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Abstract

Modern large-scale recommendation systems rely heavily on user interac-
tion history sequences to enhance the model performance. The advent
of large language models and sequential modeling techniques, particularly
transformer-like architectures, has led to significant advancements recently
(e.g., HSTU, SIM, and TWIN models). While scaling to ultra-long user
histories (10k to 100k items) generally improves model performance, it also
creates significant challenges on latency, queries per second (QPS) and GPU
cost in industry-scale recommendation systems. Existing models do not
adequately address these industrial scalability issues. In this paper, we
propose a novel two-stage modeling framework, namely VIrtual Sequential
Target Attention (VISTA), which decomposes traditional target attention
from a candidate item to user history items into two distinct stages: (1) user
history summarization into a few hundred tokens; followed by (2) candidate
item attention to those tokens. These summarization token embeddings
are then cached in storage system and then utilized as sequence features
for downstream model training and inference. This novel design for scala-
bility enables VISTA to scale to lifelong user histories (up to one million
items) while keeping downstream training and inference costs fixed, which
is essential in industry. Our approach achieves significant improvements in
offline and online metrics and has been successfully deployed on an industry
leading recommendation platform serving billions of users.

1 Introduction

Personalized recommendation systems are now integral to digital platforms like streaming
services, e-commerce, and social media, where they boost user engagement and drive key
metrics such as click-through rates (CTR), session duration, and retention. The success of
these systems hinges on their ability to accurately predict user preferences by processing
and interpreting vast user histories.

While traditional recommendation models, such as collaborative filtering (Sarwar et al.,
2001) and matrix factorization (Koren et al., 2009), laid the groundwork for personalized
recommendation, they often struggle to scale and capture long-term user behaviors. Deep
learning introduced more powerful solutions, and the recent integration of large language
models (LLMs) and sequential modeling techniques such as transformers (Section 2) has
marked a significant leap forward, enabling the capture of intricate interactions across vast
user histories.

In the domain of recommendation systems, two primary types of sequence modeling tech-
niques have been explored: full user sequence modeling, as seen in Hierarchical Sequential
Transduction Units (HSTU) (Zhai et al., 2024), and target-specific sequence sampling, as seen
in Search-based Interest Modeling (SIM) (Pi et al., 2020) and its subsequent works (Chang
et al., 2023; Si et al., 2024). Both approaches have demonstrated success in enhancing
recommendation system performance by harnessing users’ extensive historical interactions.
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Figure 1: VISTA replaces standard attention with a two-stage process, allowing downstream
models to compute only the highly efficient second stage.

Despite their success, full sequence modeling suffers from the computational cost of scaling.
Modeling full user interaction sequences which are usually on the scale of O(100K) in length
often leads to enormous computational costs and latency issues, which are very challenging
for industrial recommendation systems that need to train O(10B) to O(100B) examples
per day and have strict latency upper limits during inference. As a result, the full sequence
modeling methods such as HSTU (Zhai et al., 2024) are hindered by high computational
costs, limiting its widespread adoption across industries where many companies are still
short of GPU capacities.

The second approach, target-specific sequence sampling, has been extensively explored
through a series of seminal works, including SIM (Pi et al., 2020), TWIN (Chang et al.,
2023), and TWIN V2 (Si et al., 2024). These studies have demonstrated the effectiveness
of leveraging user historical interaction sequences. However, subsequent research in this
direction has encountered two significant challenges: (1) bridging the gap between attention
to the target-specific shortened sequence and the full user sequence, which, however, was
partially addressed in follow-up work TWIN (Chang et al., 2023); and (2) the computational
cost increases linearly with the number of candidates to predict at inference time, due to
the independent target-specific sequences. These two challenges remain largely unresolved,
primarily due to the inherent design limitations of SIM-style models.

Addressing the challenges of scalability in recommendation systems will assist with their
widespread adoption. In this paper, we propose a novel two-stage modeling framework,
VIrtual Sequential Target Attention (VISTA), designed to overcome the scalability challenges.
The first stage compresses the ultra-long user interaction history into a few hundred of
summarization embeddings (see Fig. 1); the second stage serves as efficient candidate aware
target attention mechanism that leverages the summarization from the first stage for final
prediction. The first stage occurs only during foundational model training, where the
resulting summarization embeddings are cached to conceptually represent user embeddings.
Consequently, downstream model training and inference only need to perform the second
stage: computing attention between a candidate item and these cached embeddings, instead
of processing the full user interaction history. This approach significantly reduces the
computational complexity for downstream models, especially during inference, at the cost of
additional storage. In practice, this is a worthwhile trade-off, as the cost of GPU computation
remains multiple orders of magnitude higher than the cost of storage.

As a summary of our contributions, to the best of our knowledge we are the first to propose:

• A two-stage attention framework to decouple foundational model training and downstream
model training and inference, which enables us to leverage ultra-long user histories for
better recommendation model performance in industrial-scale systems,

• A quasi-linear attention formulation tailored for recommendation models,
• A generative sequential reconstruction loss in recommendation models, and
• A practical embedding delivery system successfully deployed in an industrial-scale platform.

2 Related Work

Hierarchical Sequential Transduction Unit (HSTU). A significant advancement in
this area is the Hierarchical Sequential Transduction Unit (HSTU) (Zhai et al., 2024), which
reframes recommendation as a sequential transduction problem. Designed specifically for
high-cardinality, non-stationary streaming recommendation data, HSTU surpasses traditional
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Figure 2: An overview of VISTA architecture.

models in both accuracy and efficiency. This architecture allows recommendation systems to
scale to trillions of parameters, leading to substantial gains in predictive performance.

