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Abstract
Although numerous complex algorithms for treat-
ment effect estimation have been developed in
recent years, their effectiveness remains limited
when handling insufficiently labeled training sets
due to the high cost of labeling the post-treatment
effect, e.g., the expensive tumor imaging or biopsy
procedures needed to evaluate treatment effects.
Therefore, it becomes essential to actively incor-
porate more high-quality labeled data, all while
adhering to a constrained labeling budget. To en-
able data-efficient treatment effect estimation, we
formalize the problem through rigorous theoret-
ical analysis within the active learning context,
where the derived key measures – factual and
counterfactual covering radii determine the risk
upper bound. To reduce the bound, we propose
a greedy radius reduction algorithm, which ex-
cels under an idealized, balanced data distribution.
To generalize to more realistic data distributions,
we further propose FCCM, which transforms the
optimization objective into the Factual and Coun-
terfactual Coverage Maximization to ensure ef-
fective radius reduction during data acquisition.
Furthermore, benchmarking FCCM against other
baselines demonstrates its superiority across both
fully synthetic and semi-synthetic datasets. Code:
https://github.com/uqhwen2/FCCM.

1. Introduction
Understanding the causal effects of interventions is essential
for making informed decisions, positioning treatment effect
estimation as a fundamental tool with broad applications
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across diverse domains, including randomized control trials
(RCTs) in medication (Pilat et al., 2015), A/B testing for
business decision-making (Kohavi & Longbotham, 2015)
and government policy evaluation (MacKay, 2020), etc.
However, real-world scenarios often involve the trade-off
between cost and return, e.g., the high cost of tumor imaging
or biopsy at scale frequently limits the amount of treatment
effects (labels) collected from the individuals given a partic-
ular drug, which in turn impacts the accuracy of estimation.
Such a challenge highlights the need for designing data-
efficient treatment effect estimation methods, which can be
described as the following optimization problem:

min
S⊂D

ϵ(fS) s.t. |S| ≤ B, (1)

where ϵ is a risk metric e.g. precision in estimation of het-
erogeneous effect (PEHE) (Shalit et al., 2017), D is the pool
set containing all candidate samples, fS is the regression
model trained on subset S, and B is the labeling budget.

Depending on whether or not the treatment indicator t is
readily available alongside the covariates inD, there are two
branches of research related to the formulation in Eq. (1). If
t is not given, one is to build the dataset S via active experi-
mental design (Addanki et al., 2022; Connolly et al., 2023;
Ghadiri et al., 2024), i.e., a subset of D consisting only of
covariates is selected, which is then partitioned to receive
treatments, and subsequently annotated with treatment ef-
fects. Otherwise, given the pool set D consisting of both the
covariates and the treatment indicator (Sundin et al., 2019;
Qin et al., 2021; Jesson et al., 2021b; Wen et al., 2025), the
algorithm only deals with selection from the pool set, then
let the oracle label the selected samples. Although both aim
to facilitate reliable, data-efficient predictions by selectively
expanding the labeled dataset for training, studies on the lat-
ter are scarcer compared with those on the former. Despite
the under-exploration of the latter setting, it has been widely
encountered in real-world applications, such as collecting
customer preferences from those who have already received
different services, tracking patients’ side effects from those
who have already been administered different drugs, etc.
Therefore, in this paper, we study the latter scenario where
both the covariates and the treatment indicator are known in
the pool set, while in the presence of high treatment effect
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annotation cost and a limited labeling budget, only a subset
of them are selected for the oracle to label.

Unlike traditional optimization problems where abundant
training data is assumed for treatment effect estimation
(Shalit et al., 2017; Shi et al., 2019; Jesson et al., 2020; Wang
et al., 2024), Eq. (1) is in-essence an active learning (AL)
problem (Settles, 2009) and considers the practical issue of
the scarcity of labeled training data, in conjunction with a
limited labeling budget to expand the dataset for training a
more generalizable model. Despite the simple formulation,
solving the problem is NP-hard due to the combinatorial
nature of selecting the optimal subset of data points to la-
bel (Tsang et al., 2005; Settles, 2009). From a general AL
perspective, by simplifying the pre-assigned treatment as a
feature variable, AL-based regression methods (Gal et al.,
2017; Sener & Savarese, 2018; Ash et al., 2019) might be
directly applicable to Eq. (1). However, straightforward
adoption of AL for Eq. (1) is suboptimal as it omits the
distribution alignment between different treatment groups
during data acquisition.

Thus far, some designated AL approaches have been pro-
posed to address the constrained regression problem in Eq.
(1) with observational data. Qin et al. (2021) formalize a
theoretical framework QHTE that directly extends the treat-
ment effect estimation risk upper bound (Shalit et al., 2017)
by the core-set (Tsang et al., 2005) approach; however, the
derived optimizable objectives do not account for the im-
portance of promoting distribution alignment during label
acquisition. Following that, Jesson et al. (2021b) propose
µρBALD from an information theory perspective, which
reduces the distributional discrepancy between treatment
groups by scaling the acquisition criterion with the inverse
of counterfactual uncertainty. However, such a method re-
lies heavily on the accuracy of the quantified uncertainty
and the training of complex estimators, e.g., deep kernel
learning (Wilson et al., 2016). To get the best of both worlds,
Wen et al. (2025) devise a simple yet performant algorithm
MACAL, which considers the reduction of distributional dis-
crepancy while remaining model-independent during data
acquisition. However, MACAL has to query the data in
pairs (i.e., one each from treated/control group), which hin-
ders its generalizability when optimality can be achieved by
querying from one treatment group. Additionally, it is hard
to obtain the overall risk upper bound convergence despite
the convergence analysis on sub-objectives.

Contribution. Considering the aforementioned theoreti-
cal and practical limitations of existing methods for data-
efficient treatment effect estimation, this paper presents a
three-fold contribution to this area of research. 1). We
establish a theoretical framework rooted in the active learn-
ing paradigm, specifically tailored to address Eq. (1)
which is not directly optimizable. Unlike µρBALD (Jesson

et al., 2021b), the proposed theorem outlines the model-
independent reducible quantities as the optimization alter-
native, i.e., factual and counterfactual covering radius. Our
theorem further generalizes QHTE by additionally account-
ing for the distribution alignment with the counterfactual
covering radius. 2). In contrast to MACAL Wen et al.
(2025), we propose two model-independent algorithms, both
of which obtain optimality via single data point acquisi-
tion instead of pairwise queries, to minimize the covering
radius-based objective: a greedy radius reduction method
that works well in idealized distributions, and a greedy fac-
tual and counterfactual coverage maximization method –
FCCM that allows for greater flexibility on the data distri-
bution of the pool set; 3). We demonstrate the superiority of
FCCM on real-world covariates with extensive performance
comparisons and qualitative visualizations.

2. Preliminaries
Treatment effect estimation. In this paper, we estimate
the treatment effect under the potential outcome framework
(Imbens & Rubin, 2015). Let the covariate, treatment, and
treatment outcome space be denoted as X , T , and Y , respec-
tively. We train the treatment effect estimator fD : X×T →
Y based on the dataset D = {(xi, ti, yi)}Ni=1, where xi, ti,
yi are respectively the feature vectors, treatment assignment,
and treatment outcome that correspond to the i-th individual.
Without loss of generality, we consider binary treatments
t ∈ {0, 1}, and use Y t=1 and Y t=0 to denote the potential
outcomes of corresponding treatments. The ground truth
individual treatment effect (ITE) for individual x is defined
as (Shalit et al., 2017):

τ(x) = E[Y t=1 − Y t=0 | x]. (2)

To evaluate the performance of the trained model fD, we
adopt the expected precision in estimation of heterogeneous
effect (PEHE) (Hill, 2011), which is the go-to choice for
various treatment effect estimation tasks (Shalit et al., 2017;
Louizos et al., 2017; Shi et al., 2019; Jesson et al., 2021b;
Wang et al., 2024):
Definition 2.1. The expected PEHE of the estimator f with
squared loss metric ξ(·) is defined as:

ϵPEHE(f) =

∫
X
ξ(x; f)p(x)dx, (3)

where ξ(x; f) = (τ̂(x)− τ(x))2, τ(x) is the ground truth
effect defined in (2), and τ̂(x) = f(x, t = 1)− f(x, t = 0)
is its estimation. The lower the PEHE value, the better the
model performance.

For the identifiability of the treatment effect τ(x), the fol-
lowing assumptions from the causal inference literature are
the sufficient conditions to let it hold (Shalit et al., 2017;
Pearl, 2009):

2



Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective

Assumption 2.2 (Consistency). Only one potential outcome
is seen by each unit given the treatment t, i.e., y = Y t=0 if
t = 0 or y = Y t=1 if t = 1.

Assumption 2.3 (Strong Ignorability). The independence
relation {Y t=0, Y t=1} ⊥⊥ t | x and the conditional proba-
bility 0 < p(t = 1 | x) < 1 hold for all x.

Integrating active learning. In situations where the labels
yi in D are unavailable, we thus introduce AL to build a
labeled training set S out of D. To enhance treatment effect
estimators via AL, we 1). feed the oracle-labeled dataset
S = {(xi, ti, yi)}ki=1 for training estimator fS ; 2). evaluate
the performance of the model; 3). determine if training can
be terminated based on performance or labeling budget; 4).
if no to the above, select the unlabeled subset S̃∗ from pool
set D = {(xi, ti)}ni=1 for the oracle to label; 5). expand the
fully labeled subset S with newly labeled data points S̃∗ and
return to step 1). This recursive procedure terminates when
the desired performance is reached or the labeling budget is
exhausted, and to achieve the objective in Eq. (1), the key is
to identify the best strategy to construct S.

Related work. In addition to the analysis in Section 1, we
include a more detailed review of existing work on treatment
effect estimation, AL, and data-efficient treatment effect
estimation in Appendix B.

3. Bounds: A Counterfactual Covering
Perspective

We upper-bound Eq. (1) in a general form under the AL
paradigm, using a formulation similar to that defined in
(Sener & Savarese, 2018) for the classification problem.
Thus, the population risk – ϵPEHE(fS) is constrained as:

ϵPEHE(fS)

=ϵPEHE(fS)−
1

n

n∑
i=1

ξ(xi; fS) +
1

n

n∑
i=1

ξ(xi; fS)−

1

|S|

|S|∑
j=1

l(xj , yj , tj ; fS) +
1

|S|

|S|∑
j=1

l(xj , yj , tj ; fS)

≤

∣∣∣∣∣ϵPEHE(fS)−
1

n

n∑
i=1

ξ(xi; fS)

∣∣∣∣∣︸ ︷︷ ︸
Generalization Error

+

∣∣∣∣∣∣ 1n
n∑

i=1

ξ(xi; fS)−
1

|S|

|S|∑
j=1

l(xj , yj , tj ; fS)

∣∣∣∣∣∣︸ ︷︷ ︸
Subset Generalization Gap ∆

+

1

|S|

|S|∑
j=1

l(xj , yj , tj ; fS)︸ ︷︷ ︸
Empirical Training Loss

,

(4)

where ξ(·; fS) is in Definition 2.1 (incalculable without the
counterfactual outcomes), and l(·; fS) a loss function for
the labeled training set S with observed potential outcomes.

The expected model risk ϵPEHE(fS) at the population level
with trained estimator fS on subset S is controlled by three
terms as shown in Eq. (4). The generalization error is
bounded w.r.t. the size n as in the general machine learning
research (Vapnik, 1999). Commonly, the counterfactual
effect for the same unit is rarely observable, e.g., a patient
undergoes only one type of surgery, or a customer experi-
ences only a single version of the software in an A/B test.
Consequently, rendering the term ξ(xi; fS) non-computable.
Nonetheless, the key is that we can bound the gap between
the critical yet incalculable term with the training loss on
S in the remaining two terms. By assuming zero training
loss in the same fashion as (Sener & Savarese, 2018), we
can explicitly formalize Eq. (1) into:

min
S⊂D

∣∣∣∣∣∣ 1n
n∑

i=1

ξ(xi; fS)−
1

|S|

|S|∑
j=1

l(xi, yi, ti; fS)

∣∣∣∣∣∣
s.t. |S| ≤ B,

(5)

where the subset generalization gap ∆ in ϵPEHE(fS) is main-
tained as the final objective.

