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Abstract

We introduce Three Towers (3T), a flexible method to improve the contrastive
learning of vision-language models by incorporating pretrained image classifiers.
While contrastive models are usually trained from scratch, LiT [85] has recently
shown performance gains from using pretrained classifier embeddings. However,
LiT directly replaces the image tower with the frozen embeddings, excluding
any potential benefits from training the image tower contrastively. With 3T, we
propose a more flexible strategy that allows the image tower to benefit from both
pretrained embeddings and contrastive training. To achieve this, we introduce
a third tower that contains the frozen pretrained embeddings, and we encourage
alignment between this third tower and the main image-text towers. Empirically,
3T consistently improves over LiT and the CLIP-style from-scratch baseline for
retrieval tasks. For classification, 3T reliably improves over the from-scratch
baseline, and while it underperforms relative to LiT for JFT-pretrained models, it
outperforms LiT for ImageNet-21k and Places365 pretraining.

1 Introduction

Approaches such as CLIP [58] and ALIGN [34] have popularized the contrastive learning of aligned
image and text representations from large scale web-scraped datasets of image-caption pairs. Com-
pared to image-only contrastive learning, e.g. [51, 9, 25], the bi-modal image-text objective allows
these approaches to perform tasks that require language understanding, such as retrieval or zero-shot
classification [42, 58, 34]. Compared to traditional transfer learning from supervised image represen-
tations [52, 68, 44, 38], contrastive approaches can forego expensive labelling and instead collect
much larger datasets via inexpensive web-scraping [58, 11, 64]. A growing body of work seeks to
improve upon various aspects of contrastive vision-language modelling, cf. related work in §5.

CLIP and ALIGN train the image and text towers from randomly initialized weights, i.e. ‘from
scratch’. However, strong pretrained models for either image or text inputs are often readily available,
and one may benefit from their use in contrastive learning. Recently, Zhai et al. [85] have shown
that pretrained classifiers can be used to improve downstream task performance. They propose LiT,
short for ‘locked-image text tuning’, which is a variation of the standard CLIP/ALIGN setup that
uses frozen embeddings from a pretrained classifier as the image tower. In other words, the text tower
in LiT is contrastively trained from scratch to match locked and pretrained embeddings in the image
tower. Incorporating knowledge from pretrained models into contrastive learning is an important
research direction, and LiT provides a simple and effective recipe for doing so.

However, a concern with LiT is that it may be overly reliant on the pretrained model, completely
missing out on any potential benefits the image tower might get from contrastive training. Zhai et al.
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Figure 1: CLIP and ALIGN do not make use of pretrained models, and LiT directly uses a frozen
pretrained model as the image tower. With Three Towers (3T), we propose a flexible strategy to
improve contrastive learning with pretrained models: in addition to a pair of CLIP-style from-scratch
image and text towers, we introduce a third tower which contains fixed pretrained image embeddings;
extra loss terms align the main towers to the third tower. Unlike for CLIP/ALIGN and LiT, the image
tower can benefit from both contrastive learning and pretrained classifier embeddings.

[85] themselves give one example where LiT performs worse than standard contrastive training:
when using models pretrained on Places365 [87]—a dataset relating images to the place they were
taken—the fixed embeddings do not generalize to downstream tasks such as ImageNet-1k (IN-1k)
[40, 61] or CIFAR-100 [40]. For their main results, Zhai et al. [83] therefore use models pretrained
on datasets such as ImageNet-21k (IN-21k) [14, 61] and JFT [68, 84] which cover a variety of classes
and inputs. However, even then, we believe that constraining the image tower to fixed classifier
embeddings is not ideal: later, we will show examples where LiT performs worse than standard
contrastive learning due to labels or input examples not covered by IN-21k, cf. §4.2. Given the scale
and variety of contrastive learning datasets, we believe it should be possible to improve the image
tower by making use of both pretrained models and contrastive training.

In this work, we propose Three Towers (3T): a flex- Table 1: For retrieval, 3T improves on LiT
ible approach that improves the contrastive learning and the CLIP-style baseline (top-1 recall 1).
of vision-language models by effectively transferring Models are g scale, using Text-Filtered We-
knowledge from pretrained classifiers. Instead of lock- bLI, and JFT pretraining for LiT/3T, cf. §4.1.
ing the main image tower, we introduce a third tower -
that contains the embeddings of a frozen pretrained ~_ Method Basel. LiT 3T
model. The main image and text towers are trainec} Flickr img2txt 850 839 873
from scratch and aligned to the third tower with addi- . .

tional contrastive loss terms (cf. Fig. 1). Only the main Flickr txt2img 670 665 721
two towers are used for downstream task applications ~ COCO img2txt 60.0 595 64.1
such that no additional inference costs are incurred ~ COCO txt2img 447 43.6 485
compared to LiT or a CLIP/ALIGN baseline. This
simple approach allows us to explicitly trade off the
main contrastive learning objective against the transfer of prior knowledge from the pretrained model.
Compared to LiT, the image tower in 3T can benefit from both contrastive training and the pretrained
model. We highlight the following methodological and empirical contributions:

e We propose and formalize the 3T method for flexible and effective transfer of pretrained classifiers
into contrastive vision-language models (§3).

o 3T consistently improves over LiT and a from-scratch baseline for retrieval tasks (e.g. Table 1, §4.1).

e For classification tasks, 3T outperforms LiT and the baseline with IN-21k pretrained models; for
JFT pretraining, 3T outperforms the baseline but not LiT (§4.2).

o We extend the evaluation of Zhai et al. [85] to additional tasks and pretraining datasets, showing
that 3T is significantly more robust than LiT to deficits in the pretrained model (§4.2 and §4.4).

o We show that 3T benefits more from model size or training budget increases than LiT (§4.3).

e We introduce a simple post-hoc method that allows us to further improve performance by combining
3T- and LiT-like prediction (§4.5).

2 Background: Contrastive Learning of Vision-Language Models

Before introducing 3T, we recap contrastive learning of vision-language models as popularized by
[58, 34, 86] and give a more formal introduction to LiT [85].

CLIP/ALIGN. We assume two parameterized models: an image tower f = fy with parameters 6
and a text tower g = g, with parameters ¢. Each input sample (I;, T;) consists of a pair of matching
image I; € 7 and text T; € 7, and the contrastive loss is computed over a batch ¢ € {1,..., N}



of examples. The towers map the input modalities to a common D-dimensional embedding space,
f:T - RPandg: 7T — RP. We further assume that f and g produce embeddings that are
normalized with respect to their L2 norm, || f(I)||2 = ||g(T)|]2 = 1 forany I € Zand T € T. Fora
batch of input samples, the bi-directional contrastive loss [66, 77, 51, 9, 86] is computed as

Liesg = 1('Cf—m + £9—>f)a where (1)
ﬁ Ly = eXp )T (T/) /T) , (2)
TN Z exp( (I)Tg(T))/7)
Corp = — 23 log exp (1) 9(T)/7) 3
- Z eXp(f(I To(T)/T) ¥

Here, 7 is a learned temperature parameter and f(I) " g(T) € R are dot products. The two directional
loss terms, L£¢_, 4 and L,_, r, have a natural interpretation as standard cross-entropy objectives for
classifying the correct matches in each batch. The parameters 6 and ¢ of the two towers, fp and gy,
are jointly updated with standard stochastic optimization based on Eq. (1).

Downstream Tasks. After training, f and g are treated as fixed representation extractors. For
retrieval, the dot product f(I)"g(T) € R ranks similarity between inputs. For few-shot image
classification, a linear classifier is trained atop the feature representations of f from few examples; g is
not used. For zero-shot image classification, f embeds images and g all possible class labels (see [58]).
For each image, one predicts the label with the largest dot product similarity in embedding space.

LiT. Zhai et al. [85] initialize the parameters § of the image tower from a pretrained classifier and
then keep them frozen them during training. That is, only the parameters ¢ of the text tower are
optimized during contrastive training. As the image tower fy, LiT uses the pre-softmax embeddings
of large scale classifiers, such as vision transformers [17] trained on JFT-3B [84] or IN-21k. During
contrastive training, the text tower is trained from scratch using the same objective Eq. (1).

Experimentally, Zhai et al. [85] investigate all combinations for ‘training from scratch’, locking and
finetuning a pretrained model for both towers on a custom union of the CLIP-subset of YFCC-100M
[69] and CC12M [7] (cf. Fig. 3 in [85]). For the image tower, locking gives a significant lead on
IN-1k over finetuning and training from scratch, and performs similarly to finetuning and better than
training from scratch for retrieval. For the text tower, a locked configuration performs badly, and
finetuning gives small to negligible gains over training from scratch. Given these results, Zhai et al.
[85] choose the ‘locked image tower and from-scratch text tower’ setup that they call LiT. At large
scale, they show that a locked image tower outperforms from-scratch training and finetuning on
zero-shot IN-1k, ImageNet-v2 (IN-v2) [59], CIFAR-100, and Oxford-IIIT Pet [53] classification
tasks. They further show LiT outperforms CLIP/ALIGN on IN-R [31], IN-A [32], and ObjectNet [3].

While Zhai et al. [85] show strong classification performance with LiT on a wide range of datasets,
locking the image tower is a drastic measure that introduces a severe dependency on the pretrained
model, prohibiting the image tower from improving during contrastive training. We will later show
that, if the embeddings in the frozen image tower are not suited to a particular downstream tasks, LiT
underperforms compared to approaches that train the image tower on the varied contrastive learning
dataset, see, for example, §4.2 and §4.4. The 3T approach seeks to address these concerns.

3 Three Towers: Flexible Contrastive Learning with Pretrained Models

With Three Towers (3T), we propose a simple and flexible approach to incorporate knowledge from
pretrained models into contrastive learning. Instead of directly using the pretrained model locked as
the main image tower, we instead add a third tower, h, which contains the fixed pretrained embeddings.
The main image and text towers are trained from scratch, and we transfer representations from the
third tower to the main towers with additional contrastive losses. In this setup, the main image tower
benefits from both pretraining knowledge and contrastive learning.

