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Abstract

Recent advancements in Artificial Neural Networks have sig-
nificantly improved human activity recognition using multi-
ple time-series sensors. While employing numerous sensors
with high-frequency sampling rates usually improves the re-
sults, it often leads to data inefficiency and unnecessary ex-
pansion of the ANN, posing a challenge for their practical de-
ployment on edge devices. Addressing these issues, our work
introduces a pragmatic framework for data-efficient utiliza-
tion in HAR tasks, considering the optimization of both sen-
sor modalities and sampling rate simultaneously. Central to
our approach are the designed trainable parameters, termed
’Weight Scores,’ which assess the significance of each sensor
modality and sampling rate during the training phase. These
scores guide the sensor modalities and sampling rate selec-
tion. The pruning method allows users to make a trade-off
between computational budgets and performance by select-
ing the sensor modalities and sampling rates according to the
weight score ranking. We tested our framework’s effective-
ness in optimizing sensor modality and sampling rate selec-
tion using three public HAR benchmark datasets. The results
show that the sensor and sampling rate combination selected
via CoSS achieves similar classification performance to con-
figurations using the highest sampling rate with all sensors,
but at a reduced hardware cost.

Introduction
Human Activity Recognition (HAR) based on Artificial
Neural Networks (ANN) has achieved great success in the
past years in many application areas like healthcare (Karar,
Shehata, and Reyad 2022), fitness (Phukan et al. 2022),
smart home (Bianchi et al. 2019) and smart manufactur-
ing (Suh et al. 2023). The concurrent use of multiple sen-
sors for human activity recognition provides a practical solu-
tion for complex activity recognition while improving recog-
nition accuracy, robustness, and reducing noise (Aguileta
et al. 2019). In addition, human activities consist of complex
sequences and motor movements, whereas capturing these
temporal dynamics is fundamental for successful human ac-
tivity recognition (HAR) (Ordóñez and Roggen 2016). The
high sampling rates can often contribute to better results,
especially for complex activity recognition. However, the
multiple-modality sensor-based solution and unnecessarily
high sampling rate often require a larger Artificial Neural
Networks (ANN) model for information fusion and higher

power consumption for data acquisition and transmission,
resulting in a challenging task towards practical deployment
on edge devices where power conservation is crucial. While
advancements in neural network compression, ranging from
pruning (Han et al. 2015) and quantization (Nagel et al.
2021) to knowledge distillation (Hinton, Vinyals, and Dean
2015), have facilitated lightweight inference models on edge
devices, the efficient utilization of sensor data for compre-
hensive AI model optimization, including sensor modalities
and sample rates, remains a gap in current literature.

The purpose of sensor optimization is to remove sensors
with minimal impact on classification results. Thus, the sen-
sors’ optimization can produce the benefit to reduce the in-
put and computational complexity, while preserving the es-
sential accuracy for HAR (Espinilla et al. 2017). Although
reduced sampling rates imply more efficient resource utiliza-
tion in real-world wearable HAR systems, existing works
have predominantly overlooked the co-optimization of sen-
sor modality selection and sampling rates.

When multiple sensors are used simultaneously, the sam-
pling rate may vary between sensors depending on their na-
ture and the type of data they capture. Optimizing these sam-
pling rates involves not only considering each sensor indi-
vidually but also how their data complements each other.
Thus, we propose CoSS, a general framework focused on
co-optimizing sensor modality and sampling rate for data-
efficient AI in HAR tasks simultaneously requiring only
training once. With CoSS, the trainable parameters ”weight
score” were designed to evaluate the importance of each
sensor and sampling rate during training. The weight score
ranking directs the selection of sensor modalities and sam-
pling rates after training according to the trade of perfor-
mance and hardware cost.

The main contributions of this paper can be summarized
as follows.

• We propose a general efficient framework CoSS to ad-
dress co-optimizing sensor and sampling rate for data-
efficient AI in HAR tasks simultaneously requiring only
training once.

• We demonstrate our framework’s effectiveness in opti-
mizing sensor modality and sampling rate selection using
three public HAR benchmark datasets.



