
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MASSIVE MEMORIZATION WITH HUNDREDS OF TRILLIONS OF PARAMETERS FOR SEQUENTIAL TRANSDUCER GENERATIVE RECOMMENDERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern large-scale recommendation systems rely heavily on user interaction history sequences to enhance the model performance. The advent of large language models and sequential modeling techniques, particularly transformer-like architectures, has led to significant advancements recently (e.g., HSTU, SIM, and TWIN models). While scaling to ultra-long user histories (10k to 100k items) generally improves model performance, it also creates significant challenges on latency, queries per second (QPS) and GPU cost in industry-scale recommendation systems. Existing models do not adequately address these industrial scalability issues. In this paper, we propose a novel two-stage modeling framework, namely *Virtual Sequential Target Attention* (VISTA), which decomposes traditional target attention from a candidate item to user history items into two distinct stages: (1) user history summarization into a few hundred tokens; followed by (2) candidate item attention to those tokens. These summarization token embeddings are then cached in storage system and then utilized as sequence features for downstream model training and inference. This novel design for scalability enables VISTA to scale to lifelong user histories (up to one million items) while keeping downstream training and inference costs fixed, which is essential in industry. Our approach achieves significant improvements in offline and online metrics and has been successfully deployed on an industry leading recommendation platform serving billions of users.

1 INTRODUCTION

Personalized recommendation systems are now integral to digital platforms like streaming services, e-commerce, and social media, where they boost user engagement and drive key metrics such as click-through rates (CTR), session duration, and retention. The success of these systems hinges on their ability to accurately predict user preferences by processing and interpreting vast user histories.

While traditional recommendation models, such as collaborative filtering (Sarwar et al., 2001) and matrix factorization (Koren et al., 2009), laid the groundwork for personalized recommendation, they often struggle to scale and capture long-term user behaviors. Deep learning introduced more powerful solutions, and the recent integration of large language models (LLMs) and sequential modeling techniques such as transformers (Section 2) has marked a significant leap forward, enabling the capture of intricate interactions across vast user histories.

In the domain of recommendation systems, two primary types of sequence modeling techniques have been explored: full user sequence modeling, as seen in Hierarchical Sequential Transduction Units (HSTU) (Zhai et al., 2024), and target-specific sequence sampling, as seen in Search-based Interest Modeling (SIM) (Pi et al., 2020) and its subsequent works (Chang et al., 2023; Si et al., 2024). Both approaches have demonstrated success in enhancing recommendation system performance by harnessing users' extensive historical interactions.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: VISTA replaces standard attention with a two-stage process, allowing downstream models to compute only the highly efficient second stage.

Despite their success, full sequence modeling suffers from the computational cost of scaling. Modeling full user interaction sequences which are usually on the scale of $O(100K)$ in length often leads to enormous computational costs and latency issues, which are very challenging for industrial recommendation systems that need to train $O(10B)$ to $O(100B)$ examples per day and have strict latency upper limits during inference. As a result, the full sequence modeling methods such as HSTU (Zhai et al., 2024) are hindered by high computational costs, limiting its widespread adoption across industries where many companies are still short of GPU capacities.

The second approach, target-specific sequence sampling, has been extensively explored through a series of seminal works, including SIM (Pi et al., 2020), TWIN (Chang et al., 2023), and TWIN V2 (Si et al., 2024). These studies have demonstrated the effectiveness of leveraging user historical interaction sequences. However, subsequent research in this direction has encountered two significant challenges: (1) bridging the gap between attention to the target-specific shortened sequence and the full user sequence, which, however, was partially addressed in follow-up work TWIN (Chang et al., 2023); and (2) the computational cost increases linearly with the number of candidates to predict at inference time, due to the independent target-specific sequences. These two challenges remain largely unresolved, primarily due to the inherent design limitations of SIM-style models.

Addressing the challenges of scalability in recommendation systems will assist with their widespread adoption. In this paper, we propose a novel two-stage modeling framework, *VIrtual Sequential Target Attention* (VISTA), designed to overcome the scalability challenges. The first stage compresses the ultra-long user interaction history into a few hundred of summarization embeddings (see Fig. 1); the second stage serves as efficient candidate aware target attention mechanism that leverages the summarization from the first stage for final prediction. The first stage occurs only during foundational model training, where the resulting summarization embeddings are cached to conceptually represent user embeddings. Consequently, downstream model training and inference only need to perform the second stage: computing attention between a candidate item and these cached embeddings, instead of processing the full user interaction history. This approach significantly reduces the computational complexity for downstream models, especially during inference, at the cost of additional storage. In practice, this is a worthwhile trade-off, as the cost of GPU computation remains multiple orders of magnitude higher than the cost of storage.

As a summary of our contributions, to the best of our knowledge we are the first to propose:

- A two-stage attention framework to decouple foundational model training and downstream model training and inference, which enables us to leverage ultra-long user histories for better recommendation model performance in industrial-scale systems,
- A quasi-linear attention formulation tailored for recommendation models,
- A generative sequential reconstruction loss in recommendation models, and
- A practical embedding delivery system successfully deployed in an industrial-scale platform.

2 RELATED WORK

Hierarchical Sequential Transduction Unit (HSTU). A significant advancement in this area is the Hierarchical Sequential Transduction Unit (HSTU) (Zhai et al., 2024), which reframes recommendation as a sequential transduction problem. Designed specifically for high-cardinality, non-stationary streaming recommendation data, HSTU surpasses traditional

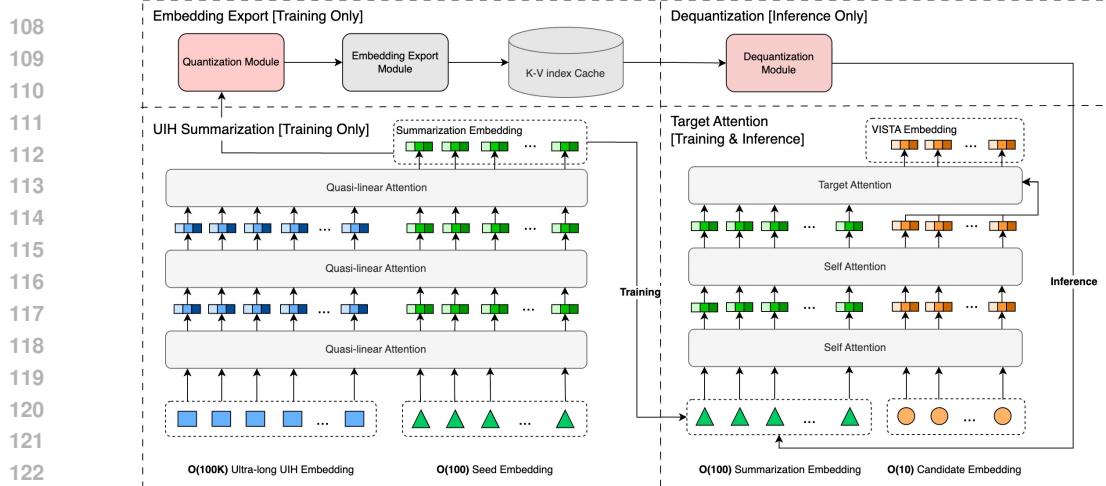


Figure 2: An overview of VISTA architecture.

models in both accuracy and efficiency. This architecture allows recommendation systems to scale to trillions of parameters, leading to substantial gains in predictive performance.

Transformer Architectures in Recommendation Systems. The application of transformer architectures in recommendation systems has been explored extensively. By leveraging the self-attention mechanism, transformers can model complex user-item interactions over time, facilitating more nuanced and personalized recommendations (Subbiah and Aggarwal, 2024). The Deep Interest Network (DIN) (Zhou et al., 2018) and its follow-up work, Search-based Interest Modeling (SIM) (Pi et al., 2020; Chang et al., 2023; Si et al., 2024), leverage lifelong sequential behavior data. This approach employs search-based mechanisms, also known as General Search Units (GSUs), to select a small subset of relevant interactions from the user’s historical sequence that are pertinent to the target item followed by a standard transformer network, referred to as Exact Search Units (ESUs), to compute the final target item representation. Notably, this method enables the modeling of user behavior data with lengths reaching up to hundreds of thousands (Pi et al., 2020). Other methods (Liu et al., 2023) preprocess user histories into groups and attend to the group embeddings, and separately attend to subsequences in the user history relevant to the target item.

Linear Complexity Attention Mechanisms. Apart from Flash Attention (Dao et al., 2022; Dao, 2023) that is designed to improve the efficiency of the softmax attention mechanisms, there is a new trend to explore linear complexity attention mechanisms. Katharopoulos et al. (2020a) first proposes linear attention. By applying matrix multiplication associative property, it enables a change in computation order from $(QK^T)V$ to $Q(K^TV)$, reducing computation complexity from $O(N^2)$ to $O(N)$ with respect to sequence length N . Recently, Lightning Attention v1 (Qin et al., 2024a) and v2 (Qin et al., 2024b) propose a light network which contains Gated Linear Attention (GLA) and Simple Gated Linear Unit (SGLU) to make linear attention more practical. Another branch of linear complexity work, namely state space model (SSM), has been widely studied. Mamba (Gu and Dao, 2024) is a pioneering work in SSM and widely used in many real-world applications, followed by Hydra (Hwang et al., 2024) which is the double-headed version of Mamba to address non-causal scenarios.