To optimize the objective in Eq. (5) that is incalculable be-
cause of ξ(xi; fS), we instead focus on identifying reducible
quantities by capping the objective with a probabilistic risk
upper bound outlined in Theorem 3.4. The key reducible
quantities, i.e., factual covering radius δ(t,t), and the coun-
terfactual covering radius δ(t,1−t) are defined below.

Definition 3.1. The covering radius δ(t,t′) is defined as the
radius of the smallest ball centered at the labeled samples
from treatment group t, such that the union of these balls
covers all samples within group t′, ∀t′ ∈ {t, 1−t}, with fac-
tual covering induced by t′ = t and counterfactual covering
induced by t′ = 1− t.

To derive Theorem 3.4, we further assume the Lipschitz
continuity and the existence of the constant κ, with the
discussions on their practicability given in Appendix C.5.

Assumption 3.2 (Lipschitz Continuity). Assume that the
conditional probability density function pt(y|x) is λt-
Lipschitz, the squared loss function l is λl-Lipschitz and l
is further bounded by Ll.

Assumption 3.3 (Constant κ). Let H = {h|h : X → R}
be a family of functions and f : X × T → Y be the
hypothesis. Assume that there exists a constant κ > 0, such
that hf (x, t) :=

1
κ lf (x, t) ∈ H.

Theorem 3.4. Let x be sampled i.i.d. n times from do-
main X . Under Assumption 3.2 and Assumption 3.3, with
probability at least 1 − γ, where γ ∈ (0, 1), the subset
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Figure 1. Visualization of the factual covering (FC) and the counterfactual covering (CFC) on the dataset by the acquired samples from
each group. Note that each covering is constrained by the full coverage on the desired dataset with the minimum radius.

generalization gap ∆ is upper-bounded as:∣∣∣∣∣∣ 1n
n∑

i=1

ξ(xi; fS)−
1

|S|

|S|∑
j=1

l(xi, yi, ti; fS)

∣∣∣∣∣∣
≤
∑

t∈{0,1}

κt

(
δ(t,t) + δ(t,1−t)

)
+ 2κH +

√
L2
l log

1
γ

2n
,

(6)

where the constants κt = 2 (λl +
1
3λtL

3
2

l ), and κH =
κ · IPMH(pt=1(x), pt=0(x)) with IPMH(·, ·) being the in-
tegral probability metric induced byH, and pt(x) denotes
the density distribution of treatment group t.

Proof of the theorem is provided in Appendix A.1. To
enhance interpretation, we visualize the factual and counter-
factual covering radius in Figure 1 with four labeled samples
from a random two-dimensional toy dataset. For example,
Figure 1(a) shows the factual covering with radius δ(1,1)
such that the union of the circles centered at the two labeled
t = 1 samples covers all samples from group t = 1. Noting
that the covering radius δ(t,t′) decreases monotonically as
the size of labeled set S grows under the AL paradigm, we
present a further corollary to reveal the convergence of the
subset generalization gap ∆ given the fixed-size pool set D.

Corollary 3.5 (Informal). Let n be fixed, given δ(t,t′) de-
creases monotonically as S grows under the AL paradigm,
then, with probability at least 1− γ, we have:

∆ = O(δ(1,1)) +O(δ(1,0)) +O(δ(0,0)) +O(δ(0,1)). (7)

Qualitatively, the factual covering radius is inversely related
to the sample diversity, e.g., if the two marked samples
in Figure 1(a) are overlapped (low diversity), the radius
δ(1,1) is larger. The counterfactual covering radius is also
inversely related to the distributional discrepancy, e.g., if
the two marked t = 1 samples in Figure 1(b) are further

away from the center of the group t = 0, the radius δ(1,0) is
larger. Thus, it is evident that the objective is to minimize
the covering radius as much as possible within the labeling
budget, thereby reducing the risk upper bound. Intuitively,
the radius reduction given limited centers is analogous to the
k-Center problem (Wolf, 2011). However, under the treat-
ment effect estimation setting, the derived bound introduces
the counterfactual covering radius which fundamentally dif-
fers from the classical k-Center problem, where the centers
only cover data points from the same class (i.e., treatment
group in our case), as per Figure 1(a) and 1(c).

4. Methodologies
In this section, we propose two greedy algorithms to mini-
mize the four covering radii in Eq. (7). The first algorithm
draws direct inspiration from the Corollary 3.5 and extends
the core-set solution (Tsang et al., 2005; Sener & Savarese,
2018) into the counterfactual covering perspective, while the
second algorithm provides more flexibility on the data dis-
tribution and relaxes the full coverage constraint to achieve
stronger radius reduction under the same labeling budget.

4.1. Factual and Counterfactual Radii Reduction

Denote xt
i, Dt, and St as the individual covariate vector,

pool set, and labeled training set for the treatment group t,
respectively. Note that d(·, ·) is a distance metric, and S̃t is
a proxy collection which is explicitly explained in Appendix
C.1. Motivated by the Corollary 3.5, the objective is to find
the optimal subset S that minimizes the sum of the factual
and the counterfactual covering radii as follows:

min
S=S0∪S1,|S|≤B

δ(1,1) + δ(1,0) + δ(0,0) + δ(0,1), (8)

and for t ∈ {0, 1}, δ(t,t) = maxi∈Dt\St
minj∈St

d(xt
i,x

t
j),

δ(t,1−t) = maxi∈D1−t\S̃1−t
minj∈St

d(x1−t
i ,xt

j).

However, to say the least, this minimization is as difficult
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Algorithm 1 Greedy Radius Reduction (Sketch)
1: Input: D1, D0; randomly initialized S1, S0; budget B;

pseudo operator Γ := argmaxmin d(·, ·)
2: S init ← S1 ∪ S0,S ← S init, S̃1 ← ∅, S̃0 ← ∅

#Labels in S is not used in querying.
3: while |S| < |Sinit|+B do
4: Calculate δ ← max{δ(1,1), δ(1,0), δ(0,0), δ(0,1)}
5: if δ == δ(1,1) or δ == δ(0,0) then
6: Find point a to reduce the factual radius via Γ.
7: else
8: Find proxy point a′ to reduce the counterfactual

radius via Γ, and then compute corresponded a.
9: end if

10: S ← S ∪ {a} #a is not labeled.
11: end while
12: Output: S

as solving the classic k-Center problem that is NP-hard
(Cook et al., 1998). The minimization of the factual cov-
ering radii, i.e., δ(1,1) and δ(0,0), is essentially the classical
k-Center problem, while the minimization of the counter-
factual covering radii, i.e., δ(1,0) and δ(0,1), involves the
unconventional covering of one group by the centers from
the other group, e.g., covering all samples within group
t = 1 by the centers from group t = 0 or vise versa, as
visually depicted in Figure 1(b) and 1(d).

To solve Eq. (8), we provide a greedy radius reduction
method in Algorithm 1 (sketch, with details in Appendix
C.1), where the largest radius among the four radii is priori-
tized to be reduced. Recall Assumption 2.3 (Strong Ignor-
ability), the counterfactual covering radii returned by our
proposed algorithm can be effectively reduced under this
assumption for the data distribution between the treatment
groups, i.e., 0 < p(t = 1|x) < 1. Furthermore, denoting
the minimal covering radius under the optimal solution as
OPT δ(·,·) , we give the theoretical guarantee for Algorithm
1 as follows:

Theorem 4.1. Under Assumption 2.3, the sum of the cov-
ering radii returned by Algorithm 1 is upper-bounded by
2×

∑
t∈{0,1}(OPTδ(t,t) + OPTδ(t,1−t)

).

Proof is provided in Appendix A.5. It is noted that data
distribution can strongly affect the effectiveness of radius
reduction by Algorithm 1. For example, if two treatment
groups share identical distributions, Eq. (8) simply reduces
to the conventional k-Center problem, for which a quick
convergence of the covering radii is foreseeable. However,
partially overlapped data distributions between groups can
bring exponential challenges in effectively minimizing the
sum of radii. In Figure 2, we illustrate the reduction of radii
and their sum (denoted as Bound) in the normalized form
against the size of acquired data, e.g., 1.0 represents the
max value, 0.5 represents half of the max value. Under the
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Figure 2. Visuals of the radius reduction and the descent of the
Bound under ideal and realistic data distributions by Algorithm 1.

identical distribution scenario, in Figure 2(a), the factual and
counterfactual covering radii decline synchronously (five
plots fully overlap with each other) under a quick risk con-
vergence to zero, because Eq. (8) is reduced to the simple
k-Center problem (where Assumption 2.3 surely satisfies)
which guarantees a 2− OPT approximation and the greedy
nature of Algorithm 1 forces the synchronous reduction.
However, real-world data distribution commonly witnesses
large group-wise discrepancies, e.g., in CMNIST bench-
mark (Jesson et al., 2021a), a significantly slower bound
convergence is observed in Figure 2(b) due to the difficulty
of consistently reducing the counterfactual covering radii
δ(1,0) and δ(0,1). Note that the synchronous reduction of
δ(1,1) and δ(0,0) is also forced by the greedy nature of Algo-
rithm 1.

Discussions: Given the probability threshold γ and fixed-
size pool set D, Theorem 3.4 provides an adjustable upper-
bound which depends on the declining covering radii as
S grows. However, the derivation of the upper bound is
constrained by the full coverage on the pool set, which chal-
lenges the counterfactual covering radius reduction due to
the uncontrollable real-world data distribution. In light of
this, we further explore the possibility of relaxing the full
coverage constraint to a more flexible condition, i.e., ap-
proximating the full coverage given the relatively smaller
fixed covering radius. This underlying mentality resonates
with the duality discussion of the core-set and the max cov-
erage problem in (Yehuda et al., 2022). In the following
section, we propose the factual and counterfactual coverage
maximization (FCCM) solution to solve the radius reduc-
tion problem under compromised data distributions while
maintaining high satisfaction with the constraint.

4.2. Counterfactual-integrated Coverage Maximization

Let the factual and the counterfactual covering balls, for
treatment group t be defined as follows:

Definition 4.2. Given the fixed covering radius δ(t,t′) > 0,

5
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Algorithm 2 FCCM
1: Input: Covariate matrix X ∈ D, random S init; S ←
S init; radius δ(t,t′),∀t, t′ ∈ {0, 1}; weight α; budget B

2: E(t,t) = {(xt,x′) : x′ ∈ At
F (x

t)}, E(t,1−t) =
{(xt,x′) : x′ ∈ At

CF (x
t)}, Et=1 = E(t,t) ∪ E(t,1−t)

W (xt,x′) =

{
1, if x′ ∈ At

F (x
t)

α, if x′ ∈ At
CF (x

t)
,

Weighted G = (V = X, E = Et=1 ∪ Et=0,W = W )
3: for v ∈ S init do
4: Remove the edges to the covered vertices:

{(x′,xt) ∈ E(t,t), (xt,x′) ∈ E(t,1−t) : (vt,xt) ∈
E(t,t),∀t ∈ {0, 1})}

5: end for
6: while |S| ≤ |Sinit|+B do
7: S ← S ∪{v}, where v is the vertice with the highest

scaled out-degree in graph G (see Appendix C.2).
8: Remove the edges to the covered vertices:

{(x′,xt) ∈ E(t,t), (xt,x′) ∈ E(t,1−t) : (vt,xt) ∈
E(t,t)),∀t ∈ {0, 1}}

9: end while
10: Output: S

the covering ball A(t,t′) centered at x ∈ St is defined as:
A(t,t′)(x) = {x′ ∈ Dt′ : ∥x − x′∥ ≤ δ(t,t′)}, ∀t′ ∈
{t, 1− t}, with the factual covering ball induced by t′ = t
and the counterfactual covering ball induced by t′ = 1− t.

Therefore, let the union of the factual covering balls
be At

F =
⋃

x∈St
A(t,t)(x) and the factual coverage be

P (At
F ) =

|At
F |

|St| ∈ (0, 1]; let the union of the counterfactual
covering balls be At

CF =
⋃

x∈St
A(t,1−t)(x) and the coun-

terfactual coverage be P (At
CF ) =

|At
CF |

|S1−t| ∈ [0, 1]. Then,
we further define the mean coverage P (A) and sum of the
radii δsum:

P (A) = 1

4
(P (At=1

F ) + P (At=1
CF ) + P (At=0

F ) + P (At=0
CF )),

δsum = δ(1,1) + δ(1,0) + δ(0,0) + δ(0,1).

