
Flexible Realignment of Language Models

Wenhong Zhu1,2 Ruobing Xie3 Weinan Zhang1,2 Rui Wang1∗

1Shanghai Jiao Tong University 2Shanghai Innovation Institute
3Large Language Department, Tencent

Abstract

Realignment becomes necessary when a language model (LM) fails to meet ex-
pected performance. We propose a flexible realignment framework that supports
quantitative control of alignment degree during training and inference. This frame-
work incorporates Training-time Realignment (TrRa), which efficiently realigns
the reference model by leveraging the controllable fusion of logits from both the
reference and already aligned models. For example, TrRa reduces token usage by
54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any performance degradation,
outperforming DeepScaleR-1.5B’s 33.86%. To complement TrRa during inference,
we introduce a layer adapter that enables smooth Inference-time Realignment
(InRa). This adapter is initialized to perform an identity transformation at the
bottom layer and is inserted preceding the original layers. During inference, input
embeddings are simultaneously processed by the adapter and the original layer,
followed by the remaining layers, and then controllably interpolated at the logit
level. We upgraded DeepSeek-R1-Distill-Qwen-7B from a slow-thinking model to
one that supports both fast and slow thinking, allowing flexible alignment control
even during inference. By encouraging deeper reasoning, it even surpassed its
original performance.

1 Introduction

Current large language models (LLMs), such as GPT-4o [1], and reasoning-focused models like
OpenAI-o1 [2] and DeepSeek-R1 [3], have achieved remarkable success. These models typically
hinge on a series of critical training phases [4]. First, they undergo pre-training on vast corpora to
master the ability to predict the next token [5]. Next, the pre-trained models are fine-tuned through
supervised fine-tuning (SFT) as a cold start to better adapt to specific domains [6, 7]. Reinforcement
Learning (RL) has emerged as a crucial component of the entire training pipeline.

In the RL phase, the core objective is to maximize the expected reward while incorporating the
KL-divergence from the reference policy [8–10]. The reward signal is key to alignment: correctness-
based rewards improve reasoning ability [2, 3], while 3H-based (honesty, harmlessness, and helpful-
ness) rewards reflect human values [11]. However, misalignment can still emerge due to imperfect
rewards or evolving user needs. Review the pain points of the existing product models: The most
advanced reasoning models tend to suffer from the overthinking problem [12, 3], leading to increased
computational costs. How can we realign these models for efficient reasoning to ensure user afford-
ability? Meanwhile, to adapt to individual user preferences, conversational models often become
overly sycophantic [13]. How can we realign them to balance personalization and objective responses
better? Realignment is thus essential to correct model behavior and ensure robustness over time.
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Figure 1: Our InRa: The inputs are fed simul-
taneously into the layer adapter and the original
bottom layer of the LM. The hidden states from
both paths are propagated through all layers and
merged at the logit level. The layer adapter en-
ables flexible realignment even during inference.

One typical practical approach to realignment is
to retrain the model under the same reward signal
while exploring different hyperparameters. How-
ever, for models trained via RL, this process is
often resource-intensive. For instance, simply
replicating the DeepSeek-R1 experiments (with
context lengths exceeding 32K over 8000 training
steps) using a 1.5B-parameter model requires at
least 70,000 A100 GPU hours[14]. We need to
address this challenge through a more efficient
method without compromising performance. Ad-
ditionally, we seek a solution that offers flexibility
during training and inference.

We propose a flexible realignment framework
that facilitates training-time and inference-time
realignment, controlling the alignment degree to
satisfy different demands. (1) We draw inspiration
from knowledge distillation for training-time re-
alignment (TrRa). Specifically, we realign the
reference model using a teacher signal constructed from a controllable fusion of the output logits
of the reference and the already aligned models. (2) We introduce a layer adapter to endow the LM
inference-time realignment (InRa). This is inspired by the fact that the lower layers of the LM are
more influential than the upper layers during fine-tuning (see Sec.5.1). Based on this observation, we
duplicate the bottom layer and insert it as an identity mapping layer before the original layers (see
Sec.3.2). Fine-tuning is restricted solely to this layer adapter. As illustrated in Figure 1, the input
embeddings are processed through this adapter and original layers during inference, and the resulting
output logits are combined via an interpolation coefficient λ. This design retains both paths of logits
within a single model, enabling smooth and flexible control over alignment.

In summary, our main contributions are as follows:

• We propose new post-training methods, TrRa and TrRa-iter, that use a controllable teacher
signal created by combining logits from reference and aligned models, overcoming the fixed
teacher in traditional knowledge distillation to enable flexible training-time realignment.

• We propose a parameter-efficient fine-tuning approach called the layer adapter. It allows
smooth and efficient realignment during inference within a single model.

• Experiments demonstrate that our flexible realignment framework enables efficient and
flexible realignment during both training and inference. For example, TrRa-iter reduces
token usage by 54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any loss in performance.
Additionally, InRa has been successfully tested in practical scenarios, such as combining
fast and slow thinking models and flexibly realigning with 3H values.

2 Preliminary

Autoregressive LM. Given a query sequence x := (x1, . . . , xm) ∈ X , an auto-regressive LM
defines a probability distribution over possible response sequences y := (y1, y2, . . . , yn) ∈ Y .
The probability πθ(y | x) can be decomposed using the chain rule of probability as πθ(y | x) =∏n

t=1 πθ (yt | y<t, x), where y<t denotes {y1, y2, ..., yt−1}.

Transformer Decoder Layer. The current mainstream LMs based on transformer architec-
ture [15] typically have multiple decoder layers (ϕ0, ϕ1, ..., ϕL) [4]. Each layer consists of
an attention component and an MLP component. Given an input ht−1, the layer computes
the output ht through the following steps: h′

t−1 = ht−1 + Attention(RMSNorm(ht−1)) and
ht = h′

t−1 +MLP
(
RMSNorm

(
h′
t−1

))
. Both components have a projector to ensure the module’s

input and output dimensions are consistent, facilitating the combination with a residual connec-
tion [16].

Reward-based Fine-tuning. Given a pre-trained (Base) and typically SFT reference model πref(y |
x), RL is a commonly used post-training technique to enhance model capabilities further. The
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optimization objective maximizes the expected reward r(x, y) while including a KL-divergence term
from the reference policy as a penalty. The objective is as follows:

max
πθ

Ex∼X ,y∼πθ(y|x)

[
r(x, y)− β log

πθ(y | x)
πref(y | x)

]
, (1)

where β is a regularization parameter. It has a closed-form solution for the aligned model, given as
follows:

π∗
θ(β)(y | x) =

πref(y | x) exp
[
1
β r(x, y)

]
∑

y′ πref (y′ | x) exp
[
1
β r (x, y

′)
] . (2)

Typically, we can transform the above equation by representing r(x, y) as

1

β
r(x, y) = log

π∗
θ(β)(y | x)
πref(y | x)

+ logZ(x), (3)

where Z(x) :=
∑

y′ πref (y′ | x) exp
(

1
β r (x, y

′)
)

is the partition function.

Realignment. Realignment becomes necessary when the LM fails to meet expected performance.
As shown in Equation 1, the KL regularization parameter β determines how far the policy model
πθ(y | x) deviating from its initial state πref(y | x) [17]. To adjust the alignment strength of the
LM, one can modify the value of β, which can be achieved by scaling it with a factor λ during
training. This adjustment leads to an updated optimal solution for the realigned model, expressed as
π∗
θ(β/λ)(y | x) as follows:

π∗
θ(β/λ)(y | x) =

πref(y | x)
[
π∗
θ (β)(y|x)
πref (y|x)

]λ
∑

y′ πref (y′ | x)
[
π∗
θ (β)(y

′|x)
πref (y′|x)

]λ . (4)

However, computing Equation 4 is infeasible due to the normalization constant involving all possible
sequences. DeRa [18] demonstrates that Equation 4 can be approximated at the per-token level
through the auto-regressive property of LMs. When decoding token by token, it combines the logits
from the reference model, href

t , with its from the β-regularization-aligned model, hθ
t (β), at each time

step t, as detailed below.

π̂θ(β/λ) (· | x, y<t) := softmax
[
λhθ

t (β) + (1− λ)href
t

]
. (5)

The interpolation parameter λ functions as readjusting the alignment strength during the inference.
Refer to Appendix C.1 for the proof.

3 Flexible Realignment Framework

This section introduces our flexible realignment framework, which enables LM realignment during
training and endows the LM with the capability of dynamic realignment during inference.