3 METHOD

Here we introduce the details of VISTA’s two cascaded modules: ultra-long user interaction history (UIH) sequence summarization and target-aware attention, followed by details of a practical linear complexity self-attention and generative sequence reconstruction loss. We then explain how VISTA’s design enables the scaling, storage, and processing of industry-scale user history sequences through its embedding delivery system.

162 3.1 MODEL ARCHITECTURE OVERVIEW
 163

164 As illustrated in Figure 2, the VISTA architecture employs distinct workflows for training and
 165 inference. During training, the computationally expensive UIH summarization module runs
 166 to generate summary embeddings. These embeddings are then quantized and exported to a
 167 large key-value cache in $O(100)$ terabytes to $O(1)$ petabytes. For inference, this expensive
 168 step is bypassed entirely. Instead, the pre-computed embeddings are simply retrieved from
 169 the cache and dequantized with minimal distortion. The final component, the target attention
 170 module, operates in both phases, using the summarization embeddings and candidate item
 171 features to make predictions.

172 3.2 ULTRA-LONG UIH SEQUENCE SUMMARIZATION
 173

174 In the first stage, we utilize self-attention with virtual
 175 seed embeddings to summarize ultra-long UIH se-
 176 quences. These virtual seeds are initialized randomly
 177 as shared parameters across users, which are updated
 178 with the model through its interaction with the UIH
 179 sequence in the summarization module. The output
 180 of the summarization module can be interpreted as
 181 user embeddings, encoding individual personalized
 182 preferences to inform recommendations. Figure 3 vi-
 183 sualizes these summarization embeddings, projected
 184 onto the first 2 principal components by principal
 185 component analysis (PCA). We can clearly see the
 186 separation for users of different countries, with US
 187 and Canada overlapping, which is expected.

188 However, typical softmax attentions suffer from $O(N^2)$ time complexity, which is prohibitive
 189 when dealing with ultra-long sequences ($N > 10k$). Therefore, we propose quasi-linear
 190 attention(QLA), a linear time complexity $O(N)$ self-attention mechanism to overcome this
 191 issue.

192 3.2.1 LINEAR ATTENTION WITH CANDIDATE ITEMS FOR RECOMMENDATION
 193

194 With the emergence of Large Language Models (LLMs), researchers have proposed some
 195 linear complexity attention algorithms to accelerate transformer blocks (Katharopoulos et al.,
 196 2020a; Qin et al., 2024a;b; Han et al., 2024). However in recommendation systems, unlike the
 197 text sequences in LLM, a strict rule is that *the candidates cannot attend each other*, since it
 198 introduces label leakage due to the fact that the logged candidates typically only form a small
 199 subset of the input candidates during inference. Therefore, we propose a linear-complexity
 200 self attention mechanism that avoids attention among candidates.

201 The typical softmax self attention for a UIH sequence S can be formulated as follows

$$\text{SoftmaxAttn}(S \Rightarrow_{\text{full}} S) = \text{RowSoftmax}(QK^\top)V$$

204 where Q , K and V have shape (L, d) and L is the sequence length. Then the original linear
 205 attention (Katharopoulos et al., 2020b) for a UIH sequence S can be written similarly as
 206 follows

$$\begin{aligned} \text{LinAttn}(S \Rightarrow_{\text{full}} S) &= \text{RowNormalize}(QK^\top)V \\ &= Q(K^\top V) / \text{RowSum}(QK^\top) = Q(K^\top V) / (Q \text{ ColSum}(K)^\top). \end{aligned} \tag{1}$$

207 Note that division / here stands for broadcast division along the rows. The above can be
 208 applied to full (bi-directional) self-attention.

209 In recommendation models, we also have target (candidate) items, let's denote them by T .
 210 Then we want to compute target attention of T against K and V .

$$\text{LinAttn}(T \Rightarrow_{\text{full}} S) = T(K^\top V) / (T \text{ ColSum}(K)^\top). \tag{2}$$

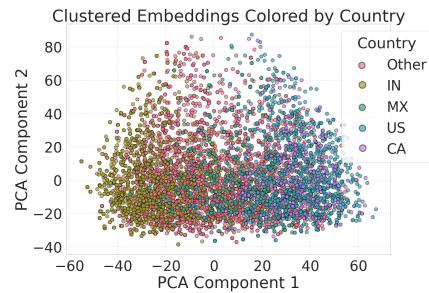


Figure 3: Visualization of UIH summarization embeddings.

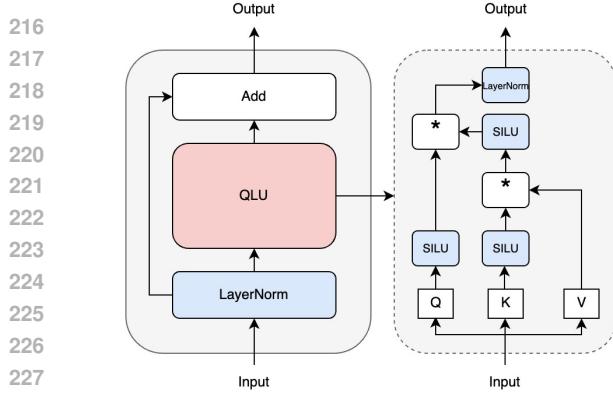


Figure 4: The QLU module.

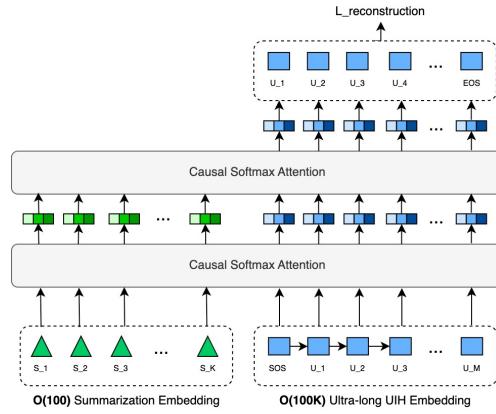


Figure 5: Generative reconstruction loss.

Note that candidates cannot attend to each other. This is a strict rule in recommendation systems otherwise the model training will fail due to the leakage between candidate items. It gets slightly trickier if we also want each candidate to attend to itself. Instead of $TT^\top T$, the contribution due to the self attention of each target item to itself is given by

$$\text{LinAttn}(T \Rightarrow_{\text{individual}} T) = \text{Diag}(TT^\top)T. \quad (3)$$

3.2.2 QUASI-LINEAR ATTENTION FOR RECOMMENDATION

Despite its efficiency, some previous works (Han et al., 2024; 2023) prove that linear attention suffers from insufficient expressive power, making it impractical for real applications. In this section, we introduce quasi-linear attention (QLA) as an empirically effective linear attention algorithm for recommendation. This quasi-linear attention introduces more non-linear complexity in attention computation, addressing the issue of expressive power.

The quasi-linear attention contains two parts: Quasi Linear Unit (QLU) module and Simple Gated Linear Unit (SGLU) module. The QLU module aims to model the interaction of Q, K, V matrices with SiLU non-linear activation as shown in Figure 4. For the SGLU module, we use the same gated function as TransNormerLLM (Qin et al., 2024a).

Accordingly, we need to slightly modify the above linear attention formulation to accommodate this QLU module. For the self attention part we let the user history items attend to one another. Similar as in HSTU (Zhai et al., 2024), SASRec (Kang and McAuley, 2018), and Pinnerformer (Pancha et al., 2022), usually the causal self-attention approach via a triangular mask is used. In our case, we did not find significant difference between causal and full self attention, since the user history items merely serve as features for the final candidate prediction task – their temporal causality is not a strict requirement. Let φ denote a non-linear activation function (we use SiLU in our experiments), then the full self quasi-linear attention modified from Eq. (1) is as follows.

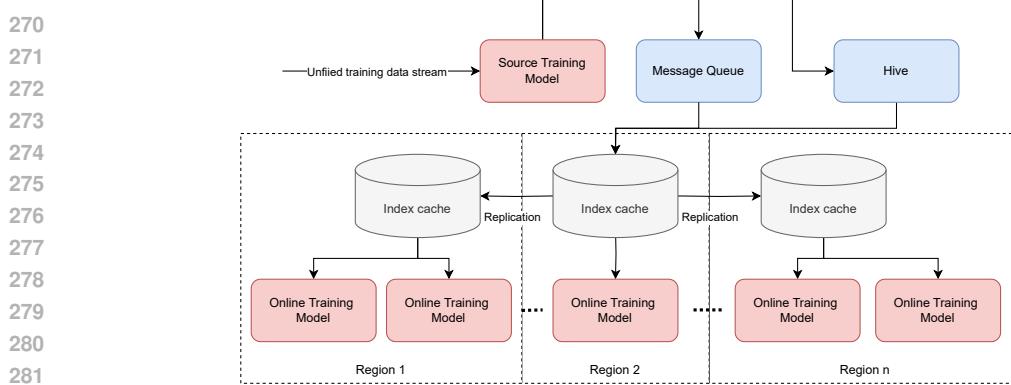
$$O[S] = \varphi(Q[S])\varphi(\varphi(K[S])^\top V[S])$$

where $[S]$ denotes the source (user history) portion of the sequence. Note that we remove the RowNormalize operation, similarly as in Lightning Attention (Qin et al., 2024a;b).

