
Scaling Synthetic Brain Data Generation
Mike Doan

Department of Computer Science
Georgia State University

TReNDS Center
Atlanta, GA, USA

orcid.org/0009-0008-0703-8585

Sergey Plis
Department of Computer Science

Georgia State University
TReNDS Center

Atlanta, GA, USA
orcid.org/0000-0003-0040-0365

Abstract—The limited availability of diverse, high-quality
datasets is a significant challenge in applying deep learning
to neuroimaging research. Although synthetic data generation
can potentially address this issue, on-the-fly generation is com-
putationally demanding, while training on pre-generated data
is inflexible and may incur high storage costs. We introduce
Wirehead, a scalable in-memory data pipeline that significantly
improves the performance of on-the-fly synthetic data generation
for deep learning in neuroimaging. Wirehead’s architecture
decouples data generation from training by running multiple
generators in independent parallel processes, facilitating near-
linear performance gains proportional to the number of genera-
tors used. It efficiently handles terabytes of data using MongoDB,
greatly minimizing prohibitive storage costs. The robust, modular
design enables flexible pipeline configurations and fault-tolerant
operation. We evaluated Wirehead with SynthSeg, a synthetic
brain segmentation data generation tool that requires 7 days to
train a model. When deployed in parallel, Wirehead achieved
a near-linear 15.7x increase in throughput with 16 generators.
With 20 generators, we can train a model in 9 hours instead of 7
days. This demonstrates Wirehead’s ability to greatly accelerate
experimentation cycles. While Wirehead represents a substantial
step forward, it also reveals opportunities for future research in
optimizing generation-training balance and resource allocation.
Its ability to facilitate distributed deep learning has significant
implications for enabling more ambitious neuroimaging research.

Index Terms—deep learning, synthetic data generation, dis-
tributed computing, neuroimaging, magnetic resonance imaging

I. INTRODUCTION

Deep learning has revolutionized many domains, including
neuroimaging, computer vision, and natural language process-
ing. However, training these models efficiently often faces
a critical bottleneck: the delay in feeding data to the GPU.
This issue is particularly pronounced in data-parallel training
across multiple GPUs, when preprocessing training samples,
and when generating training data in real-time. In the latter
case, data generation can take orders of magnitude longer than
the actual GPU training step.

For example, in neuroimaging, generating synthetic brain
MRI scans for training deep learning models can be extremely
time- and resource-intensive. Billot et al. [1], [2] reported that
generating and training on 300, 000 synthetic scans using their
SynthSeg, a synthetic MRI data generation tool, on a single

Manuscript submitted Oct 22, 2024. This work was supported by NIH
grants R01MH129047 and 2R01EB006841, and NSF grant 2112455.

computer took 7 days. Storing these scans would require an
astonishing 91 TB at uint8 precision or 366 TB at float32,
making on-disk storage practically infeasible. The same core
generation process is used in a number of other papers
with slight modification on how data is generated to fit the
task [3]–[6]. Training models for a week does not leave much
time for experimentation, hyper-parameter search, and model
architecture innovation. This severely limits iteration speed
and flexibility in model development. Remarkably, the result
of this limitation is that all of these models use practically
the same architecture for their fully convolutional network
workhorse: the U-Net [7], [8].

This 7 day experimentation cycle has slowed down archi-
tectural innovation, although not the variety of applications,
but we attribute it to the great need and success of this
particular generator. Yet, the generator is relatively simple
methodologically as its core computational component is a
Gaussian mixture model (GMM). However, the field of de-
veloping brain simulations is blooming with more complex,
potentially more advanced, and highly computationally sophis-
ticated methods such as diffusion models [9]–[11], generative
adversarial networks (GANs) [12], [13], and many more [14].
Potentially, these rising generative models for synthetic brain
images can be more flexible and provide ways to train models
for biomedical applications where data is although specific,
such as stroke lesions, but relatively rare. However, these
models would be substantially slower to run and much more
difficult to train on their data if the approach to training on a
single GPU sequentially of Billot et al. [1], [2] is maintained.

