | ≤ ϵ.

(ii) We show that the number of samples required to
guarantee |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | ≤ ϵ/2 is bounded by

Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
(iii) We show that the number of samples required to

guarantee |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ/2 is bounded by

Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
These three steps together give us the result in Theorem 3.1,
see A.1 for more details.

Interpretation of the sample complexity bound: We
argue that this lower bound1 is quite insightful and allows
us to identify characteristics of the decomposition that
might lead to improved sample efficiency. We discuss some
of the key insights below:

State abstraction: Only one of the two state space cardi-
nalities will dominate the bound in eq. 5. This suggests
that an efficient decomposition must separate the original
state space as evenly as possible between the two levels
of the hierarchy. Another phenomenon at stake is the low-
level re-usability. Due to the state abstraction, the low-level
agent can re-use its learned policy in different states (i.e.
different states s1, s2 ∈ S whose low-level component sl
are the same). To highlight of the re-usability on the sam-
ple efficiency we rewrite the lower bound 5 in terms of the
re-usability index κ = |S|

|Sl| .

E[N] = Ω

(
max

(|S×AH |
κ |A|H2

l

ϵ2
ln
(1

δ + cl

)
,

|SH ||AH |H2
h

ϵ2
ln
(1

δ + ch

)))
. (6)

1Note that this is a lower bound - it does not tell us if there
exist algorithms which achieve this lower bound.

From equation 6 it clearly appears that a large re-usability
index improves the sample efficiency.

Temporal abstraction: Similarly, only one of the two time
horizons will dominate the bound, again suggesting that
a fair repartition of the load is beneficial. The temporal
abstraction (reducing H to Hh and Hl) simplifies the
credit assignment problem for both (the high-level and
the low-level) policies by giving denser feedback. The
low-level agent is rewarded for successfully completing
sub-tasks that are significantly shorter (in horizon) than
the original task and the high-level trajectory consists of
significantly fewer (high-level) steps than a trajectory in the
original MDP.

High-level action space: This is the only term that appears
on both sides of the max(·, ·) in eq. 5. This suggests that
both the high-level and the low-level benefit from a small
high-level action space.

As explained above, there are aspects where both agents
are aligned (i.e. small high-level action space) and other
aspects where an equilibrium needs to be found as both
agents would benefit from short horizon and small state
space.

It is important to note that our bound also shows that a
hierarchical decomposition does not always improve the
sample efficiency. Indeed, there will be some settings where
using a “bad” hierarchical decomposition does not lead to
any improvement in the sample complexity. Our bound can
therefore provide a sanity check to determine whether a hi-
erarchical decomposition could lead to an improved sample
complexity. Although we note that finding an algorithm
that achieves this improved sample complexity can still be
challenging. In section 5, we consider several MDP de-
compositions and empirically validate that when our bound
suggests the hierarchical decomposition is beneficial, our al-
gorithm (see Sec. 4) leverages this to achieve lower sample
complexity.

4. Stationary Hierarchical Q-learning
Once we know that we are in an MDP where the hierarchical
decomposition could lead to improved sample complexity,
the next challenge is to design an algorithm which can lever-
age this decomposition. In this section, we propose the
Stationary Hierarchical Q-learning algorithm (SHQL).

One of the most challenging aspects of jointly learning a pair
of policies is the non-stationarity of the high-level transition
dynamics, Ph. It was briefly mentioned (in Sec. 2.2) that the
high-level transition function, Ph, is non-stationary since
it depends on the low-level policy, πl with the next high-

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

Algorithm 1 Stationary Hierarchical Q-learning (SHQL)
1: Initialize: QL

:,:,: = 0, QH
:,: = 0

2: doneH = False
3: t = k = 0
4: while not doneH and k < K do
5: Observe sHk , sLt
6: gsub = πH(sHk)
7: while not doneL and t < T do
8: aLt = πL(sLt)
9: Observe sLt+1, rLt

