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Abstract

The interactive task of composed image retrieval aims to retrieve the most relevant
images with the bi-modal query, consisting of a reference image and a modification
sentence. Despite significant efforts to bridge the heterogeneous gap within the
bi-modal query and leverage contrastive learning to reduce the disparity between
positive and negative triplets, prior methods often fail to ensure reliable matching
due to aleatoric and epistemic uncertainty. Specifically, the aleatoric uncertainty
stems from underlying semantic correlations within candidate instances and anno-
tation noise, and the epistemic uncertainty is usually caused by overconfidence in
dominant semantic categories. In this paper, we propose Robust UNcertainty Cali-
bration (RUNC) to quantify the uncertainty and calibrate the imbalanced semantic
distribution. To mitigate semantic ambiguity in similarity distribution between
fusion queries and targets, RUNC maximizes the matching evidence by utilizing a
high-order conjugate prior distribution to fit the semantic covariances in candidate
samples. With the estimated uncertainty coefficient of each candidate, the target
distribution is calibrated to encourage balanced semantic alignment. Additionally,
we minimize the ambiguity in the fusion evidence when forming the unified query
by incorporating orthogonal constraints on explicit textual embeddings and im-
plicit queries, to reduce the representation redundancy. Extensive experiments and
ablation analysis on benchmark datasets FashionIQ and CIRR verify the robustness
of RUNC in predicting reliable retrieval results from a large image gallery.

1 Introduction

The task of composed image retrieval (CIR) [1, 2, 3, 4, 5] is emerging as a multi-modal interaction
form to accommodate the flexible search requirements. Distinguished from traditional single-modal
image retrieval or cross-modal retrieval, the queries of CIR support two modalities, i.e., reference
images and modification texts that illustrate alternations on the reference images. To identify the most
correlated images among the massive candidate images, the core objective is to establish semantic
connections between target images and bi-modal queries through similarity measurement and bridge
the heterogeneous modality gap across different modalities within queries. Exploring multi-modal
data integration and natural interaction requirements on this task could provide underlying support
for tasks such as visual question answering (VQA) [6, 7, 8], visual reasoning [9, 10, 11], etc. as the
basis of multi-modal understanding [12].

One widely recognized challenge for composed image retrieval is the comprehension of the semantic
conflict in the bi-modal query. Despite the modality gap in the query composition, the modifications
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expressed by the query text have led to disagreements with the reference images, hindering the
understanding of the multi-modal input and formation of a unified query representation. Existing
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Figure 1: Illustration of uncertain matching results. (left) Unreliable top-ranking results disrupted by
insufficient learning of “Asign-inspired ” and partial semantic correlations. (right) Strong correlations
within the semantic matrix and imbalanced semantic distributions underlying visual candidates.

works were devoted to mining the effective components within the queries by multi-granular feature
matching, e.g., word-level [13, 14], patch-level [15], token-level [16, 17], and hierarchical-level [18].
Inspired by the significant achievement of vision-language models on the massive corpus, recent
models adopted transformer-based encoders in CLIP [19, 20] and BLIP [21, 22] to enhance visual
and textual features [23] and align semantics in the query, owing to multiple inter- and intra-attention
mechanisms to extract salient information. Besides, to capture the correspondences between multi-
modal queries and targets, current approaches [24, 5] mainly project the query and target features in
the joint space and measure pairwise similarities in the contrastive learning framework. This pipeline
regards the CIR task as a classification task to distinguish between matched and mismatched triplets.

Contrastive learning essentially follows the assumption that there is no overlap between the distribu-
tions of positive and negative triplets. However, images inherently contain rich semantic concepts that
cannot be explicitly assigned as independent labels, i.e., negative candidates exhibit certain underly-
ing semantic dependencies with ground-truth positive images. Fig. 1 illustrates that the annotated
“negative” images I4 and ground-truth images Igt exhibit strong visual relations, while the semantic
correlations remain disregarded within contrastive learning paradigm. Moreover, it is inevitable
that not all images that satisfy the query requirements are labeled as positives, and the modification
descriptions lack clarity in accurately conveying the intended image. The collaborative impacts of the
above factors lead to aleatoric uncertainty, which is caused by the implicit semantics dependencies
and noise labelling issues in the datasets. Additionally, semantic concept imbalance is also significant
in images where specialized designs like “Asian-inspired” are limited in the fashion domain, as seen
in Fig. 1 (right). Furthermore, statistical properties of widely-used softmax function in either attention
mechanisms [25, 13, 23, 21] or cross-entropy calculation, further increase the biased estimation,
leading to overconfident predictions dominated by the explicit semantic concepts and overlook of
discriminative details (as shown in I1, I2, and I3 in Fig. 1). The imbalanced distributions of semantic
concepts in visual features and over-concentration on salient features result in epistemic uncertainty,
which tends to overfit the majority semantics and result in low confidence when facing minority
semantic categories.