To address these challenges, we introduce Wirehead, a
novel in-memory data pipeline that enables model-agnostic
scalable, real-time synthetic data generation for deep learning.
Wirehead’s key innovations include a decoupled architecture
for independent scaling of data generation and training, an
efficient MongoDB-based [15] data management system, and
a robust, fault-tolerant design.

By enabling distributed synthetic data generation and re-
ducing storage costs, Wirehead significantly accelerates the
deep learning experimentation cycle. While we demonstrate
Wirehead’s application to neuroimaging using SynthSeg, our
approach is broadly applicable to any domain requiring large-
scale on-the-fly generation of synthetic data for training.

In this paper, we first present Wirehead’s design principles



(a) Wirehead decoupled architecture for training and data generation

(b) Traditional coupled training and data generation

Fig. 1: Comparison of architectures for data generation and
training: (a) Wirehead decoupled architecture, (b) Traditional
coupled architecture. In (a), training is unaware of the rest of
the process, both in the code and the interface. It continuously
trains from what appears to be the same dataset.

and system architecture (Section II). We then detail our data
management strategy (Section III) and the decoupling of data
generation and model training (Section IV). Next, we report
extensive benchmarks evaluating Wirehead’s performance and
scalability (Section V) and (Section VI). Finally, we discuss
trade-offs, future directions, and conclude (Sections VII-X).

II. DESIGN OVERVIEW

Wirehead’s architecture splits the workflow into three pri-
mary components:

1) Generator: This component runs the synthesis, prepro-
cessing, and scheduling in a continuous loop. Multiple
generators can operate concurrently, each pushing data
to a central database.

2) Manager: Connected to MongoDB, the manager over-
sees data flow and integrity. It partitions the database
into read and write collections. When the write collec-
tion reaches capacity, the manager swaps it with the read
collection, ensuring a constant supply of fresh data for
training. The manager also handles data integrity checks
and error recovery.

3) Dataset: This component interfaces with MongoDB,
allowing data to be pulled for training just like standard
PyTorch datasets. It includes safeguards against data
corruption, ensuring robust operation even in the face
of potential errors.

Central to Wirehead’s design is the use of MongoDB.
Chosen for its non-blocking I/O operations and ability to scale
to terabytes of data, MongoDB enables efficient storage and
movement of large datasets. This choice facilitates the asyn-
chronous, decoupled nature of our system, where generators
and training jobs can scale independently without creating
bottlenecks.

For testing and deployment, Wirehead utilizes lightweight
SLURM scripts, though the architecture supports local deploy-
ment and other alternatives. This flexibility allows for easy
adaptation to various computational environments.

The decoupled, asynchronous design offers several advan-
tages:

1) Independent Scaling: Generation and training processes
can be scaled separately based on computational de-
mands.

2) Continuous Operation: Neither component waits for the
other, maximizing resource utilization.

3) Fault Tolerance: Issues in one component (e.g., a failing
generator) don’t immediately impact others.

4) Flexible Resource Allocation: Computational resources
can be dynamically assigned to generation or training as
needed.

By re-imagining the synthetic training pipeline as a dis-
tributed, decoupled system, Wirehead achieves high scalability
and efficiency, particularly data-intensive for machine learning
tasks.

III. DATA MANAGEMENT

Wirehead employs an innovative data management system
designed to handle large-scale synthetic data generation and
training without the need for disk storage. At its core is a
cache system divided into two halves: read and write. This
design, coupled with an efficient swap mechanism, allows for
continuous data generation and training while minimizing I/O
bottlenecks.

A. Cache Structure and Swap Timing

The cache consists of two main components:

1) Write Cache: Where newly generated samples are
stored.

2) Read Cache: From which the training process pulls data.

The timing and size of data swaps between these caches are
controlled by two factors:

1) Swap Cap: Determines the maximum number of samples
in each cache half at any given time.

2) Sample Generation Rate: Dictates the frequency of
swaps based on how quickly new samples are produced.

This dual-cache system ensures a constant supply of fresh
data for training while allowing older samples to be cycled
out efficiently.



B. Efficient Swap Implementation

The swap operation is a critical engineering challenge in
Wirehead. Naively copying hundreds of gigabytes of data
between write and read caches would be prohibitively I/O
intensive. Wirehead circumvents this issue with an ingenious
solution:

Instead of moving data, the swap is executed by sim-
ply changing the collection identifier of the databases. This
approach reduces the swap operation to O(1) complexity,
regardless of the data volume involved.