3.1 Training-time Realignment

Based on the previous description, DeRa [18] approximately doubles the decoding time and memory
consumption. However, it reveals an appealing property: the reference and aligned models can be
interpolated at the logit level. Drawing inspiration from knowledge distillation, where the student
model learns from the teacher’s predicted probability distribution, we propose an innovative approach
where Equation 5 serves as the teacher’s distribution to realign the reference model. Our method
minimizes the following objective function:

L = DKL(πθ(·|x, y<t)||π̂θ(β/λ)(·|x, y<t)). (6)
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Figure 2: Overview of attention and MLP com-
ponent. Identity copy makes the last projector of
each component with weight and bias to zero.

Figure 3: (a) All layers fine-tuning. (b) Fine-
tuning on the added identity layer while keeping
the original layers of the LM frozen.

Flexible Control During Training In previous distillation approaches, the distribution of teachers
typically remained fixed. However, TrRa introduces the capability to dynamically generate multiple
teacher distributions by flexibly adjusting λ. These teacher distributions are derived from reference
and aligned models, enabling the interpolation and extrapolation of the reward signal.

Iterative Realignment We can apply TrRa iteratively (TrRa-iter) to derive a better model. Suppose
A denotes the base model and B the aligned model. A realigned model C can be derived using
Objective 6. This procedure can be iteratively extended to A and C, resulting in a further realigned
model.

3.2 Inference-time Realignment

To complement TrRa, we aim to equip the LM with realignment capability during inference, enabling
more flexible use for end users. We duplicate the original LM’s bottom layer as an identity copy and
insert it before the original layers. The layer adapter can be fine-tuned to inject alignment information,
such as short-thinking patterns or 3-H values.

Identity copy The identity copy is defined as ϕid(ht−1) = ht−1, which means the input and
output are identical. This can be achieved as long as Attention(RMSNorm(ht−1)) = 0 and
MLP(RMSNorm(h′

t−1)) = 0. Then, the input is directly the result of the output due to the residual. We
initialize the projection weight matrices—Wout in the Attention module and Wdown in the MLP—as
indicated by the dark purple regions in Figure 2, setting them to zero to ensure this identity property.

Layer adapter Layer expansion involves inserting additional layers into the original layer structure.
Incorporating identity layers ensures that the added layers do not compromise the original capabilities
of LMs. As illustrated in Figure 3, we duplicate the bottom layer from the original model and insert it
as an identical mapping. LoRA is orthogonal to our method. The principle of LoRA [19] is given by
W0 +∆W = W0 +BA, where A is initialized with N

(
0, σ2

)
and B is a zero matrix. Therefore,

LoRA is also initialized as an identity component. We can implement our method using trainable
rank decomposition matrices.

Training As shown in Figure 3, we freeze the original layers of the LMs and perform fine-tuning
only on the layer adapter. This training guarantees fine-tuning starting from the original distribution.
The critical aspect of this step is the injection of the reward signal.

Inference The decoding architecture is depicted in Figure 1. During the inference phase, the LM
processes the input embeddings by passing them through the layer adapter alongside the original
bottom layer of the LM. The hidden states generated by both layers are retained and subsequently
fed into the remaining layers. The aligned and reference logits are combined in the LM head layer
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Table 1: Performance comparison of different models on three benchmarks. ‘iter + x’ denotes
iterative realignment applied x times under the same settings. Red indicates improved performance
compared to DeepScalerR-1.5B-Preview, while green indicates a decrease.

Models AIME24 AIME25 MATH-500 Token
Reduction%Pass@1 #Token Pass@1 #Token Pass@1 #Token

DeepSeek-R1-Distill-Qwen-1.5B 30.00 12602 19.58 12278 80.23 4699 –
DeepSeek-R1-TrRa-1.5B-λ = 0.5 38.33 10678 28.75 10254 83.70 3734 17.42
DeepScaleR-1.5B-Preview 37.50 8520 30.41 8143 85.20 3030 33.86
DeepSeek-R1-TrRa-1.5B-λ = 1.5 41.25 8091 30.83 7353 85.20 2982 37.48
DeepSeek-R1-TrRa-1.5B-λ = 2.0 37.50 7441 28.33 6498 84.98 2897 42.11
DeepSeek-R1-TrRa-1.5B-λ = 5.0 31.25 6297 27.50 5652 83.95 2844 47.83
DeepSeek-R1-TrRa-1.5B-λ = 10.0 29.58 6004 25.00 5174 81.58 2713 50.83

DeepSeek-R1-TrRa-iter1-1.5B-λ = 2.0 29.17 5631 25.00 4434 81.35 2599 54.63
DeepSeek-R1-TrRa-iter2-1.5B-λ = 2.0 14.58 4294 15.42 3887 75.93 2483 60.48

using the interpolation parameter λ. This parameter functions similarly to a temperature setting,
enabling users to customize the desired alignment strength smoothly. Merging hidden states in early
layers can hurt model performance, often causing repeated outputs like “!!!!!".

3.3 Discussions on Training/Inference-time Realignment

TrRa and InRa are orthogonal. (1) TrRa realigns the model during training, ensuring flexibility and
performance. In contrast, InRa also requires training; however, its training phase focuses on injecting
the reward signal into the layer adapter, and this training can be done via SFT, DPO, or TrRa. See
Appendix D for justification. (2) InRa retains both aligned and reference logits, enabling realignment
during inference. This feature incurs additional KV-cache storage overhead. Although we integrate
InRa into the vLLM framework [20], it leads to a decrease in inference throughput. See Appendix A
for potential solutions.

4 Experiments

In Section 4.1, we demonstrate the effectiveness of TrRa during training. Section 4.2 presents an
extension of the current slow-thinking model into a slow-fast thinking framework. In Section 4.3, we
explore the integration of 3H-values into the chatbot model. In the latter two sections, we evaluate
the effects of realignment during inference.

4.1 Training-time Realignment

Evaluation Settings. (a) Models and Baselines: We use DeepSeek-R1-Distill-Qwen-1.5B[3] as
our reference model and DeepScaleR-1.5B-Preview (trained on 40K high-quality math problems
with 3,800 A100 hours)[14] as our aligned model. (b) Calibrated Training Datasets: We use the
OpenR1-Math-220K dataset [21]. Due to computational constraints, we filter samples with generation
lengths between 4k and 8k. (c) Evaluation Dataset: We evaluate on challenging reasoning tasks
including AIME-24, AIME-25, and MATH-500 to assess performance. (d) Setup: We realign
DeepSeek-R1-Distill-Qwen-1.5B for 200 steps with a batch size of 16. Performance is measured
using the Pass@1 metric and token count, where we sample 8 generations per example and report the
average score. Each generation has a maximum length of 16384 tokens, with temperature set to 0.7
and top-p set to 0.95.

Results. As shown in Table 1, DeepScaleR-1.5B-Preview demonstrates strong performance and
efficient reasoning. By applying our TrRa method to realign DeepSeek-R1-Distill-Qwen-1.5B, we
make the following observations:

(a) TrRa is an efficient and flexible alignment controller. It can be seen that we achieve effective
realignment at a very low cost compared to the training cost of DeepScaleR. With correction applied
using a context length of just 4k to 8k, the model generalizes well to 16k during inference. Besides,
we can control the degree of alignment achieved by sweeping over different values of λ.
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Figure 4: Reasoning Performance on different models and benchmarks with our InRa, verifying
the successful interpolation and extrapolation of realignment. λ = 0 means merely using slowing
thinking, while λ = 1 indicates solely using fast thinking.

(b) TrRa leads to a more efficient reasoning pattern. By appropriately increasing the value of λ,
the reasoning becomes concise without sacrificing correctness. Notably, even at λ = 10, the model
achieves a 50.8% reduction in tokens while outperforming DeepSeek-R1-Distill-Qwen-1.5B.

(c) TrRa-iter can further amplify this efficient reasoning pattern. Iterative realignment results in
more efficient reasoning than setting a large initial λ. However, as the iteration of realignments
increases, the model tends to produce more concise reasoning at the cost of lower correctness.

4.2 Inference-time Realignment for Reasoning

This section explores integrating fast and slow thinking modes into a unified model. Within this
model, a floating-point hyperparameter like temperature can smoothly adjust the balance between
the two modes of thinking.