To address the aforementioned challenges, we propose Robust UNcertainty Calibration (RUNC) to
ensure credible semantic bridging between bi-modal queries and visual targets, as shown in Fig. 2. In
order to perceive the latent semantic correlations and quantify uncertainty, we incorporate Normal
Inverse Gamma distribution as evidential priors to fit the semantic covariances in the candidate images.
Through maximizing the evidence by the model and imposing a penalty on the incorrect evidence,
the inferred probabilistic distributions estimate aleatoric and epistemic uncertainty on each candidate
image. With more emphasis on uncertain images with rare and ambiguous semantics, we assign
uncertainty coefficients to calibrate the target distribution when supervising the query distribution. To
further decrease the ambiguity when composing fusion representations for the coupled query images
and texts and ensure the semantic consistency, implicit query embedding is introduced to drive the
query embeddings to distill more retained visual semantics rather than redundant representations in
text modifiers through aligning with the targets and orthogonal to query texts. Experimental results on
widely-adopted datasets FashionIQ and CIRR verify that RUNC yields robust and reliable rankings.

In summary, the proposed RUNC makes the following contribution:
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Figure 2: The Framework of RUNC. Uncertainty perceptron introduces evidential priors to fit the
semantic covariance and yield uncertainty distribution to calibrate the supervision on the fusion query.
Implicit guidances p∗ are incorporated to distill effective features for retention and modification.

• We propose a novel uncertainty calibration approach to address the misguidance of dominant
semantics and semantic overlaps when matching bi-modal queries with target images.

• We employ high-order evidential priors to quantify the aleatoric and epistemic uncertainty
and adaptively adjust the semantic distribution imbalance based on uncertainty estimation.

• To minimize the ambiguity when fusing hybrid-modal queries, we assign orthogonal inde-
pendent constraints on explicit textual embeddings and implicit queries to distill effective
features for retention and modification.

2 Related Works

2.1 Composed Image Retrieval

To address the growing need for flexible retrieving with multi-modal data, composed image retrieval
focuses on exploring the integration of dual-modal input of reference images and modification text and
matching with the desired images. Existing works are dedicated to mitigating the heterogeneous gap
of multi-modal data in the query domain by extracting effective semantic components across different
modalities [1, 26, 27] via multiple projection layers [1], cross-modal attention [18, 28], and graph-
based propagation [13, 29]. For instance, FashionVLP [30] introduced multi-layer self-attention
on the combined tokens of visual regions from the reference image and words from modifiers. To
facilitate correlations with query images and query texts, Bai et al. [31] incorporated sentence-level
prompts with visual features and textual tokens in the Q-Former structure [32]. Through contrastive
learning, the fusion queries are guided toward the target features and pushed away from other
candidate features by comparing positive and negative samples. DCNet [33], ComposeAE [27], and
CaLa [22] applied bi-directional constraints to strengthen the semantic consistency across references,
modifiers, and targets. Recent advances [34, 16] reconstructed triplet data with higher-quality to
ensure that contrastive learning effectively captures semantic alignment, which requires expensive
annotation efforts. With a focus on the separation of positive and negative matching in the above
approaches, the latent semantic correlations among the images, particularly false negatives, may
hinder the actual semantic alignment. Distinguished from previous methods, this work deploys
prior distributions to model the intrinsic covariance of candidate features and addresses the semantic
imbalance by uncertainty calibration to enhance the robustness.

2.2 Uncertainty Estimation

Though deep learning models are currently excelling across various domains, most of them typically
provide predictions without considering the confidence of the outcomes [35, 36]. The prediction
uncertainty stemming from data noise, model overconfidence, and biased learning can significantly
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impact the robustness of noisy labels, generalization on unseen classes, and model interpretability.
Based on Bayesian Neural Networks (BNN) [37] and Monte Carlo Dropout, uncertainty models [38]
estimated prediction variance through multiple forward propagation samples in out-of-distribution
(OOD) scenarios [39, 40]. MGUR [4] applied weighted Gaussian noises on whitened features to
simulate data jitter and one-to-many correspondences. Subjective Logic (SL) formalized the concept
of belief assignment in the Dempster-Shafer theory of evidence as a Dirichlet distribution [41, 42]
to quantify the belief mass and uncertainty. Deep Evidential Regression (DER) [43, 44] introduced
high-order priors to capture the confidences supporting the model prediction. Evidential deep learning
avoided the computational bottlenecks of traditional Bayesian methods by obtaining uncertainty in a
single forward inference. In this work, the proposed RUNC extends the uncertainty estimation to
explore latent correlations in the coupling visual semantics and calibrate the imbalanced semantic
distributions when aligning composed queries and targets.