The swap process consists of the following steps:

1) Renaming: The ’write’ collection is renamed to a tem-
porary ’temp’ collection.

2) Data Integrity Verification: Checks are performed to
ensure the write database contains the required number
of samples and that all samples are complete.

3) Data Reindexing: Data chunks are reorganized into
contiguous segments, optimizing subsequent read oper-
ations.

4) Final Renaming: The ’temp’ collection is renamed to
become the new ’read’ collection, while the previous
’read’ collection is dropped.

This process ensures that at any given time, the training
process has access to a complete, integrity-verified set of data,
while new samples continue to be generated and stored in the
new ’write’ collection.

C. Benefits of the Approach

1) Minimal I/O Overhead: By avoiding large data transfers
during swaps, Wirehead maintains high performance
even with very large datasets.

2) Continuous Operation: The training process can continue
uninterrupted during swaps, as it always has access to a
complete ’read’ collection.

3) Scalability: This approach scales efficiently with in-
creasing data volumes, making it suitable for large-scale
machine learning tasks.

4) Data Freshness: Regular swaps ensure that the training
process always has access to recently generated data,
which can be crucial in dynamic or evolving data
generation scenarios.

Wirehead’s data management system demonstrates that
clever engineering can overcome significant scalability chal-
lenges in machine learning pipelines. By rethinking traditional
data handling approaches, it achieves a level of efficiency that
enables new scales of synthetic data generation and utilization
in training processes.

IV. DECOUPLED GENERATION AND TRAINING

A key innovation in Wirehead’s architecture is the complete
decoupling of data generation and model training processes.
This design choice offers several significant advantages:

A. Horizontal Scaling

The decoupled architecture allows for independent scaling
of generation and training components. As computational
demands change, resources can be added or removed from
either process without affecting the other. This flexibility
enables efficient resource utilization and easy adaptation to
varying workloads.

B. Continuous Operation

In Wirehead, no component waits for another, ensuring
maximum utilization of computational resources:

1) Generation Pushes Out of Order: Generators continu-
ously produce and push data to the database without
waiting for any acknowledgment from the training pro-
cess or other generators. This asynchronous operation
allows for uninterrupted data creation, with insertions
happening completely out of order as each generator
works independently.

2) Isolated Read Collection: Training nodes pull data from
an isolated read collection in a round-robin fashion.
This separation ensures that the training process always
has a consistent, integrity-verified dataset to work with,
regardless of ongoing generation activities.

C. Flexible Resource Allocation

The system allows for dynamic allocation of computational
resources between generation and training. Depending on the
specific needs of a project, more or less compute power can
be assigned to either process. This flexibility is particularly
valuable in scenarios where generation and training have
different computational requirements or when requirements
change over time.

D. Fault Tolerance

Wirehead’s architecture is designed with robustness in mind:
1) Generator Flexibility: The system can function effec-

tively even if not all generators are active. This allows
for maintenance or upgrades of individual generators
without halting the entire process.

2) Manager Resilience: In the event of a manager failure,
the system continues to operate. While new data may
not be swapped in, the training process can continue
with existing data, potentially leading to overfitting but
avoiding complete system failure.

3) Training Robustness: The training process can pull sam-
ples independently of the manager’s state, thanks to
robust error handling. This includes handling the edge
case where a read operation occurs mid-swap:
The ‘ getitem ‘ method in the dataset class is de-
signed to handle failures that may occur when attempt-
ing to read data during a swap operation. If such a failure
occurs, the method employs a retry mechanism, allowing
the training process to continue smoothly once the swap
is complete.

This decoupled, fault-tolerant design ensures that Wirehead
can maintain operation even in the face of component failures



or maintenance events, providing a level of robustness crucial
for long-running, large-scale machine learning tasks.

V. RESULTS

To evaluate the performance and scalability of Wirehead,
we conducted a series of benchmarks comparing different
configurations. These tests offer insights into the system’s
efficiency and its ability to scale in distributed environments.