Transformer Architectures in Recommendation Systems. The application of trans-
former architectures in recommendation systems has been explored extensively. By leveraging
the self-attention mechanism, transformers can model complex user-item interactions over
time, facilitating more nuanced and personalized recommendations (Subbiah and Aggarwal,
2024). The Deep Interest Network (DIN) (Zhou et al., 2018) and its follow-up work, Search-
based Interest Modeling (SIM) (Pi et al., 2020; Chang et al., 2023; Si et al., 2024), leverage
lifelong sequential behavior data. This approach employs search-based mechanisms, also
known as General Search Units (GSUs), to select a small subset of relevant interactions from
the user’s historical sequence that are pertinent to the target item followed by a standard
transformer network, referred to as Exact Search Units (ESUs), to compute the final target
item representation. Notably, this method enables the modeling of user behavior data
with lengths reaching up to hundreds of thousands (Pi et al., 2020). Other methods (Liu
et al., 2023) preprocess user histories into groups and attend to the group embeddings, and
separately attend to subsequences in the user history relevant to the target item.

Linear Complexity Attention Mechanisms. Apart from Flash Attention (Dao et al.,
2022; Dao, 2023) that is designed to improve the efficiency of the softmax attention mecha-
nisms, there is a new trend to explore linear complexity attention mechanisms. Katharopoulos
et al. (2020a) first proposes linear attention. By applying matrix multiplication associative
property, it enables a change in computation order from (QKT )V to Q(KTV ), reducing
computation complexity from O(N2) to O(N) with respect to sequence length N . Recently,
Lightning Attention v1 (Qin et al., 2024a) and v2 (Qin et al., 2024b) propose a light network
which contains Gated Linear Attention (GLA) and Simple Gated Linear Unit (SGLU) to
make linear attention more practical. Another branch of linear complexity work, namely state
space model (SSM), has been widely studied. Mamba (Gu and Dao, 2024) is a pioneering
work in SSM and widely used in many real-world applications, followed by Hydra (Hwang
et al., 2024) which is the double-headed version of Mamba to address non-causal scenarios.

3 Method

Here we introduce the details of VISTA’s two cascaded modules: ultra-long user interaction
history (UIH) sequence summarization and target-aware attention, followed by details of a
practical linear complexity self-attention and generative sequence reconstruction loss. We
then explain how VISTA’s design enables the scaling, storage, and processing of industry-scale
user history sequences through its embedding delivery system.
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3.1 Model Architecture Overview

As illustrated in Figure 2, the VISTA architecture employs distinct workflows for training and
inference. During training, the computationally expensive UIH summarization module runs
to generate summary embeddings. These embeddings are then quantized and exported to a
large key-value cache in O(100) terabytes to O(1) petabytes. For inference, this expensive
step is bypassed entirely. Instead, the pre-computed embeddings are simply retrieved from
the cache and dequantized with minimal distortion. The final component, the target attention
module, operates in both phases, using the summarization embeddings and candidate item
features to make predictions.

3.2 Ultra-long UIH Sequence Summarization

Figure 3: Visualization of UIH sum-
marization embeddings.

In the first stage, we utilize self-attention with virtual
seed embeddings to summarize ultra-long UIH se-
quences. These virtual seeds are initialized randomly
as shared parameters across users, which are updated
with the model through its interaction with the UIH
sequence in the summarization module. The output
of the summarization module can be interpreted as
user embeddings, encoding individual personalized
preferences to inform recommendations. Figure 3 vi-
sualizes these summarization embeddings, projected
onto the first 2 principal components by principal
component analysis (PCA). We can clearly see the
separation for users of different countries, with US
and Canada overlapping, which is expected.

However, typical softmax attentions suffer from O(N2) time complexity, which is prohibitive
when dealing with ultra-long sequences (N > 10k). Therefore, we propose quasi-linear
attention(QLA), a linear time complexity O(N) self-attention mechanism to overcome this
issue.

3.2.1 Linear Attention with Candidate Items for Recommendation

With the emergence of Large Language Models (LLMs), researchers have proposed some
linear complexity attention algorithms to accelerate transformer blocks (Katharopoulos et al.,
2020a; Qin et al., 2024a;b; Han et al., 2024). However in recommendation systems, unlike the
text sequences in LLM, a strict rule is that the candidates cannot attend each other, since it
introduces label leakage due to the fact that the logged candidates typically only form a small
subset of the input candidates during inference. Therefore, we propose a linear-complexity
self attention mechanism that avoids attention among candidates.

The typical softmax self attention for a UIH sequence S can be formulated as follows

SoftmaxAttn(S ⇒full S) = RowSoftmax(QK⊤)V

where Q, K and V have shape (L, d) and L is the sequence length. Then the original linear
attention (Katharopoulos et al., 2020b) for a UIH sequence S can be written similarly as
follows

LinAttn(S ⇒full S) = RowNormalize(QK⊤)V (1)

= Q(K⊤V )/RowSum(QK⊤) = Q(K⊤V )/(Q ColSum(K)⊤).

Note that division / here stands for broadcast division along the rows. The above can be
applied to full (bi-directional) self-attention.

In recommendation models, we also have target (candidate) items, let’s denote them by T .
Then we want to compute target attention of T against K and V .

LinAttn(T ⇒full S) = T(K⊤V)/(T ColSum(K)⊤). (2)
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Figure 4: The QLU module. Figure 5: Generative reconstruction loss.