10: LowLevelUpdate((sLt , aLt , rLt , sLt+1, gsub))
11: st = st+1

12: t = t+ 1
13: end while
14: Observe sHk+1 rHk
15: if doneL then
16: QH

nxt = max
a

QH
sHk+1,a

17: QL
sk,ak

= QH
sk,ak

+ α ∗ (rHk + γQH
nxt)

18: end if
19: k = k + 1
20: end while

Algorithm 2 LowLevelUpdate
1: Input: (st, at, rt, st+1 gsub)
2: QL

nxt = max
a

QL
gsub,st+1,a

3: QL
gsub,st,at

= QL
gsub,st,at

+ α ∗ (rLt + γQL
nxt)

4: return QL

level state depending on whether πl managed to reach the
sub-goal. To address this issue, we leverage the fact that
the algorithm knows what a successful sub-episode is, i.e.
it knows if the low-level agent managed to arrive at the
desired sub-goal. Therefore, the algorithm only makes an
update if the low-level agent is behaving reasonably well
(i.e. solving the sub-goal). In this way, the algorithm filters
all bad examples from the training set and the behaviour of
Ph is more stable. Note however that the reward function
of the high-level agent remains non-stationary. At first, sub-
goals won’t be solved optimally, incurring a small reward
to the high-level agent, but as the low-level agent learns to
solve sub-goals more efficiently the associated reward will
increase.

As detailed in the function LowLevelUpdate in algorithm 2
the low-level agent simply performs Q-learning updates on
the observed low-level transitions and rewards. The high-
level agent also performs Q-learning updates, but only on
successful transitions, as specified at line 15 of algorithm 1.

5. Experiments
We now empirically evaluate2 the impact of the decomposi-
tion on a wide range of MDPs in order to validate the lower
bound found in section 3 and evaluate the performance of
our proposed SHQL algorithm. To satisfy the assumption
of hierarchical structure, the environments considered are a
generalization of the four-room problem with an arbitrary
number of rooms. The entire maze is built by arranging an
arbitrary number of rooms on a grid. The high-level task
consists of learning the shortest sequence of rooms that lead
the agent from the starting position (the top left room) to the
goal room (the bottom right room). The low-level task is
to learn how to navigate within each room and to reach the
instructed hallway. To further modulate the difficulty of the
task we vary the number of rooms (as depicted in figures 3
and 2, top rows) and the number of room profiles used (as
depicted in the rightmost plot of figure 2).

The set of MDPs generated by these environments are the
following:
The original MDP: This is a standard grid-world MDP,
where the state space indicates the cell where the agent is
located and the action space allows the agent to move one
cell in any cardinal direction (North, South, East, West). To
obtain stochastic environments, each action has a success
probability of psuccess = 4/5. In case of failure, the action
will be chosen at random.
The high-level MDP: The high-level state space is restricted
to the room where the agent is currently located, and the
exact position of the agent within that room is abstracted
away. The high-level actions consist of instructing the low-
level to reach one of the available hallways. Note that not
all rooms have access to the four hallways.
The low-level MDP: The low-level agent only observes
the current location of the agent within a room and the
goal instructed by the high-level agent (one of the reachable
hallways). It then uses the primitive action space (the four
cardinal directions) to reach the desired hallway.

5.1. Identical rooms

We first introduce the experimental setting in its simplest
version. The environments considered in this subsection are
mazes that are built by assembling identical rooms without
any obstacles (i.e. the top room profile in Fig. 2). The learn-
ing curve of SHQL on the decomposed MDP and Q-learning
on the original MDP is shown in Figure 2 (left plot). As
expected for simple mazes (e.g. with 4 or 16 rooms) the
hierarchical decomposition does not provide much improve-
ment, but as the problems grow more difficult, the empirical
evaluation suggests a significant improvement in sampling

2Experiments were run on a 12th Gen Intel Core i7 with 16GB
of RAM, to train the agents on the largest maze considered takes
∼ 7 minutes.