For the target portion of the query sequence embeddings, we can similarly apply φ -linear attention between $Q[T]$ and $K[S], V[S]$. However to be consistent with the self-attention semantics, we also include an extra term that captures attention to the target item itself. Thus, the final formula for the target portion of the quasi-linear attention, modified from Eq. (2) and (3) is given by

$$O[T] = \varphi(Q[T])\varphi(\varphi(K[S])^\top V[S]) + \Delta(\varphi(Q[T]), \varphi(K[T]))V[T].$$

Here $\Delta(X, Y)_{ij} := \sum_k X_{ik}Y_{ik}\delta_{ij}$ stands for putting the row-wise dot product between the two matrices X and Y of shape $n \times m$ on the diagonal of a square matrix of shape $n \times n$. In order to implement the quasi-linear attention efficiently using the Triton language (Tillet



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Figure 6: An overview of VISTA sequence summarization embedding delivery system.

et al., 2019) for optimized GPU computation performance, we also calculate the gradient of the final loss function with respect to the input tensors $Q[S], Q[T], K[S], K[T], V[S], V[T]$, in terms of the gradient with respect to the output tensor $O[S], O[T]$ in Appendix B.

3.2.3 GENERATIVE SEQUENCE RECONSTRUCTION LOSS

To further enhance the memorization effects, we also introduce a reconstruction loss (see Fig. 5) to encourage the sequence summarization to fully reproduce the UIH sequence, which we find particularly useful to improve VISTA’s performance. Intuitively, to reconstruct the i -th UIH item embedding, we are using all the seed embeddings and the UIH item embeddings up to the $(i - 1)$ -th position. A natural way to accomplish this is via the decoder network, such as the causal transformer decoder, without the softmax layer. Formally,

$$(t_1, \dots, t_k, v_1, \dots, v_M) = \text{Decoder}(s_1, \dots, s_k, u_1, \dots, u_M).$$

where s_1, \dots, s_k are the personalized seed embeddings, and u_1, \dots, u_M are the UIH item embeddings. We can feed their concatenation through the causal softmax attention block (or any other transformer block) to get the output embeddings concatenated as t_1, \dots, t_k and v_1, \dots, v_M where k is the number of seeds and M the length of the user history sequence. Then we can simply form the off-by-one mean square error of the v_i ’s with the u_i ’s as the construction loss as $L_{\text{reconstruct}} = \sum_{i=1}^{M-1} \|v_i - u_{i+1}\|_2^2$.

Since causal transformer block ensures that the output embedding v_i only depends on u_1, \dots, u_i , there is no leak of information from u_{i+1} to v_i . This forces the personalized seed embeddings s_i to maximize information retained of the user history sequence u_1, \dots, u_M . Similar ideas have roots in the Variational Auto-Encoder (Kingma and Welling, 2022), and have appeared in the context of transformer networks recently (Henderson and Fehr, 2022). However to the best of our knowledge, there has not been any explicit use in recommendation. For more discussion on this reconstruction loss, see Appendix C.

3.3 TARGET-AWARE ATTENTION

As shown in Figure 2, any attention network can technically be used for the target-aware attention stage. Because this step is computationally inexpensive compared to sequence summarization, we selected a standard $O(N^2)$ transformer block, which delivers excellent performance on the compact summary sequences.

4 EMBEDDING DELIVERY SYSTEM

We emphasize that the VISTA framework is not merely a theoretical model, but a novel industrial model system co-design to support large scale user interaction history sequence learning that can be deployed into the real industry infrastructure with reasonable cost.

324 Figure 6 outlines the system’s end-to-end architecture, which comprises three main stages:
325 (1) online training of the source model using training data stream, (2) delivery of sequence
326 summarization embeddings to downstream models via two routes: a real-time message queue,
327 e.g., Kafka (Kreps et al., 2011) and persistent storage, e.g., Hive (Thusoo et al., 2009), and
328 (3) serving embeddings through a geographically replicated in-memory key-value store. In
329 our system, we update the summarization embeddings on a 2-hour cadence, which was shown
330 to have similar performance compared to using the summarization module directly in online
331 A/B tests. This design ensures both real-time performance and scalability for industrial
332 applications. For scalability, we deliberately compress the user interaction history sequence
333 to $O(100)$ terabytes level, making it feasible to deploy to existing systems.

334 **5 EXPERIMENTS**

335 **5.1 DATASETS AND EXPERIMENTAL SETUP**

336 The proposed VISTA framework is designed for a large scale real-world dataset, where one
337 needs to train hundreds of billions of examples per day and each user has a history which
338 contains hundreds of thousands of items. While existing public datasets are usually much
339 smaller, we compare our method against several baselines on public datasets in addition to
340 reporting results on real production data.

341 **5.1.1 PUBLIC DATASET AND INDUSTRIAL-SCALE DATASET**

342 We first compare the effectiveness of VISTA against several baseline models on public
343 datasets Amazon-Electronics¹ and KuaiRand-1K². To focus mainly on the effectiveness of
344 the attention mechanism, we compare VISTA against baselines in replacing the attention
345 layers in a common model architecture. All models are implemented, trained, and evaluated
346 under the FuxiCTR³ framework, focusing on click-through rate prediction. Additionally,
347 we introduce a Minimal Production dataset from real production data, compatible with
348 FuxiCTR having minimal features but with longer sequences up to 2,000.

349 For industrial-scale offline experimentation, we construct full training and evaluation samples
350 from real production data, with several metrics for engagement, which we denote by “C-
351 Task”, “E1-Task”, etc. We use 3-day data as the training set and the next 1-day data as
352 the evaluation set in our offline experiment. The scale of training examples per day is at
353 $O(10)$ billion level. The average and maximum UIH sequence lengths are 7,000 and 16,000,
354 respectively. Note that we deploy the model with 12,000 UIH sequence length in online
355 experiments, but we only use 2,000 in offline experiments due to GPU resource constraints.

356 **Table 1: Dataset Statistics**

Dataset	Mean Seq.	Max Seq.
Amazon-Electronics	8.93	429
KuaiRand-1K	225.20	256
Simplified Prod	1528.18	2,000
Industrial-Scale Data	7,000	16,000

360 **5.1.2 BASELINES AND EVALUATION METRICS**

361 All models share a common feature embedding layer and MLP block, with consistent
362 hyperparameters, e.g., embedding dimensions, layers, attention heads, for fair comparison. We
363 briefly describe them: (1) Deep Interest Network (DIN) (Zhou et al., 2018) uses attention to
364 adaptively weigh user historical behaviors, (2) Two-Tower Sparse Network (TTSN) (Covington
365 et al., 2016) separately encodes user and item features via two towers, (3) the standard
366 Multi-Head Attention (MHA) (Vaswani et al., 2017), (4) SASRec (Kang and McAuley, 2018)
367 is self-attentive sequential recommendation model that uses the Transformer architecture,
368

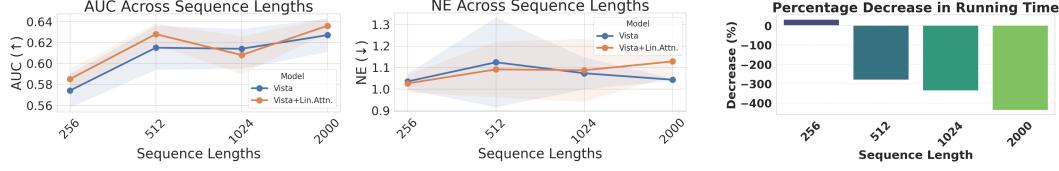
369 ¹https://github.com/reczoo/Datasets/tree/main/Amazon/AmazonElectronics_x1

370 ²<https://kuairand.com/>

371 ³<https://github.com/reczoo/FuxiCTR>

378 Table 2: Comparisons on public and Minimal Production datasets. VISTA-w/-QLA and
 379 VISTA-w/o-QLA are the VISTA model with and without quasi-linear attention, respectively.⁴

380 Models	381 Amazon		382 KuaiRand		383 Minimal Production	
	384 AUC (\uparrow)	385 NE (\downarrow)	386 AUC (\uparrow)	387 NE (\downarrow)	388 AUC (\uparrow)	389 NE (\downarrow)
DIN	$0.873 \pm 8e^{-4}$	$0.656 \pm 1e^{-4}$	0.744 ± 0.003	0.864 ± 0.005	0.632 ± 0.02	1.048 ± 0.033
TTSN	0.877 ± 0.005	0.644 ± 0.010	0.740 ± 0.003	0.869 ± 0.004	0.648 ± 0.005	1.139 ± 0.156
MHA	$0.881 \pm 1e^{-4}$	0.634 ± 0.002	0.743 ± 0.001	0.863 ± 0.005	0.630 ± 0.018	1.049 ± 0.041
SASRec	$0.884 \pm 4e^{-4}$	0.627 ± 0.001	0.742 ± 0.003	0.868 ± 0.007	0.605 ± 0.020	1.129 ± 0.134
HSTU	0.884 ± 0.001	0.628 ± 0.001	0.743 ± 0.001	$0.863 \pm 1e^{-5}$	0.668 ± 0.011	1.099 ± 0.048
VISTA-w/o-QLA	0.886 ± 0.002	0.621 ± 0.005	0.744 ± 0.001	0.863 ± 0.003	0.628 ± 0.014	1.024 ± 0.03
VISTA-w/-QLA	0.884 ± 0.005	0.623 ± 0.003	$0.743 \pm 4e^{-4}$	0.864 ± 0.001	0.632 ± 0.013	1.062 ± 0.076



394 Figure 7: Ablation study on quasi-linear attention by varying sequence length.

395
 396
 397 and (5) Hierarchical Sequential Transduction Units (HSTU) (Zhai et al., 2024) is an industry
 398 proposed transformer-like model designed to capture multi-scale sequential patterns in user
 399 behavior sequence.

