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Abstract

Existing Large Language Model (LLM) serving systems prioritize maximum1

throughput. They often neglect Service Level Objectives (SLOs) such as Time to2

First Token (TTFT) and Time Per Output Token (TPOT), which leads to suboptimal3

SLO attainment. This paper introduces SCORPIO, an SLO-oriented LLM serving4

system designed to maximize system goodput and SLO attainment for workloads5

with heterogeneous SLOs. Our core insight is to exploit SLO heterogeneity for6

adaptive scheduling across admission control, queue management, and batch se-7

lection. SCORPIO features a TTFT Guard, which employs least-deadline-first8

reordering and rejects unattainable requests, and a TPOT Guard, which utilizes9

a VBS-based admission control and a novel credit-based batching mechanism.10

Both guards are supported by a predictive module. Evaluations demonstrate that11

SCORPIO improves system goodput by up to 14.4× and SLO adherence by up to12

46.5% compared to state-of-the-art baselines.13

1 Introduction14

Large Language Models (LLMs) are increasingly integral to online applications, powering diverse15

functionalities such as programming assistance [1], enhanced deep search engines [2], and conversa-16

tional agents [3]. In order to handle the substantial computational requirements of LLM inference,17

state-of-the-art serving systems such as vLLM [4] and SGLang [5] employ advanced techniques, in-18

cluding continuous batching [6], paged attention [4], chunked prefilling [7], etc. These optimizations19

markedly improve inference throughput and resource utilization.20

Despite these efficiency improvements, existing LLM serving systems [4, 6, 5, 8] predominantly21

prioritize maximum throughput, often neglecting the Service Level Objectives (SLOs), such as22

time-to-first-token (TTFT) and time-per-output-token (TPOT). Typically, these systems greedily23

admit and serve incoming requests [9], without deep visibility into the SLO requirements of requests.24

Simultaneously, SLO requirements across different applications are inherently heterogeneous [10].25

For instance, programming assistants often demand low latency for real-time response, whereas26

chatbots might tolerate slightly higher latency as long as the generation rate exceeds human reading27

speed [11]. However, existing LLM serving systems treat all requests equally in all scheduling stages.28

This undifferentiated handling leads to suboptimal SLO attainment. These problems necessitate a29

fine-grained and adaptive scheduling methodology to support heterogeneous SLOs.30

In this paper, we focus on designing an SLO-oriented LLM serving system that is tailored for31

heterogeneous SLOs, with the goal of maximizing both system goodput and SLO attainment. Our32

key insight is that the inherent heterogeneity of SLOs can be exploited to dynamically schedule the33

right requests across all scheduling stages (e.g., queue management, admission control, and batch34

selection), thereby achieving system-level high SLO attainment. From the TTFT perspective, requests35
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Figure 1: Comparison of throughput-oriented and SLO-oriented scheduling approaches. The
throughput-oriented scheduler greedily admits and processes requests without considering per-
request SLOs. During the prefill phase, request 4 violates its SLO constraint (4 steps> 3 steps). The
SLO-oriented scheduler prevents such violations through least-deadline-first prioritization. During
the decode phase, we assume a normalized decode step time as 0.25× BatchSize. The throughput-
oriented scheduler batch all requests in each step (BatchSize=6), causing requests 0, 1, 3, and 5 to
violate their TPOT constraints (each step consumes a time of 1.5). In contrast, the SLO-oriented
scheduler rejects unattainable requests (e.g., request 5) and implements an adaptive fine-grained
batching strategy (BatchSize=4). This strategy allows requests with looser TPOT SLOs (requests 2
and 4) to skip certain iterations, ensuring all admitted requests satisfy their TPOT constraints.

with looser SLO can be served a little later. From the TPOT perspective, requests with looser TPOT36

can skip some iterations of generation, leaving more resources for requests with tighter TPOT.37

Based on this insight, we design TPOT Guard and TTFT Guard to handle the heterogeneous TPOT38

and TTFT SLOs, respectively. For the TPOT Guard, we first define a core concept of TPOT-relative39

Proportionality (TRP), which quantifies the heterogeneity of TPOT SLOs. Utilizing TRP, we propose40

a novel VBS-based Admission Control mechanism and a Credit-based Batching mechanism. The41

former is to control the admission of requests to prevent mass TPOT violations due to overwhelming42

request ingress. The latter mechanism adaptively batches requests according to their per-request43

TPOT SLO, achieving system-level high TPOT SLO attainment. For the TTFT Guard, we implement44

a simple but effective least-deadline-first reordering strategy that prioritizes requests nearing their45

TTFT deadlines. Additionally, under heavy load, we reject the requests that are unattainable for their46

TTFT SLOs. To provide decision-making support for these two modules, we develop a predictor47

module consisting of a sequence length predictor and two analytical models. By orchestrating these48

complementary mechanisms in concert, SCORPIO enables robust support for diverse workloads.49

Our contributions are summarized as follows:50

• We identify the critical gap in existing LLM serving systems that prioritize throughput over SLO51

attainment and propose a scheduling methodology to serve requests with heterogeneous SLOs.52

• We propose a TPOT Guard, which consists of a VBS-based Admission Control mechanism and a53

Credit-based Batching mechanism to provide heterogeneous TPOT SLO guarantees.54

• We propose a TTFT Guard, which consists of a least-deadline-first reordering mechanism and an55

unattainable TTFT SLO reject mechanism to provide heterogeneous TTFT SLO guarantees.56

• We develop a predictive module, including a sequence length predictor and two analytical models,57

which supports the decision-making of the SLO guarantee modules.58

• Orchestrating these modules together, we implement SCORPIO. Compared to state-of-the-art59

baselines, our methods improve the system goodput by up to 14.4× and the SLO adherence rate by60

up to 46.5% under different scenarios.61

2 Background and Problem Formulation62

A typical LLM generative inference task has two stages: i) the prefill stage, which takes a prompt63

sequence to generate the first output token; and ii) the decoding stage, which generates new tokens64

autoregressively. The quality of LLM service is typically evaluated by two key metrics: time to65

first token (TTFT) and time per output token (TPOT) [12]. TTFT captures latency for generating66
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Figure 2: Impact of input sequence length (a), batch size (b), and output token index (c) on prefill
latency and inter-token latency (ITL).

the first output token after a request is received, while TPOT sets an upper bound on the average67

latency for generating subsequent tokens. Meeting SLOs plays a key role in providing high-quality68

LLM service and has been fully researched in other fields like cloud computing [13, 14] and edge69

computing [15]. However, this problem has not been fully explored in LLM serving. Also, from the70

perspective of Model as a Service (MaaS) providers, different applications and users have different71