More formally, in addition to the standard image and text towers, fy and g4, cf. §2, we now have access
to fixed pretrained image embeddings p : Z — R”". Because P can be different from the target di-
mension D, we define the third tower as h(I) = linear(p(I)), where linear : R” — RP projects
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Figure 2: Details of the 3T approach. (a) Linear adaptor heads (gray) align the representations
between the main towers and the third tower. (b) For downstream tasks, 3T is used in the same way
as CLIP/ALIGN and LiT. We discard the third tower, using only the main towers, f(I) and g(T').

embeddings to the desired dimensionality. In principle, the 3T architecture is also compatible with pre-
trained text models. However, like Zhai et al. [85], we do not observe benefits from using pretrained
text models, cf. §A.3, and so our exposition and evaluation focuses on pretrained image classifiers.

When computing loss terms involving the third tower, we make use of learned linear projection heads.
These heads afford the model a degree of flexibility when aligning representations between towers.
First, we define NL(-) = norm(linear(-)), where norm(z) = xz/||z||2 normalizes with respect to L2
norm and, overloading notation, linear : R” — R* now preserves dimensionality. We adapt the
main image and text towers as f,(I) = NL(f(I)) and g, (T) = NL(g(T")). We project the third tower
embeddings hto hy(I) = NL(h(I)) and hy(I) = NL(h(I)) for computation of the loss with the image
and text towers respectively. The linear layers introduced for fp, gp, h¢, and h, are independently
learned from scratch. Per input batch, the 3T approach then optimizes the following loss objective:

1
Lyt = 3 (Lyesg + Lpnony + Ly, ony)- “4)
Here, Ly, is the original contrastive loss, cf. Eq. (1), and Ly, «,n, and Ly, +,p,, are additional
contrastive losses between the image/text tower and the third tower projections. All loss terms share a
global temperature 7. We train both towers, f and g, and all linear layers from scratch by optimizing
Eq. (4) over input batches. Figure 2 (a) visualizes the adaptor heads and loss computation for 3T.

After training, the third tower is discarded and we use only the main two towers, cf. Fig. 2 (b).
Therefore, the inference cost of 3T is equal to the baseline methods. For training, the additional cost
over the from-scratch CLIP/ALIGN baseline is negligible, as frozen embeddings from the third tower
can be pre-computed and then stored with the dataset, as also done in Zhai et al. [83].

Intuitions for the 3T Architecture. Intuitively, the additional losses align the representations of
the main towers to the pretrained embeddings in the third tower. In fact, Tian et al. [71] show that
contrastive losses can be seen as distillation objectives that align representations between a teacher
and a student model. They demonstrate that contrastive losses are highly effective for representation
transfer, outperforming alternative methods of distillation. Thus, the additional terms, Ly, <5, and
ﬁgh<—>hg, transfer representations from the pretrained model to the unlocked main towers, albeit
without the usual capacity bottleneck between the student and teacher models. Of course, for 3T, we
also need to consider the original objective L., between the unlocked text and image towers. In
sum, the unlocked towers benefit both from the pretrained model and contrastive training.

Design Choices. In §4.6, we ablate various design choices, such as our use of equal weights among
the terms of Eq. (4), the contrastive loss for representation transfer, the shared global temperature 7,
the linear layers for & in the third tower, as well as our design of the adaptor heads.

Discussion. The 3T approach includes pretrained knowledge without suffering from the inflexibility
of directly using the pretrained model as the main image tower. For example, unlike LiT, 3T allows
for architectural differences between the unlocked image tower and pretrained model. Further, it
seems plausible that 3T should generally be more robust than LiT: as the image tower learns from the
highly-diverse contrastive learning datasets, the chances of encountering ‘blindspots’ in downstream
applications, e.g. due to labels or examples not included in the pretraining dataset, should be lower. In
a similar vein, LiT is most appropriate for pretrained models so capable that they need not adapt during
contrastive training. For example, few-shot classification performance, which uses only the image
tower, by design cannot improve at all during contrastive training with LiT. On the other hand, with 3T



we may be able to successfully incorporate knowledge from weaker models, too. Lastly, finetuning—
instead of locking—the main image tower from a pretrained classifier often has at most marginal
positive effects over training from scratch after a high number of training steps, cf. §2. In contrast,
the additional terms in Eq. (4) consistently ensure the main towers align with the pretrained model.

4 Experiments

In this section, we compare 3T to LiT and to a standard CLIP/ALIGN baseline trained from scratch,
which we will refer to as the ‘baseline’ for simplicity. Our experimental setup largely follows Zhai et al.
[85]: for all methods, we use Vision Transformers (ViT) [17] for the image and text towers, replacing
visual patching with SentencePiece encoding [41] for text inputs, further sharing optimization and
implementation details with [85]. We rely on the recently proposed WebLlI dataset [11], a large-scale
dataset of 10B image-caption pairs (Unfiltered WebLI). We also explore two higher-quality subsets
derived from WebLlI: Text-Filtered WebLlI, which uses text-based filters following Jia et al. [34], and
Pair-Filtered WebLlI (see §A.7), which retains about half of the examples with the highest image-text
pair similarity. For image tower pretraining, we consider both proprietary JFT-3B [84] and the
publicly available IN-21k checkpoints of Dosovitskiy et al. [17]. For IN-21k experiments, our largest
model scale is L, with a 16 x16 patch size for ViT, and for JFT pretraining we go up to g scale ata
patch size of 14 x14. Unless otherwise stated, we train for 5B examples seen at a batch size of 14 336.

4.1 Retrieval

We study zero-shot retrieval perfor- Table 2: 3T outperforms LiT and the baseline for retrieval
mance on COCO [10] and Flickr [56]. (top-1 recall 1, L scale models, Unfiltered WebLl, see §4.1).
Table 1 shows results for g scale mod- —
els trained on Text-Filtered WebLI,  Pretraining - IN-21k JET

with JFT pretraining for 3T and LiT. _Method Basel. LiT 3T LiT 3T
In Table 2, we report performance of gy imeoixt 756 717 80.0 787  80.0
L scale models trained on Unfiltered - .

WebLI for JET and IN-21k pretrain- Flickr* txt2img 57.1 493 609 588 614
ing. We give results for additional COCO img2txt 51.0 46.1 544 527 544

WebLlI splits for IN-21k and JFT  COCO txt2img 342 278 377 367 379
pretraining in Tables A.4 and A.6.

3T improves on LiT and the baseline for retrieval tasks across scales, datasets, and for both JFT and
IN-21k pretraining. A rare exception to this are the Unfiltered WebLlI results in Table A.6, where
3T beats LiT for retrieval on average and for txt2img, but not for img2txt. In general however, LiT
underperforms for retrieval and regularly does not outperform the baseline: at L scale, LiT shows a
strong dependence on the pretrained model and can only outperform the baseline with JFT pretraining.
In contrast, 3T obtains similar improvements over the baseline for both pretraining datasets. We will
continue to see this pattern in our experiments: 3T consistently improves over the baseline, while LiT
results can vary wildly and depend strongly on the pretraining dataset. We discuss our retrieval results
in the context of SOTA performance in §A.7: the SOTA method CoCA [81] achieves better results but
uses about 4 times more compute; increasing the compute budget for 3T would likely reduce the gap.

Intuitively, while the fixed classifier embeddings in LiT can categorize inputs into tens of thousands
of labels, they may not be fine-grained enough for retrieval applications. On the other hand, the
contrastive training of the baseline is closely related to the retrieval task but misses out on knowledge
from pretrained models. Only 3T is able to combine benefits from both for improved performance.

4.2 Few-Shot and Zero-Shot Image Classification

Next, we compare the approaches on few- and zero-shot image classification. See §D for citations
of all the datasets that we use. For zero-shot classification, we follow the procedure described in §2.
For few-shot tasks, we report 10-shot accuracy, more specifically, the accuracy of a linear classifier
trained on top of fixed image representations, averaging over 3 seeds for the 10 random examples
per class. As few-shot performance depends only on the image embeddings, LiT’s few-shot accuracy
is precisely the same as that of the pretrained model. Despite this, Zhai et al. [85] show that LiT
outperforms the unlocked baseline on few-shot IN-1k and CIFAR-100 evaluations.

*For historical reasons, Flickr™ results do not use the ‘Karpathy’ split [36]. However, they are available for all
runs, and they are directly comparable. Our g scale runs do have Karpathy split results, denoted Flickr (no star).



For IN-21k pretraining, Table 3 reports the performance of L scale models trained on Unfiltered
WebLlI, and we give results on additional datasets in Table A.4. Here, 3T outperforms both LiT
and the baseline. For JFT pretraining, Table A.5 gives results at L scale on Unfiltered WebLI and
Table A.6 presents results at g scale across WebLlI splits. In all JFT settings, LiT performs best on
average for image classification tasks, despite few-shot performance being fixed for LiT. However,
for both JFT and IN-21k pretraining, 3T improves over the baseline for almost all tasks. This is
different for LiT, where performance heavily depends on the pretraining data.