Evaluation Settings. (a) Models and Baselines: We adopt DeepSeek-R1-Distill-Qwen-1.5B [3]
and DeepSeek-R1-Distill-Qwen-7B [3] as our primary models. (b) Training Datasets: We perform
SFT on short CoT segments from the OpenR1-Math-220K dataset (after the </think> tag), yielding
controllable reasoning models named by adding the -InRa suffix to the original models. (c) Setup:
We train our model for three epochs using a batch size of 128. (d) Evaluation: The evaluation setting
is the same as in Section 4.1.

Results. The results are shown in Figure 4. We provide the following analyses:

(a) The degree of alignment could be flexibly adjusted even AFTER training. It confirms the
practicality of our proposed InRa.

(b) InRa enables continuous transformation of reasoning tokens by tuning the realignment
parameter λ. Generally, the extent of reasoning significantly changes around λ = 0.5. For detailed
examples, see Appendix F.7.

(c) Extrapolation further enhances model performance. When λ > 1, it encourages the model
to use fast thinking. We can see that fasting thinking sacrifices reasoning accuracy with the token
decreasing. Surprisingly, we even found that λ < 0 may encourage the model to think more and
perform better. Notably, the reasoning accuracy on all three benchmarks exceeds that of the original
reasoning model (e.g., DeepSeek-R1-Distill-Qwen-7B), with nearly 4% average improvements on
AIME-24, AIME-25, and MATH-500.
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Table 2: Evaluation results of models across different settings and benchmarks. LC and WR refer to
length-controlled and raw win rates, respectively. At λ = 0.0, the model corresponds to the original
SFT version, while at λ = 1.0, it represents our efficient fine-tuning method using DPO. Red
indicates improved performance compared to DPO full fine-tuning, green indicates a decrease.

Method
Llama3.2-3B-Base Llama3.1-8B-Base

AlpacaEval2 Arena-Hard MT-Bench AlpacaEval2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) 1-turn 2-turn LC (%) WR (%) WR (%) 1-turn 2-turn

SFT 2.83 2.42 2.00 6.39 5.53 3.06 2.79 3.60 6.99 6.43
DPOFull 11.44 10.47 11.60 6.98 6.51 20.16 15.02 26.20 7.66 7.28

DeRaλ=2.0 4.50 4.97 19.80 6.30 5.30 28.63 25.68 36.30 7.74 7.45

InRaλ=0.5 7.28 6.62 6.90 6.66 6.18 12.19 9.80 14.00 7.26 7.03
InRaλ=1.0 11.53 11.93 11.00 7.11 6.36 20.45 17.86 24.40 7.46 7.13
InRaλ=1.5 12.71 14.84 17.30 6.88 6.74 21.99 20.81 29.80 7.67 7.31
InRaλ=2.0 12.01 14.92 21.80 6.93 6.24 20.90 21.09 34.30 7.36 7.04

Method
Qwen2.5-1.5B-Base Qwen2.5-7B-Base

AlpacaEval2 Arena-Hard MT-Bench AlpacaEval2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) 1-turn 2-turn LC (%) WR (%) WR (%) 1-turn 2-turn

SFT 2.55 2.54 2.80 6.85 5.30 5.42 3.59 8.30 7.43 7.01
DPOFull 8.38 8.36 15.60 7.49 6.68 25.20 20.92 45.50 8.21 7.80
DeRaλ=2.0 4.50 4.97 9.90 7.09 6.59 36.53 34.73 58.00 8.59 8.28

InRaλ=0.5 4.75 5.04 7.00 6.98 6.13 14.19 11.52 30.50 8.17 7.53
InRaλ=1.0 9.13 10.50 14.80 7.51 6.59 25.74 25.83 45.10 8.21 6.70
InRaλ=1.5 8.64 11.23 16.30 7.48 6.54 30.69 34.15 50.80 8.48 5.94
InRaλ=2.0 7.15 10.38 15.30 7.58 6.68 30.99 35.35 50.30 8.51 5.58

4.3 Inference-time Realignment for Dialogue Model

This section explores the 3H-values realignment in dialogue models. The GPT-4o sycophancy
incident [13] on April 25th, 2025, highlights the importance of balancing the reward signals in
dialogue systems, and thus a flexible alignment controller is desired.

Evaluation Settings. (a) Models: We implement our proposed method on the Llama3.2-3B [22],
Llama3.1-8B [22], Qwen2.5-1.5B [23] and Qwen2.5-7B models [23]. (b) Baselines: Full fine-tuning
using DPO [10] and the DeRa method [18]. (d) Setup: We first train the base models using the
UltraChat-200k dataset [24], which contains 1.5 million high-quality multi-turn dialogues, to obtain
the SFT models. Subsequently, we apply DPO on the UltraFeedback dataset [25], which emphasizes
3H-values. (c) Evaluation: We evaluate our models primarily on three benchmarks: MT-Bench [26],
AlpacaEval 2 [27], and Arena-Hard v0.1 [28].

Results. AlpacaEval2 and Arena-hard are designed to evaluate the alignment performance (3H-
values), to assign higher scores to responses preferred by humans [27, 28]. MT-Bench is a benchmark
that assesses a model’s ability to engage in multi-turn dialogue and accurately follow instructions [26].
The results are presented in Table 2, and we have the follow observations:

(a) Layer Adapter has comparable alignment performance with full fine-tuning. The SFT model
shows strong instruction-following capabilities, as evidenced by its MT-Bench scores. However,
its alignment performance reflecting the 3H-value remains limited. However, DPO full fine-tuning
significantly enhances alignment performance. Furthermore, we evaluate our proposed InRa with
λ = 1.0. The results indicate that the alignment performance is on par with that of the fully fine-tuned
DPO model. Compared to DeRa (which uses SFT and DPOFull models), InRa achieves comparable
performance with significantly higher computational efficiency by utilizing only a single adapter
layer.

(b) Interpolation and extrapolation of realignment. Taking the Arena-hard benchmark as an example,
when λ = 0.5, the alignment strength lies between the SFT model and the InRa model with λ = 1.0.
By appropriately increasing the value of λ, the alignment ability can be further enhanced, even
surpassing the performance of the DPO fully fine-tuned model. A similar phenomenon is observed
for AlpacaEval 2 and the first-turn dialogue in MT-Bench.
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(c) InRa offers a quick way to study alignment tax. However, all MT-Bench results reveal a decline
in the model’s second-round conversational abilities. As shown in Table 2, the Qwen2.5-7B-Base
model’s MT-Bench score decreases as λ increases in the second-turn dialogue. We attribute this
behavior to alignment tax. The layer adapter was fine-tuned on the Ultrafeedback dataset, composed
solely of single-turn dialogues [25]. As a result, increasing λ enhances the model’s ability to adhere
to single instructions with 3-H values. We provide the case study in Appendix F.2. It also reconfirms
the importance of flexible realignment for diverse practical demands.

5 In-depth Model Analyses

5.1 Layer Significance

Table 3: The significance of layers in alignment on
Llama3.1-8B

Method
AlpacaEval2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score

top-1 4.03 4.87 8.20 5.67
top-3 4.05 4.96 10.40 6.32
bottom-1 14.94 13.93 24.80 7.37
bottom-3 16.38 15.51 25.30 7.40

We opt to experiment by freezing the lower
layers and fine-tuning the top-k layers, as
well as by freezing the upper layers and fine-
tuning the bottom-k layers. This way, we
aim to determine which layers are most ef-
fective for alignment. The learning rate is
5e-6, and β equals 0.01. As shown in Ta-
ble 3, tuning the top layers brings limited
gains, while adjustments to the bottom layers
lead to substantial improvements, highlight-
ing their critical role in preference learning.

5.2 Layer adapter

Table 4: Initialization method comparison for layer
adapter in alignment on Qwen2.5-7B

Method AlpacaEval2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) Score

Random 20.00 20.75 36.10 7.54
Identity copy 25.74 25.83 45.10 8.21

Initialzation For 2D tensors, we use
Kaiming initialization [29], and for 1D ten-
sors, we apply standard normalization. As
shown in Table 4, a good initialization is
more effective when starting from the orig-
inal weights.

Comparison with LoRA We compare
our layer adapter with the LoRA method,
as shown in Table 5 and Table 6. We fine-tune the LMs using LoRA with ranks r = 8 and
r = 128. Our method achieves performance comparable to full fine-tuning, offering improved
training efficiency. Moreover, it demonstrates certain performance advantages over LoRA.

Table 5: Evaluation results across different fine-tuning meth-
ods on Qwen2.5-7B.

Method AlpacaEval2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score

Full 25.20 20.92 45.50 8.21
Lorar=8 22.04 18.64 41.50 8.16
Lorar=128 24.97 19.22 42.50 8.42
Ours 25.74 25.83 45.10 8.21

Table 6: Efficiency comparison:
training parameters and training
time on Qwen2.5-7B.