(9)

With the underlying full coverage constraint, Eq. (8) can be
explicitly expressed as:

min
S∈D

δsum s.t. P (A)− 1 = 0. (10)

Noting that in Section 4.1, we discuss the dilemma of reduc-
ing δ(t,1−t) due to the large discrepancy that exists in the
realistic dataset. To further suppress the interested bound –
δsum, we transform Eq. (10) into the mean coverage max-
imization in Eq. (11) to maximally satisfy the equality
constraint given smaller radius for the bound:

max
S∈D

P (A). (11)
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Figure 3. Visualization of the high coverage by Algorithm 2 on
CMNIST, and reduction gain over mean coverage loss by Algo-
rithm 2 when compared to Algorithm 1.

To solve (11), we propose a greedy solution – factual and
counterfactual coverage maximization (FCCM) in Algo-
rithm 2. Specifically, FCCM constructs a weighted graph
G with the node V by the entire covariate matrix X ∈ D,
and each node vt ∈ Dt builds the directed edge e(vt, ut)
(with unit weight) pointing to the node ut within the ball
A(t,t)(v

t), thus constructing a directed graph Gt. Then,
graph Gt is further expanded by adding the weighted edges
e(vt, u1−t) (with weight α) for vt ∈ Dt pointing to the node
u1−t within the counterfactual ballA(t,1−t)(v

t). Once Gt=1

and Gt=0 are both obtained, they are naturally connected to
build the final weighted graph G. Note that FCCM differs
from ProbCover (Yehuda et al., 2022) which only works
on a single class/group, whereas FCCM not only handles
binary treatment groups but also integrates the distinctive
counterfactual covering to solve Eq. (11).

Unlike Algorithm 1, which can be regarded as a top-down
approach that optimizes the risk upper bound throughout
the AL process with the equality constraint satisfied at each
step, Algorithm 2 adopts a bottom-up approach, working on
satisfying the equality constraint under a fixed bound. To
further give Algorithm 2 a theoretical guarantee in Theorem
4.4 (with proof provided in Appendix A.6), we assume that
the full factual and counterfactual coverage are possible by
the returned labeled set S as follows:

Assumption 4.3. Given the fixed covering radius δ(t,t) and
δ(t,1−t), there exists the optimal solution S∗t , S∗t ⊂ S∗ for
treatment group t, ∀t ∈ {0, 1}, such that At

F

⋃
At

CF = D.

Theorem 4.4. Under Assumption 4.3, Algorithm 2 is a
(1− 1

e ) – approximation for the full coverage constraint on
the equally weighted graph and unscaled out-degree.

Exploratory analysis: Following our discussions on Algo-
rithm 1, we conduct the exploratory analysis on the CM-
NIST benchmark (Jesson et al., 2021a) in Figure 3(a) to
demonstrate the high coverage efficiency by Algorithm 2
on the real-world covariates. Further experiment on the per-
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Figure 4. Estimating a smaller range for the covering radius δ
around the 95% coverage threshold by Algorithm 2.

formance compared to Algorithm 1 is accessible in Figure
3(b), where both the high reduction of the sum of the radii
and the low compromise of the coverage are observed, e.g.,
maximally 25% reduction (red line) with 1% mean coverage
loss (blue line) around the training size of 2500.

4.3. Approximating the Covering Radius

The hyperparameters, i.e., δ(t,t) and δ(t,1−t) are crucial for
the success of obtaining a relatively lower upper bound with-
out heavily intruding into the full coverage constraint. For
simplicity, we set the same size for all four radii and denote
them as δ uniformly, in Figure 4, we experiment different
values of δ (normalized w.r.t. the max distance between
points), and calculate the converged coverage on the grow-
ing training set given the pre-set covering radius. Thus, we
estimate a narrower range for the relatively small radius with
an achievable high mean coverage around the 95% thresh-
old, to reduce the search space for further hyperparameter
tuning.

Uniform δ: The rationale to use uniform δ is to avoid mak-
ing the search space prohibitively large – on the order of
O(m4) if each radius has m candidate settings. The key
insight to reduce the search complexity is that, by the def-
inition of the mean coverage P (A) in Eq. (9), Definition
3.1, and Definition 4.2, each radius is independent and each
sub-term of P (A) increases monotonically with its corre-
sponding radius, which leads to the mean coverage P (A)
increases monotonically. Thus, by the independence and
monotonicity, the search for four radii stays in the same
direction, making the initial search space O(m) to identify
the smallest radius for satisfying the 95% mean coverage
threshold.

Different δ: Though the shared value among four radii
allows for effective and efficient initial hyperparameter tun-
ing, it could potentially fail if the distribution discrepancy
between the two treatment groups is very large. This is
because the counterfactual covering radius can be far larger
than the factual covering radius, i.e., δ(t,1−t) ≫ δ(t,t), to
let the counterfactual coverage P (At

CF ) to get close to full,
lowering the utility of the uniform radius value. As such,

Table 1. Summary of the Acquisition Setup and Testing
Dataset Start Length Steps Pool Val Test

TOY ALL* 1 50 7200 2880 1600
IBM ALL* 50 50 2891 3180 6250
CMNIST ALL* 50 50 16706 10500 18000

if the distribution discrepancy between treatment groups is
large, it is then viable to identify a different value for each
covering radius to maintain the high coverage under the lin-
ear complexity due to the independence and monotonicity.

5. Experiments
Datasets: Toy – a simulated 2-dimensional toy dataset
based on 16,000 randomly generated samples. IBM (Shi-
moni et al., 2018) – a high-dimensional tabular dataset based
on the publicly available Linked Births and Infant Deaths
Database. Each simulation contains 25,000 samples with
177 real-world covariates randomly selected from a cohort
of 100,000 individuals; CMNIST (Jesson et al., 2021a) –
This dataset contains 60,000 image samples (10 classes)
of size 28×28, which are adapted from MINIST (LeCun,
1998) benchmark. Further simulation details are deferred to
the Appendix C.3.

Metric: The PEHE defined in Definition 2.1 with
the squared root empirical expression:

√
ϵPEHE =√

ΣN
i=1((y

t=1
i − yt=0

i )− τi)2/N , is used for measuring
the risk of the estimator at the individual level.

Baselines: We compare FCCM to two groups of models,
namely, the general AL model from the broader research
field: BADGE (Ash et al., 2019), BAIT (Ash et al., 2021),
and LCMD (Holzmüller et al., 2023). And the designated
model for treatment effect estimation with AL: QHTE (Qin
et al., 2021), Causal-Bald (Jesson et al., 2021b) (with vari-
ants µBALD, ρBALD, and µρBALD), and MACAL (Wen
et al., 2025) are the designated algorithms proposed to deal
with the treatment effect estimation with AL.

Estimators: The same setup as described in (Jesson et al.,
2021b; Wen et al., 2025) is adopted here by utilizing
the following two open-source estimators: DUE-DNN
(Van Amersfoort et al., 2021) for tabular data, and DUE-
CNN (Van Amersfoort et al., 2021) for image data. Model
training details can be found in Appendix C.6.

Evaluation scheme: The details of the data acquisition
setup is summarized in Table 1, where we initialize the
training set S with the entire labeled samples (denoted as
ALL*) from group t = 0 and start acquisition only on
the sample from t = 1, which simulates scenarios with a
significant number of missing counterfactual samples. Then,
a fixed step length is enforced at each acquisition step with
fifty data acquisition steps. Note that for Toy dataset we
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Figure 5. All plots are the mean values averaged from 10 simulations associated with the standard deviation as the error bar. Note that all
models at 0% exhibit the same performance given the fixed estimators and are thus neglected. The performance under 2% granularity is
presented in Appendix C.7.
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Figure 6. Visualizations of the toy dataset distribution, and the actual acquisition of the data by FCCM, µρBALD, and BAIT. The size of
the data point and color from (b) to (c) is adjusted to its associated density, with deeper color representing higher density and vice versa.

do single data acquisition to show fine-granularity results,
and batch-mode acquisition for the other two datasets. Each
evaluation is done by the estimator trained from the last best
checkpoint without completely re-train from scratch.

5.1. Risk Evaluations

In Figure 5, it is observed that our proposed method is gen-
erally served as the risk lower bound in all three datasets.
Its outstanding performance empirically proves the supe-
riority of our method which considers the joint coverage
on the factual and counterfactual data throughout the pro-
cess of the querying. This acquisition scheme leads to a
lower estimation risk that can be further explained quali-
tatively with the two underlying properties: i). querying
from a high-density region; ii). considering the satisfactions
of the positivity assumption alongside. The first property
leverages the generalizability of the trained estimator to
the acquired samples’ neighborhoods, where a high-density
neighborhood accounts for higher loss. The second property
considers the pivotal overlapping assumption for treatment
effect estimation, for which robust estimation toward an
individual can be derived by pairing such an individual’s
factual or counterfactual part from the overlapping region.
Thus, our proposed method outperforms the other baselines

by prioritizing the data acquisition toward the overlapping
region with high density, while others cannot do both essen-
tially.

Given the above qualitative analysis, it is explainable that
the other method designed for data-efficient treatment ef-
fect estimation (DTEE), e.g., µρBALD, underperforms our
method. For example, although µρBALD bias the data ac-
quisition toward the overlapping region, it does not further
embed the property to query from the high-density region,
and thus accounts for less risk. The same mentality ap-
plies to the other DTEE methods, e.g., MACAL, QHTE,
etc. Also, it is observed that the baselines from the general
AL field, e.g., LCMD and BAIT, underperform our method
by not directly considering the data acquisition toward the
overlapping region, which is pivotal for treatment effect
estimation. However, it is interestingly observed that BAIT
can outperform many DTEE baselines on CMNIST, but it
underperforms on TOY and IBM. Furthermore, the current
DTEE baselines cannot consistently outperform the general
AL methods across various datasets.

5.2. Acquisition Visualization

The original distribution of the two-dimensional toy dataset
is given in Figure 6(a) for reference, where the overlapping
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region is plotted in a dashed purple line by kernel density es-
timation (Scott, 2015). From Figure 6(c) to 6(d), the density
of each data point is calculated in by Line 2 in Algorithm
2, the higher the out-degree of each node, the denser it is
as visually observed in the overlapped region. Under the
fine granularity of querying one sample at a time, it’s ob-
served that in Figure 6(b) FCCM consistently delivers the
high priority to query from the overlapping region with high
density, while µρBALD is witnessed to have more queries
fall outside the overlapping region and less priority on query
from the high-density region (query No.2 is fall at the edge
of the distribution, where sparse and no overlapping is ob-
served) as shown in Figure 6(c). Also, BAIT’s acquisition
spreads out the entire data on group t = 1 without consid-
ering the presence of the counterfactual samples and thus
queries the least from the desired region as shown in Figure
6(d). Their associated performance by 20 acquired samples
(40% consumption of budget) also seen with a significant
gap as illustrated in Figure 5(a).

5.3. Ablation and Sensitivity Study

Table 2. Ablation Study of the Counterfactual Covering Radii

Dataset Method Consumption of the Total Budget

1/5 2/5 3/5 4/5 5/5

TOY
FCCM- 4.7680 2.2496 1.3372 1.0545 0.9024
FCCM 4.7664 1.8655 1.0978 0.8637 0.7565

Gain +0% +17% +18% +18% +16%

IBM
FCCM- 0.4745 0.4088 0.3797 0.3512 0.3291
FCCM 0.4813 0.4132 0.3845 0.3507 0.3286

Gain -1% -1% -1% +0% +0%

CMNIST
FCCM- 2.9250 2.6627 2.4652 2.3105 2.2073
FCCM 2.2207 1.8681 1.7735 1.7344 1.6790

Gain +24% +30% +28% +25% +24%

The ablation study is conducted to study the effect of max-
imizing the counterfactual coverage, e.g., P (At=1

CF ). Es-
sentially, two models are compared, our proposed method
FCCM, and the FCCM− (by setting counterfactual covering
radii δ(1,0) = 0 and δ(0,1) = 0, and this action tailors the
ProbCover (Yehuda et al., 2022) to align with the context
for binary-class AL). In Table 2, we capture five stages of
the total query steps, and calculate the performance gain
by

√
ϵPEHEFCCM−−√

ϵPEHEFCCM√
ϵPEHEFCCM−

× 100%. It is noted that the per-
formance gain on Toy and CMNIST datasets are signifi-
cant, however, with neck-to-neck performance observed on
the IBM dataset. This phenomenon is explainable since
the treated and control distributions on IBM are heavily
overlapped such that the high-density region on the treated
sample (t = 1) is in fact the high-density region on the coun-
terfactual side (t = 0). We provide the visualization of the
IBM and CMNIST in Appendix C.4 for further discussions

of the underlying rationale. Additionally, the sensitivity
analysis of α and the covering radii δ(1,1) and δ(1,0) is pre-
sented in Appendix C.8. There, we generally observe that a
non-zero weight α is influential for dataset with less over-
lap, and that a larger covering radius can lead to greater risk
reduction in the early stage, albeit at the cost of reduced
performance in the later stage.