Risk of Locking. There is a risk associated with LiT, Table 3: For IN-21k pretraining, 3T has
both in a positive and negative sense. Using fixed classi- the best average classification accuracy (1)
fier representations can result in excellent performance (L scale models, Unfiltered WebLlI).

if the downstream task distribution and pretraining -
dataset are well-aligned: for example, IN-21k contains _Method Basel LIT 3T
hundreds of labels of bird species, and IN-21k-LiT IN-1k 628 790 68.0

performs well on the Birds task, outperforming 3T by é CIFAR-100 704 836 725
18 %p. However, the IN-21k label set does not containa ~ § Caltech 910 884 923
single car brand, and thus, IN-21k-LiT does not perform E attee . . .

well on Stanford Cars, underperforming relative to the =~ 4 Fets BN 865
baseline and 3T by almost 40 %p. ObjectNet, IN-A, © DID 70.3 692 733
and IN-R were created to be challenging for ImageNet & UCMerced  91.8 928  94.0
models, and so IN-21k-LiT performs worse than the mé Cars 81.5 419 849
baseline and 3T here, too. For example, IN-R contains  ®  Col-Hist 717 864 766

artistic renditions of objects that are challenging for Birds 534 834 650
IN—Zlkjba}segl models as they ha.ve mostly been tram'ed IN-1K 695 760 7.7
on realistic images. IN-21k-LiT also struggles with

more specialized tasks, performing 29 %p worse than CIFAR-100 735 829 734

the baseline on the remote sensing RESISC dataset. Caltech 819 824 841
. . § Pets 842 87.1 87.0
The above results support our hypothesis that image em- -5 DID 586 518 603
beddings trained on the highly diverse contrastive learn- 2 ‘ ‘ 2
ing dataset will be more broadly applicable. Strikingly, % IN-C 496 620 518
even when using the same IN-21k model, 3T almost S IN-A 53.0 456 543
always improves over the baseline and never suffers g IN-R 858 66.1 88.1
the same failures as LiT. However, it seems that JFT- E,;‘Ij IN-v2 622 672 649
pret.rained mod.els can fix many of LiT’s shortcomings & ObjectNet 562 419 583
for image classification. JFT-LiT perfgrms remarkably N EuroSat 327 276 428
well and almost never underperforms significantly com-
pared to the baseline. A deviation from this pattern are Flowers O2ONENEN 657
the results for Eurosat and RESISC at g scale for JFT RESISC 58.0 290 579
pretraining in Table A.6, where, e.g. on the Text-Filtered Sun397 67.6 654 68.7
WebLlI split, LiT lacks behind 3T by 12 %p and 8 %p. Average 684 683 714

4.3 Scaling Model Sizes and Training Duration

Since the publication of LiT, the scale of contrastive learning datasets, both public and proprietary,
has increased, for example with the release of LAION-5B [64] or WebLI-10B [11]; we use the latter
here. Given their cheap collection costs, it seems likely that this growth will continue to outpace that
of more expensive classification datasets. However, locking the image tower ignores any potential
benefits from the increased contrastive learning data for the image tower. Additionally, larger datasets
often lead to increases in model scales to fully make use of the additional information [84]; unlike LiT,
3T can increase the scale of the main image tower independently of the pretrained model, cf. §4.4.

Here, we separately study the effects that model scale and dataset size have on 3T, LiT, and the baseline.
First, we vary the scale of all involved towers, including the pretrained model. We study both IN-21k
and JFT pretraining, always train contrastively for 5B examples seen, and the S, B, L, and g scales
correspond to S/32, B/32, /16, and g/14 for the ViT models. We compute averages separately across
retrieval, few-shot, and zero-shot classification tasks, where the tasks are those from Tables 2 and 3.

In Fig. 3, we observe that 3T’s lead over LiT and the baseline in retrieval performance holds across
scales and pretraining datasets. Further, across all tasks and scales, 3T maintains a consistent
performance gain over the baseline. Also across tasks and pretraining datasets, we observe that
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Figure 3: We increase the model scale for 3T, LiT, and the baseline and report average retrieval, few-
and zero-shot classification performance for both IN-21k and JFT pretraining. 3T and the baseline
benefit more from increases in scale than LiT (their curves are steeper), with 3T performing better than
the baseline. The baseline does not use a pretrained model and is displayed twice (at scale B and L).

scaling is more beneficial for 3T than for LiT: as we increase the scale, 3T s performance increases
more than that of LiT. This means that 3T either extends its lead over, overtakes outright, or reduces
its gap to LiT as we increase scale. At L scale with IN-21k pretraining, 3T gives the best average
performance of all methods across tasks. For JFT pretraining, LiT maintains an edge for classification
performance, although the scaling behavior suggests this gap may fully collapse at larger scales. We
observe similar trends when scaling the number of examples seen during training, cf. Fig. A.4.

4.4 Pretraining Robustness . L .
Table 4: 3T is more robust to the pretraining setup than LiT.

Next, we study what happens Zero-shot classification accuracies (1), full details in main text.
when 3T and LiT are used with

pretrained models that do not  Setup Mismatched Places365

conform to expectations. We con- Method Basel. LiT 3T Basel. LiT 3T
sider two setups: one that we call .y 69.5 69.5 715 456 245 474
mismatched” and one thatconsid-— ~ypup 100 735 786 756 483 274 524
ers pretraining on the Places365

[87] dataset. In Table 4, we dis- P ‘e"ts 84.2 8.‘.‘:7 874 61.5 3(‘)".3 60.2

play zero-shot accuracies on Pets,
IN-1k, and CIFAR-100—tasks
for which LiT usually performs
best—as well as the average performance over the full set of tasks, see Table A.7 for individual results.

Full Average 664 61.7 69.8 475 294 493

Mismatched Setup. So far, we have always matched the scale of the pretrained model to the scale of
the models trained contrastively. For the mismatched setup, we now break this symmetry: we use an
IN-21k-pretrained B/32 scale image model (3T and LiT) with an L scale text tower (all approaches)
and an L/16 unlocked image tower (3T and baseline). This setup is relevant when pretrained models
are not available at the desired scale: for example, given ever larger contrastive learning datasets one
may want to train larger image models than are available from supervised training, cf. §4.3. Of course,
increasing the image tower scale also comes at increased compute costs for 3T and the baseline.
We observe that LiT suffers from this mismatched setup much more than 3T, which is not restricted
by the smaller pretrained model and now achieves higher accuracy than LiT on Pets and IN-1k.

Places365. Zhai et al. [85] demonstrate that LiT performs badly when used with models pretrained
on Places365. In Table 4, we reproduce this result and observe LiT performing much worse than the
baseline. (We here train B scale models for 900M examples seen, and based on our discussion in §4.3,
would expect LiT to perform even worse, in comparison to the baseline and 3T, when training longer
or with larger scale models.) The embeddings obtained from Places365 pretraining do not allow LiT
to perform well on our set of downstream tasks. 3T behaves much more robustly and does not suffer
from any performance collapse because it incorporates both the pretrained model and contrastive
data when training the image tower. Notably, 3T manages to improve average performance over
the baseline even for Places365 pretraining. We further suspect the linear projection heads afford
3T some flexibility in aligning to the pretrained model without restricting the generality of the
embeddings learned in the main two towers.
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Figure 4: Convex combination of the image models in 3T: - h(I) + (1 — «) - f(I). By varying «, we
can generally interpolate between 3T and LiT performance. Interestingly, for a broad range of weights,
the retrieval and few-shot classification performance of the combination outperforms 3T and LiT.

4.5 Benefits From Using 3T With All Three Towers at Test Time

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Fig. 2 (b). In this
section, we instead explore if we can find benefits from using the locked third tower at test time, similar
to LiT. More specifically, we study the convex combination of the main image tower and locked
pretrained model in the third tower, a-h(I)4(1—a)- f(I) , to see if we can interpolate between 3T- and
LiT-like prediction at « = 0 and o = 1 respectively. We train 3T without linear projection heads to
make embeddings from all towers compatible. Additional details of this setup can be found in §A.10.

Fig. 4 shows we can generally interpolate between LiT- and 3T-like performance as we vary a from 0
to 1. Note that we do not always recover LiT or 3T performance at o € {0, 1} as explained in §A.10.
Interestingly, for retrieval and few-shot classification tasks, the convex combination yields better
performance than either of the underlying methods for a relatively broad region around o = 0.5. We
believe that further study of the convex combination could be exciting future work: the method is
entirely post-hoc and no additional training costs are incurred, although inference costs do increase.

4.6 Ablations

Next, we provide ablations for some of the design de- Table 5: Ablation study, see text for details.
cisions of 3T as well as insights into LiT training. We
perform the ablation study at B scale with patch size

Difference to 3T

32, training for 900M examples seen, and use JFT-  Rerun —0.22+0.25
pretrained models. In Table 5, we report the average

difference in performance to our default runs across all No L9 Loss —26.63 £ 10.61
tasks, together with two standard errors computed over No Ly, n; Loss —1.19+0.75
the downstream tasks as an indication of statistical sig- Egaﬁg\}} aHri}g,]nI;OSS _ggg i 82;
nificance. We refer to §A.11 for full details and results. MLP Embedding 003+ 035
3T Ablations. ‘Rerun’: To study per-run variance, we ~ More Temperatures —0.26 +£0.48
perform a rerun of the base 3T model, obtaining an aver-  Loss Weights 0.17+£0.53
age performance difference of —0.22 %p across tasks. L2 Transfer —3.80+1.13
‘No L..,.”: When leaving out either of the three loss 3T Finetuning 1.85+£1.27
terms, average performance suffers significantly. ‘Head

Variants’: We try a selection of different projection ; -
head variants, see §A.11. None give significantly better Difference to LiT
performance than our default setup. ‘MLP Embedding’:  Rerun —0.10 £0.22
Replacing the linqar projection h in the tf}ird tower with LiT Finetune —14.99 £ 6.09
an MLP does not improve performance. ‘More Temper- FlexiLiT1 _4.63+1.36
atures’: Using three learned temperatures, one per 3T FlexiLiT2 _5.04+1.54

loss term, instead of a global temperature as in Eq. (4),
does not improve results. ‘Loss weights’: Replacing

the loss with a weighted objective, 3 - (Lferg + w - (L, n; + Lg,<rh,)), does not improve per-
formance significantly across a variety of choices for w. ‘L2 Transfer’: Using squared losses for
the representation transfer objectives Ly, »n ; and Eghﬁhg , cf. [60], results in significantly worse
performance, even when optimizing the weight of the transfer terms. ‘3T Finetuning’: Initializing
the main tower in 3T with the same JFT-pretrained model as the third tower increases performance
significantly; however, we find this effect becomes negligible for larger scale experiments, cf. §A.11.