Method Params Time

Full 7264M 3h35min
Lorar=8 19M 1h50min
Lorar=128 308M 1h50min
Ours 222M 50min

Table 7: Increasing layer adapters on Llama3.1-8B

Method
AlpacaEval2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score

+1 layer 17.66 14.61 25.40 7.38
+2 layers 14.27 12.67 24.70 7.42
+3 layers 14.78 13.22 23.40 7.03

Increasing Layer Adapters In Analy-
sis 5.1, we know that alignment on the bottom
layers would be beneficial. Therefore, we
are wondering if we can add more adapters
preceding the original layers to improve the
alignment ability of LM further. We copy
the bottom layer n times and perform align-
ment on these layers. As shown in Table 7,
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increasing the number of layer adapters does not significantly improve performance under the same
hyperparameter settings.

Table 8: Hyperparameter stability on Qwen2.5-7B

Method
AlpacaEval2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score

Layer adapter
β = 0.01, lr = 5e− 6 20.66 19.25 38.30 8.48
β = 0.01, lr = 5e− 7 17.53 17.34 33.20 7.87
β = 0.005, lr = 5e− 6 19.94 19.64 39.90 7.87
β = 0.005, lr = 5e− 7 25.74 25.83 45.10 8.21

Full
β = 0.01, lr = 5e− 6 12.05 12.41 31.00 7.84
β = 0.01, lr = 5e− 7 25.20 20.92 45.50 8.21
β = 0.005, lr = 5e− 6 6.09 6.83 9.70 4.56
β = 0.005, lr = 5e− 7 26.94 22.30 46.70 8.45

Hyperparameter Stability
We try different β and learning
rate combinations in the DPO
algorithm to test layer adapter
training stability. As shown
in Table 8, using a smaller β
yields significant performance
improvements. Moreover, it
has been observed that an
appropriate β value employed
in layer adapter training is
also well-suited for DPO full
fine-tuning. Therefore, our
method can be a lightweight
proxy for hyperparameter tuning
before switching to full fine-tuning. Additional experiments with LoRA, presented in Appendix F.5,
further highlight the advantages of our method.

6 Related Work

Parameter Efficient Fine Tuning. Parameter Efficient Fine-Tuning (PEFT) aims to adapt large pre-
trained models to downstream tasks by updating only a small subset of parameters, thereby reducing
memory and computation costs. Early approaches include adapter modules [30], where small
bottleneck layers are inserted into the model and only these are fine-tuned. LoRA [19] introduces
low-rank updates to weight matrices, significantly reducing the number of trainable parameters
without sacrificing performance. Our method is orthogonal to these methods.

Progressive Learning. Gong et al. [31] introduced a stacking approach that incrementally doubles
model depth to improve training effectiveness. Expanding on this concept, CompoundGrow [32]
integrates FeedForward Network expansion into a structured training schedule. More recently, LLama-
Pro [33] employs depth growth to retain general model performance while enabling adaptation to
domain-specific tasks. Our work employs depth growth at the lowest layer.

Preference Leaning. RLHF is a method aimed at aligning LLMs with human values and preferences
[34]. The PPO algorithm [8] is frequently employed. However, challenges exist throughout the
RLHF process, from collecting preference data to training the model, as highlighted by Radford
et al. [35]. Alternatively, techniques like DPO [10] eliminate the need for a reward model by training
LLMs directly based on human preferences. Other competing methods, including IPO [36], KTO
[37], and WSPO [38], have also emerged.

Realignment. The most effective way to achieve realignment is by sweeping the hyperparameter.
DeRa [18] dynamically adjusts alignment strength at inference time using aligned and unaligned
models. Similarly, WSPO [38] demonstrates that when the weak model is identical to the strong
model, it can regulate alignment strength during training. We are the first to explore techniques that
explicitly incorporate inference-time realignment considerations into the training process.

7 Conclusion

We introduce a flexible realignment framework that addresses the realignment of LMs during training
and inference. TrRa constructs a controllable teacher signal from existing models, enabling efficient
post-training realignment. InRa augments the model with a lightweight layer adapter, supporting
inference time alignment adjustment within a single model. Our experiments confirm the practicality
of this framework in diverse use cases, such as cost-effective reasoning and dynamic 3H alignment,
pointing toward a promising direction for building flexible and user-controllable LLMs.
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Appendix
A Limitation

For InRa, the inference key-value cache size would double, even though we integrate our new
architecture into the vLLM framework [20], which simplifies key-value cache management. However,
this may lead to reduced inference throughput. We hope that future work will explore key-value
compression techniques to address this issue.

Future work. We list some potential future works as follow:

• Key-value compression. We believe that the two key-value cache paths share significant
similarities, making key-value compression based on this work a valuable direction for
future research.

• Contrastive Reward Signal. By injecting short-thinking patterns into the layer adapter
and extrapolating between short-thinking and long-thinking logits, the model can be further
encouraged to engage in deeper reasoning. Therefore, designing an effective contrastive
reward signal could be a promising direction to enhance the model’s reasoning capabilities.

• Realignment. Current research on training-time realignment remains limited. We hope
future work will explore this area more thoroughly, as it holds potential for improving
alignment and reasoning performance during model training.

• Hybrid Model. A more efficient architecture could support hybrid capabilities, such as
dynamically adjustable fast and slow thinking modes, allowing the model to balance speed
and reasoning depth based on the task requirements.

B Broader Impact

This paper presents work that aims to advance the field of natural language processing. Our work has
many potential societal consequences, none of which must be specifically highlighted here.

C Proof

C.1 Approximate Token-Level Distribution

The approximate realigned model π̂θ(β/λ),

π∗
θ(β/λ)(y | x) =

πref(y | x) exp
[
λ
β r(x, y)

]
∑

y′ πref (y′ | x) exp
[
λ
β r (x, y

′)
] . (7)

Substituting Equation 3 into Equation 7 yields the following equation:

π∗
θ(β/λ)(y | x) =

πref(y | x)
[
π∗
θ (β)(y|x)
πref (y|x)

]λ
∑

y′ πref (y′ | x)
[
π∗
θ (β)(y

′|x)
πref (y′|x)

]λ . (8)

Proposition 1 It can be equivalently written as

π̂θ(β/λ) (· | x, y1:t−1) = softmax
[
λhθ

t (β) + (1− λ)hsft
t

]
. (9)

Proof. Refer to DeRa paper [18] for the proof.
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D Justification

Theorem 1 As shown in Rafailov et al. [10], any fine-tuned LM πft and its corresponding pre-trained
model πref can be associated with a reward function rπft

(x, y) such that solving a KL-constrained
RL problem yields the fine-tuned model as its optimal policy: π∗ (rπft , πref

)
= πft. In particular, the

implicit reward can be expressed as rπft(x, y) = β log πft(y|x)
πref (y|x) .

Using Theorem 1, we justify that our experiments in Section 4.2 and Section 4.3 are theoretically
well-founded. The models trained via SFT and DPO can be regarded as implicitly learning the reward
function embedded in the dataset.

E Detailed Experiment

Model Description Deepseek-R1-Distilled-Qwen-1.5B and Deepseek-R1-Distilled-Qwen-7B are
fine-tuned using reasoning data generated by DeepSeek-R1 [3]. DeepScaleR-1.5B-Preview, an LM
finetuned from Deepseek-R1-Distilled-Qwen-1.5B using simple RL [14].

Dataset Description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It
consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for
problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and
Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one
reasoning trace with a correct answer [21].

Training framework The training framework utilizes the LLaMA-Factory [39] repository. All
training processes involve full fine-tuning over one epoch with a warm-up ratio of 0.1.

E.1 Training-time Realignment

We use λ = 1.25 and λ = 2 in TrRa to realign the reference model. The loss curves are shown in
Figure 5. As observed, the loss converges rapidly, typically within 200 steps. The learning rate is set
to 2× 10−5, and the batch size is 16.

(a) λ = 1.25 (b) λ = 2

Figure 5: Comparison of two loss curves.

E.2 Inference-time Realignment for Reasoning

We employ the short CoT for SFT models, with a learning rate of 2× 10−5 and a batch size of 128.
As illustrated in Figure 6, our layer adapter demonstrates its effectiveness—larger models exhibit
improved learning performance on the data.