Related work
Sampling rate optimization
Research in HAR has explored various methods to optimize
sampling rates, including adaptive frameworks (Yang et al.
2023), deep learning models (Qi et al. 2013), and sensor-
specific algorithms (Anish et al. 2019). These approaches
aim to achieve a balance between accuracy and efficiency in
HAR systems. For instance, FreqSense (Yang et al. 2023), an
adaptive resolution network, employed a subsampling strat-
egy with conditional early exits, allowing variable resolu-
tion processing for different sample complexities. Although
effective in balancing computational efficiency and accu-
racy, these networks are larger than typical neural networks,
posing challenges for deployment on memory-limited edge
devices. Additionally, while they reduce network complex-
ity for simpler activities, their power consumption during
data acquisition remains unchanged due to the need for high
sampling rates for complex activities. Another proposed
solution involves sensor-classifier co-optimization (Anish
et al. 2019), but this adds hardware complexity and poten-
tial power usage. Hence, there is a gap in research regarding
optimal overall sampling rates without requiring additional
sensors.

Sensor optimization
The sensor optimization solution in the existing works in-
cludes the exhaustive search (Ertuǧrul and Kaya 2017; Aziz,
Robinovitch, and Park 2016), feature or classification se-
lection (Leite and Xiao 2021; Tian and Zhang 2020) and
adaptive-context-aware (Zappi et al. 2008), these meth-
ods often suffer from high computational cost and time-
consuming at training phase. For instance, an exhaustive
search method was applied in the work (Aziz, Robinovitch,
and Park 2016) to identify the number and location of
body-worn sensors for classifying walking, transferring, and
sedentary activities; the computational cost of such a solu-
tion will be increased exponentially along with the num-
ber of the sensors to be optimized. Besides, this proposed
method can not provide a ranking of the importance of the
sensor modalities to guide users in selecting the sensor flex-
ibly according to the hardware budgets. The proposed CoSS
framework, while similar to Leite’s work in sensor selection,
introduces a more efficient approach. Leite’s method uses a
lightweight neural network and a sensor channel selection
algorithm to rank and eliminate less important channels, re-
quiring multiple training sessions, which is time and energy-
intensive. In contrast, CoSS needs only a single training
session, leveraging pruning technology to directly achieve
sensor-pruned results. Additionally, while Leite’s method
evaluates sensor channel importance using N × (N − 1)/2
trainable weights, CoSS simplifies this with just N trainable
weights, enhancing efficiency. Last but not least, the pro-
posed CoSS framework focuses on the co-optimization of
sensors and sampling rate together.

Proposed Framework
Fig. 1 shows the architecture of the proposed framework
CoSS for sensor and sampling rate selection. The architec-

ture of CoSS is designed based on the feature-level fusion
architecture. Compared to the general feature-level fusion
ANN model, three additional layers are integrated into the
ANN model in CoSS architecture, such as resampling lay-
ers, sampling rate selection layers, and sensor selection lay-
ers, by which the importance ranking of sensor and sampling
rate can be obtained by comparing the weight scores after
training.

Resampling layer
The resampling layers in the system are engineered to pro-
duce multiple candidates at varied sampling rates. Each sen-
sor node features a dedicated resampling layer that processes
input data from sensors at the original sampling rate. This
layer cycles through a set list of resampling rates, yield-
ing several branches of down-sampled data. Notably, the
sampling rates are highly flexible, allowing for arbitrary
configurations, including fractional values. The resampling
step size, S, is calculated based on the original sampling
rate, foriginal, and target sampling rate ftarget as shown in
Eq. (1).

S =
foriginal
ftarget

(1)

However, since the step size (S) could be a float value, the
generated index of original data for resampling can result in
a non-integer value, which is illegal. To address this, we use
linear interpolation to sample the target data (TD) from the
original data (OD) according to Eq. (2).

TD[i] = OD[⌊i× S⌋] + (i× S − ⌊i× S⌋)×
(OD[⌈i× S⌉]−OD[⌊i× S⌋]) (2)

where i is the new index of the target data range from zero
to the length of the new target data.