6. Conclusion
We formalize the data-efficient treatment effect estimation
problem under a solid theoretical framework, where the
convergence of the risk upper bound is governed by the
reduction of the derived factual and counterfactual covering
radii. To reduce the bound, we propose a greedy radius re-
duction algorithm, which is 2−OPT-like under an idealized
data distribution assumption. To generalize to more realistic
data distributions for higher radius reduction, we further pro-
pose FCCM, which transforms the optimization objective
into the factual and counterfactual coverage maximization
with a (1− 1

e )–approximation to the full coverage constraint.
Also, benchmarking with other baselines further proves the
superiority of FCCM on solving the data-efficient treatment
effect estimation problem.

Limitation: FCCM is designed to better handle the par-
tially overlapped data for a quicker bound reduction while
maintaining high coverage (Figure 3(b)). As such, in scenar-
ios where the two treatment groups have non-overlapping
regions in the raw feature space (e.g., biased treatment as-
signment), the data acquisition of FCCM will be challenged
as there are no overlapping, counterfactual pairs to be iden-
tified. One possible remedy is to operate FCCM in the
latent space where the inter-group distributions are aligned
by methods like (Shalit et al., 2017; Zhang et al., 2020;
Wang et al., 2024), but it also offsets the model-independent
advantage of FCCM.
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A. Theory
A.1. Proof of Theorem 3.4

Assumption 3.2 (Lipschitz Continuity). Assume that the conditional probability density function pt(y|x) is λt-Lipschitz, the
squared loss function l is λl-Lipschitz and l is further bounded by Ll.

Assumption 3.3 (Constant κ). LetH = {h|h : X → R} be a family of functions and f : X × T → Y be the hypothesis.
Assume that there exists a constant κ > 0, such that hf (x, t) :=

1
κ lf (x, t) ∈ H.

Theorem 3.4. Let x be sampled i.i.d. n times from domain X . Under Assumption 3.2 and Assumption 3.3, with probability
at least 1− γ, where γ ∈ (0, 1), the subset generalization gap ∆ is upper-bounded as:∣∣∣∣∣∣ 1n

n∑
i=1

ξ(xi; fS)−
1

|S|

|S|∑
j=1

l(xi, yi, ti; fS)

∣∣∣∣∣∣
≤
∑

t∈{0,1}

κt

(
δ(t,t) + δ(t,1−t)

)
+ 2κH +

√
L2
l log

1
γ

2n
,

(12)

where the constants κt = 2 (λl +
1
3λtL

3
2

l ), and κH = κ · IPMH(pt=1(x), pt=0(x)) with IPMH(·, ·) denotes the integral
probability metric induced byH and pt(x) denotes the density distribution of treatment group t.

Proof of Theorem 3.4. The proof is done in three main steps: Firstly, we bound the expected value of the interested term
1
n

∑n
i=1 ξ(xi; fS) with factual and counterfactual loss, namely, ϵF and ϵCF over the domain of the pool set. Secondly, we

constrain the ϵF with the factual covering radius δ(t,t) and the ϵCF with the counterfactual covering radius δ(t,1−t). Lastly,
we conclude the probabilistic bound by Hoeffding’s inequality.

E

[
1

n

n∑
i=1

ξ(xi; fS)

]
≤ 2 (ϵF + ϵCF ) (13a)

≤
∑

t∈{0,1}

2µt

(
ϵSt

+ δ(t,t)(λl +
1

3
λtL

3
2

l )

)
+

∑
t∈{0,1}

2µ1−t

(
ϵSt

+ δ(t,1−t)(λl +
1

3
λtL

3
2

l )

)
+ 2κH

(13b)

≤
∑

t∈{0,1}

2 (λl +
1

3
λtL

3
2

l )
(
δ(t,t) + δ(t,1−t)

)
+ 2κH. (13c)

The inequality (13a) is by Lemma A.2, the inequality (13b) is by Lemma A.3 and A.5, the equality in (13c) is by the zero
training loss assumption and the fact that µt ≤ 1,∀t ∈ {0, 1}. With Hoeffding’s inequality, we have:

P

(
1

n

n∑
i=1

ξ(xi; fS)− E

[
1

n

n∑
i=1

ξ(xi; fS)

]
≥ ϵ

)
= exp

(
−2nϵ2

L2
l

)
. (13d)

By setting γ = exp
(
− 2nϵ2

L2
l

)
, we solve for the bounding gap ϵ =

√
L2

l log 1
γ

2n . Thus, we can derive that with probability at
least 1− γ, the following inequality holds:

1

n

n∑
i=1

ξ(xi; fS) ≤ E

[
1

n

n∑
i=1

ξ(xi; fS)

]
+

√
L2
l log

1
γ

2n
. (13e)
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To conclude, we have:

∣∣∣∣∣∣ 1n
n∑

i=1

ξ(xi; fS)−
1

|S|

|S|∑
j=1

l(xi, yi, ti; fS)

∣∣∣∣∣∣ (13f)

=
1

n

n∑
i=1

ξ(xi; fS) (13g)

≤E

[
1

n

n∑
i=1

ξ(xi; fS)

]
+

√
L2
l log

1
γ

2n
(13h)

≤
∑

t∈{0,1}

2 (λl +
1

3
λtL

3
2

l )
(
δ(t,t) + δ(t,1−t)

)
+ 2κH +

√
L2
l log

1
γ

2n
. (13i)

The equality (13g) is by the zero training loss assumption, the inequality (13h) is by incorporating (13e), the final inequality
(13i) is concluded by incorporating (13c).

Discussion on the bound: Given the i.i.d. sampled pool set from the domain X , it is noted that in the final probabilistic
bound, if the sampled two distributions were identical and we selected the entire pool set for training, simply by definition,
we have both the factual and counterfactual covering radius be completely zero, and also the distributional discrepancy term
κH counted by IPM be completed zero, leaving the tightness of the risk upper bound solely depends on the size of the pool
set n and for the given probability threshold γ.

A.2. Proof of Lemma A.2

Definition A.1. Given the loss metric l, the expected factual loss ϵF and counterfactual loss ϵCF are defined in a manner
consistent with (Shalit et al., 2017) as follows:

ϵF =

∫
X×T

l(x, t)p(x, t)dxdt,

ϵCF =

∫
X×T

l(x, t)p(x, 1− t)dxdt.

(14)

Lemma A.2. Let x to be sampled i.i.d. n times from the domain X . With the two-headed trained model fS = {f̂ t=1, f̂ t=0}
on the selected subset S , where f̂ t=1, f̂ t=0 : X → Y are the estimators for the treatment effect yt respectively. The expected
value of 1

n

∑n
i=1 ξ(xi; fS) is upper-bounded as follows:

E

[
1

n

n∑
i=1

ξ(xi; fS)

]
≤ 2(ϵF + ϵCF ). (15)

Proof of Lemma A.2. Note that the overall estimator is denoted as fS , which is a two-headed model with f̂ t representing the
estimation for the treatment effect yt under treatment assignment t. With a slight abuse of notation, we write the expected
loss over x where y is implicitly assumed to be a function of x, i.e., each x has an associated label y, as is typical in
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supervised learning setting:

E

[
1

n

n∑
i=1

ξ(xi; fS)

]
=

1

n

n∑
i=1

E [ξ(xi; fS)] (16a)

= Ex∼X [ξ(x; fS)] (16b)

=

∫
X
(τ(x)− τ̂(x))2p(x)dx (16c)

=

∫
X
((yt=1 − yt=0)− (f̂ t=1(x)− f̂ t=0(x)))2p(x)dx (16d)

=

∫
X
((yt=1 − f̂ t=1(x))− (yt=0 − f̂ t=0(x))︸ ︷︷ ︸

Swap yt=0 and f̂t=1(x)

)2p(x)dx (16e)

≤ 2

∫
X
((yt=1 − f̂ t=1(x))2 + (yt=0 − f̂ t=0(x))2)p(x)dx (16f)

= 2

∫
X
(yt=1 − f̂ t=1(x))2p(x, t = 1)dx+ 2

∫
X
(yt=1 − f̂ t=1(x))2p(x, t = 0)dx︸ ︷︷ ︸

Apply p(x) =
∫
p(x, t)dt = p(x, t = 1) + p(x, t = 0)

+ (16g)

2

∫
X
(yt=0 − f̂ t=0(x))2p(x, t = 0)dx+ 2

∫
X
(yt=0 − f̂ t=0(x))2p(x, t = 1)dx (16h)

= 2

∫
X
(yt=1 − f̂ t=1(x))2p(x, t = 1)dx+ 2

∫
X
(yt=0 − f̂ t=0(x))2p(x, t = 0)dx︸ ︷︷ ︸

Re-arrange and this term equals 2ϵF by definition

+ (16i)

2

∫
X
(yt=1 − f̂ t=1(x))2p(x, t = 0)dx+ 2

∫
X
(yt=0 − f̂ t=0(x))2p(x, t = 1)dx︸ ︷︷ ︸

Re-arrange and this term equals 2ϵCF by definition

(16j)

= 2(ϵF + ϵCF ). (16k)

Discussion: Lemma A.2 indicates an interesting decomposition of the expected loss into factual and counterfactual errors,
which is a prelude to our final probabilistic bound under AL paradigm. It is worth mentioning that a similar intermediate
conclusion appears to align with observations in (Shalit et al., 2017).

A.3. Proof of Lemma A.3

Lemma A.3. Denote the expected loss on subset St as ϵSt , the factual covering radius as δ(t,t), let the constant µt = p(t)
be the marginal probability. Assume that the conditional probability density function pt(y|x) is λt-Lipschitz, the squared
loss function l is λl-Lipschitz and l is further bounded by Ll, the expected factual loss is bounded as follows:

ϵF ≤
∑

t∈{0,1}

µt

(
ϵSt

+ δ(t,t)(λl +
1

3
λtL

3
2

l )

)
. (17)

Proof of Lemma A.3. We start with the Tower Law for the key of the proof, let the estimation be ŷ = f̂(x) given the fixed
treatment t, we have the expected loss to be decomposed in the general form:

EX

[
(y − f̂(x))2

]
= EX

[
EY

[
(y − f̂(x))2 | x

]]
(18a)

= EX

[∫
Y
(y − f̂(x))2p(y | x)dy

]
. (18b)
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Denote pt(y|x) = p(y|x, t) and pt(x) = p(x|t), we apply the Tower Law conclusion in Eq. (18b) by Tow Law and further
bound the expected factual error ϵtF for the treatment group t:

ϵtF =EX t

[
(y − f̂ t(x))2

]
(19a)

=EX t

[
EYt

[
(y − f̂ t(x))2 | x

]]
(19b)

=EX t

[∫
Y
ltyp

t(y|x)dy
]

(19c)

=EX t

∫
Y
lty(p

t(y|x)−pt(y|x′) + pt(y|x′)︸ ︷︷ ︸
Add up to Zero

)dy

 (19d)

=EX t

[∫
Y
ltyp

t(y|x′)dy +

∫
Y
lty(p

t(y|x)− pt(y|x′))dy

]
. (19e)

We decompose the first term within the expectation in (19e) into the followings, by the selected x′ ∈ St that covers the x
from group t within the factual radius δ(t,t), we bound the term as:∫

Y
ltyp

t(y|x′)dy =

∫
Y
(lty − lty′ + lty′)pt(y|x′)dy (20a)

=

∫
Y
(lty − lty′)pt(y|x′)dy +

∫
Y
lty′ pt(y|x′)dy (20b)