LiT Ablations. ‘Rerun’: We observe similar between-run variance for LiT. ‘LiT Finetune’: We
confirm the result of Zhai et al. [85] that finetuning from a pretrained model results in worse
performance than locking. ‘FlexiLiT 1/2’: We investigate simple ways of modifying LiT such that it
can adjust the image tower during contrastive learning, see §A.11, but find these are not successful.

Additional Experiments. In §A.1, we study the optimization behavior of 3T, finding evidence for
beneficial knowledge transfer from the pretrained model. In §A.2, we study the calibration of all meth-
ods for zero-shot classification, as well as their performance for out-of-distribution (OOD) detection:
3T is generally better calibrated than LiT, and for OOD tasks, we find trends similar to §4.3, with all
methods generally performing well. In §A.3, we confirm the results of Zhai et al. [85] that there are
no benefits from using pretrained language models. In §A .4, a detailed investigation of predictions
suggests that 3T performs well because it combines knowledge from contrastive learning and the pre-
trained model. Lastly, §A.5 shows 3T continues to perform well with other pretrained image models.

5 Related Work

CLIP [58] and ALIGN [34] are examples of vision-language models that have received significant at-
tention, e.g. for their impressive ImageNet zero-shot results. Concurrently with LiT [85], BASIC [55]
investigates locking and finetuning from JFT-pretrained models. Previously, [46, 57, 74, 67] have ex-
plored representation learning from images with natural language descriptions before the deep learning
era. Subsequently, [21, 36, 35, 19, 63, 8] explore image-text understanding with CNNs or Transform-
ers. In this context, Li et al. [42] introduced the idea of zero-shot transfer to novel classification tasks.
The loss objective, Eq. (1), was proposed by Sohn [66] for image representation learning, and also
appears in [77, 51, 9]. Zhang et al. [86] then used the objective to align images and captions, although
their setting used medical data. Lots of work has built on CLIP and ALIGN. For example, [82, 79]
have augmented the objective to optionally allow for labels, [89, 88] proposed methods for improving
zero-shot prompts, [2, 43] applied CLIP to video, [54, 49, 62, 33] used CLIP embeddings to improve
generative modelling, and [47] study different ways of incorporating image-only self-supervision
objectives into CLIP-style contrastive learning. Relatedly, vast amounts of work have explored self-
supervised or contrastive representation learning of images only, e.g. [16, 25, 24, 6]. Transfer learning
[52] applies embeddings from large-scale (weakly) labelled datasets to downstream task [68, 44, 38].

6 Limitations, Impact, and Conclusions

Limitations. While 3T consistently improves over LiT for retrieval tasks, for classification, 3T out-
performs LiT with ImageNet-21k-pretrained models only at large scales, and may require even larger
scales for JFT pretraining. Further, while inference costs are equal for all methods, 3T incurs addi-
tional training costs compared to LiT. We have compared methods at matching inference cost for sim-
plicity because there are many ways to account for the cost of pretraining and embedding computation.

Impact. We believe that locking is a suboptimal way to incorporate pretrained image models, and
we have demonstrated clear benefits from exposing the image tower to both the contrastive learning
dataset and the pretrained model, particularly as scale increases. 3T is a simple and effective method
to incorporate pretrained models into contrastive learning and should be considered by future research
and applications whenever strong pretrained models are available. For future work that seeks to
improve 3T, we consider it important to understand the differences between embeddings from 3T,
LiT, and the baseline. If we can obtain insights into why they excel at different tasks, we can perhaps
(learn to) combine them for further performance improvements. Our convex combination experiments
are a starting point; it would be interesting to continue this direction, possibly looking at combinations
in parameter space [75, 76]. Lastly, future work could explore 3T for distillation of large pretrained
models into smaller models, extend 3T to multiple pretrained models, potentially from diverse
modalities, or explore the benefits of 3T-like ideas for other approaches such as CoCa [81].

Conclusions. We have introduced the Three Tower (3T) method, a straight-forward and effective
approach for incorporating pretrained image models into the contrastive learning of vision-language
models. Unlike the previously proposed LiT, which directly uses a frozen pretrained model, 3T allows
the image tower to benefit from both contrastive training and embeddings from the pretrained model.
Empirically, 3T outperforms both LiT and the CLIP/ALIGN baseline for retrieval tasks. In contrast to
LiT, 3T consistently improves over the baseline across all tasks. Further, for ImageNet-21k-pretrained
models, 3T also outperforms LiT for few- and zero-shot classification. We believe that the robustness
and simplicity of 3T makes it attractive to practitioners and an exciting object of further research.
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Appendix

Three Towers: Flexible Contrastive Learning
with Pretrained Image Models

A Additional Experiments & Results

A.1 Training Dynamics
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Figure A.1: Training dynamics: (a) The transfer losses, L, <5, and Ly, <, p,,, improve the image-text
loss, £ .4, in 3T relative to the baseline. (b) Difference between matching loss terms for 3T, LiT, and
the baseline. 3T obtains better image-to-text loss than the baseline and similar locked-image-to-text
loss as LiT. (c) While the loss advantage of 3T over the baseline shrinks during training, this does not
happen for downstream applications; we display image-to-text retrieval on COCO as an example.
Moving averages applied to (a-b) for legibility.

In Fig. A.1, we compare the 3T training losses to LiT and the from-scratch baseline, using the familiar
L scale setup with JFT pretraining. For 3T, we display all loss terms separately: the image-text loss
L+ g, the image-to-third-tower loss Ly, 5, and the text-to-third-tower loss Ly, +,p,, cf. Eq. (4)
and Fig. 2. For LiT and the baseline, there is only the image-to-text loss as per Eq. (1). As we train
for less than one epoch, we do not observe any overfitting, in the sense that contrastive losses are
identical on the training and validation set.

The image-to-third-tower loss, L, «, 1, quickly reduces to near zero, indicating successful knowledge
transfer of the pretrained model into the image tower for 3T. Further, L., behaves similar to the
baseline loss; this makes sense because both objectives compute a loss between an unlocked image
tower and a text tower. Lastly, £y, +,p, closely follows LiT’s loss; this also makes sense because both
are losses between a locked pretrained image model and a text tower trained from scratch.

In Fig. A.1 (b), we compute the difference of the baseline (LiT) loss and matching 3T Ly, «sn,
(Lg, s h,) loss, and observe that 3T generally achieves lower (similar) values for the same objective.
This suggests a mutually beneficial effect for the individual loss terms of the 3T objective. By aligning
the main image and text towers to the pretrained model, 3T obtains improved alignment between the
main towers themselves. For the training loss, this effect is large early in training and then decreases.
However, for downstream task application, we find that the gap between 3T and the baseline persists;
we display retrieval on COCO as an example in Fig. A.1 (c).

A.2 Robustness Metrics

In this section, we study 3T, LiT, and the from-scratch baseline from a robustness perspective,
evaluating on a subset of the tasks considered by Tran et al. [72]. Following §4.3, we evaluate
all methods across multiple model scales and for both JFT and IN-21k pretraining. We use the
full Unfiltered WebLI for all results here. We apply models in zero-shot fashion to these datasets,
following the same protocol as for the main zero-shot classification experiments. We continue to
use the global temperature 7, cf. §3, learned during training to temper the probabilistic zero-shot
predictions.
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A.2.1 Probabilistic Prediction and Calibration on CIFAR and ImageNet Variants

In Fig. A.2, we report accuracy, negative log likelihood (NLL), Brier score [22], and expected
calibration error (ECE) [48, 22] for 3T, LiT, and the baseline across scales for the following datasets:
CIFAR-10, CIFAR-10-C, ImageNet-1k (IN-1k), IN-A, IN-v2, IN-C, and IN-R.

Accuracy. Across all datasets, we find the familiar scaling behavior discussed in §4.2: 3T is
consistently better than the baseline, 3T benefits more from increases in scale than LiT, LiT performs
well with JFT pretraining but shows weaknesses when pretrained on IN-21k. Note that, for the
ImageNet variants, we have previously reported the accuracies (if only at L scale) in §4.2. (Note
further, that there might be small discrepancies, because we actually recompute all numbers from a
different codebase for the robustness evaluations [15].) For CIFAR-10 [40] and CIFAR-10-C [28],
which we have not previously discussed, we also find the familiar scaling behavior. The absolute
reduction of performance between CIFAR-10 and CIFAR-10-C is similar across methods, indicating
that no approach is significantly more robust to shifts. We observe the same comparing IN-1k to
IN-C.

Probabilistic Prediction and Calibration. NLL and Brier scores follow the general trend laid out
by the accuracy results. Evidently, the probabilistic zero-shot predictions of the methods are all
of similar high quality, cf., for example, Tran et al. [72], who investigate probabilistic few-shot
predictions. This is confirmed by the ECE results: across tasks, ECE values do not exceed 0.1 at L
scale. For 3T, calibration results are regularly better than for LiT, particularly if pretrained on IN-21k,
and comparable to those of the baseline: 3T and the baseline have lower calibration error than LiT on
6 out of 7 tasks at L scale with IN-21k pretraining.

We find the low magnitude of the calibration errors surprising. It is striking that the softmax
temperature learned during contrastive training would work so well across the various downstream
task applications. After all, finding matches across a batch from the contrastive learning dataset and
assigning images to labels are, at least superficially, quite distinct tasks. We stress again that no task
adaptation of either the models, prompt templates, or softmax-temperatures was performed. We refer
to Minderer et al. [45] for a general categorization of our calibration results and discussion in the
context of deep learning models.