Since the window size of the target data and original data
is different after resampling layers, an adaptive kernel size
(KS) was used in each feature extraction branch to guaran-
tee that filters from different branches process the temporal
information with equal time length. The adaptive kernel size
is computed as follows.

KStarget = ⌊KSoriginal ×
ftarget
foriginal

⌋ (3)

Thus, the sliding windows with a lower sampling rate have
a smaller kernel size, leading to a smaller model size and
lower computational load.

Sampling rate selection layer
The resampling rate selection layer is designed to rank the
importance of different downsampling rates for classifica-
tion tasks. We consider there are M sensor modalities and ni

downsampling rate candidates for sensori. Each sensori’s
sampling rate selection layer comprises ni trainable weights
α, which indicates the importance of specific downsampling
sampling rates to the final classification result. The extracted
feature Fsri from the ith sensor with different sampling
rates is calculated according to Eq. (4).

Fsri =

ni∑
j=1

Fi,j ×
exp(αj)∑ni

k=1 exp(αk)
(4)
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Figure 1: Proposed CoSS framework, the framework is based on multi-branch feature fusion architecture, where three additional
layers, such as resampling layers, sampling rate, and sensor selection layers, are embedded. SRn is the downsampling data from
the resampling layer

In the current literature, most of the results demonstrate
that the higher sampling rate often leads to a better result.
Thus, importance ranking and sampling rate could be closely
related: candidates with higher sampling rates are supposed
to have higher weight scores. During the sampling rate se-
lection, sensors that are less sensitive to changes in the sam-
pling rate are configured at a lower sampling frequency, by
which the power consumption could be decreased compared
to a uniform sampling rate configuration for all sensors.

Sensor selection layer
Similar to sampling rate selection, we assign M trainable
weights α to M sensors, and the mixed features Fmix from
the sensor selection layer are calculated as Eq. (5) shows.

Fmix =

M∑
i=1

Fsri ×
exp(αi)∑M

k=1 exp(αk)
(5)

Thus, there are M ∗N trainable weights α for both sam-
pling rate and sensor selections in the proposed CoSS frame-
work. The output of the sensor selection layer is fed to the
fully connected layers for the final classification.

All trainable weights α can be obtained directly after
model training. A progressive pruning method similar to
the work (Han et al. 2015) is applied to remove the sen-
sors with lower weights. The feature branch with the se-
lected sampling rate data input is kept while the branches,
including the rest of the sampling rate data, are pruned. The
model’s performance with the chosen sensors and sampling
rate can be assessed without retraining the model from the
beginning. In addition, fine-tuning can be used to improve
the performance after sensor and sampling rate selection. In
this work, we conducted an additional 10 training epochs for
fine-tuning.
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Figure 2: Sensor configurations of the three datasets, every
sensor is annotated with an identifying number in this work

Evaluation
To evaluate our framework’s effectiveness in optimizing sen-
sor modality and sampling rate selection, the experiments on
three public HAR benchmark datasets were conducted.

Dataset
Fig. 2 shows the sensor configuration of the three datasets.
The Opportunity dataset is a collection of sensor data used
for human activity recognition and ambient intelligence re-
search. It features a range of sensors with original sampling
rate of 30 Hz, like accelerometers and gyroscopes, placed
on multiple subjects and in their environment. The dataset
includes diverse daily activities. There are 5 classes for the
locomotion recognition task and 18 classes for the gesture



recognition task. Only gesture recognition is tested in this
work. The PAMAP2 dataset is designed for physical activ-
ity monitoring research. It comprises sensor data from ac-
celerometers, gyroscopes, and magnetometers placed on the
body of participants. The original sampling frequency of this
dataset is 100 Hz. These participants, a diverse group, en-
gaged in a variety of physical activities ranging from simple
actions like walking and sitting to more vigorous exercises
like running and cycling. The MHEALTH dataset is aimed
at mobile health monitoring. It contains sensor data from
accelerometers, gyroscopes, and ECG monitors attached to
subjects. These subjects performed a series of activities, in-
cluding both basic daily movements and fitness exercises.
The original sampling rate of this dataset is 50 Hz.