We tested four main configurations to assess Wirehead’s
performance. All experiments were conducted on a system
with the following hardware configuration:

• GPU: 1x NVIDIA A100 (80GB)
• CPU: 16 cores
• RAM: 200 GB

The experiments were deployed and managed using the
SLURM job scheduler. This setup allowed for consistent
resource allocation and management during the benchmarking
process.

1) Coupled training and generation
• Generation and training live in the same process,

and are mutually blocking.
• Single node, sequential generation and training.

2) Wirehead on Local Machine
• Decoupled generation and training, in which gen-

eration and training happen on different processes,
and are non blocking.

• Single node for both generation and training.
3) Wirehead on Distributed System

• Basic distributed setup, in which generation and
training happens on different nodes.

• Multiple nodes for generation, single node for train-
ing.

4) Distributed Wirehead with Various Worker Configura-
tions

• Multiple configurations varying the number of gen-
erator nodes.

• Tested with 2, 4, 8, and 16 generator nodes.

TABLE I: Samples Read Throughput by Configuration

Experiment Performance Metrics
Type Samples/sec Uncertainty Speedup

Coupled 0.21 ± 0.01 1.00x
Local Wirehead 0.74 ± 0.18 3.45x

Distributed Wirehead 0.75 ± 0.06 3.51x

TABLE II: Sample Generation Throughput by Configuration

Experiment Performance Metrics
Type Samples/sec Uncertainty Speedup

Coupled 0.21 ± 0.01 1.00x
Local Wirehead 0.21 ± 0.00 1.00x

Distributed Wirehead 0.25 ± 0.00 1.18x

TABLE III: Scaling Performance with Multiple Generators

Configuration Performance Metrics
Type Workers Samples/sec Scale Factor

1x Wirehead Generator 1 0.25 1.00
2x Wirehead Generator 2 0.50 1.99
4x Wirehead Generator 4 0.98 3.91
8x Wirehead Generator 8 1.95 7.75
16x Wirehead Generator 16 3.94 15.70

VI. ANALYSIS

Our analysis focuses on five key metrics:

A. GPU Utilization

The effects of the manner of synthetic data generation on
GPU utilization are demonstrated in Figure 2 and can be
summarized as:

• Coupled: 34.76% average utilization
• Local Wirehead: 89.27% average utilization
• Distributed Wirehead: 87.48% average utilization

The GPU utilization metrics illustrate the hardware benefits
of using Wirehead compared to the traditional coupled ap-
proach. In the coupled setup, the GPU is often idle while
waiting for new data, resulting in low average utilization
of just 33.70%. In contrast, Wirehead configurations show
significant improvements: Local Wirehead achieves 93.21%
average GPU utilization, while Distributed Wirehead main-
tains 88.84%. These results highlight Wirehead’s ability to
maximize GPU usage efficiency by decoupling data generation
and training processes, leading to faster training times and
improved performance.

The slightly higher GPU utilization in Local Wirehead
can be attributed to the generation process partially utilizing
the GPU and sharing resources with the training process. In
Distributed Wirehead, the overhead of data transfer and sep-
arate generation machines result in slightly lower utilization.
However, the benefits of distributed computation, notably the
ability to linearly scale throughput by increasing generator
count, outweigh these minor differences.

B. Samples Read per Second

Wirehead’s architecture allowed for an approximate 3.5x
increase in training throughput compared to the coupled ap-
proach. The slightly higher throughput in Distributed Wirehead
can be attributed to the absence of local data management
overhead. However, this difference is minimal, and both Wire-
head configurations provide significant improvements over the
coupled setup.

The higher variance in Local Wirehead (0.74 ± 0.18)
compared to Distributed Wirehead (0.75 ± 0.06) is likely due
to resource contention between data generation and training
processes on the same machine.

The overall sample reading speed is summarized in Table I.



(a) Coupled training and generation (b) Wirehead Local (c) Wirehead Distributed

Fig. 2: GPU utilization during training for different configurations: (a) Coupled training and generation, (b) Wirehead
Distributed, and (c) Wirehead Local. Consistent GPU utilization allows a model to train faster by minimizing the idle time.