A.2.2 Out-Of-Distribution Detection

We evaluate the performance of 3T, LiT, and the baseline for out-of-distribution (OOD) detection.
We follow the common practice of thresholding the maximum softmax probabilities (MSP) of the
models to obtain a binary classifier into in- and out-of-distribution [30, 20]. We report the following
metrics: area under the precision-recall curve (AUC(PR)), the area under the receiver operating curve
(AUROC), as well as the false positive rate at 95 % true positives (FPR95). Following Tran et al. [72],
we study CIFAR-10 as in-distribution against CIFAR-100, DTD, Places365, and SVHN as out-of-
distribution. We also report numbers for IN-1k (in-distribution) vs. Places365 (out-of-distribution).

Typically for OOD evaluations, the model is trained on the in-distribution data. Here, we apply
methods in a zero-shot manner: we only condition the text tower on the label set of the particular
in-distribution dataset. Our image and text towers are trained on the contrastive learning data (image
tower trained on JFT/IN-21k for LiT) and not adapted to the in-distribution samples. Our contrastive
learning methods ‘learn’ about the in-distribution data only through the label set, and they have to
classify each incoming sample as ‘in-distribution’ or ‘out-of-distribution’ based solely on how well it
aligns with the given set of labels. If a given sample does not match any of the in-distribution labels
well, prediction confidence is low, and the sample is classified as OOD. This setup diverges from
typical assumptions about OOD experiments and should be interpreted with care. For example, if
there were label overlap between the in- and out-of-distribution data (e.g. as would be the case for
SVHN vs. MNIST), it would be impossible for the model to classify between in-distribution and
OOD without further assumptions. OOD for CLIP/ALIGN-style models has been studied in similar
settings by Fort et al. [20], Esmaeilpour et al. [18].

We display results in Fig. A.3. Generally, OOD detection works well with the contrastively learned
models, despite conditioning only on the label set: for example, the AUROC for CIFAR10 exceeds
0.95 for both 3T and LiT at L scale for both IN-21k and JFT pretraining. The different metrics,
AUC(PR), AUROC, and FPR95, are generally consistent in their ranking across scales and methods.
We again find the familiar pattern: 3T is consistently improving over the baseline, and 3T catches up
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Figure A.2: Robustness evaluation: Accuracy, negative log likelihood (NLL), Brier score, and
expected calibration error (ECE) for 3T, LiT, and the baseline for IN-21k and JFT pretraining across
scales.
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detection (OOD). Reported metrics are area under the precision
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Table A.1: Using pretrained language models instead of image encoders degrades performance
drastically for LiT, confirming the results of Zhai et al. [85]. While 3T does not suffer a drastic
collapse in performance, we also do not observe gains from using the pretrained language model.
B/32 ViT image tower, BERT models at BASE scale for LiT and 3T, B scale unlocked text tower for
3T and baseline, training for 900M examples seen at batch size 10 240.

Unfiltered WebLlI Pair-Filtered WebLI
Basel. LiT 3T Basel. LiT 3T
Retrieval Flickr* img2txt 55.2 44  50.6 65.7 10.6 644

Flickr” txt2img 36.2 24 324 45.2 52 437
Coco img2txt 34.5 22 299 42.8 50 384
Coco txt2img 20.7 14 182 26.8 32 246

Few-Shot Classification  Caltech 874 80.3 87.0 88.7 88.0 90.0
UC Merced 842 677 814 90.5 81.0 87.8
Cars 56.8 38.0 56.8 76.9 67.1 76.8
DTD 592 458 563 63.8 583 63.1
Col-Hist 72.0 593 69.0 75.8 63.8 732
Birds 321 169 295 48.5 35.1 46.7
Pets 57.8 319 535 727 702 78.1
ImageNet 37.8 242 352 465 416 479
CIFAR-100 50.2 33.8 452 575 437 533
Zero-Shot Classification Pets 58.7 6.1 56.5 79.2 36.8 794
ImageNet 458 113 418 580 269 569
CIFAR-100 522 19.1 44.0 57.6 37.6 54.7

to LiT as scale is increased. For OOD detection, LiT generally does better than 3T and the baseline,
perhaps owing to the fact that our choice of CIFAR/IN-1k as in-distribution datasets is advantageous
for LiT (similar to how LiT performs particularly well for these datasets for classification).

We find differences between JFT and IN-21k pretraining to be much smaller for the OOD detection
task. In fact, in some cases, IN-21k pretraining outperforms JFT pretraining, for example with LiT
for the CIFAR-10 vs. Places365 detection task. (This might again be due to the fact that IN-21k
pretraining is sufficient for application to CIFAR-10, and only struggles to perform well for other,
more varied datasets.) Further, we can observe a rare victory of 3T over JFT-LiT and the baseline
at L and g scale in terms of FPR95 on CIFAR-10 vs. Places365 and CIFAR-10 vs. SVHN. Lastly,
we see LiT has almost fixed performance at ~ (.98 for the CIFAR-10 vs. SVHN task across scales,
perhaps due to early task saturation.

A.3 Pretrained Language Models

In Table A.1, we explore if there are benefits to using pretrained language models instead of pretrained
image encoders. For LiT, we confirm the results of Zhai et al. [85] that performance suffers drastically
when using a locked pretrained language encoder as the text tower (together with an unlocked image
tower). In contrast, for 3T, we do not observe a drastic decrease in performance, once again showing
that 3T is more robust to deficiencies in the pretrained model than LiT. However, we also do not
observe gains from using a pretrained language model with 3T, justifying our choice of focusing on
pretrained image encoders in the main text. Nevertheless, we think it is plausible that future work
may yet find benefits of incorporating knowledge from pretrained language models in other settings
or downstream tasks, e.g. tasks that require more complex language reasoning abilities.

Results here are for B/32 ViT image towers, we use BERT models at BASE scale as pretrained
language models for LiT and 3T, a B scale unlocked text tower for 3T and the baseline, and we train
for 900M examples seen at batch size 10 240.
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Table A.2: Predictions between the baseline and LiT are different and 3T benefits from combining
them. The first column gives the proportion of datapoints where the baseline but not LiT predicts
correctly. The second column gives the proportion of datapoints where LiT but not the baseline
predicts correctly. Columns three to five show the proportion of datapoints where 3T predicts
differently than the baseline (3), LiT (4), or differently from both (5).

Base, Not LiT  LiT, Not Base 3T # Base 3T # LiT 3T # Base & 3T # LiT

IN-1k 6.9 13.3 22.8 26.5 14.5
CIFAR-100 7.5 18.0 28.6 32.8 20.4
Caltech 39 4.3 11.5 16.1 8.4
Pets 7.2 7.1 10.9 14.4 55
DTD 14.3 7.6 27.2 40.3 19.5
IN-A 19.0 11.7 383 52.8 284
IN-R 235 3.8 133 342 10.0
IN-v2 8.4 133 27.2 32.8 18.0
ObjectNet 20.7 6.4 34.1 52.9 26.7
EuroSat 19.2 14.2 62.3 75.1 49.4
Flowers 4.0 14.8 25.4 27.0 16.0
RESISC 33.2 4.1 31.9 62.6 25.7
Sun397 11.8 9.6 21.9 31.2 14.2

A.4 Investigating Prediction Differences

Table A.2 provides a detailed evaluation of how predictions differ between 3T, LiT, and the baseline
on a per datapoint (and per task) level. The results in Table A.2 are for the zero-shot tasks of the
IN-21k pretrained L scale model setup of Table 3. This evaluation gives meaningful insights into
understanding how 3T improves predictions over LiT and the baseline. The contrastive learning
baseline and the pretrained model have different strengths, and 3T can benefit from combining them.

The first two columns of Table A.2 show that there is predictive diversity between the baseline and
LiT. The first column gives the proportion of datapoints where the baseline but not LiT predicts
correctly. The second column gives the proportion of datapoints where LiT but not the baseline
predicts correctly. We can see that, for both the baseline and LiT, there is a significant proportion
of inputs, where only one of the models predicts correctly. Hence, the two models have different
strengths and, equivalently, make different mistakes. A combination of the two approaches, such as
3T, can benefit from this if it learns to combine their predictions in the right way.

In columns three, four, and five, we illustrate that 3T predicts differently from LiT and the baseline.
The columns show the proportion of datapoints where 3T predicts differently than the baseline (3), LiT
(4), or differently from both (5). Clearly, 3T learns a novel predictive mechanism that is meaningfully
different from LiT and the baseline. Whenever 3T outperforms both LiT and the Baseline (Caltech,
DTD, IN-A, IN-R, ObjectNet, EuroSat, and Sun397 in Table 3) it must have learned to combine
knowledge from the pretrained model and contrastive learning mechanism in a beneficial way.

A.5 Additional Image Encoders

In Table A.3, we study 3T and LiT for additional pretrained image encoders: a ResNet-based BiT
model trained on IN-21k [38] and a ViT-based self-supervised encoder trained with DINO on IN-1k as
in [85]. 3T consistently outperforms the baseline and LiT for DINO- and BiT-based pretrained models
for all retrieval scenarios. For few-shot classification, LiT performs best on average for BiT-based
models but 3T performs best on average for our DINO experiments. For zero-shot classification, 3T
performs best on average for both our DINO- and BiT-based experiments. In total, 3T performs best
on average over all tasks for both experiment setups.

Here, we use a B/16 scale image tower and a B scale text encoder trained on Unfiltered WebLI. The
pretrained image models are a BiT-R50x3 pretrained on IN-21k, and we follow Zhai et al. [85] for
DINO pretraining on IN-1k. We also report a ‘BiT-Baseline’: for this we replace the ViT B/16 image
tower of the standard baseline with a BiT-R50x3 trained from scratch.
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Table A.3: Results for additional pretrained image encoders: a ResNet-based BiT trained on IN-21k
and a self-supervised DINO encoder trained on IN-1k. 3T outperforms LiT and the baseline on
average for retrieval and classification task, with the exception of few-shot classification for BiT,
where LiT performs best. B/16 scale image tower, B scale text encoder, BiT-R50x3 pretrained on
IN-21k, DINO pretrained on IN-1k as in Zhai et al. [85], Unfiltered WebLl.