Note that candidates cannot attend to each other. This is a strict rule in recommendation
systems otherwise the model training will fail due to the leakage between candidate items. It
gets slightly trickier if we also want each candidate to attend to itself. Instead of TT⊤T , the
contribution due to the self attention of each target item to itself is given by

LinAttn(T ⇒individual T) = Diag(TT⊤)T. (3)

3.2.2 Quasi-linear Attention for Recommendation

Despite its efficiency, some previous works (Han et al., 2024; 2023) prove that linear attention
suffers from insufficient expressive power, making it impractical for real applications. In this
section, we introduce quasi-linear attention (QLA) as an empirically effective linear attention
algorithm for recommendation. This quasi-linear attention introduces more non-linear
complexity in attention computation, addressing the issue of expressive power.

The quasi-linear attention contains two parts: Quasi Linear Unit (QLU) module and Simple
Gated Linear Unit (SGLU) module. The QLU module aims to model the interaction of
Q,K, V matrices with SiLU non-linear activation as shown in Figure 4. For the SGLU
module, we use the same gated function as TransNormerLLM (Qin et al., 2024a).

Accordingly, we need to slightly modify the above linear attention formulation to accommodate
this QLU module. For the self attention part we let the user history items attend to one
another. Similar as in HSTU (Zhai et al., 2024), SASRec (Kang and McAuley, 2018),
and Pinnerformer (Pancha et al., 2022), usually the causal self-attention approach via a
triangular mask is used. In our case, we did not find significant difference between causal
and full self attention, since the user history items merely serve as features for the final
candidate prediction task – their temporal causality is not a strict requirement. Let φ
denote a non-linear activation function (we use SiLU in our experiments), then the full self
quasi-linear attention modified from Eq. (1) is as follows.

O[S] = φ(Q[S])φ(φ(K[S])⊤V [S])

where [S] denotes the source (user history) portion of the sequence. Note that we remove
the RowNormalize operation, similarly as in Lightning Attention (Qin et al., 2024a;b).

For the target portion of the query sequence embeddings, we can similarly apply φ-linear
attention between Q[T ] and K[S], V [S]. However to be consistent with the self-attention
semantics, we also include an extra term that captures attention to the target item itself.
Thus, the final formula for the target portion of the quasi-linear attention, modified from
Eq. (2) and (3) is given by

O[T ] = φ(Q[T ])φ(φ(K[S])⊤V [S]) + ∆(φ(Q[T ]), φ(K[T ]))V [T ].

Here ∆(X,Y )ij :=
∑

k XikYikδij stands for putting the row-wise dot product between the
two matrices X and Y of shape n×m on the diagonal of a square matrix of shape n× n.
In order to implement the quasi-linear attention efficiently using the Triton language (Tillet
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Figure 6: An overview of VISTA sequence summarization embedding delivery system.

et al., 2019) for optimized GPU computation performance, we also calculate the gradient of
the final loss function with respect to the input tensors Q[S], Q[T ],K[S],K[T ], V [S], V [T ],
in terms of the gradient with respect to the output tensor O[S], O[T ] in Appendix B.

3.2.3 Generative Sequence Reconstruction Loss

To further enhance the memorization effects, we also introduce a reconstruction loss (see
Fig. 5) to encourage the sequence summarization to fully reproduce the UIH sequence, which
we find particularly useful to improve VISTA’s performance. Intuitively, to reconstruct
the i-th UIH item embedding, we are using all the seed embeddings and the UIH item
embeddings up to the (i− 1)-th position. A natural way to accomplish this is via the decoder
network, such as the causal transformer decoder, without the softmax layer. Formally,

(t1, . . . , tk, v1, . . . , vM ) = Decoder(s1, . . . , sk, u1, . . . , uM ).

where s1, . . . , sk are the personalized seed embeddings, and u1, . . . , uM are the UIH item
embeddings. We can feed their concatenation through the causal softmax attention block (or
any other transformer block) to get the output embeddings concatenated as t1, . . . , tk and
v1, . . . , vM where k is the number of seeds and M the length of the user history sequence.
Then we can simply form the off-by-one mean square error of the vi’s with the ui’s as the
construction loss as Lreconstruct =

∑M−1
i=1 ∥vi − ui+1∥22.

Since causal transformer block ensures that the output embedding vi only depends on
u1, . . . , ui, there is no leak of information from ui+1 to vi. This forces the personalized seed
embeddings si to maximize information retained of the user history sequence u1, . . . , uM .
Similar ideas have roots in the Variational Auto-Encoder (Kingma and Welling, 2022), and
have appeared in the context of transformer networks recently (Henderson and Fehr, 2022).
However to the best of our knowledge, there has not been any explicit use in recommendation.
For more discussion on this reconstruction loss, see Appendix C.

3.3 Target-aware Attention

As shown in Figure 2, any attention network can technically be used for the target-aware
attention stage. Because this step is computationally inexpensive compared to sequence
summarization, we selected a standard O(N2) transformer block, which delivers excellent
performance on the compact summary sequences.

4 Embedding Delivery System

We emphasize that the VISTA framework is not merely a theoretical model, but a novel
industrial model system co-design to support large scale user interaction history sequence
learning that can be deployed into the real industry infrastructure with reasonable cost.
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Figure 6 outlines the system’s end-to-end architecture, which comprises three main stages:
(1) online training of the source model using training data stream, (2) delivery of sequence
summarization embeddings to downstream models via two routes: a real-time message queue,
e.g., Kafka (Kreps et al., 2011) and persistent storage, e.g., Hive (Thusoo et al., 2009), and
(3) serving embeddings through a geographically replicated in-memory key-value store. In
our system, we update the summarization embeddings on a 2-hour cadence, which was shown
to have similar performance compared to using the summarization module directly in online
A/B tests. This design ensures both real-time performance and scalability for industrial
applications. For scalability, we deliberately compress the user interaction history sequence
to O(100) terabytes level, making it feasible to deploy to existing systems.