≤ δ(t,t)λl +

∫
Y
lty′ pt(y|x′)dy (20c)

= δ(t,t)λl + ϵSt
(x′), (20d)

where the inequality in (20c) is because:∫
Y
(lty − lty′)pt(y|x′)dy ≤ |x− x′|

∫
Y

∣∣∣∣∣ lty − lty′

x− x′

∣∣∣∣∣ pt(y|x′)dy (21a)

≤ |x− x′|
∫
Y
λlp

t(y|x′)dy (21b)

≤ δ(t,t)

∫
Y
λlp

t(y|x′)dy (21c)

= δ(t,t)λl

∫
Y
pt(y|x′)dy (21d)

= δ(t,t)λl, (21e)

for which the equality in (21e) is because the integral of the density across the domain is 1:∫
Y
pt(y|x′)dy = 1. (22)

The second term within the expectation in (19e) is bounded by:∫
Y
lty(p

t(y|x)− pt(y|x′))dy ≤ |x− x′|
∫
Y
lty

∣∣∣∣pt(y|x)− pt(y|x′)

x− x′

∣∣∣∣)dy (23a)

≤ δ(t,t)λt

∫
Y
ltydy (23b)

=
1

3
δ(t,t)λtL

3
2

l . (23c)
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Combining all the inequalities together, we have:

ϵtF = EX t

[∫
Y
ltyp

t(y|x′)dy +

∫
Y
lty(p

t(y|x)− pt(y|x′))dy

]
(24a)

≤ EX t

[
ϵSt

(x′) + δ(t,t)(λl +
1

3
λtL

3
2

l )

]
(24b)

= ϵSt
+ δ(t,t)(λl +

1

3
λtL

3
2

l ), (24c)

where the last equality holds due to E[ϵSt
(x′)] = ϵSt

and the invariance of constants under expectation, i,e., E(c) = c for
any constant c.

Given that µt=1 = p(t = 1) and µt=0 = p(t = 0), where µt=1 + µt=0 = 1, we conclude the proof by expanding the
expected factual loss ϵF by definition:

ϵF =

∫
X×T

l(x, t)p(x, t)dxdt (25a)

=

∫
X
lt=1(x)p(x, t = 1)dx+

∫
X
lt=0(x)p(x, t = 0)dx (25b)

=

∫
X
lt=1(x)pt=1(x)p(t = 1)dx+

∫
X
lt=0(x)pt=0(x)p(t = 0)dx (25c)

= p(t = 1) · EX t=1

[
(y − f̂ t=1(x))2

]
+ p(t = 0) · EX t=0

[
(y − f̂ t=0(x))2

]
(25d)

= µt=1 · EX t=1

[
EYt=1

[
(y − f̂ t=1(x))2 | x

]]
+ µt=0 · EX t=0

[
EYt=0

[
(y − f̂ t=0(x))2 | x

]]
(25e)

≤
∑

t∈{0,1}

µt

(
ϵSt + δ(t,t)(λl +

1

3
λtL

3
2

l )

)
. (25f)

Discussion: Lemma A.3 establishes a general upper bound on the factual loss under the core-set paradigm, which has
been explored in prior studies (Sener & Savarese, 2018; Qin et al., 2021). Building on this foundation, we provide a more
rigorous and comprehensive proof to strengthen the theoretical underpinnings. Also, we visualize the factual covering radius
in Figure 1(a) and 1(c) to enhance interpretation, where the full coverage on the same class is required.

A.4. Proof of Lemma A.5

Definition A.4. LetH = {h|h : X → R} be a family of functions. The distribution distance measure – integral probability
metric (IPM) between two data distributions pt=1(x) and pt=0(x) over the domain X is defined as:

IPMH(pt=1(x), pt=0(x)) = sup
h∈H

∣∣∣∣∫
X
h(x)(pt=1(x)− pt=0(x))dx

∣∣∣∣ . (26)

Lemma A.5. Denote the expected loss on subset St as ϵSt
, the constant µt = p(t), counterfactual covering radius as

δ(t,1−t). Assume that the conditional probability density function pt(y|x) is λt-Lipschitz, the squared loss function l is
λl-Lipschitz and l is further bounded by Ll. Also, letH = {h|h : X → R} be a family of functions and f : X × T → Y
be the hypothesis. Assume that there exists a constant κ > 0, such that hf (x, t) :=

1
κ lf (x, t) ∈ H. The counterfactual

expected loss is bounded as follows:

ϵCF ≤
∑

t∈{0,1}

µ1−t

(
ϵSt + δ(t,1−t)(λl +

1

3
λtL

3
2

l )

)
+ κH, (27)

where constant κH = κ · IPMH(pt=1(x), pt=0(x)) describes the distributional discrepancy between the treatment groups’
distritbuions (pt=1(x) and pt=0(x)) over the domain X , e.g., its i.i.d realization set S induced by AL.

Proof of Lemma A.5. For notation simplicity, we denote lty = (y − f̂ t(x))2, and denote p1−t(x) = p(x | 1 − t), for
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x ∼ p1−t(x), we have the counterfactual loss on the group 1− t as:

ϵtCF =EX 1−t

[
(y − f̂ t(x))2

]
(28a)

=EX 1−t

[
EYt

[
(y − f̂ t(x))2 | x

]]
(28b)

=EX 1−t

[∫
Y
ltyp

t(y|x)dy
]

(28c)

=EX 1−t

[∫
Y
lty
(
pt(y|x)− pt(y|x′) + pt(y|x′)

)
dy

]
(28d)

=EX 1−t

[∫
Y
ltyp

t(y|x′)dy +

∫
Y
lty
(
pt(y|x)− pt(y|x′)

)
dy

]
. (28e)

Note, that in (28d) we introduce the selected x′ ∈ St from the distribution pt(x) (x′ is not directly sampled from pt(x) but
from St), which can be consider counterfactual sample w.r.t. x ∼ p1−t(x). That is, the sample x from the group 1− t is
covered by the counterfactual sample x′ ∈ St from group t within the counterfactual radius δ(t,1−t).

Similar to the deduction in Appendix A.3, the first term within the expectation in (28e) is bounded by:∫
Y
ltyp

t(y|x′)dy =

∫
Y
(lty − lty′ + lty′)pt(y|x′)dy (29a)

=

∫
Y
(lty − lty′)pt(y|x′)dy +

∫
Y
lty′ pt(y|x′)dy (29b)

≤ δ(t,1−t)λl +

∫
Y
lty′ pt(y|x′)dy (29c)

= δ(t,1−t)λl + ϵSt
(x′). (29d)

The inequality in (29c) is because:∫
Y
(lty − lty′)pt(y|x′)dy ≤ |x− x′|

∫
Y

∣∣∣∣∣ lty − lty′

x− x′

∣∣∣∣∣ pt(y|x′)dy (29e)

≤ |x− x′|
∫
Y
λlp

t(y|x′)dy (29f)

≤ δ(t,1−t)

∫
Y
λlp

t(y|x′)dy (29g)

= δ(t,1−t)λl

∫
Y
pt(y|x′)dy (29h)

= δ(t,1−t)λl. (29i)

The equality in (29i) is because the integral of the density across the domain is 1:∫
Y
pt(y|x′)dy = 1. (29j)

The second term within the expectation in (28e) is bounded by:∫
Y
lty
(
pt(y|x)− pt(y|x′)

)
dy = |x− x′|

∫
Y
lty
|pt(y|x)− pt(y|x′)|

|x− x′|
dy (30a)

≤ δ(t,1−t)λt

∫
Y
ltydy (30b)

=
1

3
δ(t,1−t)λtL

3
2

l . (30c)
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Combining all the inequalities together, we have:

ϵtCF =EX 1−t

[∫
Y
ltyp

t(y|x′)dy +

∫
Y
lty
(
pt(y|x)− pt(y|x′)

)
dy

]
(31a)

≤EX 1−t [ϵSt
(x′)] + δ(t,1−t)λl +

1

3
δ(t,1−t)λtL

3
2

l (31b)

=EX 1−t [ϵSt
(x′)] + δ(t,1−t)

(
λl +

1

3
λtL

3
2

l

)
, (31c)

where the first term is the counterfactual loss on the subset St induced by AL.

Extending the the expected counterfactual error ϵCF by definition:

ϵCF =

∫
X×T

l(x, t)p(x, 1− t)dxdt (32a)

=

∫
X
(yt=1 − f̂ t=1(x))2p(x, t = 0)dx+

∫
X
(yt=0 − f̂ t=0(x))2p(x, t = 1)dx (32b)

=

∫
X
(yt=1 − f̂ t=1(x))2pt=0(x)p(t = 0)dx+

∫
X
(yt=0 − f̂ t=0(x))2pt=1(x)p(t = 1)dx (32c)

=p(t = 0) · EX t=0

[
(yt=1 − f̂ t=1(x))2

]
+ p(t = 1) · EX t=1

[
(yt=0 − f̂ t=0(x))2

]
(32d)

≤µt=1

[
EX t=1 [ϵSt=0

(x′)] + δ(0,1)

(
λl +

1

3
λt=0L

3
2

l

)]
+ µt=0

[
EX t=0 [ϵSt=1

(x′)] + δ(1,0)

(
λl +

1

3
λt=1L

3
2

l

)]
(32e)

=(ϵCF )S + µt=1 · δ(0,1)
(
λl +

1

3
λt=0L

3
2

l

)
+ µt=0 · δ(1,0)

(
λl +

1

3
λt=1L

3
2

l

)
. (32f)

Noticing that the counterfactual loss over the selected set S induced by AL: (ϵCF )S in (32f) can be further bounded by the
IPM, e.g., Wasserstein distance, by adapting the proof of ”Lemma 1” of the main text in (Shalit et al., 2017) to the subset
S induced by AL. Let p(t = 1) = µ be the marginal probability of treatment in S, thus p(t = 0) = 1− µ by noting that
p(t = 1) + p(t = 0) = 1, we bound the first term in (32f) as follows:

(ϵCF )S − [(1− µ) · (ϵF )St=1
+ µ · (ϵF )St=0

] (33a)
= [(1− µ) · (ϵCF )St=1

+ µ · (ϵCF )St=0
]− [(1− µ) · (ϵF )St=1

+ µ · (ϵF )St=0
] (33b)

=(1− µ) · [(ϵCF )St=1
− (ϵF )St=1

] + µ · [(ϵCF )St=0
− (ϵF )St=0

] (33c)

=(1− µ)

∫
X
lt=1
x

(
pt=0(x)− pt=1(x)

)
dx+ µ

∫
X
lt=0
x

(
pt=1(x)− pt=0(x)

)
dx (33d)

=(1− µ)κ ·
∫
X

1

κ
lt=1
x

(
pt=0(x)− pt=1(x)

)
dx+ µκ ·

∫
X

1

κ
lt=0
x

(
pt=1(x)− pt=0(x)

)
dx (33e)

≤(1− µ)κ · sup
h∈H

∣∣∣∣∫
X
h(x)

(
pt=0(x)− pt=1(x)

)
dx

∣∣∣∣+ µκ · sup
h∈H

∣∣∣∣∫
X
h(x)

(
pt=1(x)− pt=0(x)

)
dx

∣∣∣∣ (33f)

=κ · sup
h∈H

∣∣∣∣∫
X
h(x)

(
pt=1(x)− pt=0(x)

)
dx

∣∣∣∣ = κ · IPMH(pt=1(x), pt=0(x)). (33g)

Thus, noting that (ϵF )St=1 is indeed the expected factual loss over the subset St=1 induced by AL, thus simplying the
notation to ϵSt

, we conclude the proof by plugging (33g) back to (32f):

ϵCF ≤
∑

t∈{0,1}

µ1−t

(
ϵSt

+ δ(t,1−t)(λl +
1

3
λtL

3
2

l )

)
+ κH, (34a)

where the constant κH = κ · IPMH(pt=1(x), pt=0(x)) is derived in the similar fashion in (Shalit et al., 2017).
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Discussion: Thus, we provide an adjustable bound depending on the size of the covering radius, where the infimum of the
upper bound value is by labeling all the pool set to make the covering radius the least, the gap originates from the labeling
less data but with some covering radius. Note, that generalization bound by Shalit et al. (2017) quantifies well the risk upper
bound given the fully labeled pool set. The work (Qin et al., 2021) builds upon (Shalit et al., 2017), but certain aspects
remain underexplored, that is, it does not show the importance of the counterfactual covering radius. We fill this crucial
theoretical gap by providing an informative and complete bound under the data-expanding context from scratch to derive a
new bound tailored specifically to treatment effect estimation with AL. Furthermore, Lemma A.5 unveils the distinctive
counterfactual covering radius which originates from the unique nature of the counterfactual prediction. We visualize
the counterfactual covering radius δ(t,1−t) in Figure 1(b) and 1(d) to facilitate the conceptualization of Lemma A.5 in the
treatment effect estimation setting under AL paradigm, where the full coverage on the counterfactual class is required.

