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Abstract
The monitoring of data quality in high-energy1

physics experiments is essential both during data2

acquisition and in offline analyses to ensure the re-3

liability of datasets. The Compact Muon Solenoid4

(CMS) experiment at the Large Hadron Collider5

(LHC) has recently implemented Data Quality6

Monitoring (DQM) at the granularity of individ-7

ual “luminosity sections” (LSs), each represent-8

ing about 23 seconds of data taking. This paper9

presents a novel application of AutoEncoders for10

anomaly detection in DQM, specifically targeting11

quantities associated with jets and missing trans-12

verse energy (MET). The developed method allows13

for the detection of anomalies at the LS level, which14

might be missed when examining integrated quan-15

tities. By automating the identification of anoma-16

lies, this approach enhances the efficiency and pre-17

cision of the DQM process, ultimately improving18

the quality of the datasets used for analysis.19

1 Introduction20

The Compact Muon Solenoid (CMS) [CMS Collaboration,21

2008] is a general-purpose detector at the Large Hadron Col-22

lider (LHC) at CERN. CMS is designed to study high-energy23

proton-proton collisions to better understand the fundamen-24

tal forces and particles that make up the Universe. The CMS25

apparatus is composed of a complex system of sub-detectors26

to detect the particles produced in a proton or ion collision.27

The only particles that CMS can not directly detect are neu-28

trinos, because of their very weak interaction with matter. To29

indirectly observe neutrinos, a kinematics observable called30

missing transverse energy (MET) is usually employed. MET31

is defined as:32

MET =
∣∣−∑

i

p⃗T,i

∣∣, (1)

where p⃗T,i is the transverse momentum of the i-th recon-33

structed particle of the final state.34

Since the transverse momentum of the initial state is null,35

according to the law of conservation of momentum and en-36

ergy, MET is expected to vanish if all products of a collision37

were detected. However, because neutrinos and other weakly38

0 10 20 30 40 50

MET Significance 
[√

GeV
]10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

a.
u.

CMSPreliminary 2022 (13.6 TeV)

run 360950
run 359763
run 359751 (GOOD)

Figure 1: Histograms of a Monitor Element (MET Significance)
for three different runs, one flagged GOOD and two presenting an
anomaly, therefore flagged BAD.

interacting particles can escape the detector without being di- 39

rectly detected, their presence result in a non vanishing miss- 40

ing transverse energy value. 41

Particles that have a colour charge (like quarks and glu- 42

ons) can not be directly observed as well. This is because 43

a fundamental principle called colour confinement, accord- 44

ing to which colour charged particles can not be isolated and 45

they always combine in ways that ensure their overall colour 46

charge is colour neutral. In order to obey colour confinement, 47

quarks and gluons produced in strong interaction processes 48

create other coloured particles to form hadrons clustered in 49

jets, i.e. collimated groups of colourless objects [Ali and 50

Kramer, 2011]. 51

LHC is a proton-proton collider. its operation consists 52

of several phases, which can be broken down in three main 53

stages: the filling of the machine with proton beams (which 54

takes minutes); the subsequent collision phase, in which the 55

beams are brought into collision, which can last several hours, 56

typically until the proton population in the beams has fallen 57

below a predefined threshold; the beam dump, in which 58

the remaining beams are dumped and the machine is cycled 59



again. These three stages are collectively call in jargon a60

fill. CMS takes data during the collision phase of a fill and61

this data is gathered in “luminosity sections”, lumisections in62

short (LSs), that are sub-sections corresponding to around 2363

seconds of data taking during which the instantaneous lumi-64

nosity (a quantity related to the collision rate) is almost con-65

stant [CMS Collaboration, 2008]. LSs are grouped in runs,66

of thousands of LSs.67

Being CMS composed of various subsystems, each serv-68

ing a specific purpose in particle detection and measurement,69

issues in the different sub-detectors can arise due to various70

factors, such as radiation damage, electronic noise, aging of71

components and temporary malfunctions (such as tripping72

of individual components). The monitoring of data quality73

is therefore crucial both online, during the data taking, to74

promptly spot issues and act on them, and offline, to provide75

analysts with datasets that are cleaned against the occasional76

failures that may have crept in. Data Certification (DC) is77

the final step of quality checks performed by Data Quality78

Monitoring (DQM) on recorded collision events. For each79

run, experts monitor several reconstructed distributions called80

Monitor Elements (MEs) to spot issues and anomalies in the81

data. For quantities pertaining to hadronic jets and MET, an82

issue in a few LSs could cause the entire run to be flagged as83

problematic (BAD) and thus removed from the pool of good-84

for-analysis data (GOOD).85

Figure 1 shows the integrated (over the whole run) his-86

togram illustrating a specific ME (MET Significance) for87

three distinct runs— one categorised as GOOD and the other88

two as BAD.89

MET Significance is defined as:90

METSig ≡ MET√
SumET

=
MET√∑

i |p⃗T,i|
. (2)