5 Experiments

5.1 Datasets and Experimental Setup

The proposed VISTA framework is designed for a large scale real-world dataset, where one
needs to train hundreds of billions of examples per day and each user has a history which
contains hundreds of thousands of items. While existing public datasets are usually much
smaller, we compare our method against several baselines on public datasets in addition to
reporting results on real production data.

5.1.1 Public Dataset and Industrial-Scale Dataset

We first compare the effectiveness of VISTA against several baseline models on public
datasets Amazon-Electronics 1 and KuaiRand-1K 2. To focus mainly on the effectiveness of
the attention mechanism, we compare VISTA against baselines in replacing the attention
layers in a common model architecture. All models are implemented, trained, and evaluated
under the FuxiCTR 3 framework, focusing on click-through rate prediction. Additionally,
we introduce a Minimal Production dataset from real production data, compatible with
FuxiCTR having minimal features but with longer sequences up to 2,000.

For industrial-scale offline experimentation, we construct full training and evaluation samples
from real production data, with several metrics for engagement, which we denote by “C-
Task”, “E1-Task”, etc. We use 3-day data as the training set and the next 1-day data as
the evaluation set in our offline experiment. The scale of training examples per day is at
O(10) billion level. The average and maximum UIH sequence lengths are 7,000 and 16,000,
respectively. Note that we deploy the model with 12,000 UIH sequence length in online
experiments, but we only use 2,000 in offline experiments due to GPU resource constraints.

Table 1: Dataset Statistics

Dataset Mean Seq. Max Seq.
Amazon-Electronics 8.93 429

KuaiRand-1K 225.20 256
Simplified Prod 1528.18 2,000

Industrial-Scale Data 7,000 16,000

5.1.2 Baselines and Evaluation Metrics

All models share a common feature embedding layer and MLP block, with consistent
hyperparameters, e.g., embedding dimensions, layers, attention heads, for fair comparison. We
briefly describe them: (1) Deep Interest Network (DIN) (Zhou et al., 2018) uses attention to
adaptively weigh user historical behaviors, (2) Two-Tower Sparse Network (TTSN) (Covington
et al., 2016) separately encodes user and item features via two towers, (3) the standard
Multi-Head Attention (MHA) (Vaswani et al., 2017), (4) SASRec (Kang and McAuley, 2018)
is self-attentive sequential recommendation model that uses the Transformer architecture,

1https://github.com/reczoo/Datasets/tree/main/Amazon/AmazonElectronics_x1
2https://kuairand.com/
3https://github.com/reczoo/FuxiCTR
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Table 2: Comparisons on public and Minimal Production datasets. VISTA-w/-QLA and
VISTA-w/o-QLA are the VISTA model with and without quasi-linear attention, respectively.4

Models Amazon KuaiRand Minimal Production
AUC (↑) NE (↓) AUC (↑) NE (↓) AUC (↑) NE (↓)

DIN 0.873± 8e−4 0.656± 1e−4 0.744± 0.003 0.864± 0.005 0.632± 0.02 1.048± 0.033
TTSN 0.877± 0.005 0.644± 0.010 0.740± 0.003 0.869± 0.004 0.648± 0.005 1.139± 0.156
MHA 0.881± 1e−4 0.634± 0.002 0.743± 0.001 0.863± 0.005 0.630± 0.018 1.049± 0.041

SASRec 0.884± 4e−4 0.627± 0.001 0.742± 0.003 0.868± 0.007 0.605± 0.020 1.129± 0.134
HSTU 0.884± 0.001 0.628± 0.001 0.743± 0.001 0.863± 1e−5 0.668± 0.011 1.099± 0.048

VISTA-w/o-QLA 0.886± 0.002 0.621± 0.005 0.744± 0.001 0.863± 0.003 0.628± 0.014 1.024± 0.03
VISTA-w/-QLA 0.884± 0.005 0.623± 0.003 0.743± 4e−4 0.864± 0.001 0.632± 0.013 1.062± 0.076

Figure 7: Ablation study on quasi-linear attention by varying sequence length.

and (5) Hierarchical Sequential Transduction Units (HSTU) (Zhai et al., 2024) is an industry
proposed transformer-like model designed to capture multi-scale sequential patterns in user
behavior sequence.

We use normalized entropy (NE) (He et al., 2014) as our evaluation metric, which calculates
the cross entropy between the predicted probabilities and the labels, then normalizes it by
the entropy of the constant predictor at label average. We also report the area under curve
(AUC) for the traditional setting. Additional details about this section are in Appendix D.

5.2 Offline Experimental Results

5.2.1 Public Dataset Results

In Table 2, we summarize the comparative results between VISTA and the baseline models.
For the Amazon-Electronics dataset, VISTA outperforms the other baselines with the use of
quasi-linear attention being the next best model. On the KuaiRand dataset, VISTA slightly
outperforms the other models with similar NE to HSTU and MHA. This may suggest that
even at smaller sequence lengths, the virtual seeding embeddings slightly help the model
performance. On much longer sequences in Minimal Production, we see that HSTU and
VISTA perform best demonstrating that both are designed for handling longer sequences.

Figure 7 shows the ablation study results of quasi-linear attention by varying the sequence
length on the Minimal Production dataset. We can clearly see that the QLA mechanism
significantly reduces the the time to train and evaluate 1 epoch of data, while there are small
differences in AUC and NE.