3 Methodology

3.1 Problem Setting

The multi-modal dataset for composed image retrieval includes N query-to-target pairs. Each matched
data (Ir,M, It) contains one reference image Ir, one modification sentenceM, and one target image
It. To bridge the modality gap between the visual and textual inputs, the retrieval pipeline utilizes
pretrained encoders [19, 21] to project all the raw image inputs into the semantic latent space. We
denote candidate visual features as {ti}Ni=1 for N images in the gallery, where ti ∈ Rd and d denotes
dimensions. In the branch of combining the cross-modal query, the lightweight Q-Former [32] is
employed to obtain the interactive prompt embedding p along with text features m, with the input
of visual features from the original reference images, instructions from the modification text, and
learnable queries. Afterward, the prompt embedding p is further projected in the same latent space as
t to yield the fusion query representation q.

The essence of the composed image retrieval task lies in accurately measuring the semantic distances
between the queries and targets in the embedding space. With the aim of pushing the fusion query
representations towards the target features (qi → ti) while separating query representations from
irrelevant candidate samples (qi ←→ tj), existing frameworks [45, 21] mainly adopt the contrastive
loss to classify positive pairs (qi, ti) and negative pairs (qi, tj |j ̸= i):

Lcl = −
1

B

B∑
i=1

log
exp(sii/τ)∑B
j=1 exp(sij/τ)

, (1)

where B is the batch size and τ refers to the temperature parameter. The matching score sij between
composed query i and candidate feature j is computed based on the cosine distance sij =

qi·tj
∥qi∥∥tj∥ ,

where ∥ · ∥ means the L2 normalization.

Though cross-entropy loss is efficient in large-scale retrieval applications, it cannot be fully adapted
to this complicated interactive retrieval task. In this context, contrastive loss is primarily focused on
aligning the matching scores matrix s ∈ RB×B with the diagonal matrix. Specifically, for normalized
features, the matching value for the fusion query to the target features should ideally approach 1,
while the matching value for all the other samples should be as close to 0 as possible. However, due
to the strong semantic correlations among most candidate images in the image gallery and noise
labels during the dataset construction process, non-diagonal negative samples may exhibit semantic
overlap. Furthermore, the fused features derived from the complex multi-modal interactive inputs
inherently introduce semantic uncertainty and instability, which results in loose and unstable semantic
construction with traditional supervision loss. To this end, the uncertainty of alignments between
the cross-modal query and candidate images is imperative to estimate to construct a robust retrieval
model. As shown in Fig. 2, we deploy distribution-based uncertainty estimation to quantify the
semantic ambiguity and bring aleatoric and epistemic uncertainty into consideration when setting the
training objective.

3.2 Uncertainty Estimation

Priors of Semantic Covariance Matrix. As aforementioned, the high frequency of coupling
semantic concepts (as shown in Figure 1 (left)) in the candidate images poses challenges to the
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model’s prediction of similarities between queries and targets. Using hard-coded supervision with
binary values of 1 or 0 for positive and negative sample pairs respectively fails to accurately represent
the real retrieval scenario. In the proposed RUNC, we approach the prediction of matching values
in the retrieval process as a regression problem, assuming that the distribution of the semantic
correlations conforms to Gaussian distributions and is independent and identically distributed (i.i.d).
The correlations across various target semantic concepts are acquired by the interactions of candidate
features in the target image space, to measure the potential semantic overlaps between different pairs.

cij =
ti · tj
∥ti∥∥tj∥

, (2)

where cij stands for the semantic covariance score between the i-th sample and the j-th sample.

The objective of uncertainty estimation is to estimate a prior distribution to reconstruct the variance
and mean of the Gaussian distribution of semantic concepts [46, 47, 43]. Therefore, a high-order
Normal Inverse Gamma (NIG) prior is introduced to model the Gaussian output:

(c1i, c2i, ..., cNi) ∼ N (µi, δ
2
i ), µi ∼ N (γi, δ

2
i ν

−1
i ), δ2i ∼ Γ−1(αi, βi), (3)

where Γ(·) represents Gamma function.