E.3 Inference-time Realignment for Dialogue Model

Training details The batch size is set to 128. For SFT training, a learning rate of 2e-6 is used for
all models. For the DPO-trained model, different learning rates and β values are explored, and the
best-performing configuration is selected.
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(a) DeepSeek-R1-Distill-Qwen-1.5B (b) DeepSeek-R1-Distill-Qwen-7B

Figure 6: Comparison of two loss curves.

(a) Full fine-tuning, lr=5e-7, β = 0.005 (b) layer adapter, lr=5e-7, β = 0.005

Figure 7: Comparison of two loss curves on Qwen2.5-7B model.

As illustrated in Figure 7, these results further demonstrate that, under identical hyperparameter
settings, the layer adapter follows a learning trajectory similar to that of full fine-tuning.

Inference details All inferences are conducted using the vLLM engine [20] with a temperature
setting of 0.0 (greedy decoding) and a maximum generation length of 4096 tokens.

Judgement All these benchmarks are auto-evaluated using LLMs. And we use Qwen2.5-72B-
Instruct [23] as the backend API to provide judgment.

E.4 Numerical Results in Sec4.2

15



Table 9: Performance comparison of different methods on various benchmarks.

Models AIME24 AIME25 MATH-500

Acc #Token Acc #Token Acc #Token

DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = −0.33) 32.92 12608 21.67 12732 82.88 5042
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 0) 30.00 12602 19.58 12278 80.23 4699
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 0.25) 25.00 11932 21.25 11368 78.65 3321
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 0.5) 14.17 8493 12.08 8303 67.75 1765
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 0.75) 5.42 1211 5.42 1201 61.48 515
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 1.0) 5.00 798 4.17 633 60.75 480
DeepSeek-R1-Distill-Qwen-1.5B-InRa (λ = 1.25) 3.75 661 3.33 555 56.83 436

DeepSeek-R1-Distill-Qwen-7B-InRa (λ = −0.25) 55.00 11224 44.17 10867 88.98 3925
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 0) 51.67 10576 36.67 11279 87.83 3667
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 0.25) 47.50 9942 31.67 9003 87.95 3073
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 0.5) 42.92 8718 30.00 8629 86.40 2291
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 0.75) 11.25 712 7.08 608 70.85 480
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 1.0) 11.25 619 7.50 658 70.40 440
DeepSeek-R1-Distill-Qwen-7B-InRa (λ = 1.25) 7.50 616 10.83 640 64.98 443

F Supplementary Experiments

F.1 Alignment Tax

Alignment Tax Alignment tax is the performance incurred to ensure a chatbot’s behavior aligns
safely and reliably with human values and intentions.

Experiments We conduct reasoning tasks to evaluate whether the layer adapter can learn the reward
signal without compromising the foundational capabilities of the LM. We use the zero-shot setting to
test the reasoning ability across four benchmarks, including MMLU [40], CMMLU [41], Truthful-
QA [42], and GSM8K [43]. We evaluate these benchmarks using llm-evaluation-harness [44]
repo.

Results As shown in Table 10, reasoning ability decreases slightly as model alignment improves.
However, a different trend is observed with TruthfulQA. This is likely because the reward signal
incorporates the 3-H values into the model, enhancing its truthfulness.

Table 10: Evaluation results of models across different benchmarks. We evaluate these benchmarks
using llm-evaluation-harness [44] repo.

Method
Llama3.1-8B-Base Qwen2.5-7B-Base

MMLU CMMLU GSM8K Truthful-QA MMLU CMMLU GSM8K Truthful-QA

InRaλ=0 59.78 47.56 57.01 54.29 71.39 81.84 82.22 56.37

InRaλ=0.5 59.80 47.74 60.05 54.83 70.80 81.53 77.75 57.26
InRaλ=1.0 59.91 47.86 60.65 56.90 70.37 81.28 72.71 58.44
InRaλ=1.5 60.04 47.92 57.92 59.98 70.03 80.94 68.99 59.59
InRaλ=2.0 60.01 48.04 54.74 61.07 69.31 80.49 65.50 61.05

Application This provides a quick way to identify the alignment tax problem introduced by a
specific reward signal.

F.2 Alignment Tax Verification

As discussed in Section 4.3, alignment extrapolation appears to impair the model’s instruction-
following capabilities, a phenomenon we term the alignment tax. To substantiate this observation, we
conduct the following experiment.
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Experiments We perform the following experiments to verify this assumption. We train one more
epoch during the SFT phase, aiming to reinforce the multi-turn dialogue capability (UltraChat200k is
a multi-dialogue dataset).

Table 11: Performance of models on MT-Bench: The SFT model trained for two epochs using the
Qwen2-7B-Base model during the SFT phase.

Method MT-Bench
1-turn 2-turn

SFT 7.60 7.20

InRaλ=0.5 8.14 7.48
InRaλ=1.0 8.56 7.39
InRaλ=1.5 8.48 7.21
InRaλ=2.0 8.51 7.06

Results As shown in Table 11, the performance of the 2-turn dialogue has improved compared to
the results presented in Table 2. This observation validates our assumption.

F.3 Flexible Inference-Time Switching Mechanism

The alignment tax prevents the chatbot from directly following instructions, leading it to prioritize
aligning with user preferences—a phenomenon also observed in the GPT-4o incident [13].

Experiments We conduct experiments with varying λ values in the multi-turn dialogue phase,
utilizing the inference-time realignment capabilities of our InRa.

Table 12: The MT-Bench score on the second turn, using different λ values across the two dialogue
phases.

2-turn
1-turn

λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0

λ = 0.0 7.24 7.61 7.58 7.39
λ = 0.3 7.59 7.35 7.60 7.71
λ = 0.5 7.53 7.40 7.40 7.68
λ = 0.7 7.18 7.45 7.19 7.39

Results As shown in Table 12, our findings indicate that lowering the λ value in the second-turn
dialogue helps the model better comprehend the context and follow instructions more effectively,
avoiding the alignment tax problem. Refer to Appendix F.6 for a detailed case study.

F.4 The Function of Layer Adapter

We provide a visualization to illustrate the function of the layer adapter. As shown in Figure 8, the
adapter does not project the original input embeddings into a higher-dimensional space; instead, it
maps the unaligned input embeddings to their aligned counterparts.

F.5 The results of Lora

Experiments We sweep the hyperparameter to test the different methods.

Results As shown in Table 13, LoRA appears to require a high learning rate, whereas full fine-tuning
demands a lower learning rate to maintain language ability and achieve strong performance. Our
method aligns closely with full fine-tuning and remains stable throughout different hyperparameters.

We further increased the learning rate to train LoRA, and the results are presented in Table 14. As
shown, increasing the learning rate degrades the model’s language capabilities. Therefore, these
configurations did not produce optimal results.
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Figure 8: Visualization of input embeddings using the PCA method, with the ID numbers representing
token positions.

Table 13: Hyperparameter stability on Qwen2.5-7B

Method
AlpacaEval2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Score

Layer adapter
β = 0.01, lr = 5e− 6 20.66 19.25 38.30 8.48
β = 0.01, lr = 5e− 7 17.53 17.34 33.20 7.87
β = 0.005, lr = 5e− 6 19.94 19.64 39.90 7.87
β = 0.005, lr = 5e− 7 25.74 25.83 45.10 8.21

LoRA, r = 8
β = 0.01, lr = 5e− 6 22.04 18.64 41.50 8.16
β = 0.01, lr = 5e− 7 4.33 2.84 11.30 7.74
β = 0.005, lr = 5e− 6 17.99 14.98 36.10 7.99
β = 0.005, lr = 5e− 7 5.31 3.24 11.90 7.75

LoRA, r = 128
β = 0.01, lr = 5e− 6 21.50 17.56 37.30 8.33
β = 0.01, lr = 5e− 7 6.29 4.25 13.50 7.68
β = 0.005, lr = 5e− 6 24.97 19.22 42.50 8.42
β = 0.005, lr = 5e− 7 7.12 4.46 13.50 7.64

Full
β = 0.01, lr = 5e− 6 12.05 12.41 31.00 7.84
β = 0.01, lr = 5e− 7 25.20 20.92 45.50 8.21
β = 0.005, lr = 5e− 6 6.09 6.83 9.70 4.56
β = 0.005, lr = 5e− 7 26.94 22.30 46.70 8.45

Table 14: Increasing layer adapters on Qwen2.5-7B

Method
AlpacaEval2 Arena-Hard

LC (%) WR (%) WR (%)

β = 0.01, lr = 2e− 5 16.68 16.89 34.90
β = 0.01, lr = 5e− 5 14.06 14.83 24.20
β = 0.01, lr = 1e− 4 12.26 12.51 19.80
β = 0.005, lr = 2e− 5 0.42 1.05 0.70
β = 0.005, lr = 5e− 5 4.69 4.34 2.10
β = 0.005, lr = 1e− 4 0.16 0.49 1.80
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Conclusion Our method can be a lightweight proxy for hyperparameter tuning before switching to
full fine-tuning. This is possible because the optimal hyperparameters tend to be relatively consistent
between the two.