SLO requirements [10, 16]. This inspires us to explore the heterogeneous SLO attainment problem72

in LLM serving.73

We define the heterogeneous SLO attainment problem as follows: During a time interval T , there is a74

sequence of user requestsR = {r1, r2, . . . , rN} arriving. An LLM inference system processes the75

requests with a scheduling policy π. A request ri ∈ R with its TTFT SLO threshold STT (ri) and76

TPOT SLO threshold STP (ri) is considered SLO-compliant if it satisfies both TTFT (ri) ≤ STT (ri)77

and TPOT (ri) ≤ STP (ri). Let Rgood(π) ⊆ R be the subset of those requests that are SLO-78

compliant. Then the system goodput and SLO adherence rate can be defined as:79

Goodput(π) =
|Rgood(π)|

T
(1)

Adherence(π) =
|Rgood(π)|
|R|

(2)

The objective is to design an online scheduling policy π aiming to achieve:80

max
π

(
lim

T→∞
E[Goodput(π, T )], lim

T→∞
E[Adherence(π, T )]

)
(3)

3 Method81

3.1 System Overview82

SCORPIO is a system-algorithm co-design framework designed to maximize goodput and SLO83

adherence. As shown in Figure 3, SCORPIO consists of three key components: 1) predictor, 2)84

TTFT Guard, and 3) TPOT Guard. When a request arrives, the predictor first predicts the output85

sequence length, which is used by two analytic models to estimate the TPOT and TTFT. Given86

the estimated information, the TTFT and TPOT Guards make scheduling decisions accordingly.87

Specifically, the TTFT Guard first reorders the requests according to their TTFT SLO deadline (i.e.,88

Least Deadline First Reordering (§3.3)). Additionally, it uses the estimated TTFT to reject requests89

that are unattainable with respect to their TTFT SLOs. Given the new reordered requests, the TPOT90

Guard uses the estimated TPOT to decide whether to admit the requests into the running batch91

(i.e., VBS-based Admission Control Mechanism (§3.4)). Then, it employs a Credit-based Batching92

Mechanism to select which requests to batch in each processing iteration. Lastly, the selected requests93

are batched and processed in the execution engine.94
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Figure 3: The architecture of SCORPIO.

3.2 Predictor95

Sequence Length Predictor. We employ a lightweight predictor to predict output sequence length.96

Specifically, we bucketize the potential output length distribution into discrete bins and fine-tune an97

OPT-125M model [17] as a text classifier to predict the appropriate bin for each sequence.98

Unlike prior work [18, 19] that simply set number of bins = 10 and the bucket size of99
max context length

number of bin to optimize prediction accuracy, we find this coarse-grained binning strategy100

inadequate for contemporary LLMs. First, it induces a significant class imbalance, resulting in101

deceptively elevated classification accuracy while demonstrating poor performance in minority length102

classes. Second, excessively wide bin intervals inherently limit the predictor’s resolution, which103

becomes increasingly problematic as maximum context lengths in modern models continue to grow.104

Based on a comprehensive analysis of bucketing strategies (§4.4), we find that a medium number of105

bins (e.g., 100) shows the best tradeoff across several metrics. Model training details can be found in106

Appendix A.1.107

TPOT Estimator. To estimate the TPOT of a request, we first observe that the inter-token latency108

(ITL) is positively correlated with GPU execution state (e.g., batch size and average sequence109

length) (§2). Therefore, given processing iteration t and the corresponding running requests set110

R(t) = {r1, r2, ..., rn}, we develop an analytical model to estimate the ITL:111

ITL{|R|, Lavg(R)} = α · |R| · Lavg(R) + β · |R|+ γ · Lavg(R) + δ (4)

where |R| represents the running batch size, Lavg(R) denotes the average sequence length (including112

the prompt and generated tokens) of the batch in iteration t, and α, β, γ, δ are model coefficients113

determined through empirical measurements. Experiments show that this estimator is highly accurate114

with an R2 score of over 0.9 (§A.3). Given that a new request r arrives and its predicted output length115

is P (r), if it is admitted to the running batch R(t), the new set of running requests becomes R′(t),116

with average length Lavg(R
′). The batch-level TPOT over the next P (r) steps can be derived as:117

EstimatedTPOT(|R′|, Lavg(R
′), P ) = ε×{(α · |R′|+ γ) · (Lavg(R

′)+
P (r)

2
)+β · |R′|+ δ} (5)

Here, to avoid the computational complexity associated with tracking individual request completion118

times in the batch, we make a simplified conservative assumption: all requests currently in the batch119

(r1, r2, . . . , rn) are assumed to continue processing for at least the next P (r) steps. Furthermore, we120

introduce an inefficiency coefficient ε (ε ≥ 1) to account for potential system overheads [10].121

TTFT Estimator. Given a waiting requests set W (t) = {w1, w2, ..., wn}, the TTFT of the request122

wi is greater than or equal to the sum of the predicted prefill time of requests in the queue. To estimate123

the TTFT of a sequence, we first formulate the prefill time of a sequence wi according to statistical124

observation (Figure 2a):125

PrefillTime(wi) =

{
φ, if LP (wi) ≤ θ

α ∗ LP (wi) + β, otherwise
(6)
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where LP (wi) is the prompt length of request wi, and φ is the constant prefill time for sequences126

with prompt length less than θ. Then, we can estimate the minimal estimated TTFT of a sequence wi127

with sorting index i in the waiting queue as:128

EstimatedTTFT(wi) >=

n∑
i=1

PrefillTime(wi) (7)

3.3 Heterogeneous TTFT Guard129

Least Deadline First (LDF) Reordering. To handle heterogeneous TTFT SLOs, SCORPIO uses130

a simple but effective LDF reordering strategy. The deadline for a request ri is calculated as the131

time left to its TTFT deadline STT (ri). This strategy puts more urgent requests (with earlier TTFT132

deadline) at the front of the queue, achieving better system-level TTFT attainment.133

Unattainable SLO Rejection. When the system load is excessively high, some requests will134

inevitably violate their TTFT SLO and need special handling. In this paper, we tag these requests as135

unattainable SLO requests and reject them for simplicity. Other strategies, such as processing these136

requests with a lower priority or migrating them to a different node, are left as future work.137