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

Figure 2. The grid of plots on the left-hand side depicts, on the top row, the mazes whose size ranges from 4 rooms to 1024 rooms. The
bottom row shows the number of steps required for SHQL (in blue) and Q-learning (in red) to complete the maze. The standard deviation
is obtained by running 10 different seeds. The right-hand side of the plot shows the different room profiles used to build the mazes.

efficiency. This is also confirmed by our bound (yellow
curve on the rightmost plot of Fig. 3) which highlights that
the efficiency gain of HRL is mostly achievable in complex
MDPs. It is important to notice that in this experiment, the
low-level decomposition remains constant for a given set of
room profiles. This is the reason why the benefit of HRL in-
creases with the number of rooms until a plateau is reached.
Once the bound is dominated by the high-level MDP, the
unchanging complexity of the low-level MDP causes the
ratio between the RL bound (Eq. 4) and the high-level part
of the HRL bound (Eq. 5), |S||A|H

|SH ||AH |HH
, to remain constant

(despite the fact that the number of rooms might still grow).

5.2. Different rooms

To make the task more challenging we now increase the
number of room profiles used to construct the mazes. As
depicted in the rightmost plot of figure 2 we considered four
different room profiles, each one with a different obstacle
in the room. The low-level agent has to learn to navigate
through multiple types of rooms to reach the instructed sub-
goal. The performance obtained by Q-learning and SHQL
in this setting is shown in figure 3. The introduction of
different room profiles allows to modulate the complexity
of the low-level MDP, in contrast to varying the number of
rooms which only affects the complexity of the high-level
MDP. An increased number of room profiles results in a
larger state space Sl but may also lead to a longer horizon
Hl as the optimal trajectory might require more time to
successfully navigate around the potential obstacles to reach
the instructed hallway. While this added difficulty has very
little effect on the standard Q-learning, it clearly postpones
the efficiency gain of the hierarchical machinery, as seen
in figure 3. The evolution of the bound ratio (HRL/RL)
for the various MDPs considered is shown in the rightmost
plot of figure 3. It shows that when the maze consists of
a small number of rooms, the bound is dominated by the
low-level agent. However, the curves clearly indicate that as

the high-level MDP becomes more complex (i. e. balancing
the complexity between the two levels of the hierarchy) the
expected sample efficiency improves. This result is also
supported by empirical evidence as illustrated in figures 2
(left plot), 3 (left plot), and figures4 and 5 in appendix A.2.

6. Conclusion
In this work, we analysed the sample efficiency of goal-
conditioned HRL. To the best of our knowledge, it is the
first result that provides an analysis of the intrinsic MDP
decomposition induced by goal-conditioned HRL. In partic-
ular, our lower bound provides a useful tool for practitioners
that illustrates whether they should consider an hierarchical
decomposition for their problems. We also implemented a
set of hierarchical tasks and designed a novel algorithm that
could leverage the existing hierarchy to improve its sam-
ple efficiency. Our experimental setting further emphasizes
the usefulness of the proposed bound since the empirical
efficiency gains are supported by the theoretical analysis
provided.

Although this paper has taken a significant first step in im-
proving our understanding of the benefits of hierarchical
decomposition, there is still scope for further work in this
area. An immediate open question is whether our lower
bound could be refined by explicitly accounting for the in-
teractions between the low-level and the high-level agent.
Moreover, the insights we proposed are framed in a tabular
setting and do not yet apply in a continuous setting where
function approximation could be leveraged to allow the
low-level to generalise over sub-goals. Overcoming those
limitations are interesting direction for future work.

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

Figure 3. Left-hand plots are similar to figure 2, showing the performance obtained on mazes built from four different room layouts. The
right-hand plot shows the evolution of the ratio between the RL bound Eq. (4) and the HRL bound Eq. (5) for various mazes and different
room profiles. The curves are colour-coded such that a darker curve indicates more room profiles were considered.

Acknowledgements
AR is supported by an EPSRC CASE studentship spon-
sored by Shell. AAF is supported by a UKRI Turing AI
Fellowship (EP/V025449/1).