To estimate the posterior distribution q(µi, δ
2
i ) = p(µi, δ

2
i |γi, νi, αi, βi) for the i-th target image

semantic representations, we factorize the distribution in the form of conjugate prior as q(µi, δ
2
i ) =

q(µi)q(δ
2
i ), which is reformulated as:

p(µi, δ
2
i |γi, νi, αi, βi) =

βαi
i

√
νi

Γ(αi)
√

2πδ2i
(
1

δ2i
)αi+1 exp{−2βi + νi(γi − µi)

2

2δ2i
}. (4)

Given the fusion query representations and the evidential distribution from uncertainty perceptron,
we then maximize the model evidence to support the observations by maximizing the likelihood of
observing the semantic covariance matrix:

LNLL
i = − log(p(cij |γi, νi, αi, βi))

=
1

2
log(

π

νi
)− αi log Ωi + (αi +

1

2
) log((cij − µi)

2νi +Ωi) + log(
Γ(αi)

Γ(αi +
1
2 )

), (5)

where Ωi = 2βi(1 + νi). Compared to directly imposing the hard-encoded labels on the distances be-
tween the fusion query and target, introducing evidential distribution to capture semantic interactions
between various instances facilitates reliable similarity measurements in a more nuanced way.

Uncertainty-Guided Semantic Calibration. From the perspective of Bayesian Inference, NIG
distribution is a conjugate prior of Gaussian distribution, and its corresponding parameter could be
intuitively interpreted as virtual observations. To reveal the shape characteristics, the mean could
be regarded as the sample mean calculated from ν virtual observations with the mean of γ, and the
variance could be considered as an estimation based on α virtual observations with the mean of γ and
the sum of squared deviations 2ν. Thus, the total evidence, which is the sum of all the inferred virtual
observations comprised of all the virtual observation information of means and variances, is defined
as 2ν + α. Based on the model parameters of the uncertainty model in Section 3.2, the statistical
moments of target semantics are computed through first-order moments of the NIG distribution:

E[µ] = γ, E[δ2] =
β

α− 1
, Var[µ] =

β

ν(α− 1)
, (6)

where the latter two notions could also be interpreted as aleatoric and epistemic uncertainty of
semantic distribution. The total uncertainty is further obtained by:

ui = E[δ2i ] + Var[µi] =
βi

αi − 1
+

βi

νi(αi − 1)
=

βi(νi + 1)

νi(αi − 1)
. (7)

Note that semantic distribution is imbalanced in the realistic retrieving process. For instance,
semantics related to colors and objects tend to appear frequently, while those involving specific
details like “whimsical and vintage" are rare. Consequently, the top retrieval results tend to predict
semantic categories that are more commonly represented. To avoid imbalanced learning from diverse
semantics, we introduce uncertainty coefficients on cross-entropy computation based on the semantic
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uncertainty fitted by NIG distribution. When a semantic embodies high uncertainty, the corresponding
weight is ought to set larger, so that more penalty would be enforced on this sample during the training
phase, avoiding neglecting infrequent semantic categories. The refined balanced contrastive loss is:

Lbc = −
1

B

B∑
i=1

ui · log
exp(sii/τ)∑B
j=1 exp(sij/τ)

. (8)

Penalty on Misleading Evidence. As the likelihood-based loss maximizes the evidence, it may lead
to evidence magnification associated with the target, whereas the model discrimination on matched
and hard negative samples would be limited. In particular, explicit semantics tend to overpower
the outcomes and mislead the model training, whereas those with limited occurrences could be
overlooked during this process. Since the misleading evidence of dominant semantics could be
effective in most cases, the model is prone to maintain this incorrect evidence. It is contradictory to
our target to actively reveal uncertainty when dealing with ambiguous decision boundaries instead
of giving wrong predictions. Thus, we introduce the regularization term on misleading evidence to
ensure robust ranking from reliable evidence. Note that E[δ2] and Var[µ] in Eq. 6 both demonstrate
that uncertainty shows positive correlations with the parameter β and evidence by virtual observation
theory corresponds to ν and α. Theoretical analysis is illustrated in the supplementary material.
Hence, the regularization term is defined as:

LREG
i = (cij − γi)

2 · (2νi + αi +
1

βi
). (9)

The overall uncertainty loss combines the likelihood function to maximize the model evidence and
penalty for misleading evidence with controllable weight λ1:

Lunc =
1

B

B∑
i

(LNLL
i + λ1LREG

i ). (10)

3.3 Implicit Concept Matching

Apart from uncertainty matching caused by underlying semantic covariance and distribution imbal-
ance, complicated information sources from different modalities in the hybrid-modal query also
introduce ambiguity when composing the fusion query. The reference image contains redundant
visual information, e.g., objects and attributes that would be replaced in the modification sentences,
yet these salient features are inclined to be amplified through attention layers in the transformer-based
Q-Former structure, significantly corrupting the semantic representation of the fusion query by sub-
stantial noise. Moreover, learnable prompts p involved in the computation of fusion query attempts
to capture visual semantics aligned with text, however the learnable prompts p may have unclear
concepts due to the misleading visual redundancy. Simply equipping supervision between fusion
queries and candidates could result in substantial redundant information in embedding p, especially
repeatedly expressing semantics already revealed by text embeddings of modifiers.

In the training phase, we additionally integrate virtual guidance p∗ to directly lead the learning of
prompt and fully unleash the potentials of p. MSE loss is utilized to align the learnable embeddings
with virtual guidance p∗ as Lal = ∥p− p∗∥. To encourage the learnable queries to acquire highly
correlated messages with the targets, we deploy a symmetrical representation q∗ to mirror the fusion
query q, as shown in Fig. 2, which combines virtual guidance p∗ and text tokens of modifiers. After
encoding by the text encoder using shared weights, we yield the implicit query q∗, which is expected
to be aligned with the target features:

Lce = −
1

B

B∑
i=1

log
exp(s∗ii/τ)∑B
j=1 exp(s

∗
ij/τ)

, (11)

where s∗ij is the cosine similarity between the implicit query q∗ and target images.

In order to force the learnable embeddings to grasp implicit semantics in reference images rather
than duplicated semantics mentioned in the modification text, we incorporate orthogonal loss to
differentiate the retention and modification characteristics:

Lort =
∑
i ̸=j

(Cov(p∗,m)ij)
2
=

∑
i ̸=j

(
1

B
((p∗)⊤m)ij)

2. (12)
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The overall training objective is the aggregation of all the loss functions as: L = Lbc + λ2Lunc +
Lort +Lal +Lce, where λ2 is a trade-off parameter. The first two terms are dedicated to quantifying
the uncertainty by NIG priors and calibrating the imbalanced correlations, and the remaining terms
provide soft supervision from the implicit query to minimize fusion ambiguity.

Table 1: Retrieval results on FashionIQ. The best results are marked in bold.

Methods Dress Shirt Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Mean

VAL [18] 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04 33.82
CIRPLANT [48] 14.38 34.66 13.64 33.56 16.44 38.34 14.82 35.52 25.17
CoSMo [49] 21.39 44.45 16.90 37.49 21.32 46.02 19.87 42.65 31.26
CLVC-Net [50] 29.85 56.47 28.75 54.76 33.50 64.00 30.70 58.41 44.56
ARTEMIS [24] 27.16 52.40 21.78 43.64 29.20 54.83 26.05 50.29 38.17
FashionVLP [30] 26.77 53.20 22.67 46.22 28.51 57.47 25.98 52.30 39.14
NSFSE [28] 31.12 55.73 24.58 45.85 31.93 58.37 29.17 53.24 41.26
CLIP4Cir [45] 31.63 56.67 36.36 58.00 38.19 62.42 35.39 59.03 47.21
CRN [51] 30.20 57.15 29.17 55.03 33.70 63.91 31.02 58.70 44.86
MGUR [4] 32.61 61.34 33.23 62.55 41.40 72.51 35.75 65.47 50.61
SPN [34] 38.82 62.92 45.83 66.44 48.80 71.29 44.48 66.88 55.68
FAME-ViL [52] 42.19 67.38 47.64 68.79 50.69 73.07 46.84 69.75 58.29
CaLa [22] 42.38 66.08 46.76 68.16 50.93 73.42 46.69 69.22 58.05
SPRC [31] 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85
CCIN [53] 49.38 72.58 55.93 74.14 57.93 77.56 54.41 74.76 64.59