3.4 Heterogeneous TPOT Guard138

Key Insight. As shown in Figure 1, existing methods indiscriminately admit all incoming requests139

and process them equally in each step. This approach leads to two primary issues: 1) SLO violations140

for requests with strict TPOTs when contending with those having looser TPOT SLOs, and 2) when141

the system workload exceeds its processing capacity, greedily serving all requests causes a cascading142

effect where all requests fail to meet their SLOs. To address the first issue, we design a novel batching143

mechanism that provides differentiated batching opportunities based on a request’s TPOT SLO (i.e.,144

Credit-based Batching Mechanism). Requests with looser TPOT SLOs are offered fewer credits145

(opportunities) for batching, thereby skipping some execution iterations and leaving more resources146

for requests with tighter TPOT SLOs. For the latter issue, inspired by load control techniques in147

cloud computing [20, 21], we introduce a novel admission control mechanism that accounts for the148

heterogeneity of TPOT SLOs. On one hand, requests estimated to cause TPOT violations are rejected.149

On the other hand, since a request with looser TPOT SLOs is served intermittently, it can be regarded150

as a partial request when calculating the batch size (i.e., Virtual Batch Size) for TPOT estimation151

(§3.2). These two mechanisms together provide TPOT guarantees, as illustrated in Algorithm 1.152

Credit-based Batching offers requests of different TPOT SLOs with different credits (opportunities)153

for batching each iteration as mentioned above. To decide how many credits a request earns, we first154

introduce a concept called TPOT-relative Proportionality (TRP):155

Definition 1 (TPOT-relative Proportionality (TRP)). Let STP (r) denote the TPOT SLO of request r.156

Given current processing iteration t and the running requests set R(t), the TPOT-relative Proportion-157

ality (TRP) of a request r ∈ R(t) is defined as:158

TRP(r) =
minr∈R(t) STP (r

′)

STP (r)

The TRP quantifies the urgency of a request r to be batched compared to admitted requests with the159

strictest TPOT SLOs. Note that the TRP of a request adaptively responds to changing workloads.160

Therefore, each request earns credits at its TRP. Accumulating sufficient credit (≥ 1.0) grants a161

request to be batched in the next processing batch. Its credit is then decremented by 1.0, representing162

the consumption of one processing opportunity. Formally, in each batching step t, the following163

actions are taken:164

• Credit Earning: For every request r ∈ R(t), its credit is updated based on its TRP rate:

Cr(t)← Cr(t) + TRP (r)

where Cr(t) is the credit of request r at step t, which is initialized as 0.165
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Algorithm 1: TPOT Guarantee Mechanism
Input: LLM model M , Sequence Length Predictor P , LDF Sorted Waiting Queue W , Running

Queue R
Output: Batched requests set B

1 while True do
2 B ← ∅
3 foreach w ∈W do
4 R′ ← R ∪ {w}
5 if EstimateTPOT(V BS(R′), Lavg(R

′)) ≤ minr∈R′ STP (r) then
6 B ← B ∪ {w}, W ←W \ {w} , R← R′ // Admission Control
7 end
8 end
9 foreach r ∈ R do

10 Cr(t)← Cr(t) + TRP (r) // Credit Earning
11 if Cr(t) ≥ 1.0 then
12 B ← B ∪ {r}, Cr(t)← Cr(t)− 1.0 // Batch Selection and Credit Debit
13 end
14 end
15 end

• Batch Selection: The batch B(t) is formed by including all requests whose credit, after accumula-
tion, is greater than or equal to the threshold:

B(t) = {r ∈ R(t) | Cr(t) ≥ 1.0}

• Credit Debit: For every request r included in B(t), its credit is decremented by 1.0:

If r ∈ B(t), then Cr(t)← Cr(t)− 1.0

This mechanism ensures that over many steps, the frequency of a request r being batched will166

converge towards its TRP rate.167

VBS-based Admission Control. When a new request r arrives, to guarantee TPOT SLOs, an intuitive168

approach is to admit requests into the running batch if admitting it will neither violate its own TPOT169

SLO nor cause other running requests to violate their TPOT SLOs. However, since credit-based170

batching causes some requests to skip some execution iterations as mentioned above, directly using171

the number of running requests as batch size overestimates the actual system load. Since the request172

r can earn a TRP (r) opportunity to be batched in each iteration if admitted, it can be regarded as a173

virtual TRP (r) request. Let R(t)′ = R(t) ∪ {r}, we can project the actual load of the system as the174

sum of the TRP of all requests, which we denote as virtual batch size (VBS):175

VBS(R′) =
∑
r∈R′

TRP (r) (8)

The request r is admitted to the Running Queue at step t if adding it would not cause the estimated
TPOT to exceed the minimum TPOT SLO of the running requests set R′:

EstimatedTPOT(V BS(R′), Lavg(R
′)) ≤ min

r′∈R(t)
STP (r

′)

The mechanism guarantees that the admitted requests obey their TPOT SLOs.176

4 Experiments177

In this section, we evaluate our proposed method against the baselines and the effectiveness of each178

component. We show that our proposed method can achieve state-of-the-art performance in terms of179

goodput and SLO attainment rate under different scenarios.180
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4.1 Experimental Setup181

Testbed. We conduct our experiments on a server with 4 NVIDIA A100 GPUs, each with 80GB of182

memory. The GPUs are interconnected with NVLink between pairs (GPU0-GPU1 and GPU2-GPU3),183

while communication between pairs utilizes the PCIe fabric and the system’s NUMA interconnect.184

Serving Models. We use Meta Llama-3.1 8B [22] and Google Gemma-2 27b [23] as serving models.185

All experiments use FP16/BF16 precision, which is the most common setting in LLM deployment.186

The 8B model runs on a single GPU, and the 27B model runs on 4 GPUs with tensor parallelism [24].187

Workloads. We evaluate using the ShareGPT [25] and LMSYS-Chat-1M [26] datasets, which are188

the widely used datasets collected from real-world conversations. For each dataset and model pair,189

we use the same prompt set to train the predictor for consistency. Regarding the SLO setting, to fully190

explore the serving heterogeneous requests, we consider requests with 6 categories, as summarized191

in Table 1. Category 1 represents requests with both tight TTFT and TPOT constraints (e.g., code192

generation [11]). Categories 2 and 3 represent requests with tight TPOT and relatively loose TTFT193

constraints (e.g., tool call response). Categories 4 and 5 represent requests with loose TPOT and tight194

TTFT constraints (e.g., reading-speed responses of chatbot [11]). Category 6 represents requests with195

both loose TPOT and TTFT constraints (e.g., Summarization [12]). Note that for the 27B model, we196

loosen the SLO constraints to account for the increased model size.197

Table 1: SLO categories for different model sizes.