(a) Coupled training and generation (b) Wirehead Local (c) Wirehead Distributed

Fig. 3: Dice score for training and evaluation for different configurations: (a) Coupled training and generation, (b) Wirehead
local, and (c) Wirehead distributed. The distributed version is using 20 generators simultaneously.

C. Samples Generated per Second

Wirehead achieves a notable 19% increase in generation
throughput when running in a distributed setting (0.25 sam-
ples/sec) compared to both the coupled and local Wirehead
approach (0.21 samples/sec), while maintaining the same
number of generators.

Local Wirehead maintains the same generation throughput
as the coupled setup, demonstrating that the decoupled archi-
tecture itself does not introduce any overhead. These results
showcase Wirehead’s ability to efficiently decouple generation
and training, even enhancing generation speed in a distributed
environment.

The overall sample throughput is summarized in Table II.

D. Linear Scaling of Sample Generation

Our results demonstrate near-linear scaling of sample gen-
eration rate with respect to the number of worker nodes.
Doubling the workers from 1 to 2 yields a 1.99x throughput
increase, while quadrupling to 4 results in a 3.91x increase.
Further scaling to 8 and 16 workers achieves 7.75x and 15.70x
speedups, respectively (Table III).

This linear scaling behavior showcases Wirehead’s excellent
scalability, enabling efficient distribution of workload across
multiple nodes with minimal overhead. The ability to scale

generation throughput linearly is crucial for handling large-
scale machine learning tasks requiring vast amounts of syn-
thetic data. Wirehead’s architecture allows users to easily ac-
commodate growing data requirements and directly translates
to faster experiment turnover.

E. Training performance

To ensure a fair comparison across configurations, we con-
ducted all training experiments on identical hardware: a single
NVIDIA A100 GPU node with 16 CPU cores and 200GB
of RAM. Each experiment ran for a duration of 5 hours,
providing a consistent time frame for performance evaluation.
(Figure 3)

While the training setup remained constant, the data gen-
eration configurations varied. For both the coupled and local
Wirehead setups, data generation occurred on the same A100
node as training. In contrast, the distributed Wirehead con-
figuration leveraged 20 separate nodes for data generation,
significantly increasing the potential throughput of synthetic
data production.

All evaluation scores were obtained using real unseen
Human Connectome Project (HCP) data. Utilizing these con-
figurations, we obtained the following evaluation results:

• Coupled: 0.39 Evaluation Dice Score



• Local Wirehead: 0.28 Evaluation Dice Score
• Distributed Wirehead: 0.80 Evaluation Dice score
The traditional coupled approach demonstrated extremely

slow growth in DICE scores on the HCP evaluation data. By
the end of our experiment, the model had not yet reached
saturation, indicating a significantly slower learning process
compared to the Wirehead configurations. This slow progress
underscores the inefficiencies inherent in coupling data gen-
eration with model training, where the model often waits for
new data to be generated before it can continue learning.

The local Wirehead configuration showed a rapid increase
in DICE scores for the training set (generated data). However,
when evaluated on the real HCP dataset, the scores plateaued
quickly at around 0.28. This discrepancy between training and
evaluation performance is noteworthy and suggests potential
overfitting to the generator itself.

We hypothesize that this overfitting is due to the significant
imbalance between read throughput and generation throughput
in this setup. With read operations occurring multiple times
faster than generation, each generated sample is seen approxi-
mately 3.5 times on average during training. This repetition
likely leads to the model memorizing specific patterns in
the data generation process rather than learning generalizable
features, resulting in poor performance on real-world HCP
data.

The distributed Wirehead configuration demonstrated the
most promising results, showing rapid improvements in both
HCP evaluation and training DICE scores. Notably, it sur-
passed the HCP evaluation score achieved by the coupled setup
at the 5-hour mark in just 40 minutes, a significant 7x speedup.
The distributed configuration ultimately peaked at a DICE
score of 0.8 on the HCP data, substantially outperforming both
the coupled and local configurations.

F. Key Findings

1) GPU Utilization: Wirehead significantly improved GPU
utilization compared to the coupled implementation,
with the distributed setup showing the highest efficiency.

2) Read and Generation Speed: Both local and distributed
Wirehead setups showed substantial improvements in
samples read and generated per second compared to the
coupled implementation.