400 We use normalized entropy (NE) (He et al., 2014) as our evaluation metric, which calculates
 401 the cross entropy between the predicted probabilities and the labels, then normalizes it by
 402 the entropy of the constant predictor at label average. We also report the area under curve
 403 (AUC) for the traditional setting. Additional details about this section are in Appendix D.

406 5.2 OFFLINE EXPERIMENTAL RESULTS

407 5.2.1 PUBLIC DATASET RESULTS

410 In Table 2, we summarize the comparative results between VISTA and the baseline models.
 411 For the Amazon-Electronics dataset, VISTA outperforms the other baselines with the use of
 412 quasi-linear attention being the next best model. On the KuaiRand dataset, VISTA slightly
 413 outperforms the other models with similar NE to HSTU and MHA. This may suggest that
 414 even at smaller sequence lengths, the virtual seeding embeddings slightly help the model
 415 performance. On much longer sequences in Minimal Production, we see that HSTU and
 416 VISTA perform best demonstrating that both are designed for handling longer sequences.

417 Figure 7 shows the ablation study results of quasi-linear attention by varying the sequence
 418 length on the Minimal Production dataset. We can clearly see that the QLA mechanism
 419 significantly reduces the the time to train and evaluate 1 epoch of data, while there are small
 420 differences in AUC and NE.

421 Figure 8 shows the scaling law of increasing number of seed embeddings. We can clearly
 422 see that the model performance improves with larger number of seed embeddings, which,
 423 however, will incur more storage capacity cost in real world production scenario. Thus, in
 424 practice it is a tradeoff between model performance and financial cost.

425 Figure 10 compares the target embeddings, the output of VISTA’s two-stage attention mod-
 426 ules, for different items given the same user history from Amazon-Electronics. Embeddings
 427 between items from the same category are more similar than those from different ones, as
 428 expected.

429
 430
 431 ⁴Comparisons to the next best model are significant at the $p < 0.001$ level when using a paired
 t-test. ANOVA tests with multiple next-best models are significant at the $p < 0.001$ level.

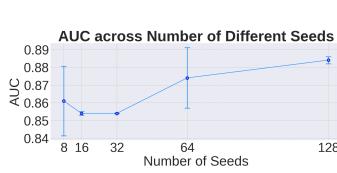
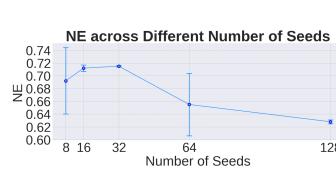
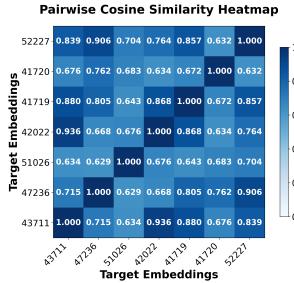


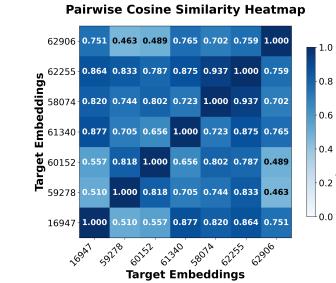
Figure 8: Ablating VISTA across number of seed embeddings on Amazon-Electronics.



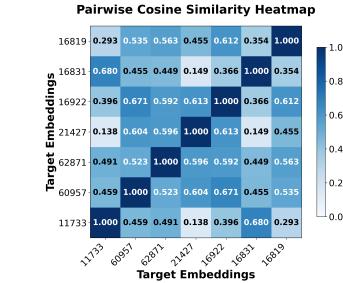
Max UIH Length	HSTU (ms)	VISTA (ms)	VISTA (ms)
128.0	~3.5	~3.5	~3.5
256.0	~6.5	~6.5	~6.5
512.0	~7.5	~7.5	~7.5
1024.0	~10.5	~10.5	~10.5
2048.0	~12.5	~12.5	~12.5
4096.0	~35.0	~35.0	~35.0



(a) Same category (142).



(b) Same category (368)



(c) Different categories (each).

Figure 10: Pairwise cosine similarity of the output of two-stage attention of VISTA. For the same user, we compare the target attention output for items of similar or different categories.

Table 3: Offline comparative results with the baseline model and ablation models.

Models	Training NE (↓)				Eval NE (↓)			
	C-Task	E1-Task	E2-Task	E3-Task	C-Task	E1-Task	E2-Task	E3-Task
HSTU	-	-	-	-	-	-	-	-
VISTA	-0.47%	-0.82%	-2.30%	-1.72%	-0.40%	-1.19%	-2.98%	-2.23%
VISTA-128D	-0.32%	-0.50%	-1.86%	-1.43%	-0.29%	-1.07%	-2.51%	-1.82%
VISTA-64Seed	-0.36%	-0.68%	-1.70%	-1.45%	-0.37%	-1.11%	-3.01%	-2.09%
VISTA-w/o-Recon	-0.42%	-0.72%	-2.32%	-1.69%	-0.29%	-1.29%	-3.00%	-2.21%

5.2.2 INDUSTRIAL-SCALE DATASET RESULTS

In Table 3, we compare our proposed VISTA model with the baseline production model using HSTU as the backbone in both offline and online experiments, on the industrial-scale dataset. In this setting, there are multiple tasks which measure different aspects of engagement information. We report the main consumption task (“C-Task”), and other engagement events (“E1-Task”, “E2-Task”, and “E3-Task”). To further understand the effectiveness of the model, we also conduct ablation studies by varying the embedding dimension, the number of seeds, and the use of generative reconstruction loss. As shorthands, (1) VISTA stands for the optimized proposed model co-trained with the baseline HSTU model, with 3-layer self-attention, 3-layer target-aware attention, 128 seeds, 256 embedding dimension and 2,000 UIH sequence length. (2) VISTA-128D stands for VISTA model with 128 dimension embedding. (3) VISTA-64Seed stands for VISTA model with 64 seeds. (4) VISTA-w/o-Recon stands for VISTA model without generative reconstruction loss. The results demonstrate that our optimized VISTA configuration (128 seeds, 256 embedding dimension, and 2,000 UIH sequence) significantly outperforms the standalone HSTU baseline for training and evaluation NE metrics.

Table 4 summarizes the performance improvement of QLA compared with the standard self-attention on production dataset, where we can see that the QLA is able to scale up with more layers and longer sequence for better NE metrics and even higher QPS.

Figure 9 shows the VISTA’s advantage on inference performance, especially for much longer sequence lengths. This is expected since VISTA’s main strength is to cache the UIH summarization. Thus, the most computationally expensive module, UIH summarization module, is deactivated during inference.

486 Table 4: Comparing VISTA with and without quasi-linear attention.
487488
489
490
491

Model Variant	Max Seq.	Layers	QPS (\uparrow)	Training NE (\downarrow)	Eval NE (\downarrow)
VISTA-w/o-QLA	6,000	3	-	-	-
VISTA-w/-QLA	16,000	5	+5%	-0.1%	-0.13%

492 5.3 ONLINE A/B EXPERIMENTAL RESULTS
493494 We conducted an online A/B test on our production video recommendation system, using 5%
495 of the entire site traffic during a period of 15 days. The baseline is the HSTU model and we
496 compare with adding the VISTA module, which is the same as our offline experiment setup.
497 Online metrics for the main consumption task “C-Task” and other online onboarding metrics,
498 “O1-Task” and “O2-Task”, were significantly improved by 0.5%, 0.2%, 0.04%, respectively.
499 VISTA demonstrated a 94% reduction in inference GPU resource (measured by inference
500 QPS) usage by caching and serving embeddings, rather than re-computing them for every
501 new user request. With a 0.01% “O2-Task” gain considered a substantial improvement on
502 our platform, the VISTA model made realized contributions to the recommendation system.
503504 6 CONCLUSION AND DISCUSSIONS
505506 In this paper, we have proposed the VIrtual Sequential Target Attention (VISTA) framework,
507 a novel two-stage approach that compresses ultra-long user interaction histories into a set of
508 compact embeddings. This design strikes a crucial balance between computational efficiency
509 and predictive accuracy, addressing the latency and scalability challenges of processing
510 ultra-long user sequence data in production systems. VISTA’s practical applicability is
511 underscored by its resilience to slight de-synchronization between its stages and its ability to
512 approximate complex transformer architectures without their substantial computational cost.
513 Our empirical evaluations demonstrate that VISTA not only captures the core information
514 within user interactions but also achieves significant improvements across platform metrics.
515 Our plans for future research involve further optimizing VISTA’s compression techniques
516 and exploring its applications cross other domains to enhance its generalizability.
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Jianxin Chang, Chenbin Zhang, Zhiyi Fu, Xiaoxue Zang, Lin Guan, Jing Lu, Yiqun Hui, Dewei
543 Leng, Yanan Niu, Yang Song, and Kun Gai. 2023. TWIN: TWo-stage Interest Network for
544 Lifelong User Behavior Modeling in CTR Prediction at Kuaishou. arXiv:2302.02352 [cs.IR]
545 <https://arxiv.org/abs/2302.02352>