BiT Experiments DINO Experiments
Basel. BiT-Basel. LiT 3T Basel. LiT 3T
Flickr* img2txt ~ 71.2 725 611 746 712 604 740
= Flickr txt2img 493 506 39.1 525 493 350 521
2 Flickr* tx2img ~ 51.3 537 429 545 513 383 540
o Flickr img2txt 68.5 68.1 592 70.1 68.5 575 692
COCO img2txt 443 450 409 468 443 389 457
COCO tx2img ~ 29.0 298 247 320 200 212 314
Average 523 533 447 55.1 523 419 544
B Caltech 89.8 90.0 904 90.9 89.8 910 921
£ UC Merced 89.3 840 916 912 893 942 921
S Cars 75.0 734 424 771 750 494 787
Z DTD 66.5 640 668 69.4 66.5 635 70.1
O Col-Hist 68.3 66.6 848 729 683 856 752
g Birds 44.5 385 855 532 445 621 525
"’é Pets 75.8 65.5 892 789 758 825 763
o IN-1k 52.0 578 738 562 520 604 564
CIFAR-100 57.8 400 741 621 578 623 610
Average 68.8 644 776 724 68.8 723 727
Pets 75.4 79.0 809 802 754 835 787
IN-1k 59.8 60.6 67.1 628 598 629 625
CIFAR-100 60.0 450 726 59.6 60.0 560 61.1
5 IN-A 32.8 314 262 349 328 217 325
g IN-R 75.4 734 554 78.1 754 570 774
-“g IN-v2 53.1 533 588 557 53.1 550 55.6
g ObjectNet 44.7 427 344 473 447 253 450
= Caltech 79.1 81.0 767 793 79.1  79.0 80.7
7 DTD 51.4 528 466 54.1 514 419 524
& Eurosat 36.5 197 281 326 365 326 362
N Flowers 51.9 543 641 571 519 482 556
RESISC 53.1 499 278 529 53.1 244 480
Sun397 62.6 634 609 653 62.6 537 632
Average 57.1 550 548 592 57.1 504 584
Average 59.6 574 595 622 596 55.1 618
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A.6 IN-21Kk Pretraining — Additional Results

In Table A.4, we report retrieval and few-/zero-shot classification performance for 3T, LiT, and
the baseline across a selection of pretraining datasets for L scale models and IN-21k pretraining.
In addition to the unfiltered WebLl split reported in the main text, we here report results on the
pair-filtered and text-filtered splits of the WebLlI dataset, cf. §4.2. Further, we report results on the
same dataset used by Zhai et al. [85] to train LiT. Across all datasets, 3T outperforms LiT and the
baseline on average for retrieval and few-/zero-shot classification tasks, confirming our results for the
unfiltered WebLlI split in §4.1 and §4.2.

Table A.4: Results for the baseline, LiT, and 3T for L scale models and IN-21k pretraining. Across all
datasets, 3T outperforms LiT and the baseline on average for retrieval, few-shot image classification,
and zero-shot image classification tasks.

Dataset Pair-Filtered WebLI Text-Filtered WebLI LiT Dataset

Method Basel. LiT 3T Basel. LiT 3T Basel. LiT 3T
Flickr img2txt 794 724 81.6 798 72.1 839 79.1 717 82.0

T; Flickr* img2txt 81.0 735 838 845 758 86.9 80.2 745 842

2 Flickr txt2img 59.6 483 62.5 65.1 51.3 68.8 60.6 48.1 64.1

E Flickr* txt2img 61.8 51.5 64.0 679 542 70.6 61.5 50.8 66.1

COCO img2txt 564 47.8 584 582 503 625 53.0 472 57.6
COCO txt2img 39.1 295 409 43.0 31.8 45.6 383 296 413

Average 629 538 652 664 559 69.7 62.1 536 659
g IN-1k 67.8 790 719 649 790 69.6 633 79.0 68.6
g CIFAR-100 71.0 836 75.1 73.6 836 77.0 73.0 83.6 749
b= Caltech 88.8 884 9038 89.8 884 905 90.7 884 92.0
k= Pets 913 892 917 857 892 877 84.1 892 869
E; DTD 732 692 748 715 692 757 713 692 73.1
75 UC Merced 943 928 96.1 948 928 958 92.8 928 94.6
% Cars 915 419 924 86.5 419 89.0 853 419 878
= Col-Hist 775 864 813 76.1 864 80.4 722 864 78.6

Birds 709 834 79.0 56.7 834 682 62.1 834 704
Average 80.7 793 83.7 777 793 81.6 7712 793  80.8

IN-1k 75.1 715 765 72.1 76.6 73.8 72.1 774 7438

CIFAR-100 73.0 824 74.0 76.8 829 78.0 76.0 831 77.0
g Caltech 842 785 839 80.3 80.8 845 814 80.7 84.7
g Pets 935 916 944 87.7 883 90.8 86.5 884 88.6
b= DTD 564 502 57.8 612 491 594 61.8 546 60.7
8 IN-A 51.8 467 54.8 57.6 467 60.4 56.2 473 589
% IN-R 884 674 89.6 89.0 672 903 884 67.1 90.0
= IN-v2 67.8 689 69.8 654 68.0 675 653 68.6 683
g ObjectNet 526 433 546 573 424 59.0 543 426 565
N Eurosat 372 285 442 382 202 424 440 29.1 458

Flowers 79.7 81.1 803 63.8 778 677 673 790 734

Resisc 61.6 325 63.1 61.8 300 63.1 583 284 572

Sun397 67.1 639 67.6 69.3 656 69.6 693 658 695
Average 689 64.1 70.7 68.7 632 708 685 642 705
Average 71.1 664 733 70.8 663 73.6 69.7 664 725
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A.7 JFT Pretraining — Additional Results

In Table A.5, we report few- and zero-shot classification performance for 3T, LiT, and the baseline
across our selection of datasets for L scale models and JFT pretraining. LiT outperforms 3T and the
baseline on average for few- and zero-shot classification tasks.

In Table A.6, we report performance for g scale models and JFT pretraining across all three splits of
the WebLlI dataset described in §4. Retrieval performance is generally best for all methods for the
Text-Filtered WebLlI split, with 3T generally performing best across splits and tasks. For classification,
for 3T and the baseline, performance on Text- and Pair-Filtered WebL.lI is significantly better than
on Unfiltered WebLlI, with LiT generally performing best across splits. In line with our previous
observations, the differences between the WebLlI splits are smaller for LiT. As the image tower is kept
fixed during contrastive training, LiT performance is influenced less by the contrastive learning setup.

Retrieval Results: Comparison to SOTA. While our retrieval performance is competitive, 3T does
not set a new state-of-the art, see, for example, the CoCa paper [81] (Table 3) for a comparison of
current methods. While SOTA results were never the aim of this paper—we instead study pretrained
models for contrastive learning—there are a few advantages the CoCa setup has, and from which
3T would likely benefit, too. Most notably, CoCa trains for about 6 times more examples seen
than we do here (32B vs. 5B). Our scaling experiments, cf. Fig. A.4, suggest we would expect a
significant performance increase for longer training. There are further differences that likely benefit
CoCa, such as the use of a larger batch size (65k for them vs 14k for us) or training on images
with higher resolution for a portion of training (CoCa goes from 288x288 to 576 x576, we stay
at 288 x288)—both of these changes significantly increase computational costs beyond the budget
available to us: while CoCa training takes ‘about 5 days on 2,048 CloudTPUv4 chips’[81], our g
scale runs train for about the same duration on only 512 v4 TPU chips. It would be interesting to see
if, in a fairer comparison, 3T matches or outperforms CoCa for retrieval tasks. Alternatively, ideas
from 3T could also be used to improve CoCa-like architectures.
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Table A.5: For JFT-pretraining, LiT outperforms 3T and the baseline on average on few- and
zero-shot classification tasks. L scale models trained on Unfiltered WebLlI.

Method Basel. LiT 3T
- IN-1k 62.8 813 677
£ CIFAR-100 704 832 743
S Caltech 91.0 89.0 91.8
Z Pets 859 968 884
@) DTD 703 721 724
g UCMerced 918 955 93.1
Z Cars 81,5 929 87.1
& Col-Hist 717 813 770

Birds 534 856 624

IN-1k 69.5 80.1 72.0

CIFAR-100 735 80.1 752

Caltech 819 795 825
g Pets 842 963 887
i DTD 586 59.0 59.0
8 IN-C 496 68.1 52.8
S IN-A 530 69.1 564
= IN-R 858 91.7 884
% IN-v2 622 740 654
£ ObjectNet 562 619 59.3
N EuroSat 327 366 547

Flowers 62.0 76.7 66.6

RESISC 580 589 609

Sun397 67.6 69.7 68.1
Average 684 714 724
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Table A.6: Results for the baseline, LiT, and 3T for g scale models and JFT pretraining for a selection
of different splits of the WebLlI dataset. 3T outperforms LiT for retrieval tasks, while LiT performs
better for image classification. The from-scratch CLIP/ALIGN-style baseline is not competitive.