Figure 8 shows the scaling law of increasing number of seed embeddings. We can clearly
see that the model performance improves with larger number of seed embeddings, which,
however, will incur more storage capacity cost in real world production scenario. Thus, in
practice it is a tradeoff between model performance and financial cost.

Figure 10 compares the target embeddings, the output of VISTA’s two-stage attention mod-
ules, for different items given the same user history from Amazon-Electronics. Embeddings
between items from the same category are more similar than those from different ones, as
expected.

4Comparisons to the next best model are significant at the p < 0.001 level when using a paired
t-test. ANOVA tests with multiple next-best models are significant at the p < 0.001 level.
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Figure 8: Ablating VISTA across number of seed embeddings
on Amazon-Electronics.

Figure 9: Inference time gains
with increasing UIH lengths.

(a) Same category (142). (b) Same category (368). (c) Different categories (each).

Figure 10: Pairwise cosine similarity of the output of two-stage attention of VISTA. For the
same user, we compare the target attention output for items of similar or different categories.

Table 3: Offline comparative results with the baseline model and ablation models.

Models Training NE (↓) Eval NE (↓)
C-Task E1-Task E2-Task E3-Task C-Task E1-Task E2-Task E3-Task

HSTU - - - - - - - -
VISTA -0.47% -0.82% -2.30% -1.72% -0.40% -1.19% -2.98% -2.23%

VISTA-128D -0.32% -0.50% -1.86% -1.43% -0.29% -1.07% -2.51% -1.82%
VISTA-64Seed -0.36% -0.68% -1.70% -1.45% -0.37% -1.11% -3.01% -2.09%

VISTA-w/o-Recon -0.42% -0.72% -2.32% -1.69% -0.29% -1.29% -3.00% -2.21%

5.2.2 Industrial-Scale Dataset Results

In Table 3, we compare our proposed VISTA model with the baseline production model using
HSTU as the backbone in both offline and online experiments, on the industrial-scale dataset.
In this setting, there are multiple tasks which measure different aspects of engagement
information. We report the main consumption task (“C-Task”), and other engagement
events (“E1-Task”, “E2-Task”, and “E3-Task”). To further understand the effectiveness of the
model, we also conduct ablation studies by varying the embedding dimension, the number
of seeds, and the use of generative reconstruction loss. As shorthands, (1) VISTA stands
for the optimized proposed model co-trained with the baseline HSTU model, with 3-layer
self-attention, 3-layer target-aware attention, 128 seeds, 256 embedding dimension and
2, 000 UIH sequence length. (2) VISTA-128D stands for VISTA model with 128 dimension
embedding. (3) VISTA-64Seed stands for VISTA model with 64 seeds. (4) VISTA-w/o-Recon
stands for VISTA model without generative reconstruction loss. The results demonstrate
that our optimized VISTA configuration (128 seeds, 256 embedding dimension, and 2, 000
UIH sequence) significantly outperforms the standalone HSTU baseline for training and
evaluation NE metrics.

Table 4 summarizes the performance improvement of QLA compared with the standard
self-attention on production dataset, where we can see that the QLA is able to scale up with
more layers and longer sequence for better NE metrics and even higher QPS.

Figure 9 shows the VISTA’s advantage on inference performance, especially for much longer
sequence lengths. This is expected since VISTA’s main strength is to cache the UIH
summarization. Thus, the most computationally expensive module, UIH summarization
module, is deactivated during inference.

9
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Table 4: Comparing VISTA with and without quasi-linear attention.

Model Variant Max Seq. Layers QPS (↑) Training NE (↓) Eval NE (↓)
VISTA-w/o-QLA 6,000 3 - - -
VISTA-w/-QLA 16,000 5 +5% -0.1% -0.13%

5.3 Online A/B Experimental Results

We conducted an online A/B test on our production video recommendation system, using 5%
of the entire site traffic during a period of 15 days. The baseline is the HSTU model and we
compare with adding the VISTA module, which is the same as our offline experiment setup.
Online metrics for the main consumption task “C-Task” and other online onboarding metrics,
“O1-Task” and “O2-Task”, were significantly improved by 0.5%, 0.2%, 0.04%, respectively.
VISTA demonstrated a 94% reduction in inference GPU resource (measured by inference
QPS) usage by caching and serving embeddings, rather than re-computing them for every
new user request. With a 0.01% “O2-Task” gain considered a substantial improvement on
our platform, the VISTA model made realized contributions to the recommendation system.

6 Conclusion and Discussions

In this paper, we have proposed the VIrtual Sequential Target Attention (VISTA) framework,
a novel two-stage approach that compresses ultra-long user interaction histories into a set of
compact embeddings. This design strikes a crucial balance between computational efficiency
and predictive accuracy, addressing the latency and scalability challenges of processing
ultra-long user sequence data in production systems. VISTA’s practical applicability is
underscored by its resilience to slight de-synchronization between its stages and its ability to
approximate complex transformer architectures without their substantial computational cost.
Our empirical evaluations demonstrate that VISTA not only captures the core information
within user interactions but also achieves significant improvements across platform metrics.
Our plans for future research involve further optimizing VISTA’s compression techniques
and exploring its applications cross other domains to enhance its generalizability.
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A Usage of LLMs Disclosure

In this section, we disclose the usage of LLMs in the preparation of this manuscript. LLMs
were used for 1) polishing writing or shortening limited blocks of text and 2) for generating
template code for plotting or minor changes of existing code. LLMs were NOT used for
retrieval and discovery (e.g., finding related work), research ideation, or any other purpose
not explicitly outlined in the above.