RUNC (Ours) 48.93 73.53 57.26 75.32 60.38 79.86 55.52 76.23 65.88

4 Experiments

4.1 Experimental Settings

Datasets. The proposed RUNC is employed on two widely-used composed image retrieval datasets
covering various modification requirements in real-life retrieval scenarios. FashionIQ [54], con-
centrating on fashion item retrieval, addresses the retrieval for modifications in attributes including
colors, patterns, textures, and design details across dress, toptee, and shirt categories. The whole
dataset contains 77,684 fashion pictures and each matched triplet is constituted of a reference image,
a modification sentence, and one target image. Following [1, 18], the dataset is split by the proportion
of 3:1:1 for training, validating, and testing respectively. CIRR [48] involves more natural scenes and
query texts more focus on alterations in the relationships among subjects, backgrounds, and multiple
subjects within intricate images. It consists of 21,552 images collected from the NLVR2 dataset [55]
and constructs 36,554 matched pairs. To further evaluate the model when facing different scenarios,
CIRR also provides a subset setting and each subset includes six visually similar images.

Evaluation Metrics. Following [24, 34, 31], we employ the Recall rate at K (R@K) as the main
metric to evaluate the model performance, which is defined as the ratio of matched ground-truth
images ranked in the top-K predictions by the model. In FashionIQ, R@10 and R@50 results are
shown on dresses, toptees, and shirts. In CIRR, apart from R@1, R@5, R@10, and R@50 metrics,
we also provide Rsubset@K results evaluated in the subsets.

Implementation Details. We exploited the visual and textual encoders as BLIP-2ViT−G/14 model
and initialized parameters from pre-trained EVA-CLIP [32] weights. The visual encoder remained
frozen and the remaining layers were fine-tuned in the training phase. The virtual guidance was
disabled during the inference phase. The uncertainty perceptron was implemented as one feed-forward
network (two linear layers) with a softplus activation function. The dropout rate was set as 0.2. The
dimensions of fusion and candidate features were fixed as 256 in the embedding space and the number
of learnable queries was set as 32. We set λ1 as 0.01 to in Eq. 10. We used AdamW optimizer
and set the learning rate as 2 × 10−5 in FashionIQ and 1 × 10−5 in CIRR with cosine annealing
decay. The training and inference time of the proposed model are 214.3s and 27.4s respectively. The
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Table 2: Retrieval results on CIRR test set. The best results are marked in bold.

Methods
Recall@K Rsubset@K

Avg(R@5, Rsubset@1)K=1 K=5 K=10 K=50 K=1 K=2 K=3

TIRG [1] 11.04 35.08 51.27 83.29 23.82 45.65 64.55 29.45
CIRPLANT [48] 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88
ARTEMIS [24] 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05
NSFSE [28] 20.70 52.50 67.96 90.74 44.20 65.53 78.50 48.35
CLIP4Cir [45] 33.59 65.35 77.35 95.21 62.39 81.81 92.02 63.87
CompoDiff [56] 22.35 54.36 73.41 91.77 35.84 56.11 76.60 45.10
BLIP4CIR [21] 40.17 71.81 83.18 95.69 72.34 88.70 95.23 72.07
SSN [57] 43.91 77.25 86.48 97.45 71.76 88.63 95.54 74.51
SPN [34] 45.33 78.07 87.61 98.17 73.93 89.28 95.61 76.00
CaLa [22] 49.11 81.21 89.59 98.00 76.27 91.04 96.46 78.74
SPRC [31] 51.96 82.12 89.74 97.69 80.65 92.31 96.60 81.39
ENCODER [20] 46.10 77.98 87.16 94.64 76.92 90.41 95.95 77.45
DIPNEC [3] 47.24 80.20 89.07 97.87 73.97 89.74 95.72 77.09

RUNC (Ours) 53.81 83.47 91.11 98.22 80.87 92.36 96.94 82.17

experiments were implemented in Pytorch on a single NVIDIA A800 GPU and trained for 30 epochs
for FashionIQ and 50 epochs for CIRR2.

4.2 Comparison with State of the Arts

Table 1 and Table 2 report quantitative comparisons of our RUNC with the advanced methods on
FashionIQ and CIRR datasets, respectively. Detailed architecture descriptions of the compared
methods are illustrated in the supplemental material. The proposed RUNC achieves competitive
performances on benchmarks of interactive image retrieval. Specifically, a gain of 1.26% on mean
R@50 in FashionIQ and a rise of 1.37% on R@10 in CIRR compared with SPRC [31] verify the
effectiveness of our proposal. For fashion retrieval, the consistent growth across R@10 and R@50
metrics suggests that this approach accurately grasps user requirements and also adeptly caters to
long-tail search demands. Compared with CaLa [22] and SPRC [31] in the same backbone, the
overall improvements are significant, as more intrinsic semantic correlations underlying similar
candidate fashion images and unclear modification descriptions in fashion queries bring uncertainty
when comparing hard negatives and targets. By incorporating evidential distribution to estimate
the uncertainty and calibrate the semantic imbalance, RUNC provides more reliable and robust
predictions overall. Apart from recall results on all the images in the gallery, the increased metrics
on subset settings as 3.95% on Recallsubset@1 in CIRR compared with the latest ENCODER [20]
implicates that our proposed RUNC could identify the authentic intention from the bi-modal query
when selecting from a set of closely resembling candidates.