This paper introduces a novel application of AutoEncoders91

(AEs) for anomaly detection within the CMS DQM frame-92

work. By exploiting unsupervised machine learning tech-93

niques, we aim to automate the identification of anomalous94

LSs. This approach enhances the efficiency and precision95

of the DQM process, allowing for the isolation and removal96

of problematic LSs, thereby improving the overall quality of97

datasets available for analysis. Our method demonstrates sig-98

nificant improvements in detecting subtle anomalies and en-99

sures that data previously flagged as problematic can be re-100

fined and utilised effectively, ultimately contributing to more101

accurate and reliable physics analyses.102

2 Methods103

CMS has recently extended the possibility of accumulating104

quantities monitored for data quality purposes per-LS to Jet105

and Missing Energy (JME) MEs. This capability allows for106

a higher granularity detection of anomalies, potentially en-107

abling the saving of higher amounts of data from runs pre-108

senting only a limited set of anomalous LSs. Given the high109

number (order of thousands) of LSs to be analysed for each110

run, an automated approach for DC is required.111

Machine Learning (ML), particularly Neural Networks112

(NN) [Goodfellow, 2016], can be implemented to this end.113

Figure 2: Scheme of training and testing steps for the models

Figure 3: Structure of the dense Under-complete AE (the number of
nodes is just indicative)

Therefore, to attack the problem, we employed unsuper- 114

vised ML models based on AutoEncoders (AE) [Hinton and 115

Salakhutdinov, 2006]. 116

2.1 Input data and preprocessing 117

Given a specific ME, the input features to our models consist 118

of bins of the corresponding histogram, with each LS being 119

a single time sample. Thus, data is structured in the shape 120

(#bins,#LS). 121

Before feeding the models with training (and testing) data 122

we made a rescaling in the [0, 1] interval. This is a common 123

practice for this kind of models. Different rescalings are pos- 124

sible, but one that we found very effective is the following bin 125

by bin rescaling: 126

x̂train =
xtrain −min(xtrain)

max(xtrain)−min(xtrain)
, (3)

where the maximum and minimum are computed along the 127

time direction. 128

2.2 Models 129

Two types of AEs were developed: a dense Under-complete 130

AE and a Long Short-Term Memory (LSTM) Under- 131

complete AE. 132

The first model that was optimised is a dense Under- 133

complete AE [Hinton and Salakhutdinov, 2006] built us- 134

ing dense layers with three hidden layers in total, see Fig- 135

ure 3. The second model is the more complex LSTM Under- 136

complete AE [Wei et al., 2023] schematised in Figure 4. This 137



Figure 4: Structure of the LSTM Under-complete AE (the number
of nodes is just indicative)

model is designed to handle sequential data, making it suit-138

able for the time-series nature of DQM metrics. The struc-139

ture is analogous to the dense Under-complete AE, with lay-140

ers showing again a decrease followed by an increase of the141

number of nodes but with the complication that each node is142

an LSTM node, i.e. a Long Short-Term Memory recurrent143

neural network (RNN). Due to the inherent recurrent nature144

of LSTM, each node takes as input not a single time sample,145

but a certain window of them. Thus, the output of each layer146

is duplicated to enter each of the copies of every node of the147

following layer. For the latent layer, a RepeatVector layer148

is used to bring copies of the layer to the following decoding149

layer.150

2.3 Training and testing151

Both the models were trained on non-anomalous data from152

GOOD runs: histograms of specific MEs are fed to the model153

with per-LS granularity to allow the AE to learn a normal,154

non-anomalous behaviour of that specific ME, see Figure 2.155

The training is performed via the minimisation of the recon-156

struction loss, a measure of the distance between the input157

and output of the AE. In this case, the reconstruction loss is158

the mean squared error (MSE):159

MSE =
1

n

n∑
i=1

(yi − ŷi)
2
, (4)