546 Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube
547 Recommendations. In *Proceedings of the 10th ACM Conference on Recommender Systems*
548 (Boston, Massachusetts, USA) (*RecSys '16*). Association for Computing Machinery, New
549 York, NY, USA, 191–198. doi:10.1145/2959100.2959190

550 Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and Work
551 Partitioning. arXiv:2307.08691 [cs.LG] <https://arxiv.org/abs/2307.08691>

552 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAttention:
553 Fast and Memory-Efficient Exact Attention with IO-Awareness. arXiv:2205.14135 [cs.LG]
554 <https://arxiv.org/abs/2205.14135>

556 Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei, Peng Jiang,
557 and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Recommendation Dataset
558 with Randomly Exposed Videos. In *Proceedings of the 31st ACM International Conference*
559 *on Information and Knowledge Management* (Atlanta, GA, USA) (*CIKM '22*). 3953–3957.
560 doi:10.1145/3511808.3557624

561 Albert Gu and Tri Dao. 2024. Mamba: Linear-Time Sequence Modeling with Selective State
562 Spaces. arXiv:2312.00752 [cs.LG] <https://arxiv.org/abs/2312.00752>

563 Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. 2023. FLatten
564 Transformer: Vision Transformer using Focused Linear Attention. arXiv:2308.00442 [cs.CV]
565 <https://arxiv.org/abs/2308.00442>

566 Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji
567 Song, and Gao Huang. 2024. Bridging the Divide: Reconsidering Softmax and Linear
568 Attention. arXiv:2412.06590 [cs.CV] <https://arxiv.org/abs/2412.06590>

569 Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah,
570 Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting clicks on ads
571 at facebook. In *Proceedings of the eighth international workshop on data mining for online*
572 *advertising*. 1–9.

573 James Henderson and Fabio Fehr. 2022. A Variational AutoEncoder for Transformers with
574 Nonparametric Variational Information Bottleneck. arXiv:2207.13529 [cs.LG] <https://arxiv.org/abs/2207.13529>

575 Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. 2024.
576 Bridging Language and Items for Retrieval and Recommendation. *arXiv preprint*
577 *arXiv:2403.03952* (2024).

578 Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. 2024. Hydra: Bidirectional State
579 Space Models Through Generalized Matrix Mixers. arXiv:2407.09941 [cs.LG] <https://arxiv.org/abs/2407.09941>

580 Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recommendation.
581 arXiv:1808.09781 [cs.IR] <https://arxiv.org/abs/1808.09781>

582 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. 2020a. Trans-
583 formers are rnns: Fast autoregressive transformers with linear attention. In *International*
584 *conference on machine learning*. PMLR, 5156–5165.

585 Athanasios Katharopoulos, Arron Vyas, Nicolas Pappas, and François Fleuret. 2020b. Trans-
586 formers are RNNs: Fast Autoregressive Transformers with Linear Attention. In *Inter-*
587 *national Conference on Learning Representations (ICLR)*. <https://openreview.net/forum?id=By188Wq0FD>

594 Diederik P Kingma and Max Welling. 2022. Auto-Encoding Variational Bayes.
595 arXiv:1312.6114 [stat.ML] <https://arxiv.org/abs/1312.6114>
596

597 Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for
598 Recommender Systems. *Computer* 42, 8 (2009), 30–37. doi:10.1109/MC.2009.263

599 Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging system for
600 log processing. In *Proceedings of the NetDB*, Vol. 11. Athens, Greece, 1–7.

601

602 Qi Liu, Xuyang Hou, Haoran Jin, Jin Chen, Zhe Wang, Defu Lian, Tan Qu, Jia Cheng, and
603 Jun Lei. 2023. Deep Group Interest Modeling of Full Lifelong User Behaviors for CTR
604 Prediction. *CoRR* (2023).

605

606 Nikil Pancha, Andrew Zhai, Jure Leskovec, and Charles Rosenberg. 2022. PinnerFormer:
607 Sequence Modeling for User Representation at Pinterest. arXiv:2205.04507 [cs.LG] <https://arxiv.org/abs/2205.04507>

608

609 Qi Pi, Xiaoqiang Zhu, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, and
610 Kun Gai. 2020. Search-based User Interest Modeling with Lifelong Sequential Behavior
611 Data for Click-Through Rate Prediction. In *Proceedings of the 29th ACM International
612 Conference on Information & Knowledge Management (CIKM)*. ACM. <https://doi.org/10.1145/3340531.3412744>

613

614 Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei,
615 Baohong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. 2024a. TransNormerLLM: A Faster
616 and Better Large Language Model with Improved TransNormer. arXiv:2307.14995 [cs.CL]
617 <https://arxiv.org/abs/2307.14995>

618

619 Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. 2024b.
620 Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large
621 Language Models. arXiv:2401.04658 [cs.CL] <https://arxiv.org/abs/2401.04658>

622

623 Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based col-
624 laborative filtering recommendation algorithms. In *Proceedings of the 10th International
625 Conference on World Wide Web* (Hong Kong, Hong Kong) (WWW '01). Association for
626 Computing Machinery, New York, NY, USA, 285–295. doi:10.1145/371920.372071

627

628 Zihua Si, Lin Guan, Zhongxiang Sun, Xiaoxue Zang, Jing Lu, Yiqun Hui, Xingchao Cao,
629 Zeyu Yang, Yichen Zheng, Dewei Leng, Kai Zheng, Chenbin Zhang, Yanan Niu, Yang Song,
630 and Kun Gai. 2024. TWIN V2: Scaling Ultra-Long User Behavior Sequence Modeling for
631 Enhanced CTR Prediction at Kuaishou. In *Proceedings of the 33rd ACM International
632 Conference on Information and Knowledge Management (CIKM '24)*. ACM, 4890–4897.
633 doi:10.1145/3627673.3680030

634

635 Anushya Subbiah and Vikram Aggarwal. 2024. Transformers in music recommendation.
<https://research.google/blog/transformers-in-music-recommendation/>.

636

637 Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
638 Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a warehousing
639 solution over a map-reduce framework. *Proceedings of the VLDB Endowment* 2, 2 (2009),
1626–1629.

640

641 Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Language
642 and Compiler for Tiled Neural Network Computations. In *Proceedings of the 3rd ACM
643 SIGPLAN International Workshop on Machine Learning and Programming Languages
644 (MAPL '19)*. ACM, 10. doi:10.1145/3315508.3329973

645

646 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
647 Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In *Advances in
648 Neural Information Processing Systems (NeurIPS)*. <https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>

648 Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie
649 Gong, Fangda Gu, Michael He, Yinghai Lu, and Yu Shi. 2024. Actions Speak Louder
650 than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations.
651 arXiv preprint arXiv:2402.17152. <https://arxiv.org/abs/2402.17152>

652 Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan,
653 Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate
654 Prediction. arXiv:1706.06978 [stat.ML] <https://arxiv.org/abs/1706.06978>

655 Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui
656 Zhang. 2022. BARS: Towards Open Benchmarking for Recommender Systems. In *SIGIR
657 '22: The 45th International ACM SIGIR Conference on Research and Development in
658 Information Retrieval, Madrid, Spain, July 11 - 15, 2022*, Enrique Amigó, Pablo Castells,
659 Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM,
660 2912–2923. doi:10.1145/3477495.3531723

661 Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open Bench-
662 marking for Click-Through Rate Prediction. In *CIKM '21: The 30th ACM International
663 Conference on Information and Knowledge Management, Virtual Event, Queensland, Aus-
664 tralia, November 1 - 5, 2021*, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper,
665 Zi Huang, and Hanghang Tong (Eds.). ACM, 2759–2769. doi:10.1145/3459637.3482486

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A USAGE OF LLMs DISCLOSURE 703

704 In this section, we disclose the usage of LLMs in the preparation of this manuscript. LLMs
705 were used for 1) polishing writing or shortening limited blocks of text and 2) for generating
706 template code for plotting or minor changes of existing code. LLMs were NOT used for
707 retrieval and discovery (e.g., finding related work), research ideation, or any other purpose
708 not explicitly outlined in the above.