Since the purpose of this work is not to discuss the neu-
ral network’s performance across subjects or sessions, the
leave-one-out cross-validation method was not utilized in
this work. During the experiment, we divided all data from
each dataset into three groups randomly: 70 % training
dataset, 15 % validation dataset, and 15 % test dataset.

ANN Model
The neural network used for the classification tasks con-
sists of two blocks: encoders and a classifier. The number
of encoders equals M ∗ N , M is the number of sampling
rates to be evaluated and N is the number of sensors. The
encoders consist of Convolution (CNN), Batch Normaliza-
tion(BN), and ReLU activation function; the architecture of
the encoder is as follows: CNN −ReLU −BN −CNN −
ReLU −BN −CNN −ReLU −Pooling−Flatten. The
filter number of each convolutional layer is 100. The original
kernel sizes of the three experiments are 9 (Opportunity), 20
(PAMAP2) and 10 (MHEALTH). The classifier block con-
sists of two dense layers. The cross-entropy loss function
and SGD optimizer with a learning rate of 1e-2, a weight
decay of 0.9, and a momentum of 1e-4, as well as a batch
size of 512, were selected to train this model. The model
was trained for 300 epochs with an early stopping using the
patience of 30 to avoid overfitting. The ANN model was im-
plemented in PyTorch. The experiments conducted on each
dataset were repeated ten times to eliminate the possibility
of randomness.

Experiment Result
The importance rankings of sensor modalities and sampling
rate are obtained after training, according to which we can
progressively prune unimportant sensor modalities and se-
lect the optimal sampling rate. Fig. 3 shows the weight score
of the sensors in four experiments with different datasets,
from which it can be observed that the weight of different
sensors has different scores; the weight score of the sensor
at the very end of the ranking are only around 0.05, while
all the highest scores from the four experiments are above
0.15. Then, a progressive prune removed the sensors based
on weight ranking from the neural networks, and the perfor-
mance of the sensor-pruned model can be directly obtained
by model inference. Fig. 4 shows the pruned result. It can
be found that removing four sensors from the PAMAP2 and
MHEALTH datasets has a negligible effect on the results,

while the results are lightly affected by pruned sensors in the
Opportunity dataset. However, the results are significantly
improved after fine-tuning. We found that four, seven, and
five sensors can be removed from the Opportunity-gestures,
PAMAP2, and MHEALTH datasets accordingly, and the
classification result has no obvious degradation after fine-
tuning.

Fig. 5 shows weight scores of sampling rate candidates
in every sensor. The result demonstrates that the candidates
with higher sampling rates have a tendency to be assigned
larger values, which is consistent with existing research. The
weight score change rate with the decreasing sampling rate
differs among the sensors in the same task. In addition, we
found that the sensitivity of the sensors to the sampling rate
is related to their importance for the classification task as
Fig. 3 and Fig. 5 show. To select the optimal sampling rate
combination among the sensors, we studied the performance
sensitivity to the sampling rate of the selected sensors by
keeping the feature branch of the studied sampling rate while
pruning the rest of the sampling rate branches. The classifi-
cation result can be obtained directly without the need to
train again after pruning. Fig. 6 shows the result of the sam-
pling rate optimization with the selected sensors. Overall,
the performance has a very obvious degradation when the
sampling rate of the most important sensor (with the highest
weight score) is decreased, while the performance degrada-
tion of the sensors with less important weight is relatively
smaller. For example, only the sensors S4 and S9 are sensi-
tive to the sampling rate in the Opportunity-gesture task as
Fig. 6a. Thus, we can keep these two sensors at the highest
sampling rate and the rest of the sensors at the lowest sam-
pling rate to save both hardware and power consumption.
The classification performance in PAMAP2 and MHEALTH
dataset has obvious degradation after the sampling rate of all
sensors has been down to 60 Hz and 30 Hz accordingly as
Fig. 6b and Fig. 6c shown.