3) Scalability: The near-linear scaling of sample generation
with worker count demonstrates Wirehead’s excellent
scalability in distributed environments.

4) Decoupling Benefits: The decoupled architecture al-
lowed for independent optimization of generation and
training processes, leading to overall system perfor-
mance improvements.

5) Scaling Impact on Training: Distributed Wirehead’s abil-
ity to scale data generation across multiple nodes led to
a significant speedup in model performance growth and
a higher final DICE score (0.8) on real HCP data.

These benchmarks clearly demonstrate the advantages of
Wirehead’s architecture, particularly in distributed environ-
ments. The system’s ability to scale linearly with additional

resources makes it well-suited for large-scale machine learning
tasks requiring substantial synthetic data generation.

VII. DISCUSSION

A. Swap Cap and Data Freshness

The swap cap in Wirehead plays a crucial role in managing
data flow and system performance. While one might initially
assume that a larger swap cap would provide a bigger cache
and thus better performance, our analysis reveals a more
nuanced reality:

1) Cache Size vs. Swap Frequency: A larger swap cap does
indeed provide a bigger cache. However, it also means
less frequent swaps, by exactly the same factor. This
trade-off effectively cancels out the potential benefits of
a larger cache in many scenarios.

2) Effective Read Rate: Interestingly, the rate of repeated
reads per sample remains relatively constant regardless
of the swap cap configuration. This is because the slower
swap rate with a larger cap counterbalances the increased
cache size.

3) Memory Considerations: The memory required to store
all variables scales linearly with the swap cap. The
formula is approximately: Memory = swap cap * sam-
ple size * 2 (for read and write caches)
In our tests, we successfully scaled up to 10,000 samples
(uint8, 256x256x256 tensors, in data-label pairs), con-
suming about 620 GB of memory without performance
issues.

4) Optimal Configuration: The ideal swap cap depends on
the specific use case, balancing memory availability,
data freshness requirements, and the relative speeds of
generation and training. In general, we find that larger
swap caps lead to slightly better hardware utilization
due to having fewer swaps from the write cache to
the read cache. Further experiments are required to
assess the impact of different configurations on model
performance.

B. Generation Throughput and Training Balance

The decoupled nature of generation and training in Wire-
head leads to two potential scenarios, each with its own
implications:

1) Generation is Faster than Training:
• Pros: Increased data variance, potentially harder to

overfit.
• Cons: Possible waste of compute resources for gen-

eration.
• Implication: Training effectively samples from a

subset of generated data.
2) Training is Faster than Generation:

• Issue: Samples may be seen multiple times during
training.

• Risk: Potential overfitting, especially for certain
training tasks.



• Example: In our local Wirehead experiment, train-
ing was 4 times faster than generation, resulting in
each sample being seen an average of 4 times. This
led to a lower evaluation DICE score (see Appendix
for details).

These observations highlight the importance of carefully
balancing generation and training speeds. While Wirehead’s
architecture allows for independent scaling, optimal perfor-
mance requires thoughtful configuration based on the specific
requirements of the task at hand.

Potential Mitigations:
1) Dynamic swap cap adjustment based on observed gen-

eration and training speeds.
2) Implementing a ”freshness” policy that prioritizes newer

samples in the training process.
3) For cases where generation is faster, consider imple-

menting a sampling strategy that ensures broader cover-
age of the generated data.

4) When training is faster, explore techniques to mitigate
overfitting, such as increased regularization or dynamic
learning rate adjustment.

These findings underscore the complexity of managing
large-scale synthetic data generation and training processes.
While Wirehead provides a powerful and flexible framework,
achieving optimal performance requires careful consideration
of these interdependencies and potential trade-offs.

VIII. SOFTWARE AVAILABILITY AND EASE OF USE

To facilitate the adoption and reproducibility of our work,
we have made Wirehead available both as open-source soft-
ware under MIT license, and as a pip-installable package.
This approach significantly streamlines the setup process for
researchers and practitioners interested in utilizing our caching
system for scaling synthetic data generators.

The installation process is straightforward and can be com-
pleted with a single command:

pip install wirehead

This installation method ensures that all necessary depen-
dencies are automatically managed, reducing the potential for
configuration errors and version incompatibilities.