Model Metric Category
1 2 3 4 5 6

Llama-3.1 8B TTFT (s) 0.5 2 3 0.5 1 7.5
TPOT (ms) 30 30 30 50 50 50

Gemma-2 27B TTFT (s) 1.0 4 6 1.0 2 15
TPOT (ms) 60 60 60 100 100 100

Baselines. We compare our method with the following baselines:198

• vLLM [4]: A state-of-the-art LLM serving system that uses a throughput-oriented scheduling199

strategy. The vLLM scheduler prioritizes prefills.200

• S3 [18]: An LLM inference system that predicts the output sequence length and employs the shortest201

job first scheduling. Since S3 is implemented on basic LLM inference without techniques like202

PagedAttention, we re-implement its core scheduling strategy within vLLM for a fair comparison.203

• Mooncake [27]: A production-grade LLM serving platform that employs an early-rejection-based204

admission control for SLO guarantees. We integrate this mechanism into vLLM.205

4.2 QPS-Scaling SLO Attainment206

We compare SCORPIO’s goodput and SLO attainment rate against baselines on ShareGPT and207

LMSYS-Chat-1M with heterogeneous SLOs, under varying request arrival rates [11, 12]. As shown208

in Figure 4, SCORPIO achieves higher goodput and SLO adherence rate compared with the baselines,209

especially at high QPS. For example, at a QPS of 15, it yields up to 8.8-14.4× higher goodput and210

40.7-46.5% higher SLO adherence than baselines, demonstrating robust burst handling through its211

SLO-oriented scheduling. In contrast, vLLM’s greedy admission leads to severe TPOT violations.212

S3’s output-length ranking and Mooncake’s strict rejection both exhibit suboptimal SLO adherence.213

Note that at lower QPS, baselines occasionally show better performance than SCORPIO. For example,214

when serving Gemma2-27b on ShareGPT at a QPS of 5, vLLM achieves a 1.08× goodput and a 1.5%215

higher SLO adherence rate. One contributing factor is resource contention between the sequence216

length predictor and the LLM server when co-located on the same GPUs. This can be mitigated by217

deploying the predictor on a separate low-cost GPU, as studied in Appendix A.5. Alternatively, even218

without an extra GPU, this could be addressed by detecting low-load conditions and dynamically219

switching to a simpler, lower-overhead scheduling strategy, which is left as future work.220
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Figure 4: Impact of different scheduling strategies on goodput and SLO adherence vs QPS.
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Figure 5: Cumulative number of SLO-met requests over time on the LMSYS and ShareGPT dataset.

4.3 Real-World Trace Serving221

We further evaluate SCORPIO using 20-minute real-world traces [28], which exhibit periods of222

both bursty and light load (§A.2). Figure 5 reports the cumulative number of SLO-met requests for223

Llama3-8B and Gemma2-27B models across both datasets. Across all settings, SCORPIO achieves the224

highest cumulative SLO-met counts. For example, SCORPIOachieves a 1.25, 2.01, and 2.11× higher225

SLO-met requests compared with Mooncake, vLLM, and S3, respectively. Throughput-oriented226

baselines like vLLM exhibit noticeable slowdowns during traffic spikes (e.g., minutes 3-5 and 9-227

11), caused by uniform batching and greedy admission, leading to widespread TPOT violations.228

Mooncake (Figure 5b,d) alleviates some pressure via early rejections, but its SLO gains taper off with229

a too strict admission control mechanism and lack of consideration for the heterogeneous SLOs. S3’s230

length ranking also exhibits suboptimal SLO attainment. In contrast, SCORPIO steadily maintains231

a lead in cumulative SLO-met requests. By combining TTFT Guard and TPOT Guard, SCORPIO232

effectively handles the heterogeneous SLOs.233

4.4 Effectiveness Analysis234

Ablation Study. For this evaluation, we evaluate the core components of SCORPIO. As shown235

in Figure 6, we add the proposed components incrementally and assess the performance. For236

simplicity, we only present results at a QPS of 14. We find that 1) without any component, SCORPIO’s237

goodput is significantly reduced. 2) Including only the TTFT Guard effectively reduces TTFT238
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Figure 6: Ablation study on the impact of different scheduling strategies.

Table 2: Overhead of SCORPIO’s scheduling

Model Dataset Overall Time (s) Schedule Time (s) Scorpio (s) Overhead (%)

Llama-3-8B ShareGPT 58.1 1.83 0.073 0.12%
Llama-3-8B LMSYS-Chat-1M 58.4 2.04 0.102 0.17%
Gemma-27B ShareGPT 81.2 2.26 0.126 0.16%
Gemma-27B LMSYS-Chat-1M 84.9 2.08 0.097 0.11%

violations as intended, but results in severe TPOT violations, and vice versa. These results show the239

interdependence of the components, highlighting their importance for the overall performance.240

Overhead of SCORPIO’s Scheduling. We illustrate the overhead of SCORPIO’s scheduling in241

responding to 512 requests, shown in Table 2. The SCORPIO’s overhead is measured by summing the242

time taken by all scheduling sub-components, including the TTFT Guard and TPOT Guard. We find243

that the overhead is negligible, less than 1% in all settings. We do not account the time of predictor244

since it is shown to be negligible in previous works [18, 29].245

5 Related Work246

In recent years, LLM serving systems have been widely studied. Orca [6] and vLLM [4] introduce247

continuous batching and paged attention for efficient GPU VRAM utilization, which have been248

adopted as ad-hoc strategies for LLM serving [30]. Building on this, subsequent research further249

optimizes GPU utilization. Sarathi-Serve [7] proposes a piggyback strategy to schedule prefill and250

decode together. SplitWise [31] and DistServe [12] propose to split the prefill and decode into251

different instances, preventing interference between batch-like prefill jobs and latency-critical decode252

tasks. Beyond raw performance, [32] and [33] propose fairness-aware scheduling mechanisms to253

ensure equitable service among requests. Prediction of request characteristics (e.g., output length) is254

another significant direction, enabling scheduling policies such as SSJF [18, 34, 19, 29] and SRTF255

[35]. Recently, adhering to SLOs has gained more focus. Mooncake [27] proposes an early-rejection256

strategy to handle the overload scenario. QM [10] proposes a queue management framework to257

improve TTFT SLO adherence. Concurrent work [11, 16] adjusts the allocation of tokens on the258

fly with speculative decoding [36] to achieve customized SLO serving. In this work, we explore259

scenarios with heterogeneous SLOs. We propose a fine-grained scheduling strategy that exploits the260

heterogeneity of SLOs to maximize goodput and SLO adherence.261

6 Conclusion262

In this paper, we present SCORPIO, a novel SLO-oriented LLM serving system designed to maximize263

system goodput and SLO adherence for requests with heterogeneous SLOs. By exploiting SLO264

heterogeneity, we employ specialized mechanisms working in concert: a TPOT Guard and a TTFT265