A.5. Proof of Theorem 4.1

Definition A.6. Let S∗(t,t) of size B(t,t) denote the optimal (OPT) subset for treatment group t. For each point vt ∈ S∗(t,t), let
the cluster of vt be C∗vt = {ut ∈ Dt : d(u

t, vt) = minv′∈S∗
(t,t)

d(ut, v′)}. As such, we have partitions C∗vt
1
, C∗vt

2
, . . . , C∗vt

B(t,t)

,

where each point ut ∈ Dt is placed in the closest C∗vt
i

w.r.t. vti ∈ S∗(t,t).

Theorem 4.1. Under Assumption 2.3, the sum of the covering radii returned by Algorithm 1 is upper-bounded by
2×

∑
t{0,1}(OPTδ(t,t) + OPTδ(t,1−t)

)

Proof of Theorem 4.1. Let the output of the Algorithm 1 be S, specifically, the total budget B, additive arithmetically, is
split into four parts with B = B(1,1) +B(1,0) +B(0,0) +B(0,1), i.e., with each part to acquire designated point to reduce
one of the four radius δ(1,1), δ(1,0), δ(0,0), and δ(0,1) at a time. Thus, we have S = S(1,1) ∪ S(1,0) ∪ S(0,0) ∪ S(0,1), and
noting that S1 = S(1,1) ∪ S(1,0), and S0 = S(0,0) ∪ S(0,1). To bound each of the radius:

• For ut=1 ∈ D1 to reduce δ(1,1):

d (ut=1,S1) ≤ d (ut=1,S(1,1)) ≤ 2×OPTδ(1,1) , (35)

where the first inequality is because S(1,1) ⊂ S1, and the second inequality is by Lemma A.8.

• For ut=0 ∈ D0 to reduce δ(1,0) :

d (ut=0,S1) ≤ d (ut=0,S(1,0)) ≤ 2×OPTδ(1,0) , (36)

where the first inequality is because S(1,0) ⊂ S1, and the second inequality is by Lemma A.9.

• For ut=0 ∈ D0 to reduce δ(0,0) :

d (ut=0,S0) ≤ d (ut=0,S(0,0)) ≤ 2×OPTδ(0,0) , (37)

where the first inequality is because S(0,0) ⊂ S0, and the second inequality is by Lemma A.8.

• For ut=1 ∈ D1 to reduce δ(0,1) :

d (ut=1,S0) ≤ d (ut=0,S(0,1)) ≤ 2×OPTδ(0,1) , (38)

where the first inequality is because S(0,1) ⊂ S0, and the second inequality is by Lemma A.9.

Since for all u the above holds, thus it follows that

max
u∈D1\S1

d (ut=1,S1) + max
u∈D0\S̃0

d (ut=0,S1) + max
u∈D0\S0

d (ut=0,S0) + max
u∈D1\S̃1

d (ut=1,S0) (39a)

≤2×OPTδ(1,1) + 2×OPTδ(1,0) + 2×OPTδ(0,0) + 2×OPTδ(0,1) (39b)

(39c)

=⇒ δ(1,1) + δ(1,0) + δ(0,0) + δ(0,1) ≤ 2×
∑

t{0,1}

(
OPTδ(t,t) + OPTδ(t,1−t)

)
(39d)
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In the following, we define d(u,Q) := minv∈Q d(u, v) where Q can be any set, e.g., the optimal solution S∗(t,t), also we
denote the OPT as the minimal covering radius returned by the optimal set S∗, i.e., OPT = maxu∈D minv∈S∗ d(u, v).

Lemma A.7. Without loss of generality to Definition A.6, we have ∀u,w ∈ Cv for v ∈ Q, then d(u,w) ≤ 2× OPT

Proof of Lemma A.7.

d(u,w) ≤ d(u, v) + d(w, v) (40a)
= d(u,Q) + d(w,Q) (40b)
≤ OPT + OPT = 2× OPT, (40c)

where the inequality (40a) is by the triangular inequality, the equality (40b) is by Definition A.6, and we complete the proof
with the inequality (40c) due to d(u,Q) = minv∈Q d(u, v) ≤ maxu∈D minv∈Q d(u, v) = OPT.

Note, that the minimal covering radius δ(·,·) under the optimal solution S∗(·,·) is denoted as OPTδ(·,·) .

Lemma A.8. With budget B(t,t) Subset S(t,t) for the treatment group t returned by Algorithm 1 is a 2 − OPTδ(t,t) for
covering the set Dt of the treatment group t.

Proof of Lemma A.8. When covering the treatment group t, we dose not have any assumption for the data distribution,
thus we split the proof into two scenarios in a similar fashion by Dinitz (2019), i.e., ∀v ∈ S∗(t,t),S(t,t) ∩ C

∗
v ̸= ∅ and

∃v ∈ S∗(t,t),S(t,t) ∩ C
∗
v = ∅:

• ∀v ∈ S∗(t,t),S(t,t) ∩ C
∗
v ̸= ∅: Let w ∈ S(t,t) ∩ C∗v , for u ∈ Dt, let u ∈ C∗v with v ∈ S∗(t,t) (noting that C∗v ⊂ Dt), we

have:

d(u,S(t,t)) ≤ d(u,w) ≤ 2× OPTδ(t,t) (41)

where the first inequality is because w ∈ S(t,t), and the second inequality is by Lemmma A.7 for u,w ∈ C∗v . Note, that
Eq. (41) holds ∀u ∈ Dt as C∗v ⊂ Dt, then δ(t,t) = maxu∈D d(u,S(t,t)) ≤ 2× OPTδ(t,t) .

• ∃v ∈ S∗(t,t),S(t,t)∩C
∗
v = ∅: Since |S(t,t)| = |S∗| = B(t,t), by the pigeonhole principle, ∃v′ ∈ S∗(t,t), s.t.|S(t,t)∩C

∗
v′ | ≥

2. Thus, assume that for z,m ∈ S(t,t) ∩ C∗v′ and z is added to S(t,t) before m. Let S ′(t,t) = S(t,t)\m, then for u ∈ Dt,
we have:

d(u,S(t,t)) ≤ d(u,S ′(t,t)) (42a)

≤ d(m,S ′(t,t)) (42b)

≤ d(m, z) (42c)
≤ 2× OPTδ(t,t) , (42d)

where inequality in (42a) is because S ′(t,t) ⊂ S(t,t) (the radius decreases monotonically with larger set), the inequality
in (42b) is because the greedy selection with larger distance with set S ′(t,t) (m is selected before u), the inequality in
(42c) is by definition that d(m,S ′(t,t)) = minv∈S′

(t,t)
d(m, v) and z ∈ S ′(t,t), the last inequality in (42d) is by Lemma

A.7.

Since for all u ∈ Dt, we have d(u,S(t,t)) ≤ 2×OPTδ(t,t) , then it follows that maxu∈Dt
d(u,S(t,t)) ≤ 2×OPTδ(t,t) to

conclude the proof for A.8 by enumerating all the scenarios.

Lemma A.9. With budget B(t,1−t) Subset S(t,1−t) for the treatment group t returned by Algorithm 1 is a 2−OPTδ(t,1−t)

for covering the set D1−t of the treatment group 1− t.
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Proof of Lemma A.9. Note, that the reduction of the counterfactual covering radius δ(t,1−t) requires the acquisition from
group t, which is complex because the radius δ(t,1−t) is calculated by δ(t,1−t) = maxi∈D1−t\S̃1−t

minj∈S(t,1−t)
d(x1−t

i ,xt
j),

noting that the proxy collection S̃1−t is from the treatment group 1 − t, however, the acquisition targeting querying the
sample from group t to reduce the counterfactual covering radius δ(t,1−t).

Thus, by the greedy nature of the Algorithm 1, when δ(t,1−t) is the one to be reduced, the mentality for the query step is
to calculate the proxy point a1−t = argmaxi∈D1−t\S̃1−t

minj∈S(t,1−t)
d(x1−t

i ,xt
j) from group 1− t, then find the nearest

point at ∈ Dt to a1−t as the factual query to expand S(t,1−t). If there always exists d(at, a1−t) = 0, the radius reduction
can be real quick.

Definition A.10. Let cluster F∗
vt = {u1−t ∈ D1−t : d(u

1−t, vt) = minv′∈S∗
(t,1−t)

d(u1−t, v′)} for vt ∈ S∗(t,1−t).

The proof adopts the similar mentality as shown in Proof of Lemma A.8, For now we show the proof for the first scenario
and the second scenarios follows.

∀v ∈ S∗(t,1−t), S̃1−t ∩ F∗
v ̸= ∅: Let w ∈ S̃1−t ∩ F∗

v , let u ∈ F∗
v with v ∈ S∗(t,1−t) (noting that F∗

v ⊂ D1−t), we have:

d(u1−t,S(t,1−t)) = d(u1−t, S̃1−t) (43a)

≤ d(u1−t, w1−t) (43b)

≤ d(u1−t, vt) + d(u1−t, vt) (43c)

≤ d(u1−t,S∗(t,1−t)) + d(w1−t,S∗(t,1−t)) (43d)

≤ 2× OPTδ(t,1−t)
, (43e)

where the equality (43a) is by the Assumption (Strong Ignorability) 2.3 (i.e., 0 < p(t|x) < 1), s.t., for S̃1−t returned
by Algorithm 1, we can have identical set S(t,1−t) ∈ Dt to the proxy collection S̃1−t, the inequality in (43b) is because
w1−t ∈ S̃1−t, the inequality (43c) is by the triangular inequality, the inequality (43d) is by Definition A.10, and inequality
(43e) is by d(u1−t,S∗(t,1−t)) = minv∈S∗

(t,1−t)
d(u1−t, v) ≤ maxu1−t∈D1−t

minv∈S∗
(t,1−t)

d(u1−t, v) = OPTδ(t,1−t)
.

A.6. Proof of Theorem 4.4

Assumption 4.3 Given the fixed covering radius δ(t,t) and δ(t,1−t), there exists the optimal solution S∗t , S∗t ⊂ S∗ for
treatment group t, such that At=1

F

⋃
At=1

CF = D.

Definition A.11. Let the pool set be D of size n, St of size Bt be the solution for group t returned by Algorithm 2.
A family of sets U = {Ui}vm

i=v1
, where ∀i, Ui ⊂ D. Note, that the subscript i of Ui denotes a single selected point

vi in St ⊆ [vm] due to the fact that each vi as the center with the fixed radius covers a set of point, i.e., by definition
Ui = A(t,t)(vi) ∪ A(t,1−t)(vi). Let the uncovered set be Ωr = D\

⋃
i∈St
Ui up to iteration r, and assume that Algorithm

2 were to pick U ′
1 ,U ′

2 , ...,U ′
k, for which U ′

i is one of the set in U . Denote the set covered by optimal solution S∗t as Θ,
ωr = |U ′

r ∩ Ωr−1|, and ηi = |Θ| −
∑

j≤i ωj .

Theorem 4.4. Under Assumption 4.3, Algorithm 2 is a (1 − 1
e ) – approximation for the full coverage constraint on the

equally weighted graph and unscaled out-degree.

Proof of Theorem 4.4. We prove the (1− 1
e )−approximation for the full coverage constraint by Algorithm 2 by extending

the method by Dinitz (2019) for solving the conventional Max k−Cover Problem into our Factual and Counterfactual
Coverage Maximization for the data-efficient treatment effect estimation problem. The objective is to query S = S1 ∪ S0
that maximizes the mean coverage P (A).