Dataset Unfiltered WebLlI Pair-Filtered WebLI Text-Filtered WebLI
Method Basel. LiT 3T Basel. LiT 3T Basel. LiT 3T
Flickr img2txt 752 83.0 815 81.4 832 84.0 85.0 839 873
S Flickr* img2txt 80.0 84.8 84.2 80.7 839 85.6 86.7 852 883
2 Flickr txt2img 582 613 643 614 639 665 67.0 665 72.1
E Flickr* txt2img 60.1 63.1 65.6 627 654 684 682 676 729
COCO img2txt 523 577 575 584 597 61.7 60.0 595 64.1
COCO txt2img 37.5 40.0 41.1 412 419 439 447 436 485
- IN-1k 67.5 846 728 71.8 846 75.7 69.6 84.6 739
% CIFAR-100 72,7 832 78.0 73.1 832 787 764 832 80.0
= Caltech 91.8 90.0 933 89.7 90.0 909 90.8 90.0 924
% Pets 884 978 915 93.0 978 943 88.8 978 914
O DTD 70.7 746 747 742 746 76.1 73.6 746 76.0
E UC Merced 929 969 94.7 952 969 95.6 952 969 96.5
Vg Cars 84.1 933 88.6 92.6 933 935 89.0 933 0916
£ Col-Hist 720 836 76.2 77.8 836 809 735 836 794
Birds 60.7 89.7 69.8 764 897 80.7 625 89.7 71.1
IN-1k 73,5 84.0 763 78.0 847 79.6 75.8 843 782
CIFAR-100 77.5 813 80.3 762 813 795 80.6 81.8 823
Caltech 79.8 814 823 84.0 824 829 79.5 809 819
.5 Pets 87.0 964 927 928 97.7 93.0 88.1 965 915
5 DTD 59.2 621 649 589 556 60.1 614 620 62.1
E IN-C 549 729 582 57.7 733 603 57.6 733 613
5 IN-A 649 802 67.8 599 795 65.1 67.8 805 70.8
= IN-R 89.8 944 918 90.5 942 928 918 946 933
ﬁ. IN-v2 664 78.1 69.5 70.8 792 73.0 69.1 785 714
% Objectnet 62.7 703 653 569 683 595 633 700 659
N Eurosat 55.7 336 489 329 30.7 428 479 36.1 521
Flowers 71.0 842 735 824 863 83.0 694 86.6 725
RESISC 61.5 584 605 59.8 565 648 654 578 61.7
Sun397 68.8 710 703 689 719 69.8 702 71.6 709
Average 702 77.0 73.7 724 770 753 73.1 777 759
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A.8 Pretraining Robustness — Additional Results

In Table A.7, we report results on additional tasks for 3T, LiT, and the baseline for both the ‘mis-
matched’ setup and Places365 pretraining of §4.4. We find again that 3T is much more robust in both
setups, significantly outperforming LiT. The difference is particularly striking when using models
pretrained on Places365, where LiT’s performance degrades drastically while 3T is still able to
improve over the baseline.

Table A.7: Testing robustness to the ‘mismatched setup’ and Places365 pretraining (instead if
IN-21k/JFT) for 3T and LiT. In both cases, 3T performs significantly better than LiT. In particular
when using models pretrained on Places365, LiT’s performance degrades dramatically while 3T
continues to improve over the baseline on average. (Note that the baselines here are different not
because they use the pretraining dataset, but because we compare to an L scale baseline for the
mismatched setup and a B scale baseline (trained for only 900M examples seen) for Places365
pretraining.) We refer to the main text for full details.

Experiment Mismatched Setup Places365 Pretraining
Method Basel. LiT 3T Basel. LiT 3T
= Flickr* img2txt 756 665 802 56.0 355 58.1
E Flickr* txt2img 57.1 451 62.1 362 195 384
3 COCO img2txt 51.0 441 545 341 193 365
COCO txt2img 342 264 378 21.0 109 22.1
- IN-1k 62.8 703 67.6 37.8 16.6 415
-% CIFAR-100 704 803 73.8 47.1 339 527
2 Caltech 91.0 88.1 91.7 879 66.5 88.5
.% Pets 859 86.0 86.8 56.8 203 599
@) DTD 703 663 734 584 39.7 63.1
é UC Merced 91.8 915 938 85.8 80.8 894
mé Cars 81.5 36.7 853 57.0 10.1 58.6
i Col-Hist 717 844 743 729 70.7 78.7
Birds 534 76.8 652 332 157 38.1
IN-1k 69.5 69.5 715 45.6 245 474
CIFAR-100 73.5 78.6 5.6 483 274 524
Caltech 819 820 812 76.6 627 77.0
_5 Pets 842 847 874 615 303 602
ki DTD 586 494 60.6 39.8 23,6 39.7
% IN-C 496 555 518 253 144 273
S IN-A 53.0 29.1 54.1 12.0 47 125
= IN-R 858 60.7 879 56.1 203 582
% IN-v2 622 611 650 39.4 207 405
s Objectnet 562 349 578 28.4 73  29.6
N Eurosat 327 331 525 337 156 273
Flowers 62.0 741 66.2 376 174 373
RESISC 580 29.0 574 379 240 383
Sun397 67.6 62.0 684 55.1 60.6 573
Average 66.4 61.7 698 475 294 493
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A.9 Scaling Model Sizes and Training Duration — Additional Results

Complementing the results of §4.3, in Fig. A.4 we report the performance when scaling only the
number of examples seen during training, keeping the model sizes fixed at B scale. We observe a
similar trend to §4.3 / Fig. 3, where 3T benefits more from increases in scale than LiT. Compared to
the baseline, 3T consistently improves performance, even as the number of examples grows very large.
We do not observe any evidence that 3T only improves performance for particular compute budgets.
Note that, because the dataset size is 10B samples, all of our runs equate to less than a full epoch.

Retrieval Few-Shot Classification Zero-Shot Classification

O 45 «@- Baseline
:c; LiT
£ & 3T
S 40
3 b;
[
S35 4
g @
<
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Figure A.4: Increasing training duration of 3T, LiT, and the baseline; average retrieval, few- and
zero-shot classification performance. The model scale is B (B/32 for ViTs) for all approaches and
towers. 3T and the baseline benefit more from increases in scale than LiT, with 3T maintaining a
consistent increase in performance over the baseline. Note that the few-shot performance for LiT is
fixed, as only the locked pretrained image tower is used for fewshot applications.

A.10 Benefits From Using 3T With All Three Towers at Test Time — Extended Version

We usually discard the pretrained model when applying 3T to downstream tasks, cf. Fig. 2 (b).
Instead, in this section, we explore whether we can find benefits from using the locked third tower at
test time, similar to LiT. More specifically, we are interested in interpolating between the main image
tower and locked pretrained model in the third tower. Can we interpolate between 3T- and LiT-like
prediction by combining the image embeddings?

This idea does not work directly with the default 3T due to our use of linear projection heads,
cf. Fig. 2 (a), since there is no unified embedding space that all towers embed to. Therefore, we
introduce a ‘headless 3T” variant, for which we do not use the linear projection heads, hy, hg, fr, and
gn- (Alternatively, one may think of all linear projection heads fixed to identity mappings.) Thus, all
losses directly use the same embeddings, f(I), p(I), and g(T'), making the embedding spaces directly
comparable. Here, we train B scale models for 3.6B examples seen and use an IN-21k-pretrained
model. Further note that the average zero-shot classification performance we report here is over only
a subset of the list of tasks used in §4.2: we consider IN-1k, CIFAR-100, and Pets. The selection of
few-shot classification and retrieval tasks remains the same, although we do not use the Karpathy
split for Flickr here.*

In Fig. A.5, we display the average retrieval, few-shot classification, and zero-shot classification
performance for the convex combination, alongside a comparable LiT run and a 3T run with default
projection head setup. Across all tasks, we observe similar behavior: for o = 0 (full weight on the
third tower), we obtain performance close to, but ultimately below, LiT; performance then increases
with «, peaking for a € [1/4, 3/4], before decreasing again. At a = 1 (full weight on main image
tower), we recover the performance of the headless 3T setup. Interestingly, for retrieval and few-shot
classification tasks, the convex combination yields better performance than either of the towers
separately across a relatively broad band of « values.
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Figure A.5: Convex combination of the image models in 3T: a-h(I)+(1—«)- f(I). By varying o, we
can generally interpolate between 3T and LiT performance. Interestingly, for a broad range of weights,
the retrieval and few-shot classification performance of the combination outperforms 3T and LiT.

Perhaps counterintuitively, for « = 0, we do not recover the performance of LiT exactly. The reasons
for this differ between tasks: For retrieval and zero-shot applications, while the image tower is
identical to that of LiT, the text tower is different as it has been trained with the 3T objective. For
few-shot application, the default evaluation procedure of Zhai et al. [85] uses the prelogits of the ViTs
underlying f and h as inputs to the few-shot classifier, i.e. not the final embeddings. As the prelogit
spaces of f and h are not aligned, here, we need to instead construct the convex combination in
embedding space, which does however mean that & = 0 does not give performance equivalent to LiT.
Lastly, although the 3T run with the default projection heads does not seem to perform better than ‘3T
headless’ in this instance, we have seen ‘headless’ setups underperform in preliminary experiments
and would suggest additional experiments before opting for a headless design, see also §A.11.

We believe that further study of this approach is exciting future work: the method is entirely post-hoc
and no additional training costs are incurred, although inference costs do increase.

A.11 Ablation

In this section, we give additional results and details for the ablation study presented in §4.6. Table A.8
gives additional results, extending Table 5 in the main paper. In addition to the mean and two standard
errors, we also report standard deviations over tasks here. Note that, for zero-shot classification
performance, we only have access to a subset of the full list of tasks used in Section 4.2: we consider
IN-1k, CIFAR-100, and Pets. The selection of few-shot classification and retrieval tasks remains the
same, although we do not use the Karpathy split for Flickr here.*

No L..,. — Details. For this ablation we consider leaving out either of the three loss terms. ‘No
Leq’: We replace the 3T loss by % “(Lyp,ony + Ly, on,). No Ly, oon,”: We replace the 3T loss
by 3 - (Lycrg + Lg,crh,)- ‘N0 Ly, n,’: We replace the 3T loss by 1 - (L + Ly, >n, ). When
leaving out either of the three loss terms, average performance suffers significantly. Leaving out the
loss between the main two towers (obviously) has the biggest negative effect, as the main embeddings,
f(I) and g(T), are not aligned during training.