Guard, supported by an accurate predictor. Evaluations demonstrate that SCORPIO significantly266

outperforms state-of-the-art throughput-oriented systems, improving system goodput by up to 14.4×267

and SLO adherence rate by up to 46.5% across various scenarios.268
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A Appendix359

A.1 Implementation Details360

Our codebase contains the complete codebase for SCORPIO, including all experimental harnesses and361

visualization scripts described in this paper. It is built upon a fork of the vLLM project, which we362

extended with our scheduling system. We will release the codebase soon.363

For the sequence length predictor, we augment the original OPT architecture with a simple linear364

projection layer that maps the hidden state of the final token to the predicted output length bin. We365

collect 20K samples from ShareGPT and LMSYS-Chat-1M datasets. We split the dataset into the366

training set, validation set, and test set with a ratio of 6:2:2. We train the model on the training set367

using a batch size of 64 for 8 epochs. Following [29], we truncate input prompts to a maximum368

of 2048 tokens to accommodate OPT’s context window constraints. The training data example is369

shown in Listing 1. Recognizing that traditional accuracy metrics can be misleading with imbalanced370

class distributions, we introduce multiple evaluation metrics, including off-by-n accuracy (predictions371

within n bin of the ground truth), Kendall’s Tau correlation coefficient and root mean squared error372

of length prediction for comprehensive assessment (§A.4). Note that we deploy the sequence length373

predictor in the same GPU with the LLM inference server for resource efficiency. We also study the374

impact of the interference of the sequence length predictor on the serving system (§A.5). For the375

analytic models, we profile the step time of the inference of the same training set that is used for the376

sequence length predictor, ensuring consistency.377

Listing 1: Training data example.
378

{379

"prompt": "Translate the following English text to French: ’Hello ,380

world!’",381

"output_length": 128,382

"label": 1383

}384385

Table 3: Hyperparameters when training the sequence output length predictor
Hyperparameter Value
Optimizer Adam
Learning Rate 2e-5 (constant)
β1 0.9
β2 0.999
Batch Size 64
Epochs 8

A.2 Dataset Distribution and Trace Pattern386

For Meta Llama3.1-8b, we directly use the dataset provided by [29]. For Gemma2-27b, we randomly387

sample 20k samples and collect the prompt-response pairs. We show the dataset distribution as in388

Figure 7. For the input length, we compute the input length by appending the chat template onto the389

prompts. On average, the Gemma-27B has a slightly shorter input length of about 150 tokens and390

an output length of around 130 tokens. For the trace pattern used in our Real-World Trace Serving391

experiment 4.3, we select the first 20 minutes of the Azure Inference Trace [28]. As shown in Figure392

8, the trace exhibits periods of both bursty and light load, with the QPS reaching a peak of over 60393

requests per second at around 14 minutes from the start of the trace.394

A.3 Analytic Model Accuracy395

We report the statistics metrics of the analytic model (including TTFT estimater and TPOT estimater396

§3.1) for different metrics in Table 4. The results demonstrate excellent model accuracy across397

all metrics. For example, when using Meta Llama3.1-8b and ShareGPT dataset, the R2 values398

approaching 1.0 (0.994 for Prefill Time Estimater and 0.987 for Inter-Token Time Estimater) indicate399
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Figure 7: Dataset distribution of different models on ShareGPT and LMSYS.
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Figure 8: Requests per second over time of first 20 minutes of Azure Inference Trace [28].

that our analytic models explain over 98% of the variance in the data, showing strong predictive400

power. The low RMSE values (2.07ms for Prefill Time Estimater and 0.871ms for Inter-Token Time401

Estimater) suggest minimal prediction errors in absolute terms. Additionally, the MAPE values402

(4.812% for Prefill Time Estimater and 2.3% for Inter-Token Time Estimater) indicate that our403

predictions are within 5% of the actual values on average, demonstrating high relative accuracy.404

These results are consistent across both the ShareGPT and LMSYS datasets, showing the robustness405

of our analytic models.406

Table 4: Accuracy of the analytic model for different metrics
Model Dataset Analytic model R2 (↑) RMSE (ms) (↓) MAPE (%) (↓)

Llama3.1-8B
ShareGPT Prefill Latency 0.994 2.070 4.812

Inter-Token Latency 0.987 0.871 2.300

LMSYS Prefill Latency 0.983 1.281 4.664
Inter-Token Latency 0.979 0.643 2.224

Gemma2-27b
ShareGPT Prefill Latency 0.988 3.158 5.922

Inter-Token Latency 0.953 3.534 7.859

LMSYS Prefill Latency 0.957 3.436 8.311
Inter-Token Latency 0.905 3.041 7.444
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A.4 Complete Results of Bucketing Strategy Analysis407

In this part, we comprehensively evaluate the bucketing strategies for the sequence length predictor.408

As shown in Table 5, we designed bucket numbers ranging from 10 to 1000 based on two strategies:409

1) equal-width and 2) equal-frequency. In the former, we evenly divide the sequence length range410

into equal-width buckets, while in the latter, we evenly divide the sequence length based on the411

output length distribution of the datasets. Different from previous works [18, 19] that only report412

the classification accuracy, we also evaluate the off-by-n accuracy (predictions within n bin of the413

ground truth), Kendall’s tau coefficient to measure the relative order accuracy and root mean square414

error (RMSE).415

Our analysis revealed several key insights. For equal-width bucketing, we find that using a moderate416

number of bins (e.g., 100) provides the best balance between multiple performance metrics. For417

example, when serving Llama3-8B on ShareGPT, using a number of 100 bins achieves 0.54 in418

Kendall’s tau and 195.8 in RMSE. Also, note that even if the exact accuracy is low, the off-n accuracy419

remains relatively high. This suggests the model effectively places predictions close to the true bucket.420

In contrast, using too few buckets, which are commonly used in previous works, shows very low tau421

and high RMSE despite misleading high accuracy. This discrepancy stems from the highly skewed422

data distribution, where over 93% of samples concentrate in the first bucket. Too many buckets also423

degrade the prediction performance. For equal-frequency bucketing, all binning configurations show424

high RMSE, indicating unsuitability for absolute length prediction. This is because with imbalanced425

data, equal-frequency bucketing leads to initial bins being narrow and later bins excessively wide,426

making precise classification difficult. Based on the analysis, we adopt equal-width bucketing and set427

the number of buckets to 100 for sequence length predictor in all experiments (§4).428

Table 5: Performance comparison of Equal-width and Equal-frequency bucketing with different
bucket numbers on ShareGPT and LMSYS datasets using Llama3-8B and Gemma-27B.