References
Abramova, E., Dickens, L., Kuhn, D., and Faisal, A. Hier-

archical, heterogeneous control of non-linear dynamical
systems using reinforcement learning. In European Work-
shop On Reinforcement Learning, at ICML, volume 2012,
2012.

Auer, P. and Ortner, R. Online regret bounds for a new
reinforcement learning algorithm. In 1st Austrian Cogni-
tive Vision Workshop, pp. 35–42. Österr. Computer-Ges.,
2005.

Beyret, B., Shafti, A., and Faisal, A. A. Dot-to-dot: Explain-
able hierarchical reinforcement learning for robotic ma-
nipulation. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5014–5019.
IEEE, 2019.

Brunskill, E. and Li, L. Pac-inspired option discovery in life-
long reinforcement learning. In International conference
on machine learning, pp. 316–324. PMLR, 2014.

Dann, C. Strategic Exploration in Reinforcement Learning-
New Algorithms and Learning Guarantees. PhD thesis,
Google, 2019.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. Advances in Neural
Information Processing Systems, 28, 2015.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
Advances in neural information processing systems, 5,
1992.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of artifi-
cial intelligence research, 13:227–303, 2000.

Dietterich, T. G. et al. The maxq method for hierarchical
reinforcement learning. In ICML, volume 98, pp. 118–
126, 1998.

Fruit, R. and Lazaric, A. Exploration-exploitation in mdps
with options. In Artificial intelligence and statistics, pp.
576–584. PMLR, 2017.

Fruit, R., Pirotta, M., Lazaric, A., and Brunskill, E. Re-
gret minimization in mdps with options without prior
knowledge. Advances in Neural Information Processing
Systems, 30, 2017.

Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S.
Latent space policies for hierarchical reinforcement learn-
ing. In International Conference on Machine Learning,
pp. 1851–1860. PMLR, 2018.

Hutsebaut-Buysse, M., Mets, K., and Latré, S. Hierarchical
reinforcement learning: A survey and open research chal-
lenges. Machine Learning and Knowledge Extraction, 4
(1):172–221, 2022.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? Advances in neural infor-
mation processing systems, 31, 2018.

Jong, N. K., Hester, T., and Stone, P. The utility of temporal
abstraction in reinforcement learning. In AAMAS (1), pp.
299–306, 2008.

Li, G., Shi, L., Chen, Y., Chi, Y., and Wei, Y. Settling the
sample complexity of model-based offline reinforcement
learning. arXiv preprint arXiv:2204.05275, 2022.

McGovern, A., Sutton, R. S., and Fagg, A. H. Roles of
macro-actions in accelerating reinforcement learning. In

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

Grace Hopper celebration of women in computing, vol-
ume 1317, pp. 15, 1997.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine,
S. Why does hierarchy (sometimes) work so well in re-
inforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Pickett, M. and Barto, A. G. Policyblocks: An algorithm for
creating useful macro-actions in reinforcement learning.
In ICML, volume 19, pp. 506–513, 2002.

Precup, D. and Sutton, R. S. Multi-time models for tempo-
rally abstract planning. Advances in neural information
processing systems, 10, 1997.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999a.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999b.

Vezhnevets, A., Mnih, V., Osindero, S., Graves, A., Vinyals,
O., Agapiou, J., et al. Strategic attentive writer for learn-
ing macro-actions. Advances in neural information pro-
cessing systems, 29, 2016.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Wen, Z., Precup, D., Ibrahimi, M., Barreto, A., Van Roy, B.,
and Singh, S. On efficiency in hierarchical reinforcement
learning. Advances in Neural Information Processing
Systems, 33:6708–6718, 2020.

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

A. Appendix
A.1. Proof of Theorem 3.1

Theorem 3.1 states that there exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0) and for every algorithm A
that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy, there is a fixed horizon MDP such that A must
collect

E[Ne] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

(1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln
(1

δ + ch

)))
(7)

episodes until its policy is (ϵ, δ)-accurate.