710 B MIXED FULL LINEAR ATTENTION 711

712 To simplify triton implementation, especially for the gradient computation, our quasi-Linear
713 Attention drops the normalization (RowNormalize) in the usual linear attention, similar to
714 lightning attention. Instead we can mimic what SiLU attention does, by introducing a $1/N$
715 factor.

$$717 \quad O = (QK^T) \odot MV/N,$$

719 where \odot is the Hadamard product (componentwise multiplication of two matrices, and

720 $M = \begin{pmatrix} \mathbf{1}_{n \times n} & \mathbf{0}_{n \times m} \\ \mathbf{1}_{m \times n} & I_m \end{pmatrix}$. To compute this in triton, first break into two parts.

$$724 \quad Q = \begin{pmatrix} Q[S] \\ Q[T] \end{pmatrix}, \quad Q[S] \in \mathbb{R}^{n \times d}, \quad Q[T] \in \mathbb{R}^{m \times d},$$

$$726 \quad K = \begin{pmatrix} K[S] \\ K[T] \end{pmatrix}, \quad K[S] \in \mathbb{R}^{n \times d}, \quad K[T] \in \mathbb{R}^{m \times d},$$

$$728 \quad V = \begin{pmatrix} V[S] \\ V[T] \end{pmatrix}, \quad V[S] \in \mathbb{R}^{n \times d}, \quad V[T] \in \mathbb{R}^{m \times d}.$$

731 We will divide $n + m$ into A blocks of size n' , and divide n into B blocks of size n'' , so that
732 Q_i are submatrices of dimension $n' \times d$, and K_j, V_j are submatrices of dimension $n'' \times d$.

733 First we compute

$$735 \quad (QK[S]^T V[S])_i = Q_i \sum_{j=1}^B K[S]_j^\top V[S]_j.$$

738 Next we compute the target part: we divide m into C blocks of size m' each. For the j -th
739 block, it's given by

$$740 \quad ((Q[T]K[T]^\top \odot I_m)V[T])_j = \text{diag}((Q[T]_j \odot K[T]_j)\mathbf{1}_{m' \times 1})V[T]_j.$$

742 We usually merge the source and target embedding sequences in an interleaved fashion.
743 To avoid HBM/SRAM sync, we probably should keep track of the offsets of the boundary
744 between source and target, and let $n' = m'$, so that for the target part, we will overlap the
745 two computation and obtain

$$746 \quad O[S]_\ell = Q[S]_\ell \sum_{j=1}^B K[S]_j^\top V[S]_j$$

$$749 \quad O[T]_\ell = Q[T]_\ell \sum_{j=1}^B K[S]_j^\top V[S]_j + \text{diag}((Q[T]_\ell \odot K[T]_\ell)\mathbf{1}_{m' \times 1})V[T]_\ell$$

752 In terms of triton implementation, we will use positive offsets for target, and negative offsets
753 for source, all starting from the boundary offset.

754 Note that the sum $\sum_{j=1}^B K[S]_j^\top V[S]_j$ can be computed first, then multiplied with $Q[S]_\ell$,
755 $Q[T]_\ell$ etc. By choosing the block size $n' = m'$ sufficiently small, and if necessary, also

break the block $V[S]$, $V[T]$ along the columns into smaller dimension $d'|d$, we can ensure all $O[S]_\ell, O[T]_\ell$ blocks can be computed entirely in SRAM with a single for loop.

To replace linear attention with (traditional) SiLU attention for target to source, we need to replace the second line above with

$$O[T]_\ell = \sum_{j=1}^B \text{SiLU}(Q[T]_\ell K[S]_j^T) V[S]_j + \text{SiLU}(Q[T]_\ell \odot K[T]_\ell \mathbf{1}_{m' \times 1}) V[T]_\ell.$$

Here we cannot compute all the $O[T]_\ell$ blocks easily, but instead need to have m/m' SM's to compute them separately, otherwise each SM would incur a big for loop of Bm/m' iterations. Given H100 has about 132 SMs and batch size per rank is 512, using more SMs will likely slow things down.

B.1 GRADIENT COMPUTATION

$$\begin{aligned} \frac{\partial L}{\partial V} &= \text{tr} \left(\left(K Q^\top \frac{\partial L}{\partial O} \right) \odot M^\top \right) / N \\ \frac{\partial L}{\partial Q} &= \text{tr} \left(\left(K Q^\top \frac{\partial L}{\partial O} \right) \odot M^\top \right) \end{aligned}$$

Given that $L = L(O[S], O[T])$, and $O[S]$ and $O[T]$ are disjoint, we can compute

$$dL = \sum_{ij} \frac{\partial L}{\partial O[S]_{ij}} dO[S]_{ij} + \sum_{ij} \frac{\partial L}{\partial O[T]_{ij}} dO[T]_{ij}$$

B.1.1 GRADIENT OF V

If we differentiate against V , we have

$$\begin{aligned} dO[S] &= Q[S] K[S]^\top dV[S] \\ dO[T] &= Q[T] K[S]^\top dV[S] + \text{diag}((Q[T] \odot K[T]) \mathbf{1}_{T \times 1}) dV[T] \end{aligned}$$

So,

$$\begin{aligned} dL &= \text{tr} \left(\frac{\partial L}{\partial O[S]}^\top dO[S] \right) + \text{tr} \left(\frac{\partial L}{\partial O[T]}^\top dO[T] \right) \\ &= \text{tr} \left(\frac{\partial L}{\partial O[S]}^\top Q[S] K[S]^\top dV[S] \right) + \text{tr} \left(\frac{\partial L}{\partial O[T]}^\top (Q[T] K[S]^\top dV[S] + \text{diag}((Q[T] \odot K[T]) \mathbf{1}_{T \times 1}) dV[T]) \right) \\ &= \text{tr} \left(\left(\frac{\partial L}{\partial O} \right)^\top Q K[S]^\top dV[S] \right) + \text{tr} \left(\left(\frac{\partial L}{\partial O[T]} \right)^\top \text{diag}((Q[T] \odot K[T]) \mathbf{1}_{T \times 1}) dV[T] \right). \end{aligned}$$

So we have that

$$\begin{aligned} \frac{dL}{dV[S]} &= K[S] Q^\top \frac{\partial L}{\partial O} \\ \frac{dL}{dV[T]} &= \text{diag}((Q[T] \odot K[T]) \mathbf{1}_{T \times 1}) \left(\frac{\partial L}{\partial O[T]} \right) \end{aligned}$$

which means i th row of $\frac{\partial L}{\partial O[T]}$ will be multiplied by i th element of $(Q[T] \odot K[T]) \mathbf{1}_{T \times 1}$.

B.1.2 GRADIENT OF Q

Next we differentiate against Q ,

$$\begin{aligned} dO[S] &= dQ[S] K[S]^\top V[S] \\ dO[T] &= dQ[T] K[S]^\top V[S] + \text{diag}((dQ[T] \odot K[T]) \mathbf{1}_{T \times 1}) V[T] \end{aligned}$$

810 Which results in
811

$$812 dL = \text{tr} \left(\left(\frac{\partial L}{\partial O[S]} \right)^\top dQ[S] K[S]^\top V[S] \right) + \text{tr} \left(\left(\frac{\partial L}{\partial O[T]} \right)^\top (dQ[T] K[S]^\top V[S]) \right. \\ 813 \left. + \text{diag}((dQ[T] \odot K[T]) \mathbf{1}_{T \times 1}) V[T] \right).$$

814
815 So that
816

$$817 \frac{dL}{dQ[S]} = \frac{\partial L}{\partial O[S]} V[S]^\top K[S]. \\ 818$$

819 To derive $\frac{dL}{dQ[T]}$, we need to pull $dQ[T]$ out of the unconventional expression $\text{diag}((dQ[T] \odot K[T]) \mathbf{1}_{T \times 1})$, within the trace operator. Let's first write it in terms of Einstein summation, abbreviation $\frac{\partial L}{\partial O[T]}$, $Q[T]$, $K[T]$, $V[T]$ by X, Q, K, V respectively.
820
821
822
823

$$824 \text{tr}(X^\top \text{diag}((dQ \odot K) \mathbf{1}_{T \times 1}) V) = \sum_{ijk\ell} X_{ji} dQ_{jk} K_{jk} \delta_{j\ell} V_{\ell i}, \\ 825 \\ 826$$

827 where δ is the Kronecker delta matrix given by
828

$$829 \delta_{j\ell} = \begin{cases} 1 & \text{if } j = \ell, \\ 0 & \text{otherwise.} \end{cases} \\ 830$$

831 Note that
832

$$833 \sum_{i\ell} X_{ji} K_{jk} \delta_{j\ell} V_{\ell i} = \sum_i X_{ji} V_{ji} K_{jk} = (\text{diag}((X \odot V) \mathbf{1}_{T \times 1}) K)_{jk}. \\ 834 \\ 835$$

836 Thus the second half of the expression for dL (with respect to $dQ[T]$) is given by
837

$$838 \text{tr}((K[S]^\top V[S] \left(\frac{\partial L}{\partial O[T]} \right)^\top + (\text{diag}((\frac{\partial L}{\partial O[T]} \odot V[T]) \mathbf{1}_{T \times 1}) K[T])^\top) dQ[T]). \\ 839$$

840 Thus since diagonal matrix is invariant under transposition,
841

$$842 \frac{\partial L}{\partial Q[T]} = \frac{\partial L}{\partial O[T]} V[S]^\top K[S] + \text{diag}((\frac{\partial L}{\partial O[T]} \odot V[T]) \mathbf{1}_{T \times 1}) K[T]. \\ 843$$

