
Under review as a conference paper at ICLR 2024

LEARN TO ACHIEVE OUT-OF-THE-BOX IMITATION
ABILITY FROM ONLY ONE DEMONSTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning (IL) enables agents to mimic expert behaviors. Most previous
IL techniques focus on precisely imitating one policy through mass demonstra-
tions. However, in many applications, what humans require is the ability to per-
form various tasks directly through a few demonstrations of corresponding tasks,
where the agent would meet many unexpected changes when deployed. In this sce-
nario, the agent is expected to not only imitate the demonstration but also adapt
to unforeseen environmental changes. This motivates us to propose a new topic
called imitator learning (ItorL), which aims to derive an imitator module that can
on-the-fly reconstruct the imitation policies based on very limited expert demon-
strations for different unseen tasks, without any extra adjustment. In this work,
we focus on imitator learning based on only one expert demonstration. To solve
ItorL, we propose Demo-Attention Actor-Critic (DAAC), which integrates IL into
a reinforcement-learning paradigm that can regularize policies’ behaviors in unex-
pected situations. Besides, for autonomous imitation policy building, we design a
demonstration-based attention architecture for imitator policy that can effectively
output imitated actions by adaptively tracing the suitable states in demonstrations.
We develop a new navigation benchmark and a robot environment for ItorL and
show that DAAC outperforms previous imitation methods with large margins both
on seen and unseen tasks.

1 INTRODUCTION

Humans can learn skills by imitating others. This has inspired researchers to propose imitation
learning (IL), which enables intelligent agents to learn new tasks from demonstrations (Ng & Rus-
sell, 2000; Ross & Bagnell, 2010). Advanced IL techniques have made great progress in imitating
behavior policies in complex tasks through mass demonstrations, without relying on reward sig-
nals (Garg et al., 2021; Kostrikov et al., 2020; Yin et al., 2022) as standard reinforcement learning
(RL) does (Sutton & Barto, 2018). However, in many applications, what humans require is per-
forming various tasks out of the box through very limited demonstrations of corresponding tasks,
where there are many unexpected changes when deployed. In this scenario, the agent is expected
to not only imitate the demonstration but also adapt to unforeseen environmental changes. For au-
tonomous vehicles, we would like the vehicle to park in different parking lots directly (Ahn et al.,
2022; Kümmerle et al., 2009) by presenting a human navigation trajectory, where the agent should
handle the unexpected human being when imitating the parking trajectories; For robot manipulation,
we aim for a robot arm to perform a variety of tasks directly (Dance et al., 2021; Yu et al., 2019)
by just giving the corresponding correct operation demonstrations, where the agent should handle
unexpected disturbances too.

Based on these observations, in this work, we propose a new topic called Imitator Learning (ItorL).
In ItorL, we require the agent to accomplish various tasks that require the same intrinsic skills, e.g.,
a navigation agent to reach different targets in different terrains, and a robot-arm agent to perform
various manipulation tasks. The aim of ItorL is to derive an imitator module that can reconstruct
task-specific policies out of the box based on very limited corresponding expert demonstrations.
More precisely, in ItorL, although we might have many pre-collected demonstrations and simulators
for training, when deployed, the expert demonstrations are expensive, so the demonstrations for
imitating should be very limited, leading a large number of states without referable expert actions
for standard IL; Besides, for user experience, it should not have any additional adjustment phases in

1

Under review as a conference paper at ICLR 2024

the process of deployment, i.e., the agent should have the out-of-the-box imitation ability, i.e., it can
reconstruct imitation policies with respect to the given demonstrations without further fine-tuning.

In this work, we focus on ItorL based on only one single expert demonstration and propose a prac-
tical solution for ItorL called Demo-Attention Actor-Critic (DAAC). To enable the agent to take
reasonable actions in the states unvisited in demonstrations, we design an effective imitator reward
and employ it into a context-based meta-RL framework (Rakelly et al., 2019) for imitation, where
the imitator policy takes actions conditioned on demonstrations as the task context. The imitator pol-
icy interacts with the environment and maximizes the long-term imitator rewards on all tasks based
on the corresponding demonstrations. Thanks to the trial-and-error learning mechanism of RL, the
imitator policy can explore and optimize itself to generally follow expert demonstrations even when
facing unexpected situations. However, just taking demonstrations as the context vector is inefficient
in utilizing the full knowledge beyond the demonstration trajectories, as demonstrations not only tell
the agent which task to accomplish but also the way to accomplish it. To efficiently build the imi-
tation policy with respect to the given demonstrations, we propose a demonstration-based attention
(DA) architecture for the imitator-policy network construction. Instead of taking demonstration as
a free context vector, we utilize the attention mechanism (Vaswani et al., 2017) to stimulate the
imitator policy to learn to accomplish tasks by tracing the states in demonstration trajectories. In
particular, actions are taken based on the expert actions of the best-matching expert states, which
is computed by the attention score between the current state and the states in demonstrations. We
argue that DA implicitly regularizes the policy behavior by formalizing the data-processing pipeline
with the attention mechanism so that it significantly improves the efficiency of learning to imitate
from input demonstrations and the generalization ability to unseen demonstrations.