4.3 Ablation Analysis

Analysis of Effective Components. To assess the efficacy of the model design in this work, ablative
results on independent components are shown in Table 3, where “w/o UE” means disabling uncertainty
estimation on semantic correlations, “w/o UGC” refers to using original form of contrastive loss
without uncertainty coefficients in Eq. 8, “w/o ICM” means removing implicit concept matching,
and “w/o SC” means replace the semantic covariance matrix c with ground-truth labels in Eq. 5. The
remarkable drop in recall rates of “w/o UE” demonstrates that uncertainty quantification is crucial
to boost the performance by perceiving the underlying correlations in candidates, and results of
“w/o UGC” further verifies that uncertainty-aware calibration could avoid over-reliance on dominant
categories and promote effective learning from negative samples. As the decline of results in “w/o
ICM” shows, implicit query guides the distillation of inherent visual elements from reference images
by aligning with the targets and independent constraints with textual embeddings. Comparing the
proposed model and “w/o SC", the discrepancy highlights the significance of underlying associations
in visual candidates and the effectiveness of combining evidential regression with semantic covariance
in quantifying semantic ambiguity.

2Code is available at: RUNC-source.
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Table 3: Ablative study on effective components of
RUNC.

Models FashionIQ CIRR
R@10 R@50 R@5 Rsubset@1

w/o UE 53.07 74.77 81.51 78.23
w/o UGC 53.79 75.03 82.28 78.07
w/o ICM 54.76 75.22 82.47 79.15
w/o SC 54.19 75.14 82.30 78.88

Ours 55.52 76.23 83.47 80.87

Table 4: Analysis of uncertainty estimation
on R@50 metric.

Models Dress Shirt Toptee Mean

GMM 71.69 73.26 77.41 74.12
BMM 71.83 73.99 77.91 74.58
EDC 72.83 75.22 78.74 75.60
MGUR 72.19 74.09 78.73 75.00
MPC 72.29 74.53 78.84 75.22

Ours 73.53 75.32 79.86 76.23

Analysis of Uncertainty Estimation. As shown in Table 4, we also investigate different models
to quantify the uncertainty and lead to the following observations. i) “GMM” and “BMM” are
sensitive to noise and fail to model aleatoric uncertainty, resulting in unstable retrieval results.
Besides, the estimation dependent on the EM algorithm brings computation cost and retrieval
latency. ii) Compared to Evidential Dirichlet Classification (EDC) [41], the improvement of RUNC
implies that NIG distribution flexibly handles heteroscedastic noise, which better aligns with the
coupling semantic correlations in this retrieval task. iii) Though MGUR [4] and MPC [58] utilize
probabilistic distribution to model the data uncertainty, insufficient semantic supervision may result in
additional noise by nondirective distributions. In comparison, high-order priors in RUNC is superior
in quantifying the underlying uncertainty and enhance the interpretability of ranking results.

4.4 Further Discussion

Impact of Uncertainty Supervision. To evaluate the sensitivity of λ2 controlling the uncertainty
estimation loss in different datasets, Fig. 3(a) presents recall rates on different settings. The optimal
value of λ2 for FashionIQ is slightly bigger than CIRR for more severe aleatoric uncertainty issues in
FashionIQ. More sensitivity analysis could be referred to in the supplementary material.

Impact of Evidential Learning. To verify the necessity of introducing evidential learning to enhance
the robustness, we also conduct an ablative setting as directly using semantic covariance matrix c
as weights in contrastive learning, denoted as “w/o edl” in Fig. 3(b). Although correlation weights
could promote discriminant learning compared with baseline, it is less superior than proposed
evidential learning for accumulating errors from precomputed similarities and neglecting the aleatoric
uncertainty by data noise and false negatives.
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Figure 3: Analysis of λ2 and evidential learning.