844 B.1.3 GRADIENT OF K

845 Similar computation shows
846

$$847 \frac{\partial L}{\partial K[S]} = V[S] \left(\left(\frac{\partial L}{\partial O[S]} \right)^\top Q[S] + \left(\frac{\partial L}{\partial O[T]} \right)^\top Q[T] \right) = V[S] \left(\frac{\partial L}{\partial O} \right)^\top Q \\ 848 \frac{\partial L}{\partial K[T]} = \text{diag}((\frac{\partial L}{\partial O[T]} \odot V[T]) \mathbf{1}_{T \times 1}) Q[T] \\ 849$$

850 B.1.4 SUMMARY OF FORWARD PASS AND ALL GRADIENTS

851 We introduce the notation that produces a diagonal matrix dimension $T \times T$ from two
852 matrices X, Y of dimension $T \times d$:
853

$$854 \Delta(X, Y) := \text{diag}((X \odot Y) \mathbf{1}_{T \times 1}) = \left\{ \sum_{\ell} X_{i\ell} Y_{i\ell} \delta_{ij} \right\}_{ij}. \quad (4)$$

855 Then for forward, we have
856

$$857 O[S] = Q[S] K[S]^\top V[S] =: Q[S] Z[S]^\top \quad (5)$$

$$858 O[T] = Q[T] K[S]^\top V[S] + \Delta(Q[T], K[T]) V[T] =: Q[S] Z[S]^\top + U[T] V[T] \quad (6)$$

864 For backward, we have
 865

$$\frac{\partial L}{\partial Q[S]} = \frac{\partial L}{\partial O[S]} V[S]^\top K[S] =: dO[S]Z[S] \quad (7)$$

$$\frac{\partial L}{\partial Q[T]} = \frac{\partial L}{\partial O[T]} V[S]^\top K[S] + \Delta(\frac{\partial L}{\partial O[T]}, V[T])K[T] =: dO[T]Z[S] + X[T]K[T] \quad (8)$$

$$\frac{\partial L}{\partial K[S]} = V[S](\frac{\partial L}{\partial O})^\top Q =: V[S]W^T \quad (9)$$

$$\frac{\partial L}{\partial K[T]} = \Delta(\frac{\partial L}{\partial O[T]}, V[T])Q[T] =: X[T]Q[T] \quad (10)$$

$$\frac{dL}{dV[S]} = K[S]Q^\top \frac{\partial L}{\partial O} =: K[S]W \quad (11)$$

$$\frac{dL}{dV[T]} = \Delta(Q[T], K[T])\frac{\partial L}{\partial O[T]} =: U[T]dO[T]. \quad (12)$$

880 From equation 7 and equation 8 we see that $Z[S] := V[S]^\top K[S]$ should be an intermediate
 881 step to compute, of dimension $d \times d$.

882 From equation 9 and equation 11, we should compute $W := Q^\top \frac{\partial L}{\partial O}$ first to obtain a $d \times d$
 883 matrix, before pre-multiplying by $K[S]$ or post-multiplying by $V[S]^\top$ and then transpose (or
 884 transposing first, then pre-multiplying by $V[S]$).

885 From equation 6 and equation 12, we see that forward pass should save the intermediate
 886 step $Y[T] := \Delta(Q[T], K[T])$. In fact we can just save the diagonal elements, which consumes
 887 less memory.

888 From equation 8 and equation 10, we can also save the intermediate step $X[T] :=$
 889 $\Delta(\frac{\partial L}{\partial O[T]}, V[T])$.

890 While $X[T], Y[T]$ only involve $2Td$ FLOPs, W and Z involve $2Td^2$ FLOPs.

891 B.1.5 WITH SHIFTED ELU ACTIVATION

892 Shifted elu (and its derivative) are defined by

$$\varphi(x) = \begin{cases} x, & \text{if } x \geq 1, \\ e^{x-1}, & \text{if } x < 1, \end{cases} \quad \text{and} \quad \varphi'(x) = \begin{cases} 1, & \text{if } x \geq 1, \\ e^{x-1}, & \text{if } x < 1. \end{cases}$$

893 Given,

$$\begin{aligned} O[S] &= \varphi(Q[S])\varphi(K[S])^\top V[S] \\ O[T] &= \varphi(Q[T])\varphi(K[S])^\top V[S] + \Delta(\varphi(Q[T]), \varphi(K[T]))V[T] \end{aligned}$$

894 Gradients are given by (partly by guessing via dimension match)

$$\frac{\partial L}{\partial Q[S]} = (\frac{\partial L}{\partial O[S]} V[S]^\top \varphi(K[S])) \odot \varphi'(Q[S])$$

$$\frac{\partial L}{\partial Q[T]} = (\frac{\partial L}{\partial O[T]} V[S]^\top \varphi(K[S])) \odot \varphi'(Q[T]) + \Delta(\frac{\partial L}{\partial O[T]}, V[T])(\varphi'(Q[T]) \odot \varphi(K[T]))$$

$$\frac{\partial L}{\partial K[S]} = (V[S](\frac{\partial L}{\partial O})^\top \varphi(Q)) \odot \varphi'(K[S])$$

$$\frac{\partial L}{\partial K[T]} = \Delta(\frac{\partial L}{\partial O[T]}, V[T])(\varphi(Q[T]) \odot \varphi'(K[T]))$$

$$\frac{dL}{dV[S]} = \varphi(K[S])\varphi(Q)^\top \frac{\partial L}{\partial O}$$

$$\frac{dL}{dV[T]} = \Delta(\varphi(Q[T]), \varphi(K[T]))\frac{\partial L}{\partial O[T]}.$$

918 B.2 ACTIVATION FOR QUASI-LINEAR ATTENTION
919

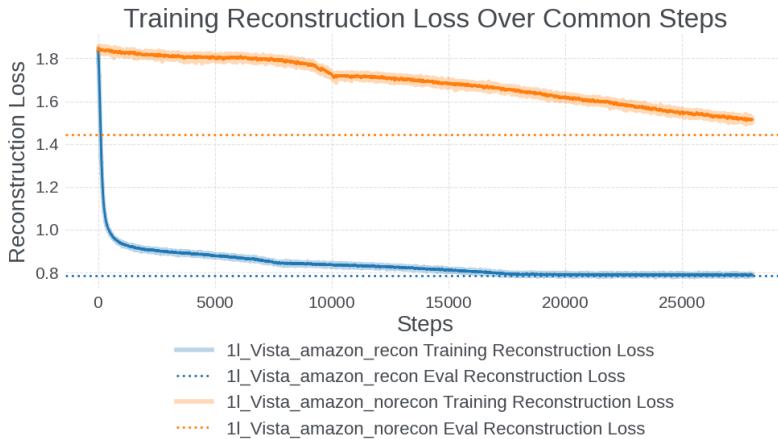
920 The choice of activation function φ in Section 3.2.2 is non-linear but otherwise arbitrary and
921 depends on the specific application at hand. The same activation also need not always be
922 used, for instance one can have two different activations φ_1 and φ_2 and apply them as:

923
$$O[S] = \varphi_1(Q[S])\varphi_2(\varphi_1(K[S])^\top V[S]),$$

924
$$O[T] = \varphi_1(Q[T])\varphi_2(\varphi_1(K[S])^\top V[S]) + \Delta(\varphi_1(Q[T]), \varphi_1(K[T]))V[T].$$

925

926 C MORE ON RECONSTRUCTION LOSS
927

928 The reconstruction loss is a measure of how much information of the full UIH is captured by
929 VISTA’s virtual embeddings. We used L2 norm to measure how much we can reconstruct
930 the original UIH given the virtual embedding as input, and we have verified that it is an
931 informative metric for us to quantitatively measure the reconstruction quality.

948 Figure 11: Comparing the reconstruction loss over training steps with and without explicitly
949 including it in the total loss on the Amazon dataset. The dotted line is the final evaluation
950 reconstruction loss.

952 On the Amazon dataset, for example, we can see that training the VISTA model without
953 explicitly minimizing the reconstruction loss still reduces the reconstruction loss of the
954 learned embedding against the full UIH as the model improves. However, the reconstruction
955 loss plateaus and the model takes longer to converge after some training steps (as our training
956 pipeline supports early stopping). With the explicit introduction of the reconstruction loss,
957 we see a dramatic decrease in the reconstruction loss in the first training steps and faster
958 model convergence. The test metrics also improved by 0.22% AUC and 1.11% NE with the
959 use of the reconstruction loss.

960 D ADDITIONAL EXPERIMENT DETAILS
961

962 D.1 DATASETS
963

965 We include more details about the datasets used in our experiments. The statistics of the
966 sequence features of each dataset are summarized in Table 5.

967
968 **Amazon-Electronics.** The Amazon Products and Reviews dataset Hou et al. (2024)
969 contains user reviews, item metadata, and user-item interactions. A subset of this data
970 was preprocessed to make the Amazon-Electronics dataset, which is restricted to electronics
971 items, initiated by Zhou et al. (2018). The data format is relatively simple, with the columns:
label, user id, item id, category id, item history, and category history.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 5: Dataset Statistics

Dataset	Mean Seq.	Max Seq.
Amazon-Electronics	8.93	429
KuaiRand-1K	225.20	256
Simplified Prod	1528.18	2,000
Industrial-Scale Data	7,000	16,000

KuaiRand-1K. The KuaiRand dataset by Gao et al. (2022) is a sequential recommendation dataset collected from the recommendation logs of the video-sharing mobile app Kuaishou. The KuaiRand-1K subset contains a random sample 1,000 users after removing irrelevant videos. There are 4 million videos remaining in this subset. Our experiments use a subset of all features available in KuaiRand-1K, namely user id, video is, video is history, click history, like history, and lvv (long video view) history.