where y and ŷ are respectively the input and the output of the160

AE, and n is the bin number.161

Possibly anomalous runs under investigation are tested by162

examining again the reconstruction loss: peaks in this func-163

tion indicate LSs containing histograms that deviate from the164

learned behaviour.165

Optimised models (one for each ME) are paired with a166

threshold value thr for the reconstruction loss that has been167

tuned on a set of known anomalous runs. If the reconstruc-168

tion loss exceeds this threshold during testing, it is considered169

anomalous, and the corresponding LSs are removed.170

3 Results171

The models are tested in this example on a run (360950) that172

was flagged BAD by JME due to the presence of an anomaly173

visible in histograms of many different MEs, see e.g., Fig-174

ure 1. By analysing the per-LS MET Significance for the run175

via the dense Under-complete AE, a peak is observed in the176

reconstruction loss corresponding to a specific LS (Figure 5). 177

The threshold for this model, thrdense = 0.1, is passed. 178
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Figure 5: Reconstruction loss by the dense Under-complete model
for an anomalous run showing a high peak corresponding to LS 469
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Figure 6: Histogram of an anomalous run before and after the re-
moval of the identified anomalous LS

Once the anomalous LS is identified, it is removed from 179

the run. The resulting histograms for the BAD run show how 180

the cause of the MET Significance anomaly was isolated to a 181

specific LS, as shown in Figure 6. The exclusion of the iden- 182

tified anomalous LS results in the remaining data no longer 183

exhibiting the anomaly. 184

As a second example, we consider a run presenting an anal- 185

ogous anomaly, Figure 7. When tested with the dense Under- 186

complete model, only a major peak in the reconstruction loss 187

is visible, along with smaller peaks not relevant according 188

to the predefined threshold, Figure 8. When the only rele- 189

vant LS is removed, the resulting histogram still presents an 190
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Figure 7: Histogram of an anomalous run before and after the re-
moval of the identified anomalous LSs. The orange histogram repre-
sents the result after removing the LS identified by the dense Under-
complete model, while the green one shows the result after removing
both LSs identified by the LSTM Under-complete model
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Figure 8: Reconstruction loss by the dense Under-complete model
for an anomalous run showing a high peak corresponding to LS 71
above our fixed threshold for anomalies
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Figure 9: Reconstruction loss by the LSTM Under-complete model
for an anomalous run showing a high peak (LS 71) and a second less
pronounced peak (LS 156). Both are above our fixed threshold for
anomalies

anomalous shape, Figure 7 . As changing the threshold al- 191

lows for the removal of the whole anomaly, we decided to 192

test the more complex LSTM Under-complete AE on the run. 193

The resulting reconstruction loss shows a more pronounced 194

peak for a second LS, acceptable according to the threshold 195

for the model, thrLSTM = 0.1, Figure 9 . 196

The removal of both the major peaks results in the com- 197

plete cleaning of the anomaly, Figure 7 . When inspecting the 198

two identified LSs, it is apparent that both anomalies were af- 199

fecting the same set of bins in the histograms, with the second 200

one being less pronounced: this results in a suppression of the 201

magnitude of the rescaled bins after (3), making the anomaly 202

far less visible to the dense Under-complete model. 203

4 Conclusions 204

An AutoEncoder-based anomaly detection tool has been suc- 205

cessfully developed and tested for DQM in the CMS experi- 206

ment. This tool, capable of detecting anomalies at the per-LS 207

granularity, significantly improves the data certification pro- 208

cess by isolating problematic LSs within runs flagged as BAD. 209

While some anomalies could be detected by simple compar- 210

isons with average values, the models presented, and in par- 211

ticular the LSTM AE, prove versatile and robust across dif- 212

ferent types of anomalies, enhancing the overall data quality. 213

The removal of the identified anomalous LSs ensures that 214

the remaining data is reliable, and the recovery of data 215

that would otherwise be discarded. This approach not only 216

streamlines the DQM process but also increases the efficiency 217

and accuracy of data used for physics analyses, demonstrating 218

the potential of machine learning techniques in high-energy 219

physics. 220

This work uses results that are part of a CMS Detector Per- 221

formance Note (DP-note) [CMS Collaboration, 2023]. 222
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