In the experiments, we build a demo-navigation benchmark for ItorL, which is a navigation task
under different complex mazes without global map information. The results indicate that our pro-
posed algorithm, DAAC, significantly outperforms existing baselines on both training performance
and generalization to new demonstrations and new maps. We also deploy DAAC to more complex
robotic manipulation tasks, where it maintains a clear advantage over baseline methods that struggle
to achieve success in these challenging environments. Besides, we provide evidence that the pro-
posed algorithm has the potential to achieve further performance improvements by scaling up either
the dataset size or the number of parameters.

2 PROBLEM FORMULATION OF IMITATOR LEARNING

In this section, we first give notations, descriptions, and the formal definition of imitator learning
(ItorL) in Sec. 2.1, then we discuss topic based on only one demonstration in Sec. 2.2.

2.1 IMITATOR LEARNING

demos 𝒯𝜔𝑖

𝑠𝑖𝑚. ℳ𝜔𝑖

𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟

𝑒𝑥𝑝𝑒𝑟𝑡 𝑒𝑛𝑣. ℳ𝜔test

𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟

action 𝑎

state 𝑠

(2) execute without
further fine-tuning

(1) collect a few
expert demos

train

set simulator
configuration 𝜔𝑖

action 𝑎

state 𝑠

𝒯𝜔𝑖

𝒯𝜔𝑛

𝒯𝜔2

𝒯𝜔1

⋯

offline data

sample
demo set

(b) deploy: adapt to the target task presented by a few demos

demo𝑠 𝒯𝜔test

(a) train: learn a general model to imitate in all tasks

Figure 1: The paradigm of imitator learning. During the training process, an offline dataset with
numerous expert demonstration sets {Tωi

} are provided, each of which can accomplish tasksMω

parameterized by ω. The imitator policy is asked to reconstruct the expert policies for each task
Mωi based on the corresponding demonstrations Tωi . During deployment, experts interact in envi-
ronmentsMωtest and collect a few demonstrations Tωtest to mimic the experts without fine-tuning.
Here we use “sim.”, “env.”, and “demos” as the abbreviation of simulator, environment, and demon-
strations respectively.

In ItorL, we would like to derive a generalized imitator policy that can accomplish any unseen tasks
through very limited expert demonstrations without further fine-tuning. For imitator policy training,
we have pre-collected expert demonstrations from different tasks, along with the corresponding
simulator for interacting. For imitator deployment, given any unseen task, we require the imitator

2

Under review as a conference paper at ICLR 2024

policy to use a few demonstrations to accomplish the task without further costly fine-tuning. Now
we give the paradigm of ItorL in Fig. 1 and formal definition of ItorL in the following:

Markov Decision Process: We consider ItorL in a Markov Decision Process (MDP) (Sutton &
Barto, 2018)M defined by a tuple (S,A, T,R, d0, γ), where S and A denote the state and action
spaces, T : S×A → P (S) describes a (stochastic) transition process, R : S×A → R is a bounded
reward function, d0 ∈ P (S) is the initial state, and γ ∈ (0, 1] denotes the discount factor. Here
P (X) denotes probability distributions over a set X . A policy π : S → P (A) induces a Markov
chain over the states based on M. We use τ := {s0, a0, · · · , st, at} to denote a trajectory, i.e., a
sequence of state-action pairs for one episode of the Markov chain, where si ∈ S and ai ∈ A are
the state and action at timestep i.

Task: We formulate the concept “task” by parameterizing MDPs asMω := (S,A, Tω, Rω, d0, γ),
where ω is the parameter of the MDPMω in space Ω. We assume that different MDPs share the
same state and action spaces, initial state distribution, and discount factor. The difference on Tω and
Rω can be defined by ω.

Reward Function Rω: We only have the simplest reward function Rω which can only indicate the
ending of trajectories, e.g., c for accomplishing the task, 0 for failure, and −c for dead.

Unexpected Changes Modeling: We formulate the unexpected changes from the period of demon-
stration collection to the agent execution into the stochasticity of Tω: between the two periods, the
task parameters ω are shared, but the agent will reach unforeseen states because of the stochasticity.
For example, in autonomous parking tasks, between the collection and execution periods, the agent
is asked to park in the same parking lots (modeled by ω), but pedestrians would occur randomly
when the agent interacts with the environment (modeled by the stochasticity of Tω).

Expert Demonstration: We use τω to denote an expert demonstration that can accomplish the task
inMω . Standard IL and their variant settings (Arora et al., 2020; Ross & Bagnell, 2010; Finn et al.,
2017a;b; Li et al., 2021; Yu et al., 2018) do not assume the quality of the behavior policy to be
imitated, and the reward function to complete the task Rω is also unnecessary. These techniques are
just asked to reconstruct any possible policies in the collected dataset. In ItorL, we require that the
policy to conduct the demonstrations should be an expert that can complete the tasks defined by Rω .
Specifically, we denote Tω := {τ (0)ω , τ

(1)
ω , · · · } as an expert demonstration set inMω .