Model Strategy # Buckets
ShareGPT LMSYS

Tau (↑) Acc. (%) Off-1 Off-2 RMSE (↓) Tau (↑) Acc. (%) Off-1 Off-2 RMSE (↓)
Acc. (%) Acc. (%) Acc. (%) Acc. (%)

L
la

m
a3

-8
B E

qu
al

-w
id

th

10 0.25 88.7 99.9 100.0 301.4 0.25 95.8 100.0 100.0 304.9
20 0.45 70.0 97.6 99.6 247.1 0.50 79.4 99.0 99.9 222.3
50 0.54 43.2 84.0 95.0 202.4 0.60 56.3 85.4 94.0 201.5
100 0.54 27.0 61.3 79.7 195.8 0.61 41.2 67.1 81.0 196.2
200 0.51 15.4 37.2 54.5 199.4 0.62 29.7 49.9 61.6 197.5
500 0.51 7.6 17.8 27.3 201.3 0.62 18.9 33.7 42.0 193.2

1000 0.49 5.0 11.2 16.4 207.9 0.61 13.6 24.0 30.4 196.7

E
qu

al
-f

re
qu

en
cy

10 0.54 28.1 59.8 78.1 1088.7 0.65 38.1 72.4 86.8 1171.4
20 0.53 16.2 37.7 53.8 1042.7 0.64 25.7 50.6 66.8 837.9
50 0.52 8.4 19.2 28.6 689.9 0.63 14.5 28.6 39.6 361.3
100 0.51 5.0 11.4 17.0 652.4 0.62 10.4 17.4 24.1 287.5
200 0.48 2.7 5.8 8.9 474.4 0.60 8.8 12.2 16.1 418.1
500 0.44 2.0 3.2 4.3 994.5 0.57 7.7 8.7 10.1 263.3

1000 0.42 1.6 1.9 3.0 277.0 0.52 7.6 7.8 8.1 237.2

G
em

m
a-

27
B E

qu
al

-w
id

th

10 0.21 94.0 100.0 100.0 249.5 0.22 96.9 100.0 100.0 288.8
20 0.52 74.9 99.6 100.0 195.3 0.47 79.4 98.7 100.0 221.9
50 0.62 52.0 88.8 97.8 157.2 0.63 57.6 86.3 95.9 177.7
100 0.61 34.8 68.2 83.9 156.5 0.65 43.6 69.6 81.8 176.6
200 0.60 21.2 48.5 63.4 154.2 0.64 31.4 53.0 65.0 169.6
500 0.59 11.5 26.6 38.4 156.9 0.64 18.3 34.2 44.3 170.9

1000 0.57 6.8 15.8 23.0 161.6 0.63 14.5 25.0 32.6 171.4

E
qu

al
-f

re
qu

en
cy

10 0.62 36.7 68.6 83.6 1253.8 0.67 38.2 71.0 86.2 949.2
20 0.61 22.3 48.2 63.0 914.6 0.66 26.6 51.8 66.3 865.2
50 0.60 11.5 25.8 37.8 489.9 0.64 14.5 29.4 39.8 503.2
100 0.59 5.7 14.5 21.9 476.9 0.64 9.8 18.6 25.4 552.9
200 0.56 3.2 8.0 12.6 250.4 0.61 7.4 11.3 15.9 235.0
500 0.52 2.0 4.2 5.8 343.0 0.57 6.6 8.1 9.7 268.2

1000 0.51 1.5 1.8 2.8 192.7 0.56 6.2 6.6 7.2 221.2

A.5 Interference of the Sequence Length Predictor on the Scheduling System429

Since simply deploying the sequence length predictor and LLM server on the same GPUs may lead430

to resource contention, we study the interference of the sequence length predictor on the serving431

system in this part. As shown in Figure 9, we compare the goodput and slo adherence of the system432
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Figure 9: Interference of the sequence length predictor on the serving system.

with and without the interference of the sequence length predictor. For w/ interference, we deploy the433

predictor and the LLM server on the same A800 GPUs. For w/o interference, we deploy the predictor434

on a separate GTX 3090 GPU with 24GB memory. On average, we find that the interference of435

the sequence length predictor leads to a 5% - 20% performance degradation on goodput and slo436

adherence on average.437

A.6 Limitations438

The proposed scheduler currently works with standard LLM serving techniques such as continuous439

batching and paged attention. How to integrate the scheduler with the latest optimizations, such as440

prefill-decode disaggregation [12], is an interesting direction for future work. Also, as we mentioned441

in the §4.2, the scheduler shows a bit of performance degradation at low QPS. This is because while442

SCORPIO’s complexity is advantageous under heavy load, the intervention of such control degrades443

performance at low QPS. This calls for a more flexible and adaptive scheduling strategy that could444

switch to a simpler, lower-overhead scheduling method. We leave these as future work.445
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• The authors are encouraged to create a separate "Limitations" section in their paper.471

• The paper should point out any strong assumptions and how robust the results are to472

violations of these assumptions (e.g., independence assumptions, noiseless settings,473

model well-specification, asymptotic approximations only holding locally). The authors474

should reflect on how these assumptions might be violated in practice and what the475

implications would be.476

• The authors should reflect on the scope of the claims made, e.g., if the approach was477

only tested on a few datasets or with a few runs. In general, empirical results often478

depend on implicit assumptions, which should be articulated.479

• The authors should reflect on the factors that influence the performance of the approach.480

For example, a facial recognition algorithm may perform poorly when image resolution481

is low or images are taken in low lighting. Or a speech-to-text system might not be482

used reliably to provide closed captions for online lectures because it fails to handle483

technical jargon.484

• The authors should discuss the computational efficiency of the proposed algorithms485

and how they scale with dataset size.486

• If applicable, the authors should discuss possible limitations of their approach to487

address problems of privacy and fairness.488

• While the authors might fear that complete honesty about limitations might be used by489

reviewers as grounds for rejection, a worse outcome might be that reviewers discover490

limitations that aren’t acknowledged in the paper. The authors should use their best491

judgment and recognize that individual actions in favor of transparency play an impor-492

tant role in developing norms that preserve the integrity of the community. Reviewers493

will be specifically instructed to not penalize honesty concerning limitations.494