B Mixed Full Linear Attention

To simplify triton implementation, especially for the gradient computation, our quasi-Linear
Attention drops the normalization (RowNormalize) in the usual linear attention, similar to
lightning attention. Instead we can mimic what SiLU attention does, by introducing a 1/N
factor.

O = (QKT )⊙MV/N,

where ⊙ is the Hadamard product (componentwise multiplication of two matrices, and

M =

(
1n×n 0n×m

1m×n Im

)
. To compute this in triton, first break into two parts.

Q =

(
Q[S]
Q[T ]

)
, Q[S] ∈ Rn×d, Q[T ] ∈ Rm×d,

K =

(
K[S]
K[T ]

)
, K[S] ∈ Rn×d, K[T ] ∈ Rm×d,

V =

(
V [S]
V [T ]

)
, V [S] ∈ Rn×d, V [T ] ∈ Rm×d.

We will divide n+m into A blocks of size n′, and divide n into B blocks of size n”, so that
Qi are submatrices of dimension n′ × d, and Kj , Vj are submatrices of dimension n”× d.

First we compute

(QK[S]TV [S])i = Qi

B∑
j=1

K[S]⊤j V [S]j .

Next we compute the target part: we divide m into C blocks of size m′ each. For the j-th
block, it’s given by

((Q[T ]K[T ]⊤ ⊙ Im)V [T ])j = diag((Q[T ]j ⊙K[T ]j)1m′×1)V [T ]j .

We usually merge the source and target embedding sequences in an interleaved fashion.
To avoid HBM/SRAM sync, we probably should keep track of the offsets of the boundary
between source and target, and let n′ = m′, so that for the target part, we will overlap the
two computation and obtain

O[S]ℓ = Q[S]ℓ

B∑
j=1

K[S]⊤j V [S]j

O[T ]ℓ = Q[T ]ℓ

B∑
j=1

K[S]⊤j V [S]j + diag((Q[T ]ℓ ⊙K[T ]ℓ)1m′×1)V [T ]ℓ

In terms of triton implementation, we will use positive offsets for target, and negative offsets
for source, all starting from the boundary offset.

Note that the sum
∑B

j=1 K[S]⊤j V [S]j can be computed first, then multiplied with Q[S]ℓ,
Q[T ]ℓ etc. By choosing the block size n′ = m′ sufficiently small, and if necessary, also
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break the block V [S], V [T ] along the columns into smaller dimension d′|d, we can ensure all
O[S]ℓ, O[T ]ℓ blocks can be computed entirely in SRAM with a single for loop.

To replace linear attention with (traditional) SiLU attention for target to source, we need to
replace the second line above with

O[T ]ℓ =

B∑
j=1

SiLU(Q[T ]ℓK[S]Tj )V [S]j + SiLU(Q[T ]ℓ ⊙K[T ]ℓ1m′×1)V [T ]ℓ.

Here we cannot compute all the O[T ]ℓ blocks easily, but instead need to have m/m′ SM’s to
compute them separately, otherwise each SM would incur a big for loop of Bm/m′ iterations.
Given H100 has about 132 SMs and batch size per rank is 512, using more SMs will likely
slow things down.

B.1 Gradient Computation

∂L

∂V
= tr

((
KQ⊤ ∂L

∂O

)
⊙M⊤

)
/ N

∂L

∂Q
= tr

((
KQ⊤ ∂L

∂O

)
⊙M⊤

)
Given that L = L(O[S], O[T ]), and O[S] and O[T ] are disjoint, we can compute

dL =
∑
ij

∂L

∂O[S] ij
dO[S]ij +

∑
ij

∂L

∂O[T ] ij
dO[T ]ij

B.1.1 Gradient of V

If we differentiate against V , we have

dO[S] = Q[S]K[S]⊤dV [S]

dO[T ] = Q[T ]K[S]⊤dV [S] + diag((Q[T ]⊙K[T ])1T×1)dV [T ]

So,

dL = tr

(
∂L

∂O[S]

⊤
dO[S]

)
+ tr

(
∂L

∂O[T ]

⊤
dO[T ]

)

= tr

(
∂L

∂O[S]

⊤
Q[S]K[S]⊤dV [S]

)
+ tr

(
∂L

∂O[T ]

⊤
(Q[T ]K[S]⊤dV [S] + diag((Q[T ]⊙K[T ])1T×1)dV [T ])

)

= tr

(
(
∂L

∂O
)⊤QK[S]⊤dV [S]

)
+ tr

(
(

∂L

∂O[T ]
)⊤diag((Q[T ]⊙K[T ])1T×1)dV [T ])

)
.

So we have that
dL

dV [S]
= K[S]Q⊤ ∂L

∂O

dL

dV [T ]
= diag((Q[T ]⊙K[T ])1T×1)

(
∂L

∂O[T ]

)
which means ith row of ∂L

∂O[T ] will be multiplied by ith element of (Q[T ]⊙K[T ])1T×1.

B.1.2 Gradient of Q

Next we differentiate against Q,

dO[S] = dQ[S]K[S]⊤V [S]

dO[T ] = dQ[T ]K[S]⊤V [S] + diag((dQ[T ]⊙K[T ])1T×1)V [T ]
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Which results in

dL = tr

(
(

∂L

∂O[S]
)⊤dQ[S]K[S]⊤V [S]

)
+ tr

(
(

∂L

∂O[T ]
)⊤(dQ[T ]K[S]⊤V [S]

)
+ diag((dQ[T ]⊙K[T ])1T×1)V [T ])).

So that

dL

dQ[S]
=

∂L

∂O[S]
V [S]⊤K[S].