Furthermore, we have prioritized user convenience by pro-
viding comprehensive documentation and usage instructions
in our GitHub repository1. These resources offer step-by-step
guidance on configuring and integrating Wirehead into existing
data generation pipelines.

IX. RAPID MODEL DEVELOPMENT

Wirehead’s rapid experimentation capabilities have opened
up new possibilities for model development and deployment. A
prime example is Brainchop2 [16], a brain segmentation plat-
form that allows models to run natively in the browser. With
Wirehead, we can rapidly iterate through model architectures,

1Availableat:https://github.com/neuroneural/wirehead/tree/paper
2Availableat:https://brainchop.org/

such as the MeshNet [17], model sizes, and alternative use
cases, such as tissue extraction.

X. CONCLUSIONS

This paper presents Wirehead, a novel system for horizon-
tally scaling synthetic data generation and training in machine
learning. Wirehead’s key innovations include:

• A decoupled architecture enabling horizontal scaling with
near-linear performance gains relative to worker count.

• An efficient data management system utilizing Mon-
goDB, capable of handling terabytes of data with minimal
I/O or processing overhead.

• A robust, modular design allowing for flexible pipeline
configurations and fault-tolerant operation.

These features collectively accelerate the experimentation
cycle, enabling faster iteration in data-intensive machine learn-
ing tasks. While Wirehead demonstrates significant advantages
in scalability and efficiency, it also reveals opportunities for
future research:

• Developing dynamic resource allocation strategies to op-
timize the balance between data generation and training.

• Exploring Wirehead’s applicability in other domains with
similar challenges in data characteristics, notably large
data size and long processing speeds. Notable examples
of interest are training on synthetic video generation
pipelines, and distilling large language models weights.

By enabling efficient and scalable deployment of synthetic
data generation, Wirehead has the potential to accelerate
progress in machine learning research and applications, par-
ticularly in fields constrained by data availability. However,
realizing this potential will require ongoing refinement of the
system and application across diverse domains.

ACKNOWLEDGMENT

Special thanks go to Armina Fani for her uncanny abil-
ity to uncover bugs in our software, ultimately making our
implementations more robust, and to Thu Le for providing
additional labeled data for out-of-domain experiments, which
highlighted the challenges of relying on synthetic data for
deep learning. We are also grateful to Mateo Sanabria for his
constant encouragement and willingness to engage in rubber
duck debugging sessions. We would also like to acknowledge
Alex Fedorov for his expertise in organizing deep learning
projects.

REFERENCES

[1] B. Billot, D. N. Greve, O. Puonti, A. Thielscher, K. Van Leemput,
B. Fischl, A. V. Dalca, and J. E. Iglesias, “Synthseg: Segmentation
of brain mri scans of any contrast and resolution without retraining,”
Medical Image Analysis, vol. 86, p. 102789, May 2023. [Online].
Available: http://dx.doi.org/10.1016/j.media.2023.102789

[2] B. Billot, Y. Colin, Magdamo Cheng, S. Das, and J. E. Iglesias, “Robust
machine learning segmentation for large-scale analysis of heterogeneous
clinical brain MRI datasets,” Proceedings of the National Academy of
Sciences (PNAS), vol. 120, no. 9, pp. 1–10, 2023.

[3] J. E. Iglesias, B. Billot, Y. Balbastre, C. Magdamo, S. E. Arnold, S. Das,
B. L. Edlow, D. C. Alexander, P. Golland, and B. Fischl, “Synthsr:
A public ai tool to turn heterogeneous clinical brain scans into high-
resolution t1-weighted images for 3d morphometry,” Science advances,
vol. 9, no. 5, p. eadd3607, 2023.