3. Theory assumptions and proofs495

Question: For each theoretical result, does the paper provide the full set of assumptions and496

a complete (and correct) proof?497
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Answer: [NA]498

Justification: This paper does not include theoretical analysis; our analysis of the methods is499

mainly based on experimental results.500

Guidelines:501

• The answer NA means that the paper does not include theoretical results.502

• All the theorems, formulas, and proofs in the paper should be numbered and cross-503

referenced.504

• All assumptions should be clearly stated or referenced in the statement of any theorems.505

• The proofs can either appear in the main paper or the supplemental material, but if506

they appear in the supplemental material, the authors are encouraged to provide a short507

proof sketch to provide intuition.508

• Inversely, any informal proof provided in the core of the paper should be complemented509

by formal proofs provided in appendix or supplemental material.510

• Theorems and Lemmas that the proof relies upon should be properly referenced.511

4. Experimental result reproducibility512

Question: Does the paper fully disclose all the information needed to reproduce the main ex-513

perimental results of the paper to the extent that it affects the main claims and/or conclusions514

of the paper (regardless of whether the code and data are provided or not)?515

Answer: [Yes]516

Justification: The paper fully discloses all essential information necessary to reproduce the517

main experimental results in Section 4. And we will open-source our code soon.518

Guidelines:519

• The answer NA means that the paper does not include experiments.520

• If the paper includes experiments, a No answer to this question will not be perceived521

well by the reviewers: Making the paper reproducible is important, regardless of522

whether the code and data are provided or not.523

• If the contribution is a dataset and/or model, the authors should describe the steps taken524

to make their results reproducible or verifiable.525

• Depending on the contribution, reproducibility can be accomplished in various ways.526

For example, if the contribution is a novel architecture, describing the architecture fully527

might suffice, or if the contribution is a specific model and empirical evaluation, it may528

be necessary to either make it possible for others to replicate the model with the same529

dataset, or provide access to the model. In general. releasing code and data is often530

one good way to accomplish this, but reproducibility can also be provided via detailed531

instructions for how to replicate the results, access to a hosted model (e.g., in the case532

of a large language model), releasing of a model checkpoint, or other means that are533

appropriate to the research performed.534

• While NeurIPS does not require releasing code, the conference does require all submis-535

sions to provide some reasonable avenue for reproducibility, which may depend on the536

nature of the contribution. For example537

(a) If the contribution is primarily a new algorithm, the paper should make it clear how538

to reproduce that algorithm.539

(b) If the contribution is primarily a new model architecture, the paper should describe540

the architecture clearly and fully.541

(c) If the contribution is a new model (e.g., a large language model), then there should542

either be a way to access this model for reproducing the results or a way to reproduce543

the model (e.g., with an open-source dataset or instructions for how to construct544

the dataset).545

(d) We recognize that reproducibility may be tricky in some cases, in which case546

authors are welcome to describe the particular way they provide for reproducibility.547

In the case of closed-source models, it may be that access to the model is limited in548

some way (e.g., to registered users), but it should be possible for other researchers549

to have some path to reproducing or verifying the results.550

5. Open access to data and code551
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Question: Does the paper provide open access to the data and code, with sufficient instruc-552

tions to faithfully reproduce the main experimental results, as described in supplemental553

material?554

Answer: [Yes]555

Justification: We provide open access to the data and code, with sufficient instructions to556

faithfully reproduce the main experimental results, as described in the appendix A.1.557

Guidelines:558

• The answer NA means that paper does not include experiments requiring code.559

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/560

public/guides/CodeSubmissionPolicy) for more details.561

• While we encourage the release of code and data, we understand that this might not be562

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not563

including code, unless this is central to the contribution (e.g., for a new open-source564

benchmark).565

• The instructions should contain the exact command and environment needed to run to566

reproduce the results. See the NeurIPS code and data submission guidelines (https:567

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.568

• The authors should provide instructions on data access and preparation, including how569

to access the raw data, preprocessed data, intermediate data, and generated data, etc.570

• The authors should provide scripts to reproduce all experimental results for the new571

proposed method and baselines. If only a subset of experiments are reproducible, they572

should state which ones are omitted from the script and why.573

• At submission time, to preserve anonymity, the authors should release anonymized574

versions (if applicable).575

• Providing as much information as possible in supplemental material (appended to the576

paper) is recommended, but including URLs to data and code is permitted.577

6. Experimental setting/details578

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-579

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the580

results?581

Answer: [Yes]582

Justification: We specify all the training and test details necessary to understand the results583

in the appendix A.1 and section 4.584

Guidelines:585

• The answer NA means that the paper does not include experiments.586

• The experimental setting should be presented in the core of the paper to a level of detail587

that is necessary to appreciate the results and make sense of them.588

• The full details can be provided either with the code, in appendix, or as supplemental589

material.590

7. Experiment statistical significance591

Question: Does the paper report error bars suitably and correctly defined or other appropriate592

information about the statistical significance of the experiments?593

Answer: [Yes]594

Justification: We report the accuracy of our analytic models as shown in section A.3.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The authors should answer "Yes" if the results are accompanied by error bars, confi-598

dence intervals, or statistical significance tests, at least for the experiments that support599

the main claims of the paper.600

• The factors of variability that the error bars are capturing should be clearly stated (for601

example, train/test split, initialization, random drawing of some parameter, or overall602

run with given experimental conditions).603
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• The method for calculating the error bars should be explained (closed form formula,604

call to a library function, bootstrap, etc.)605

• The assumptions made should be given (e.g., Normally distributed errors).606

• It should be clear whether the error bar is the standard deviation or the standard error607

of the mean.608

• It is OK to report 1-sigma error bars, but one should state it. The authors should609

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis610

of Normality of errors is not verified.611

• For asymmetric distributions, the authors should be careful not to show in tables or612

figures symmetric error bars that would yield results that are out of range (e.g. negative613

error rates).614

• If error bars are reported in tables or plots, The authors should explain in the text how615

they were calculated and reference the corresponding figures or tables in the text.616

8. Experiments compute resources617

Question: For each experiment, does the paper provide sufficient information on the com-618

puter resources (type of compute workers, memory, time of execution) needed to reproduce619

the experiments?620

Answer: [Yes]621

Justification: We provide sufficient information on the computer resources needed to repro-622

duce the experiments in § 4.1.623

Guidelines:624

• The answer NA means that the paper does not include experiments.625

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,626

or cloud provider, including relevant memory and storage.627

• The paper should provide the amount of compute required for each of the individual628

experimental runs as well as estimate the total compute.629

• The paper should disclose whether the full research project required more compute630

than the experiments reported in the paper (e.g., preliminary or failed experiments that631

didn’t make it into the paper).632

9. Code of ethics633

Question: Does the research conducted in the paper conform, in every respect, with the634