To derive dL
dQ[T ] , we need to pull dQ[T ] out of the unconventional expression diag((dQ[T ]⊙

K[T ])1T×1), within the trace operator. Let’s first write it in terms of Einstein summation,
abbreviation ∂L

∂O[T ] , Q[T ], K[T ], V [T ] by X,Q,K, V respectively.

tr(X⊤diag((dQ⊙K)1T×1)V ) =
∑
ijkℓ

XjidQjkKjkδjℓVℓi,

where δ is the Kronecker delta matrix given by

δjℓ =

{
1 if j = ℓ,

0 otherwise.
.

Note that ∑
iℓ

XjiKjkδjℓVℓi =
∑
i

XjiVjiKjk = (diag((X ⊙ V )1T×1)K)jk.

Thus the second half of the expression for dL (with respect to dQ[T ]) is given by

tr((K[S]⊤V [S](
∂L

∂O[T ]
)⊤ + (diag((

∂L

∂O[T ]
⊙ V [T ])1T×1)K[T ])⊤)dQ[T ]).

Thus since diagonal matrix is invariant under transposition,

∂L

∂Q[T ]
=

∂L

∂O[T ]
V [S]⊤K[S] + diag((

∂L

∂O[T ]
⊙ V [T ])1T×1)K[T ].

B.1.3 Gradient of K

Similar computation shows

∂L

∂K[S]
= V [S]((

∂L

∂O[S]
)⊤Q[S] + (

∂L

∂O[T ]
)⊤Q[T ]) = V [S](

∂L

∂O
)⊤Q

∂L

∂K[T ]
= diag((

∂L

∂O[T ]
⊙ V [T ])1T×1)Q[T ]

B.1.4 Summary of Forward Pass and All Gradients

We introduce the notation that produces a diagonal matrix dimension T × T from two
matrices X,Y of dimension T × d:

∆(X,Y ) := diag((X ⊙ Y )1T×1) = {
∑
ℓ

XiℓYiℓδij}ij . (4)

Then for forward, we have

O[S] = Q[S]K[S]⊤V [S] =: Q[S]Z[S]⊤ (5)

O[T ] = Q[T ]K[S]⊤V [S] + ∆(Q[T ],K[T ])V [T ] =: Q[S]Z[S]⊤ + U [T ]V [T ] (6)
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For backward, we have

∂L

∂Q[S]
=

∂L

∂O[S]
V [S]⊤K[S] =: dO[S]Z[S] (7)

∂L

∂Q[T ]
=

∂L

∂O[T ]
V [S]⊤K[S] + ∆(

∂L

∂O[T ]
, V [T ])K[T ] =: dO[T ]Z[S] +X[T ]K[T ] (8)

∂L

∂K[S]
= V [S](

∂L

∂O
)⊤Q =: V [S]WT (9)

∂L

∂K[T ]
= ∆(

∂L

∂O[T ]
, V [T ])Q[T ] =: X[T ]Q[T ] (10)

dL

dV [S]
= K[S]Q⊤ ∂L

∂O
=: K[S]W (11)

dL

dV [T ]
= ∆(Q[T ],K[T ])

∂L

∂O[T ]
=: U [T ]dO[T ]. (12)

From equation 7 and equation 8 we see that Z[S] := V [S]⊤K[S] should be an intermediate
step to compute, of dimension d× d.

From equation 9 and equation 11, we should compute W := Q⊤ ∂L
∂O first to obtain a d× d

matrix, before pre-multiplying by K[S] or post-multiplying by V [S]⊤ and then transpose (or
transposing first, then pre-multiplying by V [S]).

From equation 6 and equation 12, we see that forward pass should save the intermediate
step Y [T ] := ∆(Q[T ],K[T ]). In fact we can just save the diagonal elements, which consumes
less memory.

From equation 8 and equation 10, we can also save the intermediate step X[T ] :=
∆( ∂L

∂O[T ] , V [T ]).

While X[T ], Y [T ] only involve 2Td FLOPs, W and Z involve 2Td2 FLOPs.

B.1.5 With shifted Elu activation

Shifted elu (and its derivative) are defined by

φ(x) =

{
x, if x ≥ 1,

ex−1, if x < 1,
and φ′(x) =

{
1, if x ≥ 1,

ex−1, if x < 1.

Given,

O[S] = φ(Q[S])φ(K[S])⊤V [S]

O[T ] = φ(Q[T ])φ(K[S])⊤V [S] + ∆(φ(Q[T ]), φ(K[T ]))V [T ]

Gradients are given by (partly by guessing via dimension match)

∂L

∂Q[S]
= (

∂L

∂O[S]
V [S]⊤φ(K[S]))⊙ φ′(Q[S])

∂L

∂Q[T ]
= (

∂L

∂O[T ]
V [S]⊤φ(K[S]))⊙ φ′(Q[T ]) + ∆(

∂L

∂O[T ]
, V [T ])(φ′(Q[T ])⊙ φ(K[T ]))

∂L

∂K[S]
= (V [S](

∂L

∂O
)⊤φ(Q))⊙ φ′(K[S])

∂L

∂K[T ]
= ∆(

∂L

∂O[T ]
, V [T ])(φ(Q[T ])⊙ φ′(K[T ]))

dL

dV [S]
= φ(K[S])φ(Q)⊤

∂L

∂O

dL

dV [T ]
= ∆(φ(Q[T ]), φ(K[T ]))

∂L

∂O[T ]
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

B.2 Activation for Quasi-Linear Attention

The choice of activation function φ in Section 3.2.2 is non-linear but otherwise arbitrary and
depends on the specific application at hand. The same activation also need not always be
used, for instance one can have two different activations φ1 and φ2 and apply them as:

O[S] = φ1(Q[S])φ2(φ1(K[S])⊤V [S]),

O[T ] = φ1(Q[T ])φ2(φ1(K[S])⊤V [S]) + ∆(φ1(Q[T ]), φ1(K[T ]))V [T ].