F.6 Alignment Tax Case Study

This section presents a case from MT-Bench that highlights how the alignment tax, introduced by
catering to human preferences, can impair an LM’s ability to manage multi-turn dialogues.

1. We begin by presenting the first-turn instruction as follows:

1-turn Insturction

Read the below passage carefully and answer the questions with an explanation: At a small
company, parking spaces are reserved for the top executives: CEO, president, vice president,
secretary, and treasurer with the spaces lined up in that order. The parking lot guard can tell
at a glance if the cars are parked correctly by looking at the color of the cars. The cars are
yellow, green, purple, red, and blue, and the executives’ names are Alice, Bert, Cheryl, David,
and Enid.
* The car in the first space is red.
*A blue car is parked between the red car and the green car.
* The car in the last space is purple.
* The secretary drives a yellow car.
* Alice’s car is parked next to David’s.
* Enid drives a green car.
* Bert’s car is parked between Cheryl’s and Enid’s.
* David’s car is parked in the last space.
Question: What is the name of the secretary?

2. The model can follow the first-turn instruction well.

1-turn Response

The secretary’s car is identified by two clues in the passage:
1. The secretary drives a yellow car.
2. Alice’s car is parked next to David’s.
Since David’s car is parked in the last space (the fifth position), and the car in the last space is
purple, David cannot be the secretary. Therefore, Alice must be the secretary because her car
is next to David’s, and the only car left that matches the secretary’s description is yellow.
The name of the secretary is Alice. ✓

3. We go on to request the second instruction.

2-turn Instruction

List car colors in order from last to first.

4. However, the model follows the second instruction well but fails to incorporate the context
when generating its response.
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2-turn Response

To provide a list of car colors in order from last to first, we need to define what "last" and
"first" mean in this context. Typically, "last" would refer to the most recently introduced or
popular color, and "first" would refer to the oldest or least popular color. However, without
specific criteria, I will provide a general list based on historical popularity and modern trends:
1. Black - A classic and timeless color that has been popular for decades.
2. White - Another enduring color that is simple, elegant, and versatile.
3. Silver - A modern and sleek color that has been popular since the 1980s.
4. Gray - A neutral and sophisticated color that has gained popularity in recent years.
5. Red - A bold and eye-catching color that has been popular since the early 20th century.
6. Blue - A calming and versatile color that has been popular since the 1960s.
7. Green - A natural and earthy color that has seen a resurgence in popularity in recent years.
8. Yellow - A bright and cheerful color that has been popular in certain eras, such as the
1970s.
9. Pink - A feminine and playful color that has been popular in various eras, including the
1950s and 1980s.
10. Purple - A regal and luxurious color that has been popular in certain eras, such as the
1970s and 1980s.
This list is not definitive and can vary based on personal preferences and cultural trends.

5. We modify the second-turn instruction to encourage the model to use context when answering
questions.

2-turn Instruction

According to the above passage, list car colors in order from last to first.

6. As shown below, the model successfully provides the correct answer.

2-turn Response

The passage does not provide a list of car colors in order from last to first. Instead, it describes
specific car locations and colors based on certain positions. To correct the order, we need
additional information. Here is the information given in the passage:
1. The car in the first space is red.
2. A blue car is parked between the red car and the green car.
3. The car in the last space is purple.
4. The secretary drives a yellow car.
5. Alice’s car is parked next to David’s.
6. Enid drives a green car.
7. Bert’s car is parked between Cheryl’s and Enid’s.
8. David’s car is parked in the last space.
From this, we can deduce the following order based on the positions:
1. Red car (first space)
2. Blue car (second space)
3. Green car (third space)
4. Yellow car (last before the last space)
5. Purple car (last space)
So, the car colors in order from last to first as described in the passage are: Purple, Yellow,
Green, Blue, Red. ✓
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F.7 Thinking Case Study

Problem

Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

DeepSeek-R1-Distill-Qwen-7B-InRa λ : 1.0 tokens: 429

To find the sum of all integer bases b > 9 for which 17b is a divisor of 97b, we start by
converting the numbers from base b to base 10.
- 17b in base 10 is 1 · b+ 7 = b+ 7. - 97b in base 10 is 9 · b+ 7 = 9b+ 7.
We need 17b to divide 97b, which translates to finding b > 9 such that b+ 7 divides 9b+ 7.
This can be expressed as:

9b+ 7

b+ 7
is an integer

To solve this, we use polynomial division or the Euclidean algorithm. Dividing 9b + 7 by
b+ 7 gives:

9b+ 7 = 9(b+ 7)− 65

Thus, the remainder is −65. For b + 7 to divide 9b + 7, it must divide 65. The divisors of
65 are 1, 5, 13, and 65. Since b > 9, we consider only the divisors 13 and 65, leading to: -
b+ 7 = 13 which gives b = 6 (not valid as b > 9) - b+ 7 = 65 which gives b = 58
Thus, the only valid base is b = 58. The sum of all such bases is simply 58.

58

DeepSeek-R1-Distill-Qwen-7B-InRa λ : 0.6 tokens: 720

<think> Alright, let me try to solve this problem step by step. So, the question is: Find the
sum of all integer bases b > 9 for which 17b is a divisor of 97b.
First, I need to understand what 17b and 97b mean in base b. In any base b, a number like 17b
translates to 1× b+ 7 in decimal, right? Similarly, 97b translates to 9× b+ 7. So, I need to
express these values in decimal form.
Calculating the decimal equivalents: - 17b = 1× b+ 7 = b+ 7 - 97b = 9× b+ 7 = 9b+ 7
Now, the problem states that 17b is a divisor of 97b. This translates to the condition that b+ 7
must divide 9b+ 7.
Mathematically, this means:

9b+ 7 ≡ 0 (mod b+ 7)

I remember that if a divides b, then b mod a = 0. So, applying this here:
9b+ 7 ≡ 0 (mod b+ 7)

To solve this congruence, I can use the property that b ≡ −7 (mod b+ 7). This is because
b = (b+ 7)− 7, so b ≡ −7 (mod b+ 7).
Substituting b ≡ −7 into 9b+ 7:

9(−7) + 7 = −63 + 7 = −56

Thus, the condition simplifies to:
−56 ≡ 0 (mod b+ 7)

b+ 7 must be a divisor of -56.
Since b+ 7 is a positive integer (as b > 9), it must be a positive divisor of 56. The divisors of
56 are:

1, 2, 4, 7, 8, 14, 28, 56
Since b+ 7 > 16 (because b > 9), the possible values of b+ 7 are 28 and 56.
Therefore, solving for b: - If b+ 7 = 28, then b = 21 - If b+ 7 = 56, then b = 49
Both bases 21 and 49 are greater than 9. The problem asks for the sum of all such bases.
Thus, the sum is 21 + 49 = 70.
**Final Answer** The sum of all integer bases b > 9 is 70 .
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DeepSeek-R1-Distill-Qwen-7B-InRa λ : 0.5 tokens: 1693

<think> Alright, so I have this problem here: I need to find the sum of all integer bases b > 9
for which 17b is a divisor of 97b. Hmm, okay. Let me try to break this down step by step.
First, I know that numbers in a base b can be converted to decimal (base 10) by multiplying
each digit by b raised to the power of its position, starting from 0 on the right. So, let me
convert both numbers 17b and 97b into decimal.
Starting with 17b: - The rightmost digit is 7, which is in the b0 place, so that’s 7× 1 = 7. -
The next digit to the left is 1, which is in the b1 place, so that’s 1 × b = b. - Adding them
together, 17b in decimal is b+ 7.
Now, 97b: - The rightmost digit is 7, so that’s 7× 1 = 7. - The next digit is 9, which is in the
b1 place, so that’s 9× b = 9b. - Adding them together, 97b in decimal is 9b+ 7.
So, the problem simplifies to finding all integer bases b > 9 where b+7 divides 9b+7. Let’s
denote d = b+ 7. Then, d must divide 9b+ 7.
To find this divisibility, let me express 9b+ 7 in terms of d. Since d = b+ 7, we can solve
for b:

b = d− 7
Substituting b into 9b+ 7:

9(d− 7) + 7 = 9d− 63 + 7 = 9d− 56

So, d must divide 9d− 56. This implies: d divides 9d− 56
Subtracting 9d from both sides, we get: d divides −56
Since divisibility is unaffected by the sign, d must be a positive divisor of 56. The positive
divisors of 56 are:

1, 2, 4, 7, 8, 14, 28, 56
But d = b+7 and b > 9, so d must be greater than 9+7 = 16. Looking at the list of divisors,
the ones greater than 16 are 28 and 56. Therefore, the possible values for d are 28 and 56.
Calculating b for each: - If d = 28, then b = 28− 7 = 21 - If d = 56, then b = 56− 7 = 49
So, the bases b are 21 and 49. Adding them together:

21 + 49 = 70

Therefore, the sum of all integer bases b > 9 for which 17b is a divisor of 97b is 70 .
**Wait a second...** Let me double-check my reasoning. Could there be any other divisors I
missed?
The divisors of 56 are indeed 1, 2, 4, 7, 8, 14, 28, 56. Those greater than 16 are only 28 and
56. Since d must be greater than 16, 21 and 49 are the only valid bases. Yep, that seems right.
Just to be thorough, let me verify with these bases:
1. For b = 21: - 1721 = 21 + 7 = 28 - 9721 = 9× 21 + 7 = 189 + 7 = 196 - Checking if
28 divides 196: 19628 = 7, which is an integer. So, yes, 28 divides 196.
2. For b = 49: - 1749 = 49 + 7 = 56 - 9749 = 9× 49 + 7 = 441 + 7 = 448 - Checking if
56 divides 448: 44856 = 8, which is an integer. So, yes, 56 divides 448.
All checks out. So, the answer must be correct.
**Final Answer** 70 </think>
To find the sum of all integer bases b > 9 for which 17b is a divisor of 97b, we first convert
the numbers from base b to decimal.
- The number 17b in decimal is 1 × b + 7 = b + 7. - The number 97b in decimal is
9× b+ 7 = 9b+ 7.
We need b+7 to be a divisor of 9b+7. Let d = b+7. Then, d must divide 9b+7. Substituting
b = d− 7 into 9b+ 7 gives:

9(d− 7) + 7 = 9d− 56
Thus, d must divide 9d− 56, which implies d divides −56. Therefore, d must be a positive
divisor of 56. The positive divisors of 56 are:

1, 2, 4, 7, 8, 14, 28, 56

Since d = b + 7 and b > 9, d must be greater than 16. The valid divisors are 28 and 56.
Calculating b for each: - If d = 28, then b = 28− 7 = 21 - If d = 56, then b = 56− 7 = 49
Thus, the bases b are 21 and 49. Adding them together:

21 + 49 = 70

Therefore, the sum of all integer bases b > 9 for which 17b is a divisor of 97b is 70 .
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DeepSeek-R1-Distill-Qwen-7B-InRa λ : 0.0 tokens: 2192

<think> Alright, so I have this problem here: I need to find the sum of all integer bases b > 9
for which 17b is a divisor of 97b. Hmm, okay. Let me try to break this down step by step.
First, let me recall what it means for a number to be in a certain base. If I have a number
like 17b, that means in base b, it’s equal to 1× b+ 7× 1 in decimal, right? Similarly, 97b
would be 9 × b + 7 × 1 in decimal. So, in math terms, 17b = 1 × b + 7 = b + 7 and
97b = 9× b+ 7 = 9b+ 7.
Now, the problem says that 17b is a divisor of 97b. So, in decimal terms, that means b+ 7
divides 9b+ 7. In other words, b+ 7 is a factor of 9b+ 7. How can I translate this into an
equation?
Well, if b+ 7 divides 9b+ 7, then 9b+ 7 divided by b+ 7 should give an integer. Maybe I
can perform the division and see what that gives me.
Let me set up the division: 9b+7

b+7 . Let’s do polynomial division or maybe use algebra to
simplify this.
Let’s express 9b+7 in terms of b+7. Notice that 9b+7 = 9(b+7)−63+7 = 9(b+7)−56.
Wait, let me check that. If I expand 9(b+ 7), it’s 9b+ 63. Then subtracting 56 gives 9b+ 7.
Yeah, that works.
So, 9b+ 7 = 9(b+ 7)− 56. Therefore, dividing by b+ 7, we get 9b+7

b+7 = 9− 56
b+7 .

For this to be an integer, 56
b+7 must be an integer. So, b+ 7 must be a divisor of 56. Got it.

So, b+ 7 divides 56. Therefore, b+ 7 must be one of the positive divisors of 56. Since b is
an integer greater than 9, let’s find all positive divisors of 56, subtract 7, and see which of
those results are greater than 9.
First, let’s list all positive divisors of 56. The divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56.
Now, subtracting 7 from each of these, we get:
1 - 7 = -6 2 - 7 = -5 4 - 7 = -3 7 - 7 = 0 8 - 7 = 1 14 - 7 = 7 28 - 7 = 21 56 - 7 = 49
So, the possible values for b are these results, but since b has to be an integer greater than 9,
we can ignore the negative numbers and zero. That leaves us with 1, 7, 21, 49. Wait, but 1, 7
are not greater than 9. So, only 21 and 49 are valid.
Wait, hold on, are these correct? Let me verify.
If b+ 7 is a divisor of 56, then b+ 7 can be 8, 14, 28, 56. Since b > 9, b+ 7 > 16. So, the
possible b+ 7 must be divisors of 56 that are greater than 16.
Looking back at the list of divisors: 56’s divisors are 1, 2, 4, 7, 8, 14, 28, 56.
Divisors greater than 16 are 28 and 56.
So, b+ 7 = 28 implies b = 28− 7 = 21.
b+ 7 = 56 implies b = 56− 7 = 49.
Ah, so I was wrong earlier. I should have considered only the b+ 7 greater than 16, which
gives b as 21 and 49.
Therefore, the integer bases b greater than 9 are 21 and 49.
Therefore, the sum of these is 21 + 49 = 70.
Wait, just to make sure I haven’t missed anything.
Let me double-check:
Compute 1721 and 9721 in decimal:
1721 = 1× 21 + 7 = 28
9721 = 9× 21 + 7 = 189 + 7 = 196
Is 28 a divisor of 196? Yes, because 196 / 28 = 7, which is an integer.
Similarly, for base 49:
1749 = 1× 49 + 7 = 56
9749 = 9× 49 + 7 = 441 + 7 = 448
Is 56 a divisor of 448? 448 / 56 = 8, which is an integer. Perfect.
Wait a second, just to make sure, are there any other divisors between, say, 16 and 56? Let’s
see:
Divisors of 56 are as listed: 1, 2, 4, 7, 8, 14, 28, 56. So, between 16 and 56, the only one is
28 and 56.
Wait, actually 56 is included in the first step when I subtracted 7, but 56 is just one of the
divisors.
So, so I think I got all possibilities.
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Wait, but let’s make sure that b must be greater than 9, so in base b, the digits must be less
than b. In 97b, the digit 9 must be less than b, which means b > 9. So, that is already taken
care of.
Therefore, the bases b > 9 are 21 and 49, and their sum is 70.
Therefore, the final answer is 70.
**Final Answer** 70 </think>
To solve the problem, we need to find the sum of all integer bases b > 9 for which 17b is a
divisor of 97b.
First, we convert the numbers from base b to decimal: - 17b = 1 × b + 7 = b + 7 -
97b = 9× b+ 7 = 9b+ 7
We need b+ 7 to be a divisor of 9b+ 7. This can be expressed as:

9b+ 7

b+ 7

We simplify this division by expressing 9b+ 7 in terms of b+ 7:

9b+ 7 = 9(b+ 7)− 56

Thus, the division becomes:
9b+ 7

b+ 7
= 9− 56

b+ 7

For this to be an integer, 56
b+7 must be an integer. Therefore, b+ 7 must be a divisor of 56.

The divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56.
Since b > 9, we need b+ 7 to be a divisor of 56 greater than 16. The valid divisors are 28
and 56: - If b+ 7 = 28, then b = 21 - If b+ 7 = 56, then b = 49
Thus, the valid bases are 21 and 49. Their sum is:

21 + 49 = 70

Therefore, the final answer is:
70

DeepSeek-R1-Distill-Qwen-7B-InRa λ : −0.5 tokens: 3380

<think> Alright, so I have this problem here: I need to find the sum of all integer bases b > 9
for which 17b is a divisor of 97b. Hmm, okay, let me try to parse this out step by step.
First off, when numbers are written with a subscript like 17b or 97b, that means they’re
numbers in base b, right? So 17b isn’t one seven in base b, but rather, it’s the number "one"
and "seven" in base b. Similarly, 97b is nine and seven in base b. Okay, got it.
So, in base 10, we’re used to numbers like 17 being "one ten and seven units," which is 1*10
+ 7*1. Similarly, 97 in base 10 is nine tens and seven units. But since we’re dealing with an
unknown base b, I think we need to convert these numbers into base 10 to work with them
more easily, since divisibility is something we can handle in base 10.
Alright, so let’s try to convert 17b and 97b into base 10. In base b, the rightmost digit is the
units place, which is b0, then the next is the b1 place, and so on.
So for 17b: The rightmost digit is 7, which is 7 in base 10, and the next digit is 1, which is
1× b1. So adding those together, 17b in base 10 is 1× b+ 7× 1 = b+ 7. Got that.
Similarly, for 97b: The rightmost digit is 7, so that’s 7× 1, and the next digit is 9, which is
9× b. Therefore, 97b in base 10 is 9× b+ 7× 1 = 9b+ 7.
So now we have 17b = b+ 7 and 97b = 9b+ 7.
The problem states that 17b is a divisor of 97b, which in other words, 97b divided by 17b is an
integer. So mathematically, that means (9b+ 7) divided by (b+ 7) is an integer. So, written
as a fraction, it would be 9b+7

b+7 , and we want this to be an integer. Let me note that down:
9b+7
b+7 must be an integer.

Our goal is to find all integer bases b > 9 for which this fraction is an integer, and then sum
those bs.
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So, to approach this, maybe I can perform the division of 9b+7 by b+7 and see if it simplifies
in a way that gives us some equation we can work with.
Let me set N = 9b+ 7 and D = b+ 7, so we have N/D must be integer.
Let me try to perform the division.
Divide N by D: (9b+ 7)÷ (b+ 7).
Let me do polynomial long division or just think about how many times b + 7 goes into
9b+ 7.
Well, b+ 7 multiplied by 9 is 9b+ 63. Hmm, let’s subtract that from 9b+ 7:
9b+ 7− (9b+ 63) = 0b− 56. So, we have a remainder of −56. So, in other words:
9b+7
b+7 = 9− 56

b+7 .
So, for 9b+7

b+7 to be an integer, that implies that 56
b+7 must also be an integer because 9 is

already an integer, so their difference has to be an integer. So, 56
b+7 must be an integer.

So, 56
b+7 is integer. Therefore, b+7 must be a divisor of 56. Since b > 9, b+7 > 9+7 = 16.

So, b+ 7 must be a positive divisor of 56 that’s greater than 16.
Therefore, we can find all the positive divisors of 56, then exclude those that are 16 or less,
and the remaining ones would correspond to possible values of b+ 7, hence we can find b by
subtracting 7.
Okay, so first, let me list all positive divisors of 56.
56 is equal to 7 × 8, which is 7 × 23, so its prime factors are 2, 2, 2, 7. So the divisors can be
found by taking combinations of these exponents.
The divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56.
Wait, let me check that: starting from 1, since 1 divides everything.
Then, 2 because 56 is even.
4 because 56 ÷ 2 is 28, which is 2×14, then 7 is a prime, so 7 divides 56 since 7×8=56.
8 is 8×7, so 8 is a divisor. Then, 14 is 14×4=56? Wait, 14×4 is 56, yes. 14×4=56.
Then, 28 is 28×2=56, and 56 itself is a divisor.
So the positive divisors are 1, 2, 4, 7, 8, 14, 28, 56. So, that is eight divisors.
Now, since b > 9, b+ 7 > 16. So, we need divisors of 56 that are greater than 16.
Looking at the list: 1, 2, 4, 7, 8, 14, 28, 56.
Which of these are greater than 16?
28, and 56. 14 is less than 16, so 28 and 56.
Wait, but 14 is 14, which is less than 16, so doesn’t qualify.
Therefore, the only divisors greater than 16 are 28 and 56.
Thus, b+ 7 can be either 28 or 56, so b can be 28 - 7 = 21, or 56 - 7 = 49.
Wait, that seems straightforward, but let me check if that’s right.
So, b+ 7 = 28 =⇒ b = 21, and b+ 7 = 56 =⇒ b = 49.
Is that all? Let me make sure.
Wait, hold on a second. The problem mentions that in base b, the digits in 17b and 97b have
digits 1, 7 and 9, 7. So, digits in base b have to be less than the base.
Therefore, in 17b, the digits are 1 and 7, so 7 has to be less than b. Similarly, in 97b, the digits
are 9 and 7, so 9 has to be less than b.
Therefore, b must be greater than 9. Wait, the problem already states b > 9. So, 7 is less than
b, so no additional constraints from that. So, that just reiterates that b > 9.
Therefore, our only possible bases are 21 and 49.
Wait, but let me make sure that when we have these bases, the initial numbers make sense in
that base. For 17b, digits 1 and 7, which are both less than 21 or 49, so that’s fine. Similarly,
97b has digit 9, which is less than both 21 and 49, so that’s fine too.
Therefore, seems like b = 21 and b = 49 satisfy the condition.
Hence, the sum is 21 + 49.
Calculating 21 + 49: 20 + 40 = 60, 1 + 9 = 10, so 70.
So, the sum should be 70.
But let me just double-check to make sure I haven’t made any mistakes.
First, let’s check for b = 21.
Calculating 1721 is 1 ∗ 21 + 7 = 28.
Calculating 9721 is 9 ∗ 21 + 7. 9*20 is 180, plus 9 is 189, plus 7 is 196.
So, 196 divided by 28 is equal to 7, which is an integer. So, yes, 21 is valid.
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Now, let’s check b = 49.
Calculating 1749: 1 ∗ 49 + 7 = 56.
Calculating 9749: 9 ∗ 49 + 7. 9*40 is 360, 9*9 is 81, so 360 + 81 = 441, plus 7 is 448.
Dividing 448 by 56. 56*8 is 448, so that’s 8, which is an integer. So, yes, 49 is also valid.
So, indeed, both 21 and 49 are valid bases, and their sum is 70.
Therefore, I think 70 is the answer.
But let me just go back and check if there could be other divisors which I may have missed.
Because sometimes, when we’re working with divisors, we might miss some, especially if
we’re only considering positive integers.
Wait, let me list all the positive divisors of 56 again. 1, 2, 4, 7, 8, 14, 28, 56. So that is all.
Are there any negative divisors? Well, technically, yes, 56 has also negative divisors: -1, -2,
-4, -7, -8, -14, -28, -56.
But since b is a base, and base cannot be negative, so we only consider positive divisors.
Additionally, b+ 7 is a positive number greater than 16.
Therefore, we only considered 28 and 56, corresponding to b = 21 and b = 49. So that seems
complete.
I was just thinking, sometimes with bases, the digits have to satisfy that all digits are less
than the base. So, in this case, our digits are 1,7 and 9. Therefore, for each number, in its
respective base, all digits must be less than the base.
But as I mentioned earlier, for 17b, digits are 1 and 7, so base must be greater than 7, and for
97b, digits 9 and 7, so base must be greater than 9.
Since the problem already specifies b > 9, so in our case, b = 21 and 49 both satisfy that, so
no issues there.
I also double-checked the division earlier on, seems to hold, so my conclusion seems solid.
Therefore, I’m confident that the answer is 21 + 49 = 70.
**Final Answer** The sum of all integer bases b > 9 is 70 . </think>
To solve the problem, we need to find the sum of all integer bases b > 9 for which 17b is a
divisor of 97b.
First, we convert the numbers from base b to base 10: - 17b in base 10 is 1× b+ 7 = b+ 7. -
97b in base 10 is 9× b+ 7 = 9b+ 7.
We need 17b to be a divisor of 97b, which means 9b+7

b+7 must be an integer. Performing
polynomial long division, we get:

9b+ 7

b+ 7
= 9− 56

b+ 7

For this to be an integer, 56
b+7 must be an integer. Therefore, b+ 7 must be a divisor of 56.

The divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56. Since b > 9, b+ 7 must be greater than 16.
The suitable divisors are 28 and 56.
Thus, b+ 7 = 28 gives b = 21 and b+ 7 = 56 gives b = 49.
The sum of these bases is 21 + 49 = 70.
The sum of all integer bases b > 9 is 70 .
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