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?635

Answer: [Yes]636

Justification: Yes, we have determined that our research complies with the NeurIPS Code of637

Ethics.638

Guidelines:639

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.640

• If the authors answer No, they should explain the special circumstances that require a641

deviation from the Code of Ethics.642

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-643

eration due to laws or regulations in their jurisdiction).644

10. Broader impacts645

Question: Does the paper discuss both potential positive societal impacts and negative646

societal impacts of the work performed?647

Answer: [NA]648

Justification: There is no societal impact of the work performed.649

Guidelines:650

• The answer NA means that there is no societal impact of the work performed.651

• If the authors answer NA or No, they should explain why their work has no societal652

impact or why the paper does not address societal impact.653
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• Examples of negative societal impacts include potential malicious or unintended uses654

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations655

(e.g., deployment of technologies that could make decisions that unfairly impact specific656

groups), privacy considerations, and security considerations.657

• The conference expects that many papers will be foundational research and not tied658

to particular applications, let alone deployments. However, if there is a direct path to659

any negative applications, the authors should point it out. For example, it is legitimate660

to point out that an improvement in the quality of generative models could be used to661

generate deepfakes for disinformation. On the other hand, it is not needed to point out662

that a generic algorithm for optimizing neural networks could enable people to train663

models that generate Deepfakes faster.664

• The authors should consider possible harms that could arise when the technology is665

being used as intended and functioning correctly, harms that could arise when the666

technology is being used as intended but gives incorrect results, and harms following667

from (intentional or unintentional) misuse of the technology.668

• If there are negative societal impacts, the authors could also discuss possible mitigation669

strategies (e.g., gated release of models, providing defenses in addition to attacks,670

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from671

feedback over time, improving the efficiency and accessibility of ML).672

11. Safeguards673

Question: Does the paper describe safeguards that have been put in place for responsible674

release of data or models that have a high risk for misuse (e.g., pretrained language models,675

image generators, or scraped datasets)?676

Answer: [NA]677

Justification: There is no data or model that has a high risk for misuse.678

Guidelines:679

• The answer NA means that the paper poses no such risks.680

• Released models that have a high risk for misuse or dual-use should be released with681

necessary safeguards to allow for controlled use of the model, for example by requiring682

that users adhere to usage guidelines or restrictions to access the model or implementing683

safety filters.684

• Datasets that have been scraped from the Internet could pose safety risks. The authors685

should describe how they avoided releasing unsafe images.686

• We recognize that providing effective safeguards is challenging, and many papers do687

not require this, but we encourage authors to take this into account and make a best688

faith effort.689

12. Licenses for existing assets690

Question: Are the creators or original owners of assets (e.g., code, data, models), used in691

the paper, properly credited and are the license and terms of use explicitly mentioned and692

properly respected?693

Answer: [Yes]694

Justification: We cite the original paper that produced the code package or dataset.695

Guidelines:696

• The answer NA means that the paper does not use existing assets.697

• The authors should cite the original paper that produced the code package or dataset.698

• The authors should state which version of the asset is used and, if possible, include a699

URL.700

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.701

• For scraped data from a particular source (e.g., website), the copyright and terms of702

service of that source should be provided.703

• If assets are released, the license, copyright information, and terms of use in the704

package should be provided. For popular datasets, paperswithcode.com/datasets705

has curated licenses for some datasets. Their licensing guide can help determine the706

license of a dataset.707
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• For existing datasets that are re-packaged, both the original license and the license of708

the derived asset (if it has changed) should be provided.709

• If this information is not available online, the authors are encouraged to reach out to710

the asset’s creators.711

13. New assets712

Question: Are new assets introduced in the paper well documented and is the documentation713

provided alongside the assets?714

Answer: [Yes]715

Justification: Yes, the new assets introduced in the paper are well documented and will716

open-source them soon.717

Guidelines:718

• The answer NA means that the paper does not release new assets.719

• Researchers should communicate the details of the dataset/code/model as part of their720

submissions via structured templates. This includes details about training, license,721

limitations, etc.722

• The paper should discuss whether and how consent was obtained from people whose723

asset is used.724

• At submission time, remember to anonymize your assets (if applicable). You can either725

create an anonymized URL or include an anonymized zip file.726

14. Crowdsourcing and research with human subjects727

Question: For crowdsourcing experiments and research with human subjects, does the paper728

include the full text of instructions given to participants and screenshots, if applicable, as729

well as details about compensation (if any)?730

Answer: [NA]731

Justification: The paper does not involve crowdsourcing nor research with human subjects732

Guidelines:733

• The answer NA means that the paper does not involve crowdsourcing nor research with734

human subjects.735

• Including this information in the supplemental material is fine, but if the main contribu-736

tion of the paper involves human subjects, then as much detail as possible should be737

included in the main paper.738

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,739

or other labor should be paid at least the minimum wage in the country of the data740

collector.741

15. Institutional review board (IRB) approvals or equivalent for research with human742

subjects743

Question: Does the paper describe potential risks incurred by study participants, whether744

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)745

approvals (or an equivalent approval/review based on the requirements of your country or746

institution) were obtained?747

Answer: [NA]748

Justification: Our work is based on comprehensive experiments and does not involve any749

potential risks.750

Guidelines:751

• The answer NA means that the paper does not involve crowdsourcing nor research with752

human subjects.753

• Depending on the country in which research is conducted, IRB approval (or equivalent)754

may be required for any human subjects research. If you obtained IRB approval, you755

should clearly state this in the paper.756

• We recognize that the procedures for this may vary significantly between institutions757

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the758

guidelines for their institution.759
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• For initial submissions, do not include any information that would break anonymity (if760

applicable), such as the institution conducting the review.761

16. Declaration of LLM usage762

Question: Does the paper describe the usage of LLMs if it is an important, original, or763

non-standard component of the core methods in this research? Note that if the LLM is used764

only for writing, editing, or formatting purposes and does not impact the core methodology,765

scientific rigorousness, or originality of the research, declaration is not required.766

Answer: [NA]767

Justification: We only use LLMs for writing and editing the paper.768

Guidelines:769

• The answer NA means that the core method development in this research does not770

involve LLMs as any important, original, or non-standard components.771

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)772

for what should or should not be described.773
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