Head Variants — Details and Additional Results. In the main part of the paper, we have only given
results for the best alternative variant for the projection head setup. Here, we describe all variants and
report results individually. We refer to Fig. 2 (a) for the projection head notation. ‘Heads only on
Third Tower’: The main tower projection heads f5 and g;, are fixed to identity mappings. ‘Heads
Only on Main Towers’: The third tower projection heads iy and h, are fixed to identity mappings.
‘No Heads/Headless’: This is the setup described in §A.10: all linear projections hy, hg, fn, gn are
fixed to identity mappings. ‘Heads Fully Independent’: This setup adds linear projection heads before
the computation of L4, i.e. we compute fo(I) = Lin(f(I)) and g¢(T") = Lin(g(7T")), and then
compute the loss £ fqrg; (instead of Lsq). In Table A.8, we give results for all variants that we try;
none outperform the base variant significantly, while some underperform.

MLP Embedding — Details. When replacing the linear projection h in the third tower with an
MLP, we use the following architecture: MLP(z) = Liny(GELU(Lin;(z)), where we use GELU
non-linearities [29], Lin; expands the embedding dimensionality of the input by a factor of 4, and
Liny maps to the shared embedding dimension D.

3T with Loss Weights — Details and Additional Results. We replace the standard 3T loss with
a weighted objective 1 - (Lyeyg +w - (Ly,5n, + Lg,<sn,))- For the weights w, we sweep over

29



Table A.8: Extended results for the 3T ablation study. Difference to the 3T reference run for various
architecture ablations. We report mean, standard deviation, and two standard errors of the differences
over the downstream task selection.

Difference Mean Standard Deviation Two Standard Errors
Rerun -0.22 0.50 0.25
No L -26.63 21.22 10.61
No Ly, sh; -1.19 1.51 0.75
No Ly, +sh, -2.77 1.83 0.91
(Head Variants (best)) 0.09 0.70 0.35
Heads Only on Third Tower 0.09 0.70 0.35
Heads Only on Main Towers ~ -0.67 0.66 0.33
Heads Fully Independent -0.60 0.63 0.32
No Heads/Headless -0.47 1.04 0.52
MLP Embedding -0.08 0.69 0.35
More Temperatures -0.26 0.95 0.48
(Loss weight = 2 (best)) 0.17 1.06 0.53
Loss weight 0.1 -2.31 1.33 0.67
Loss weight 0.5 -0.90 0.81 0.41
Loss weight 2 0.17 1.06 0.53
Loss weight 10 -0.56 1.74 0.87
(L2 Transfer (best)) -3.80 2.27 1.13
L2 Transfer w=0.0001 -4.40 1.89 0.94
L2 Transfer w=0.001 -3.80 2.27 1.13
L2 Transfer w=0.05 -4.41 2.24 1.12
L2 Transfer w=0.01 -4.17 1.97 0.99
L2 Transfer w=.1 -3.97 2.06 1.03
L2 Transfer w=.5 -7.12 2.95 1.48
L2 Transfer w=1 -11.38 4.39 2.19
L2 Transfer w=2 -16.09 5.14 2.57
L2 Transfer w=10 -46.80 14.32 7.16
3T Finetuning 1.85 2.53 1.27

w € {0.1,0.5,2,10}. All weights except w = 2 lead to an average performance decrease. However,
the size of the effect for w = 2 is small relative to twice the standard error.

L2 Representation Transfer — Details and Additional Results. We investigate the use of squared
losses for the representation transfer between the main towers and the third tower instead of relying
on the contrastive loss. Concretely, we replace the 3T loss, Eq. (4), with

N
1 1
3 {Efﬁg +wr D () = Ay (I + llgn(Th) = (1)) } : 5)
For the weight hyperparameters w, we sweep over a large set of values, w €
{0.0001, 0.001,0.05,0.01,0.1,0.5,1,2,10}. L2 representation transfer gives worse results than
the contrastive loss for all values of w we try, corroborating the results of Tian et al. [71].

Finetuning — Details and Additional Results. Initializing the main tower in 3T with the same JFT-
pretrained model as the third tower boosts performance significantly, increasing average performance
from 56.76 to 58.61. A rerun confirmed these results; we obtained an increase from 56.46 to 58.82.
Excited by this, we explored the 3T finetuning setup at other scales, and report performance in
Table A.9. Note that here, we increase the numbers of examples seen during training from 450M (S
scale) to 900M (B scale) to 5B (L scale). We observe that, as we increase the scale of the experiments,
the gains from finetuning the main image tower decrease until they are negligible (compared to rerun
variance). We therefore have opted to not make finetuning the main tower part of the standard 3T
setup, as it (a) complicates the setup and (b) restricts the main tower to be the same model architecture
and scale as the third tower.
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Table A.9: Finetuning for 3T: Initializing the main tower in 3T with the same pretrained model as the
third tower improves performance significantly at smaller but not larger experiment scales.

Pretraining Scale Avg. Performance 3T  Avg. Performance 3T Finetuned

JFT B 56.76 58.61
L 73.97 74.22
IN-21k S 44.39 47.61
B 56.30 58.83
L 73.63 73.83

‘FlexiLLiT 1/2° — Details. With the FlexiLiT variants, cf. Table 5 in the main body of the pa-
per, we investigate if there are other, simple ways to improve LiT. For both variants, we create
a new ‘half-locked’ image tower by adding learnable components to the frozen pretrained image
model. For FlexiLiT 1, we add a lightweight learnable 4-layer MLP on top of the frozen back-
bone: FlexiLiT-1(I) = MLP(LiT(I)). The MLP has 4 layers, uses GELU-nonlinearities, and
an expansion factor of 4. For FlexiLiT 2, we add an additional learnable ViT next to the locked
backbone (adding significant cost) and merge representations with an MLP: FlexiliT-2(I) =
MLP(concat(LiT(I)), ViT(])). The additional ViT is B/32, following the main locked image tower.
The MLP merging the two representations is an MLP with the same configuration as for FlexiLiT 1.

B Implementation Details

We follow Zhai et al. [85] for optimization and implementation details. We use the open-source
vision transformer implementation available from Beyer et al. [4].

Unless otherwise mentioned, we use Transformers of scale L, with a 16x 16 patch size for the ViT
image towers, i.e. L/16. We train for 5B examples seen at a batch size of 14 - 1024, i.e. for about
350000 steps. We resize input images to 224 x 224 resolution, and normalize pixel values to the
[—1, 1] range. Note that for experiments with g scale models, we resize images to 288 x 288 instead.
We use a learning rate of 0.001, warming up linearly for 10 000 steps, before following a cosine
decay schedule. We use the Adafactor optimizer [65] with default 5; = 0.9 and 8> = 0.99, and we
clip gradients if their norm exceeds 1.0. For g scale runs, we set 2 = 0.95 by default, which we
found to be important to ensure training stability. We use weight decay of 0.001.

We aggregate embeddings across tokens using multihead attention pooling, i.e. an attention block
where the query is a single learned latent vector, and the keys and values are the outputs of the vision
transformer (cf. vit.py in the code base [4]).

For details on how the different model scales and patch sizes relate to transformer width, depth, MLP
dimension, the number of heads, or parameter count, we refer to Table 1 in [17] and Table 2 in [84].

Compute Cost. We train our models on v3 and v4 TPUs. For our main experiments at L scale, we
use 256 TPU chips per experiment. Our 3T runs converge in about three days, for example, the 3T
run with JFT pretraining took 63 hours of training time to converge over 348772 training steps. The
baseline converges in 54 hours, and LiT in 35. For our five main experiments at L scale—3T, LiT for
JFT and IN-21k pretraining, and a baseline run—the total runtime was about 280 hours, or about 8
TPU—-Chip years worth of compute for the L scale experiments of this project. At g scale, we use 512
TPU chips per run, and our 3T runs converge in about 5 days.

Below we mention additional details pertaining to only some of the experiments.

Details on Few-Shot Classification. Following Zhai et al. [85], we use the prelogits of the ViTs
instead of the final embeddings as input to the linear few-shot classifier.

Details on Places Experiment. Following Zhai et al. [85], for the Places365 experiment, we use a
B/16 ResFormer [70] as the pretrained model.
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C Societal Impact

With 3T, we introduce a novel machine learning method for learning joint embeddings of images and
text. We train on large datasets of noisy and potentially biased data crawled from the internet. The
same general caveats that apply to CLIP/ALIGN and LiT may also apply to 3T. We refer to §7 in
Radford et al. [58] for a general discussion of the societal impact these methods may have.

Additionally, we wish to highlight the importance of carefully evaluating these models, testing for
specific undesired behavior, before applying them in production. While the zero- and few-shot
classification capabilities of these models are generally impressive, it is also important to consider
their limitations and not succumb to wishful thinking when it comes to the real-world performance of
these models on arbitrary tasks. For example, all of the approaches we study here do not perform well
for zero-shot prediction on the structured and specialized tasks contained in VTAB, which include,
for example, medical applications. It is therefore particularly important to carefully evaluate the
performance of these methods when applied to real-world applications. Lastly, because 3T and LiT
rely on two datasets for training, a classification and a contrastive learning dataset, this can complicate
investigations into undesired biases in the final model.

D Libraries & Dataset

We rely on the Jax [5], Flax [26], and TensorFlow [1] Python libraries for our implementation.
Additionally, we make use of the Big Vision [4] and Robustness Metrics [15] code bases.

For retrieval performance, we evaluate on Microsoft COCO [10] and Flickr30k [56]. For image
classification, we evaluate on IN-1k [40, 61], CIFAR-100 [40], Caltech-256 [23], Oxford-IIIT Pet
[53], Describable Textures (DTD) [13], UC Merced Land Use [80], Stanford Cars [39], Col-Hist
[37], Birds [73], ImageNet variants -C [28], -A [32], -R [31], -v2 [59], ObjectNet [3], EuroSat [27],
Oxford Flowers-102 [50], NWPU-RESISC45 [12], and Sun397 [78].

We take the EuroSat, Flowers, RESISC, and Sun397 datasets from the Visual Task Adaptation
Benchmark (VTAB) [83]. They are the only VTAB datasets for which at least one method achieved
better than trivial performance.
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