As defined in Section 4.2, At=1
F =

⋃
x∈S1

A(1,1)(x) and At=1
CF =

⋃
x∈S1

A(1,0)(x), by further in Definition A.11, for the
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factual (At=1
F ) and counterfactual (At=1

CF ) covered region by S1, we have:

At=1
F ∪ At=1

CF = |
⋃

j≤Bt

U ′
j | (44a)

=
∑
j≤Bt

ωj (44b)

= |Θ| − ηBt (44c)

≥ |Θ| − |Θ| e−1 = (1− e−1) |Θ|, (44d)

where the equality in (44a) is by definition of the covered region in Section 4.2 and the set Ui in Definition A.11, the equality
in (44b) and (44c) is by Definition A.11, and the inequaltiy in (44d) is by Lemma A.14.

Under Assumption 4.3, there exists optimal solution s.t. Θ = D, which further implies:

At=1
F ∪ At=1

CF ≥ (1− e−1)|D| =⇒ P (At=1
F ∪ At=1

CF ) ≥ (1− e−1)|D|
|D|

= 1− e−1. (45)

Without loss of generality, the proof above applies for proving that

P (At=0
F ∪ At=0

CF ) ≥ 1− e−1. (46)

To conclude, as we have:

P (A) = 1

4
P (At=1

F ) +
1

4
P (At=1

CF ) +
1

4
P (At=0

F ) +
1

4
P (At=0

CF ) (47a)

=
1

2
P (At=1

F ∪ At=1
CF ) +

1

2
P (At=0

F ∪ At=0
CF ) (47b)

≥ 1− e−1, (47c)

where the equality in (47a) is by the definition for the mean coverage P (A) and note that our maximization goal in Eq. (10)
leave out the constant coefficient 1/4, which does not affect the ultimate goal. The equality in (47b) is by the independence
between the factual covering and counterfactual covering, the inequality in (47c) is by conclusion in Eq. (45) and (46).

Lemma A.12. For set P , Q and let | P |≥ | Q |, we have | P\Q |≥ | P | − | Q |.

Proof of Lemma A.12. | P\Q |= | P | − | P∩Q |≥ | P | − | Q | due to the fact that | P∩Q |≤| Q | for | P |≥ | Q |.

Lemma A.13. ηi ≤
∣∣∣Θ\⋃j≤i U ′

j

∣∣∣.
Proof of Lemma A.13.

ηi = |Θ| −
∑
j≤i

ωj = |Θ| − |
⋃
j≤i

U ′
j | ≤ |Θ\

⋃
j≤i

U ′
j |. (48)

The first and second equality is straightforward by definition and observation, and the inequality is by Lemma A.12 due to
the fact that the optimal cover Θ is the larger.

Lemma A.14. ηBt ≤ |Θ| e−1.

Proof of Lemma A.14. Construct the subtraction:

ηi − ηi−1 = |Θ| −
∑
j≤i

ωj −

|Θ| − ∑
j≤i−1

ωj

 = −ωi (49a)

=⇒ ηi = ηi−1 − ωi (49b)
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Lemma A.13 implies that optimal solution Θ covers at least ηi uncovered samples (the uncovered samples are w.r.t. to the
covered set by St) with Bt sets, thus by the pigeonhole principle, when ηi filled into Bt sets, each set assigned averagely
ηi/Bt, however, there are less than Bt sets availables for the Algorithm 2 to query, thus there exists the set covers at least
ηi/Bt uncovered samples. By the greedy nature of the Algorithm 2, we have ωi+1 ≥ ηi

Bt
, then it further implies that:

ηi = ηi−1 − ωi ≤ ηi−1 −
ηi−1

Bt
= ηi−1(1−

1

Bt
) (50a)

=⇒ ηi
ηi−1

=
1

Bt
(50b)

For ω0 = 0 implies that η0 = |Θ|, and maximally with budget Bt, we have ηBt
, and then construct the following:

ηBt

η0
=

ηBt

ηBt−1
× ηBt−1

ηBt−2
× · · · × η2

η1
× η1

η0︸ ︷︷ ︸
Bt quantities above

= (1− 1

Bt
)Bt (51)

Noting that:

lim
Bt→∞

(1− 1

Bt
)Bt =

1

e
=⇒ ηBt

η0
≤ 1

e
. (52)

Thus, it can be concluded that ηBt
≤ |Θ| e−1.

B. Related Work
Treatment effect estimation. Many early works in causal effect estimation (a.k.a., the treatment effect estimation) focus on
group-level estimation, e.g., conditional average treatment effect (CATE). The widely used inverse probability weighting
method (Rosenbaum & Rubin, 1983; Imbens & Rubin, 2015) and the doubly robust model (Robins et al., 1994) are designed
to mitigate the selection bias in CATE estimation, but are not generalizable to the unseen individuals or groups without labels.
So far, various methods (Shalit et al., 2017; Louizos et al., 2017; Alaa & Van Der Schaar, 2017; Yao et al., 2018; Yoon et al.,
2018; Shi et al., 2019; Zhang et al., 2020; Kallus, 2020; Jesson et al., 2020; Wang et al., 2024) have been proposed due to
the proliferation of deep learning (DL). These parametric models are good at modeling the individual-level causal effect
and are generalizable to unseen instances. Furthermore, the strong expressive power of such deep models can handle the
high-dimensional data and relax the pivot assumptions in causal effect estimation, e.g., unconfoundedness assumption, by
learning the deconfounded latent representations via neural mapping for treated and control groups. Additionally, there is
another branch of work that investigate the treatment effect estimation under interference (e.g., the violation of the SUTVA
assumptions) (Rakesh et al., 2018; Ma & Tresp, 2021; Ma et al., 2022; Lin et al., 2023; 2024; Chen et al., 2024; Lin et al.,
2025), which is out-of-scope to the foucs of this paper.

Active learning. The concept of active learning (AL) dates back over a century (Smith, 1918). Over time, it has evolved
into a prominent branch of machine learning research (Settles, 2009; Ren et al., 2021; Zhan et al., 2022). The primary goal
of AL is to optimize model performance in a cost-efficient manner, achieving low model risk while minimizing the number
of labeled samples required. AL methods are typically categorized into three main scenarios: query synthesis (Wang et al.,
2015), stream-based (Fujii & Kashima, 2016), and pool-based approaches (Wu, 2018). This paper focuses on pool-based AL,
particularly in regression problems, where key acquisition strategies include uncertainty-based sampling (Gal et al., 2017),
density-based querying (Sener & Savarese, 2018), and hybrid methods (Ash et al., 2019). For example, Bayesian Active
Learning by Disagreement (BALD) (Gal et al., 2017) uses epistemic uncertainty to select unlabeled samples, while core-set
(Sener & Savarese, 2018) prioritizes samples based on their maximum distance to the nearest neighbor in the hidden space.
ACS-FW (Pinsler et al., 2019) combines core-set and Bayesian approaches, balancing sample diversity and uncertainty in
batch-mode acquisition. Although general AL methods are not specifically designed for CEE, benchmarking these methods
can yield valuable insights.

Treatment effect estimation with active learning. Thus far, some progress has been made in this area of research. For
instance, (Sundin et al., 2019) proposes a querying criterion based on the estimated S-type error rate—the probability that
the model incorrectly infers the sign of the treatment effect. However, this work focuses on estimating the correct sign of
the treatment effect, which differs from the risk metric used in our study. For research aligned with the same risk metric,
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Qin et al. (2021) introduce a theoretical framework that extends the upper-bound formulation from (Shalit et al., 2017)
mainly by a core-set approach (Tsang et al., 2005). Despite this, their proposed algorithm QHTE does not adequately
address distribution alignment during data acquisition. To mitigate acquisition imbalance, Causal-BALD (Jesson et al.,
2021b) adopts an information-theoretic perspective, introducing the µρBALD criterion. This criterion scales the acquisition
metric inversely with counterfactual variance, encouraging the selection of samples that align with similar counterfactuals
when certain treatments are underrepresented. This represents a notable improvement over its predecessor, µBALD, an
uncertainty-based softmax-BALD method (Kirsch et al., 2023). However, Causal-BALD depends heavily on accurate
uncertainty quantification and computationally intensive training using complex estimators, such as deep kernel learning
(Wilson et al., 2016). Recently, Wen et al. (2025) introduced a straightforward yet effective algorithm, MACAL, which
reduces distributional discrepancies while remaining model-independent. Despite its advantages, MACAL requires querying
data in pairs (one from the treated group and one from the control group), limiting its generalizability in scenarios where
optimality can be achieved by querying from only one treatment group. Furthermore, while MACAL includes convergence
analysis for sub-objectives, it lacks guarantees on overall risk upper-bound convergence. Additionally, some studies (Deng
et al., 2011; Addanki et al., 2022; Connolly et al., 2023; Ghadiri et al., 2024) leverage AL for efficient experimental trial
design, where treatment information is applied only after sample acquisition, rather than being included in the initial pool.
This setup differs fundamentally from our focus, where treatment information is available from the start. Besides, the recent
exploration of AL for treatment effect estimation on the feature level (Piskorz et al., 2025) differs from our individual-level
data acquisition task.

Algorithm 1 Greedy Radius Reduction
1: Input: Pool set D = D1 ∪ D0; random initialization Sinit = S1 ∪ S0, where S1 and S0 are the random initialization set

for the treated and control group respectively; budget B; distance metric d(·, ·)
2: S ← S init, S̃1 ← ∅, S̃0 ← ∅
3: while |S| < |Sinit|+B do
4: δ ← max{δ(1,1), δ(1,0), δ(0,0), δ(0,1)}
5: if δ == δ(1,1) then
6: a← argmaxi∈D1\S1

minj∈S1 d(x
t=1
i ,xt=1

j ) {To reduce δ(1,1) by querying data point from group t = 1}
7: else if δ == δ(0,0) then
8: a← argmaxi∈D0\S0

minj∈S0
d(xt=0

i ,xt=0
j ) {To reduce δ(0,0) by querying data point from group t = 0}

9: else if δ == δ(1,0) then
10: a′ ← argmaxi∈D0\S̃0

minj∈S1 d(x
t=0
i ,xt=1

j ) {To reduce δ(1,0) by querying data point from group t = 0}
11: b← argmini∈D1

d(xt=1
i , a′) {Find the nearest point from t = 1 to a′ to reduce counterfactual radius δ(1,0)}

12: if b /∈ S1 then
13: a← b, S̃0 ← S̃0 ∪ {a′} {Counterfactual radius δ(1,0) can be reduced, add b into the training set}
14: else
15: Repeat Line 4-25 by excluding δ(1,0) from the max function {Counterfactual radius δ(1,0) cannot be reduced,

go back to other reducible covering radii from the largest one}
16: end if
17: else if δ == δ(0,1) then
18: a′ ← argmaxi∈D1\S̃1

minj∈S0
d(xt=1

i ,xt=0
j ) {To reduce δ(0,1) by querying data point from group t = 1}

19: b← argmini∈D0
d(xt=0

i , a′) {Find the nearest point from t = 0 to a′ to reduce counterfactual radius δ(0,1)}
20: if b /∈ S0 then
21: a← b, S̃1 ← S̃1 ∪ {a′} {Counterfactual radius δ(0,1) can be reduced, add b into the training set}
22: else
23: Repeat Line 4-25 by excluding δ(0,1) from the max function {Counterfactual radius δ(0,1) cannot be reduced,

go back to other reducible covering radii from the largest one}
24: end if
25: end if
26: S ← S ∪ {a}
27: end while
28: Output: S
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C. Additional Details
C.1. Algorithm 1

Proxy collection S̃1−t. To promote sample diversity in the acquired data, the reduction of the counterfac-
tual covering radius δ(t,1−t) queries the data from group t, however, such radius is calculated by δ(t,1−t) =

maxi∈D1−t\S̃1−t
minj∈St d(x

1−t
i ,xt

j), where a direct acquisition from the treatment group 1 − t is performed. But
our actual acquisition targets the query from group t to reduce the counterfactual covering radius δ(t,1−t) by covering the
counterfactual samples. Thus, by the greedy nature of the Algorithm 1, when δ(t,1−t) is the one to be reduced, the mentality
for the query step is to calculate the proxy point a′ = argmaxi∈D1−t\S̃1−t

minj∈S(t,1−t)
d(x1−t

i ,xt
j) from group 1 − t,

then find the nearest point at ∈ Dt to a′ as the eventual query to expand St, and adding the proxy pint a′ into the proxy
collection S̃1−t as a already marked position.