Available at: https://github.com/neuroneural/wirehead/tree/paper
Available at: https://brainchop.org/
http://dx.doi.org/10.1016/j.media.2023.102789


[4] A. Hoopes, J. S. Mora, A. V. Dalca, B. Fischl, and M. Hoffmann,
“Synthstrip: skull-stripping for any brain image,” NeuroImage, vol.
260, p. 119474, 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1053811922005900

[5] J. E. Iglesias, B. Billot, Y. Balbastre, A. Tabari, J. Conklin, R. Gilberto
González, D. C. Alexander, P. Golland, B. L. Edlow, and B. Fischl, “Joint
super-resolution and synthesis of 1 mm isotropic mp-rage volumes from
clinical mri exams with scans of different orientation, resolution and
contrast,” NeuroImage, vol. 237, p. 118206, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811921004833

[6] M. Hoffmann, B. Billot, D. N. Greve, J. E. Iglesias, B. Fischl, and A. V.
Dalca, “Synthmorph: learning contrast-invariant registration without
acquired images,” IEEE transactions on medical imaging, vol. 41, no. 3,
pp. 543–558, 2021.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
Springer, 2015, pp. 234–241.

[8] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3d u-net: learning dense volumetric segmentation from
sparse annotation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2016: 19th International Conference, Athens,
Greece, October 17-21, 2016, Proceedings, Part II 19. Springer, 2016,
pp. 424–432.

[9] F. Khader, G. Müller-Franzes, S. Tayebi Arasteh, T. Han, C. Haarburger,
M. Schulze-Hagen, P. Schad, S. Engelhardt, B. Baeßler, S. Foersch
et al., “Denoising diffusion probabilistic models for 3d medical image
generation,” Scientific Reports, vol. 13, no. 1, p. 7303, 2023.

[10] Z. Wu, X. Chen, S. Xie, J. Shen, and Y. Zeng, “Super-resolution of
brain mri images based on denoising diffusion probabilistic model,”
Biomedical Signal Processing and Control, vol. 85, p. 104901, 2023.

[11] W. H. Pinaya, P.-D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez,
P. Nachev, S. Ourselin, and M. J. Cardoso, “Brain imaging generation
with latent diffusion models,” in MICCAI Workshop on Deep Generative
Models. Springer, 2022, pp. 117–126.

[12] U. Tariq, R. Qureshi, A. Zafar, D. Aftab, J. Wu, T. Alam, Z. Shah, and
H. Ali, “Brain tumor synthetic data generation with adaptive stylegans,”
in Irish Conference on Artificial Intelligence and Cognitive Science.
Springer, 2022, pp. 147–159.

[13] J. Islam and Y. Zhang, “Gan-based synthetic brain pet image generation,”
Brain informatics, vol. 7, no. 1, p. 3, 2020.

[14] C. Gong, C. Jing, X. Chen, C. M. Pun, G. Huang, A. Saha, M. Nieu-
woudt, H.-X. Li, Y. Hu, and S. Wang, “Generative ai for brain image
computing and brain network computing: a review,” Frontiers in Neu-
roscience, vol. 17, p. 1203104, 2023.

[15] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide, 2010,
available at: https://www.mongodb.com/.

[16] S. M. Plis, M. Masoud, F. Hu, T. Hanayik, S. S. Ghosh, C. Drake,
R. Newman-Norlund, and C. Rorden, “Brainchop: Providing an edge
ecosystem for deployment of neuroimaging artificial intelligence mod-
els,” Aperture neuro, vol. 4, 2024.

[17] A. Fedorov, J. Johnson, E. Damaraju, A. Ozerin, V. Calhoun, and
S. Plis, “End-to-end learning of brain tissue segmentation from imperfect
labeling,” 2017. [Online]. Available: https://arxiv.org/abs/1612.00940

https://www.sciencedirect.com/science/article/pii/S1053811922005900
https://www.sciencedirect.com/science/article/pii/S1053811922005900
https://www.sciencedirect.com/science/article/pii/S1053811921004833
https://www.mongodb.com/
https://arxiv.org/abs/1612.00940

	Introduction
	Design Overview
	Data Management
	Cache Structure and Swap Timing
	Efficient Swap Implementation
	Benefits of the Approach

	Decoupled Generation and Training
	Horizontal Scaling
	Continuous Operation
	Flexible Resource Allocation
	Fault Tolerance

	Results
	Analysis
	GPU Utilization
	Samples Read per Second
	Samples Generated per Second
	Linear Scaling of Sample Generation
	Training performance
	Key Findings

	Discussion
	Swap Cap and Data Freshness
	Generation Throughput and Training Balance

	Software Availability and Ease of Use
	Rapid Model Development
	Conclusions
	References