C More on Reconstruction Loss

The reconstruction loss is a measure of how much information of the full UIH is captured by
VISTA’s virtual embeddings. We used L2 norm to measure how much we can reconstruct
the original UIH given the virtual embedding as input, and we have verified that it is an
informative metric for us to quantitatively measure the reconstruction quality.

Figure 11: Comparing the reconstruction loss over training steps with and without explicitly
including it in the total loss on the Amazon dataset. The dotted line is the final evaluation
reconstruction loss.

On the Amazon dataset, for example, we can see that training the VISTA model without
explicitly minimizing the reconstruction loss still reduces the reconstruction loss of the
learned embedding against the full UIH as the model improves. However, the reconstruction
loss plateaus and the model takes longer to converge after some training steps (as our training
pipeline supports early stopping). With the explicit introduction of the reconstruction loss,
we see a dramatic decrease in the reconstruction loss in the first training steps and faster
model convergence. The test metrics also improved by 0.22% AUC and 1.11% NE with the
use of the reconstruction loss.

D Additional Experiment Details

D.1 Datasets

We include more details about the datasets used in our experiments. The statistics of the
sequence features of each dataset are summarized in Table 5.

Amazon-Electronics. The Amazon Products and Reviews dataset Hou et al. (2024)
contains user reviews, item metadata, and user-item interactions. A subset of this data
was preprocessed to make the Amazon-Electronics dataset, which is restricted to electronics
items, initiated by Zhou et al. (2018). The data format is relatively simple, with the columns:
label, user id, item id, category id, item history, and category history.
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Table 5: Dataset Statistics

Dataset Mean Seq. Max Seq.
Amazon-Electronics 8.93 429

KuaiRand-1K 225.20 256
Simplified Prod 1528.18 2,000

Industrial-Scale Data 7,000 16,000

KuaiRand-1K. The KuaiRand dataset by Gao et al. (2022) is a sequential recommendation
dataset collected from the recommendation logs of the video-sharing mobile app Kuaishou.
The KuaiRand-1K subset contains a random sample 1,000 users after removing irrelevant
videos. There are 4 million videos remaining in this subset. Our experiments use a subset of
all features available in KuaiRand-1K, namely user id, video is, video is history, click history,
like history, and lvv (long video view) history.

Simplified Production and Industrial-Scale Data. The full production data is too
large to be able to run simple experiments quickly (and requires re-implementing baseline
models on internal systems). We construct a minimal version of our production data to focus
on the sequential recommendation task (e.g., keeping the user interaction history largely
intact but removing other features). After preprocessing, this dataset has a mean sequence
length of around 1528 and maximum truncated to 2,000.

D.2 FuxiCTR Framework

We utilize the FuxiCTR library developed by Zhu et al. (2022; 2021) for our traditional
sequential setting experiments. As mentioned in the main text, we designed the traditional
sequential setting experiments mainly to compare the effectiveness of the attention layers
and keep constant other model architecture and hyperparameter choices. (See Figure 12.)

We also report the common hyperparameters used in all the experiment results in Table 13.

Figure 12: FuxiCTR Setup.

Hyperparameter Amazon KuaiRand Simplified Prod
Learning Rate 5.0e−4 1.0e−4 1.0e−3
Optimizer Adam Adam Adam
Batch Size 1024 1024 128
Batch Norm No No Yes
Early Stop Patience 4 5 1
Embedding Regularizer 0.005 None None
Embedding Dimension 64 32 32
Embedding Initializer 1e−4 1e−4 1e−4
MLP Hidden Units [1024, 512, 256] [512, 128, 64] [512, 128, 64]
MLP Activations RELU RELU RELU
# Attention Heads 4 4 4
# Attention Layers 1 1 2

Figure 13: Common hyperparameters used for traditional
setting experiments.

The model-specific parameters for VISTA are the number of seeds and weight for the
reconstruction loss, which were set at 128 and 1.0, respectively, for all experiments. No
specific hyperparameter tuning was done, mainly relying on using common parameters for
all models and repeating across 3 seeds for each model and dataset.

D.3 More on VISTA’s Two-Stage Attention

Case Study 1: Same User, Different Candidates. In the following Figure 14, we show
the input to the virtual attention layer, the output of the virtual attention layer, and then
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Figure 14: Visualizing the virtual attention and target attention layers for the same user on
two different candidates (one positive at the top and one negative at the bottom).

the output of the target attention layer for the same user for two different candidates (one
positive at the top and one negative at the bottom) from the Amazon-Electronics dataset.
We also reduce these along the feature dimension for compact visualization. Note that
since we are looking at two candidates for the same user, the input to the virtual attention
layer and the output of the virtual attention layer are identical; these only depend on the
user’s individual UIH and the virtual seed embeddings which are common between the two.
The difference in this case comes at the target attention part. Here we see that the target
attention differentiates between positive and negative candidates for this user as evidenced
by the differing mean activation for the target embedding.

Case Study 2: Different UIH Lengths. We also look at a case study comparing two
different users with different UIH histories, one with a very short history (length 4) and
another with a slightly longer history (length 12) in Figure 15. Even with very little historical
data (UIH length 4 at the top), the virtual seed embeddings appear to help influence the
virtual embeddings, which in turn help with model performance.
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Figure 15: Visualizing the virtual attention and target attention layers for the different users
having different UIH sequence lengths (both positive candidates).
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