Rationale of querying factual samples: Note that querying the factual sample to reduce the counterfactual covering radius
is not a necessity to help reduce the counterfactual covering radius, because a direct acquisition on the counterfactual
samples can indeed reduce the counterfactual covering radius by the rigorous math definition. However, only acquiring
counterfactual samples impedes the sample diversity in the counterfactual group. for example, querying the counterfactual
sample fall under the neighborhood of an acquired counterfactual sample to reduce the counterfactual covering radius can
cause redundancy under limited budget.

C.2. Algorithm 2

The data acquisition performed in this algorithm is mainly repeating the two steps: 1). Pick the node with the highest
scaled out-degree (which is recalculated each round for new point selection); 2). remove the incoming factual/out-going
counterfactual edges to the picked node and its neighbors. Note that the scaled out-degree is by multiplying the out-
degree with an coefficient c that is directly associated with the covering radii and the covered points to further balance
the distribution discrepancy. That is, given the union of factual and counterfactual covering ball induced by center x:
A(t,t)(x)

⋃
A(t,1−t)(x), three main possible scenarios are:

(a) A(t,t)(x) ̸= ∅∧A(t,1−t)(x) ̸= ∅ (b) A(t,t)(x) = ∅∧A(t,1−t)(x) ̸= ∅ (c) A(t,t)(x) ̸= ∅∧A(t,1−t)(x) = ∅

Figure 7. Visualization of the factual covering (dashed manifold) and the counterfactual covering (solid manifold) on the local neighbor-
hood from the center x. Note that the zero-neighbor scenario is omitted as it is the least preferred to maximize the coverage,

Thus, the scaling coefficient c is calculated as:

c(x) = ζ(x)(1− ζ(x)),∀ζ(x) =
|A(t,t)(x)|

|A(t,t)(x)
⋃
A(t,1−t)(x)|

∈ [0, 1], (53)

where the minimum and maximum of the coefficient c is obtained respectively by ζ = 0 (Figure 7(b) and 7(c)) and ζ = 1
2

(Figure 7(a)). Noting that the shape of the coefficient c w.r.t. ζ over the interval [0,1] is a downward-opening parabola, which
gives the maximum c on the evenly divided scenario, with c declines when ζ departing from 1

2 . Additionally, when c = 0,
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scenario 7(b) is preferred to scenario 7(c) from overlapping perspective with higher number of counterfactual neighbors
prioritized.

C.3. Dataset Details

Toy: The 2-dimensional dataset is generated by creating multiple clusters for each treatment group t. Let center of cluster
vti = (xt

i,1, x
t
i,2) to be drawn randomly from the uniform distribution:

xt
i,1, x

t
i,2 ∼ Uniform([−9 + βt, 9 + βt]), (54)

where the βt is a offset to create larger distribution discrepancy between two treatment groups. Let the collection of the
centers of size k for group t be Vt

k = {vti}ki=1, the randomly added center vtk should satisfy:

dv′∈Vt
k−1

(vtk, v
′) ≥ 1.5× 0.9j , (55)

where j counts from 0 with unit increment each time when Eq. (55) is not satisfied for the randomly generated center vtk
over 100 times. That is, we reduce the minimum distance to a smaller one if the qualified sample cannot be found from the
remaining pool set.

Given the centers, Vt
n′
t
, we define the mean µt

j = Vt
n′
t
[j] and variance σ2

j = 1 and generating Xt(i) ∈ Rnt×2 for cluster i:

Xt
j(i) ∼ N (µt

j , σ
2
j ), ∀ j ≤ nt =⇒ Xt =

⋃
i≤n′

t

Xt(i). (56)

Thus, set β1 = 2 and β0 = −2, number of clusters n′
1 = 50 and n′

0 = 30, number of samples for each cluster
n1 = n0 = 200, such that we generate covariate matrix Xt=1 ∈ R10000×2 for treatment group t = 1 and covariate matrix
Xt=0 ∈ R6000×2 for treatment group t = 1. See visualization in main text Figure 6(a) for the generated data. Furthermore,
let T ∈ R(n′

t·nt)×1 be the treatment indicator, to simulate the response curve y, we have:

yti = sin (1.5× xt
i,1) + cos (1.5× xt

i,2) + 5t, ∀ (xt
i, t) ∈ (Xt,T). (57)

IBM (Shimoni et al., 2018): This dataset is based on the real-world 177 covariates from a cohort of 100,000 individuals,
from the publicly available Linked Births and Infant Deaths Database. The generated response curve is based on the
randomly selected 25,000 individuals out of the 100,000 base, and the potential outcomes have 10 different simulations
according to (Shimoni et al., 2018).

CMNIST (Jesson et al., 2021a): This dataset contains 60,000 image samples (10 classes) of size 28×28, which are
adapted from MINIST (LeCun, 1998) benchmark. CMNIST is completely distinct from the previous tabular datasets by
leveraging the image data for the treatment effect estimation. The potential outcomes are simulated 10 times and generated
by projecting the digits into a 1-dimensional latent manifold as described in (Jesson et al., 2021a).

C.4. Further Discussions

It is seen that in Section 5.3 for ablation study, the performance difference shown in Table 2 indicates that the no measurable
and significant performance gain on IBM and CMNIST dataset, respectively. Here, we qualitatively discuss the causes for
this phenomenon from the data distribution perspective.

The entire data distribution for IBM is plot in Figure 8(a), where a well-blended distribution is seen. We further split the
entire data distribution into sole plots on Figure 8(b) (t = 1) and Figure 8(c) (t = 0). It is observed that data distributions on
different treatment groups are almost identical, which is aligned to the dataset description in the original paper that generates
the IBM benchmark (Shimoni et al., 2018). Thus, the high-density region is built on the overlapping region since two groups
are fully overlapped. Therefore, given all the samples on group t = 0 known, when data acquisition starts on group t = 1,
algorithm only needs to acquire the sample from the high-density regions as the overlapping condition is synchronously
satisfied. Thus, FCCM and FCCM− is indistinguishable on such data distribution. In the meanwhile, it is observed that the
entire CMNIST data distribution (Figure 8(d)) embeds significantly less overlapping regions with the covariates extracted
from the MNIST (LeCun, 1998) benchmark which has 10 classes of data (10 digits). Unlike IBM (Shimoni et al., 2018), the
data generating process in (Jesson et al., 2021a) creates significant distribution discrepancy for two treatment groups, where
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Figure 8. High dimensional data projected into 2-dimensional space via t-SNE, with colors indicating overlapping, group t = 1, and
group t = 0. Left: entire data distribution; Mid: distribution on group t = 1; Right: distribution on group t = 0.

the high-density regions for group t = 1 (Figure 8(e)) and group t = 0 (Figure 8(f)) are well-distinguished, leaving less
overlapping regions on the entire data distribution. Therefore, our proposed method – FCCM prioritizes the data acquisition
toward the high-density and overlapping region, while FCCM− only focus on high-density region where less overlapping is
seen, thus resulting in significant performance difference as seen in Table 2.

C.5. Practicability of the Assumptions

Strong ignorability: The validity of the SI can be approximated by carefully selecting sufficient relevant covariates and
constructing a more balanced dataset.

Lipschitz continuity: Theorem 3.3 assumes the Lipschitzness of the pt(y|x), this can be a practical assumption if the
regression model f , e.g., a well-regularized neural network (NN), learns a smooth mapping from x to y, which implies the
Lipschitzness for pt(y|x). Also, the NN f is differentiable w.r.t. x, thus the squared loss lf is also bounded and sufficiently
differentiable w.r.t. x, further implying the Lipschitzness of lf .

Constant κ: The existence of the constant κ is thoroughly discussed by Shalit et al. (2017) in Appendix A.3 and A.4.

Additionally, we discuss consequence for the proposed theorems when the above-mentioned assumptions are not satisfied:

Lipschitz continuity for Theorem 3.4: If the Lipschitzness does not hold, the multiplicative constant will be unbounded,
and thus the reduction of the radii may not help control the risk upper bound. Strong ignorability for Theorem 4.1: Strong
ignorability provides an ideal scenario for acquiring the counterfactual samples, where a quick bound reduction by Algorithm
1 is seen in Figure 2(a). If strong ignorability cannot be guaranteed in real-world data, e.g., CMNIST, the reduction of the
bound will be significantly slower and less effective for Algorithm 1, as shown in Figure 2(b). Thus, it motivates us to
propose Algorithm 2 that can handle compromised data distributions more effectively via a slight trade-off on coverage.
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C.6. Hyperparameters Tuning

We conduct all the experiments with 24GB NVIDIA RTX-3090 GPU on Ubuntu 22.04 LTS platform with the 12th Gen Intel
i7-12700K 12-Core 20-Thread CPU. As stated in the main text, for fair comparison, we take the consistent hyperparameters
tuned in (Jesson et al., 2021b; Wen et al., 2025) for the estimators: DUE-DNN (Van Amersfoort et al., 2021) and DUE-CNN
(Van Amersfoort et al., 2021) shown in Table 3. Additionally, we search the best hyperparameters, i.e., covering radius δ and
edge weight α for counterfactual linkage, for Algorithm 2 with the validation set shown in Table 4. Note, that in Section 4.3,
we approximating a narrower range around 95% threshold to further determine the covering radius for the best performance.

Table 3. Hyperparameters for Estimators

Hyperparameters DNN CNN

Kernel RBF Matern
Inducing Points 100 100
Hidden Neurons 200 200
Depth 3 2
Dropout Rate 0.1 0.05
Spectral Norm 0.95 3.0
Learning Rate 1e-3 1e-3

Table 4. Hyperparameters for Algorithm 2

Hyperparameters Search Space Tuned

δ(1,1) for TOY [0.11, 0.12, 0.13] 0.11
δ(1,0) for TOY [0.11, 0.12, 0.13] 0.11
δ(1,1) for IBM [0.11, 0.13, 0.15] 0.11
δ(1,0) for IBM [0.11, 0.13, 0.15] 0.11
δ(1,1) for CMNIST [0.40, 0.45, 0.50] 0.50
δ(1,0) for CMNIST [0.40, 0.45, 0.50] 0.40
Edge weight α [1.0, 2.5, 5.0] 2.5
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C.7. Main Results under Highest Resolution
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Figure 1: 2% Increment on TOY Dataset.

(a) 2% increment on TOY dataset
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Figure 2: 2% Increment on IBM Dataset.

(b) 2% increment on IBM dataset

0% 20% 40% 60% 80% 100%
Consumption of the Budget

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

PE
H

E

FCCM
-BALD
-BALD

-BALD
QHTE
MACAL
LCMD
BADGE
BAIT

Figure 3: 2% Increment on CMNIST Dataset.

(c) 2% increment on CMNIST dataset

C.8. Sensitivity Study

Note that the acquisition on treatment sample t = 1 is insensitive on δ(0,0) and δ(0,1) in our setting, as all control samples
(t = 0) are seen. For α, our setting of α = 2.5 has an overall lower error across different acquisition budgets.
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Figure 1: Sensitity Analysis on the Weight  on TOY.

(d) Analysis for the weight α on TOY
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Figure 4: Sensitity Analysis on the Weight  on IBM.

(e) Analysis for the weight α on IBM
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Figure 4: Sensitity Analysis on the Weight  on CMNIST.

(f) Analysis for the weight α on CMNIST
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Figure 2: Sensitivity Analysis on Factual Covering Radius (1, 1) on TOY

(g) Analysis for δ(1,1) on TOY
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Figure 5: Sensitivity Analysis on Factual Covering Radius (1, 1) on IBM

(h) Analysis for δ(1,1) on IBM
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Figure 8: Sensitivity Analysis on Factual Covering Radius (1, 1) on CMNIST

(i) Analysis for δ(1,1) on CMNIST
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Figure 3: Sensitivity Analysis on Counterfactual Covering Radius (1, 0) on TOY

(j) Analysis for δ(1,0) on TOY
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Figure 6: Sensitivity Analysis on Counterfactual Covering Radius (1, 0) on IBM

(k) Analysis for δ(1,0) on IBM
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Figure 9: Sensitivity Analysis on Counterfactual Covering Radius (1, 0) on TOY

(l) Analysis for δ(1,0) on CMNIST
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