Simplified Production and Industrial-Scale Data. The full production data is too large to be able to run simple experiments quickly (and requires re-implementing baseline models on internal systems). We construct a minimal version of our production data to focus on the sequential recommendation task (e.g., keeping the user interaction history largely intact but removing other features). After preprocessing, this dataset has a mean sequence length of around 1528 and maximum truncated to 2,000.

D.2 FUXICTR FRAMEWORK

We utilize the FuxiCTR library developed by Zhu et al. (2022; 2021) for our traditional sequential setting experiments. As mentioned in the main text, we designed the traditional sequential setting experiments mainly to compare the effectiveness of the attention layers and keep constant other model architecture and hyperparameter choices. (See Figure 12.)

We also report the common hyperparameters used in all the experiment results in Table 13.

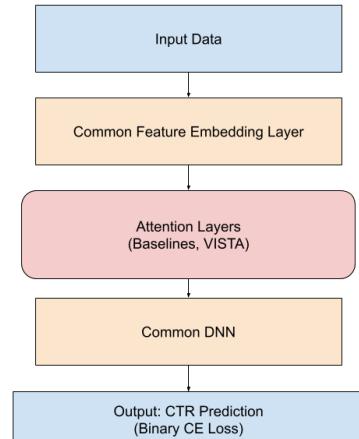


Figure 12: FuxiCTR Setup.

Hyperparameter	Amazon	KuaiRand	Simplified Prod
Learning Rate	5.0e-4	1.0e-4	1.0e-3
Optimizer	Adam	Adam	Adam
Batch Size	1024	1024	128
Batch Norm	No	No	Yes
Early Stop Patience	4	5	1
Embedding Regularizer	0.005	None	None
Embedding Dimension	64	32	32
Embedding Initializer	1e-4	1e-4	1e-4
MLP Hidden Units	[1024, 512, 256]	[512, 128, 64]	[512, 128, 64]
MLP Activations	RELU	RELU	RELU
# Attention Heads	4	4	4
# Attention Layers	1	1	2

Figure 13: Common hyperparameters used for traditional setting experiments.

The model-specific parameters for VISTA are the number of seeds and weight for the reconstruction loss, which were set at 128 and 1.0, respectively, for all experiments. No specific hyperparameter tuning was done, mainly relying on using common parameters for all models and repeating across 3 seeds for each model and dataset.

D.3 MORE ON VISTA’s TWO-STAGE ATTENTION

Case Study 1: Same User, Different Candidates. In the following Figure 14, we show the input to the virtual attention layer, the output of the virtual attention layer, and then

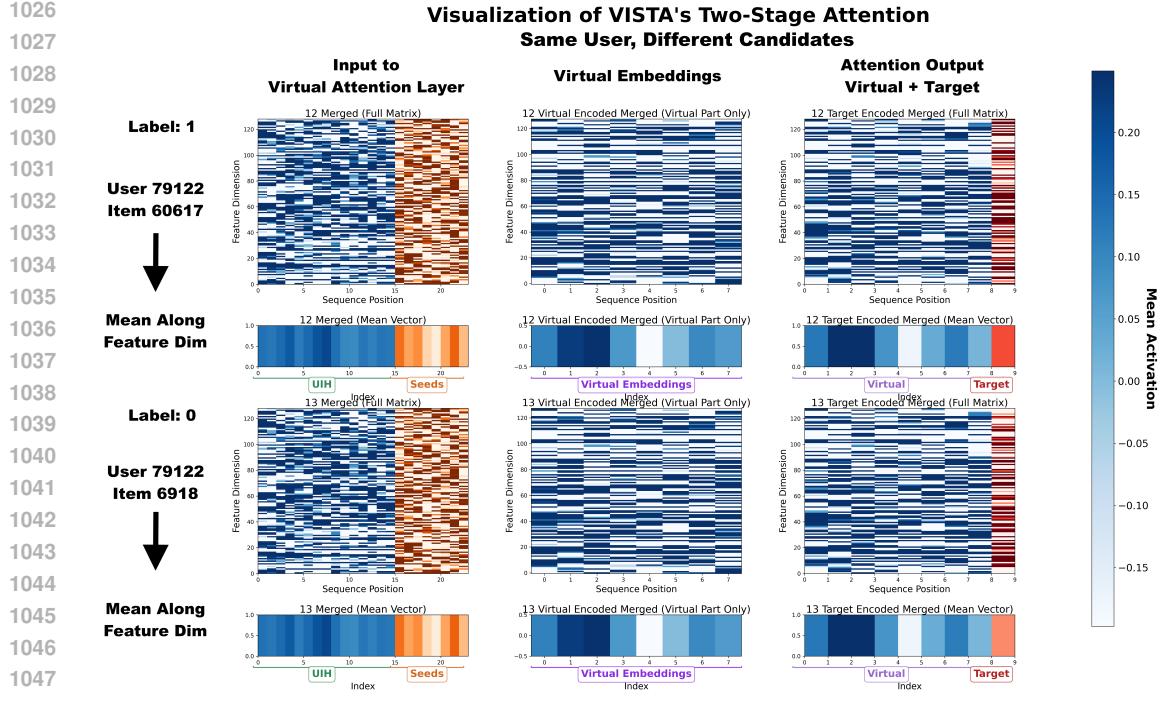


Figure 14: Visualizing the virtual attention and target attention layers for the same user on two different candidates (one positive at the top and one negative at the bottom).

the output of the target attention layer for the same user for two different candidates (one positive at the top and one negative at the bottom) from the Amazon-Electronics dataset. We also reduce these along the feature dimension for compact visualization. Note that since we are looking at two candidates for the same user, the input to the virtual attention layer and the output of the virtual attention layer are identical; these only depend on the user's individual UIH and the virtual seed embeddings which are common between the two. The difference in this case comes at the target attention part. Here we see that the target attention differentiates between positive and negative candidates for this user as evidenced by the differing mean activation for the target embedding.

Case Study 2: Different UIH Lengths. We also look at a case study comparing two different users with different UIH histories, one with a very short history (length 4) and another with a slightly longer history (length 12) in Figure 15. Even with very little historical data (UIH length 4 at the top), the virtual seed embeddings appear to help influence the virtual embeddings, which in turn help with model performance.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

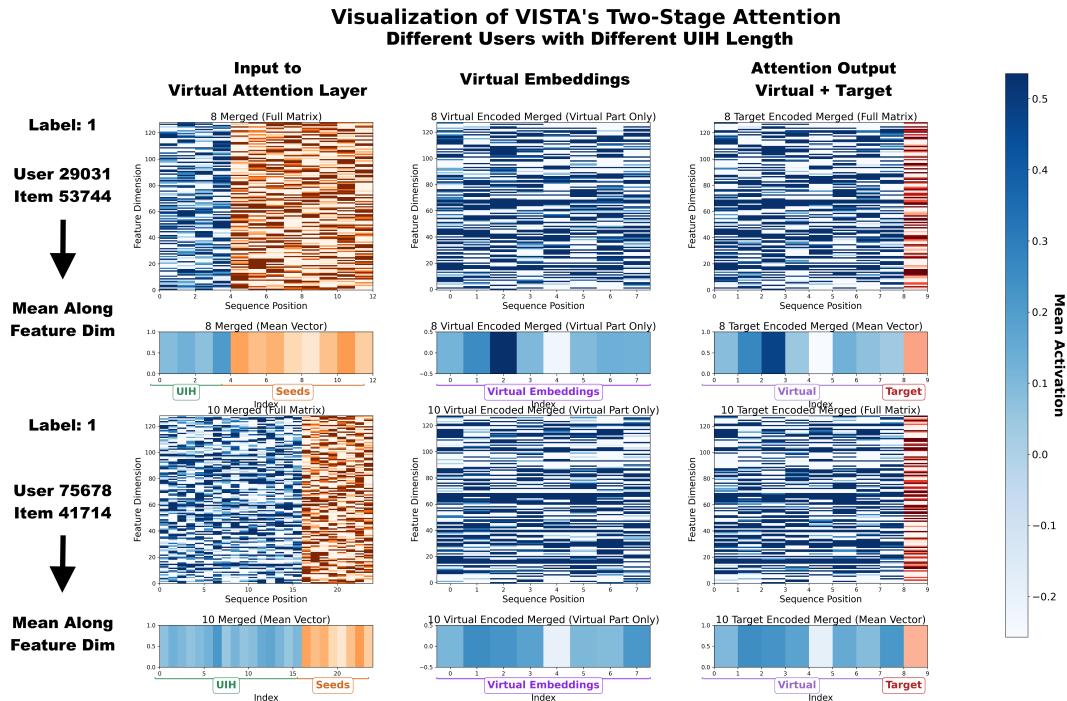


Figure 15: Visualizing the virtual attention and target attention layers for the different users having different UIH sequence lengths (both positive candidates).