Proof. An ϵ-accurate pair of policies (πl, πh) satisfies
|V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ. Note that by the triangle inequality, if |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o |+ |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ, then we will

have |V π∗
l ,π

∗
h

o − V πl,πh
o | ≤ ϵ. We, therefore, focus on showing:

(i) the number of samples required to guarantee |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | ≤ ϵ/2 is bounded by Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
(ii) the number of samples required to guarantee |V π∗

l ,πh
o − V πl,πh

o | ≤ ϵ/2 is bounded by Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
Then once we have both (i) and (ii), we know that after

Ω

(
max

(
|SL||AH ||A|H2

L

ϵ2
ln

(1

δ + cl

)
,
|SH ||AH |H2

H

ϵ2
ln
(1

δ + ch

)))
episodes, we will have |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o |+ |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ and so |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ.

Part (i) Note that only learning the high-level policy when the low-level policy is optimal, is equivalent to learning an
ϵ-accurate high-level policy interacting with Mh with a stationary transition function (since the low-level behaviour is not
evolving anymore). Hence we can bound the number of episodes Nh required to have: |V ∗

h − V
π∗
l ,πh

h | ≤ ϵ, by directly
applying Eq. (4) to the high-level MDP to get

E[Nh] = Ω

(
|Sh||Ah|H2

h

ϵ2
ln
(1

δ + ch

))
To be able to use this result to construct the bound of interest, we need to make sure these results are valid under the
original MDP: |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | ≤ ϵ. In particular, the reward functions are not the same for Mo and Mh. By
decomposition, rh includes the bonus (or the absence of penalty) the high-level gives to the low-level for completing
the task. To compensate for that the low-level reward is re-scaled with a penalty twice larger per step. This ensure that
|V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | ≤ 2|V ∗
h − V

π∗
l ,πh

h |. Hence after E[Nh] episodes, we have |V ∗
o − V

π∗
l ,πh

o | ≤ 2ϵ

Part (ii) By a similar argument to Part (i), we can bound the number of episodes in the low-level MDP required to obtain
an ϵ-optimal low-level policy for a fixed high-level policy πh. In particular, a lower bound on the number of episodes Nl

required to have |V πh,π
∗
l

l − V πl,πh

l | ≤ ϵ can directly be obtained from Eq. (4):

E[Nl] = Ω

(
|Sl||AH ||A|H2

l

ϵ2
ln
(1

δ + cl

))
.

We are interested in comparing the policies when they interact with the original MDP. The issue is that there is a difference
of scale between V πl,πh

o and V πl,πh

l . Episodes are shorter by a factor of Hh in the low-level MDP. So we need to ensure
that |V πh,π

∗
l

l − V πl,πh

l | ≤ ϵ
Hh

. But by construction, this re-scaling is not necessary as a single episode in the original MDP
corresponds to at most Hh episodes in the low-level MDP as a single episode in Mo with x sub-goals correspond to x
episodes in Ml.

This leads us to a lower bound on the number of episodes needed to obtain an ϵ-accurate pair of policies as the one stated in
the theorem.

Sample Complexity of Hierarchical Decompositions in Markov Decision Processes

A.2. Additional experiments

In the experimental section (Sec. 5) we used several room layouts. In the main paper, we only provide learning curves
for mazes that are composed of rooms without any obstacles or mazes that are composed of all the possible room layouts
depicted in the rightmost plot of figure 2. To complete our experiment we show below in (Fig. 4 and Fig. 5) the learning
curves obtained when mazes are built from two or three different room layouts. Note also that those results were used to plot
the evolution of the bound ratio in the rightmost plot of figure 3.

Figure 4. Shows learning curves on various maze sizes with two different room instances, either the room is empty or it has a U-shape
obstacle in it. The performance of the agent is measured in the number of steps it requires to solve the task.

Figure 5. Shows learning curves on various maze sizes with three different room instances, either the room is empty or it has a U-shape
obstacle or the room is stripped with horizontal walls. The performance of the agent is measured in the number of steps it requires to
solve the task.