The optimized sensors and sampling rate were selected
based on the weight score ranking of sensors and their sam-
pling rate, as well as classification results with the progres-
sive prune method. Table 1 shows the result summary of
the co-optimizing sensors and sampling rate. The most effi-
cient result of sensor optimization is from the experiment on
the MHEALTH dataset; five of eight sensors were removed,
and around 62 % of the model size was reduced, while the
performance was just reduced by around 3.19 % compared
to the original model. It can be found from the sampling
rate optimization result that the performance degradation is
negligible in the PAMAP2 and MHEALTH datasets when
the sampling rate of most of the reserved sensors was de-
creased. Overall, the optimized sensors and their sampling
rate by CoSS can preserve the classification performance
while reducing the memory (smaller model size), compu-
tational (smaller kernel and window size), and power (less
and lower speed data transaction) costs.

Discussion
With the CoSS framework, the sensor and sampling rate se-
lection can be guided by ranking the weight scores of the
sensor and sampling rate as well as the progressive pruned
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Figure 3: Weight score of sensors after training in different experiments
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Figure 4: Sensor optimization result
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Figure 5: Weight score of sampling rate after training in different experiments

result, which demonstrated a more effective solution for se-
lecting both sensor and sampling rate than an exhaustive
search method. In addition, we found that the weight scores
of sensors and their sampling rates are closely related during
the co-optimization process. As shown in Fig. 7, the stan-
dard deviation was calculated from the weight scores of the
sampling rate from each sensor to represent their sensitivity
to the sampling rate, it can be found that the sensors with
higher weight scores are more sensitive to the sampling rate
in this work. Thus, assigning a higher sampling rate to these
sensors with higher weight scores could be an optimal com-
bination in multi-sensor-based HAR tasks. However, two
major limitations of the proposed CoSS are also observed:
Firstly, the number of feature extraction branches could be

very large if there are many sensors and sampling rate can-
didates, which leads to the training process being more com-
plex and time-consuming, although it just requires training
once. Secondly, only the classification performance is con-
sidered in the framework during the sampling rate selection,
which results in a higher sampling rate having a higher rank-
ing; however, the hardware and computational cost of the
CNN channel with different sampling rates is not consid-
ered, which should be integrated into the loss function and
optimized during training in the future.
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Table 1: Result Summary

Experiment Opportunity(gestures) PAMAP2 MHEALTH
#Sensor 12 12 8

Sampling rates (Hz) 30,25,20,15,10 100,80,60,40,30,20,10 50,40,30,20,15,10
Window size (s) 3 2 4

Sensor pruned result (with original sampling rate)
Pruned sensor S7,S10,S3,S1 S3, S11,S7,S9,S5,S4,S2 S2,S7,S4,S5,S8

Performance reduction(%) 0.95 ± 1.09 1.30 ± 0.23 3.19 ± 2.23
Model size reduction(MB) 2.81/8.47(33%) 4.90/8.46 (58%) 3.51/5.66 (62%)
Sampling rate selection result (with selected sensors)

Selected sampling rate (Hz) 30(S4),30(S9),10(S5),10(S6),
10(S8),10(S12),10(S11),10(S2)

80(S12),100(S8), 60(S5),40(S6),
80(S1) 30(S1), 20(S6), 30(S3)

Performance reduction(%) 1.85 ± 1.01 0.42 ± 0.22 0.29 ± 0.50
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Figure 7: The relation of sampling rate sensitivity and the importance of sensor modality

Conclusion

In this work, we introduced the CoSS framework, designed
to co-optimize sensors and sampling rates in HAR tasks for
efficient utilization of sensor data. We proposed two types
of trainable weight scores, integrated into a feature-level fu-
sion artificial neural network (ANN). These scores assess
the importance of both sensors and their sampling rates. By
training the model once, we can rank these weight scores,
guiding the progressive pruning of sensors and selecting the
optimal sampling rate. To validate our framework, we tested

its effectiveness in optimizing sensor modality and sampling
rate selection on three public HAR benchmark datasets. The
results show that the sensor and sampling rate combina-
tion selected via CoSS achieves similar classification per-
formance to configurations using the highest sampling rate
with all sensors but at a reduced hardware cost. In future
work, a neural network architecture search method will be
considered to be integrated into the framework, by which
both input complexity and neural network complexity could
be reduced in HAR task.
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