Candidate
Images

Bi-Modal
Query

NIG 
Distribution

Uncertainty
Score

0.1574 0.3552 0.7988 0.3847 0.3633 

Shows a puppy of similar size, but with more black fur 
sitting in a straw covered area

    

Figure 4: Visualization of uncertainty on
CIRR.

4.5 Visualization Analysis

Visualization of Uncertainty. To enhance comprehension of the retrieval results based on uncertainty,
we also present retrieval examples to visualize the uncertainty quantification in Fig. 4. For the right-
most image with low resolution and sharing semantics like “black fur” and “puppy” with the user
intent, the estimated uncertainty value leads to an increase in the penalty by Eq. 8.
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dog sits on the yellow 
pillow on the couch

put a forest of trees 
on the horizon of the 
blue sky and snow with 
the dog drawn sled

Other Top-Ranking Images

Bi-Modal Query Target Image

Other Top-Ranking Images

𝒑 𝒎

Bi-Modal Query Target Image𝒑 𝒎

Figure 5: Heatmaps on Target Images with Other
Top ranking results.

Visualization of Implicit Concept Learn-
ing. Additionally, we also present activation
heatmaps by GradCAM [59] on the last module
in the vision encoder with other top-ranking re-
sults in Figure 5. The prompt embedding p high-
lights the area corresponding to the dog which
is coherent with the reference images, and m
underlines the area of the yellow pillow on the
couch. The collaboration between p and m en-
ables the model to accurately select the ground-
truth image from other candidates, especially enhancing the perception of object contours, categories,
or backgrounds provided by the reference image in p.

Failure Cases. Failure cases of the proposed RUNC are shown in Figure 6, where the ground-truth
images (red boxes) are not ranked the top by our model. For the first example, since the query text
in the first instance does not specify the need to change the type of animal in the image, the top-1
image in this model depicts a monkey sleeping on the bend of the tree trunk, which can be regarded
as a false negative sample. It also indicates that the proposed RUNC is capable of perceiving the
basic query requirements of users effectively. Regarding the second example, due to the complexity
of modifying the semantics in the text, and being influenced by factors such as lighting and angles,
the model fails to precisely grasp the requirements of "hind legs" and "industrial setting" during
measuring the distance between the query and candidate images.

5 Conclusion

In this paper, we introduced a novel robust uncertainty calibration model dubbed RUNC to quantify
the uncertainty and mitigate the imbalanced semantic learning for interactive image retrieval. To
encourage learning from infrequent semantic concepts and mitigate interference caused by semantic
overlaps, high-order evidential priors are deployed to estimate the aleatoric and epistemic uncertainty,
and target distribution is further adjusted based on uncertainty coefficients. Moreover, we employed
an orthogonal loss between explicit textual embeddings and implicit queries to minimize the semantic
ambiguity of fusion query from reference images and modification texts. The effectiveness and
robustness of RUNC have been demonstrated by extensive experimental results and ablation studies.
The potential for extending this approach to other multi-modal learning tasks provides promising
prospects for further investigation.

Top Ranking
Images

Bi-Modal
Query

Place dog standing on hind legs, Add another dog, Place dogs in 
commercial, industrial setting with orange background

Top Ranking
Images

Bi-Modal
Query

focus on animal which sleeps on the bend of the tree trunk





Figure 6: Failure cases in the proposed RUNC.

Limitations. Since the
proposed RUNC utilizes
evidential learning that re-
lies on the hypothesis of
prior distribution, it may
face challenges in con-
tinuous learning and lack
adaptability to dynamic
environments. When the
data distribution rapidly
changes, frequent updates
of uncertain distribution
parameters are required,
making it difficult for the
model to quickly adjust confidence estimates. Besides, a certain amount of data is required in RUNC
to fit the prior distribution. In situations involving small sample sizes, the model may struggle
to accurately learn the parameters of uncertainty, potentially resulting in either overestimation or
underestimation of confidence levels.
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paper’s contributions and scope?
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Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of the work performed by the authors in the
Section “Limitations".
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model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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of the paper (regardless of whether the code and data are provided or not)?
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Guidelines:

• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Justification: The manuscript provides detailed information to reproduce the results. We
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The manuscript provides detailed information about the experimental setting
and implementation details in Experiments (as seen in Section 4.1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Error bar is not commonly used in this Composed Image Retrieval task.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We presented our compute resources in Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed both potential positive societal impacts and negative societal
impacts of the work performed in this paper and supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited, and the license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for polishing the writing of this manuscript and does not
impact the core methodology, scientific rigorousness, or originality of the research
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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