Imitator Learning: Now we formulate ItorL as follows. In ItorL, we would like to derive a gener-
alized imitation policy Π(a|s, Tω) which can accomplish the task inMω for any ω ∈ Ω, where Tω
is an expert demonstration set forMω . For imitator policy training, we have pre-collected expert
demonstrations {Tω} from differentMω , along with the corresponding simulator ofMω for inter-
acting. For imitator deployment, given any ωtest ∈ Ω, we require the imitator policy to use a few
demonstrations Tωtest

for Π(a|s, Tωtest
) to accomplish the task inMωtest

without further fine-tuning.

2.2 IMITATOR LEARNING BASED ON ONLY ONE DEMONSTRATION

In this work, we focus on ItorL based on a single demonstration. This section will formulate the
conditions that make topic feasible based on a single demonstration.

A fundamental problem of ItorL is how can we use a single demonstration to reconstruct any expert
policy, as it is inevitable that there are a large number of states without referable expert actions
for imitation? Without further assumptions on the task-parameter space Ω, it is easy to construct
some ill-posed problems that it is impossible for a unified Π(a|s, Tω) to reconstruct all of the expert
policies unless T covers the full state-action space. However, in many applications, it is unnecessary
for Π to imitate policies for any task. In the following, we give one practical task set M := {Mω |
ω ∈ Ω}, that enables ItorL through only one demonstration.

Definition 2.1 (τΩ-tracebackable MDP set). For an MDP set M := {Mω | ω ∈ Ω}, if there
exists a unified goal-conditioned policy β(a|s, g), ∀Mω ∈ M, for any τω , we have ∀si ∈ τω or
∀s0 ∈ R(d0), ∃gj ∈ τω , β(a|s, gj) can reach gj from s = si within finite timesteps, where R(X) is
the state set in X , i and j denote the timestep of states in τ and j > i, then M is a τΩ-tracebackable
MDP set.

Proposition 2.2 (1-demo imitator availability). If M := {Mω | ω ∈ Ω} is a τΩ-tracebackable
MDP set, there exists at least a unified imitator policy Π(a|s, Tω) that can accomplish any task in
M only given one corresponding demonstration, i.e., |Tω| = 1.

3

Under review as a conference paper at ICLR 2024

The core in Prop. 2.2 is the unified goal-conditioned policy β defined in Def. 2.1. The motivation
behind β is that, whatever the task we would like to imitate is, and whatever the unexpected changes
in the environment will lead the agent to, the behaviors of coming back to the states in the demon-
strations are general and consistent. The assumption is practical in many applications, for example,
in the task of navigation for parking, we might meet unexpected obstacles and pedestrians in the
processing of imitation, which don’t exist in the demonstrations. However, for any parking lot, the
behaviors to handle the situations are consistent: executing avoidance until the state is safe, then
tracing back to the demonstration. If the policy β exists, even the demonstration just gives us parts
of the state-action pairs in the state-action space, we can imitate the demonstrations and reach the
goal by repeatedly tracing a reachable successor state g ∈ τω and using β to guide the agent until
reaching the goal state. Similarly, for robot manipulation tasks, whatever disturbance a robot arm
might encounter, if we always have a unified policy β to reach some of the successor states in the
demonstrations, we can reach the goal by repeatedly calling β with suitable goals. Briefly note that
it is unnecessary to ask for this consistent behavior for any states in the state space. As defined in
Def. 2.1, the states in τω and R(d0) are enough for us to derive the 1-demo imitator availability,
where the full derivation and discussion are in App. A.

However, so far, how to build the imitator policies from data is challenging, e.g., it is hard to make a
goal-conditioned policy β act through directly imitating τω , and it is also complex to select suitable
target states g ∈ τω to push forward the agent through β. In the next section, we will handle the
above problem by interacting with the environmentMω for policy training.

3 RELATED WORK

We introduce Meta-IL, which is similar to ItorL in the following and leave the complete related work
in Appendix, including IL (Sec. C.1), meta-IL(Sec. C.2), the combination of IL and RL (Sec. C.3),
and context-based meta-RL (Sec. C.4). Meta-IL can be categorized into few-shot meta-IL and one-
shot meta-IL: (1) Few-shot meta-IL aims to get a generalizable policy that can complete new tasks
with only a few expert trajectories. The mainstream solutions utilize model-agnostic meta-learning
(MAML) (Finn et al., 2017a) to learn initial task parameters and fine-tune them via a few steps
of gradient descent to satisfy new task needs (Finn et al., 2017b; Li et al., 2021; Yu et al., 2018).
However, these approaches need online interaction and extra computation infrastructure for gradi-
ent update and determining a suitable amount of fine-tuning steps before deployment (Finn et al.,
2017a). ItorL is to create an imitator policy, Π(a|s, Tω), informed solely by a pre-collected expert
demonstration set, without requiring any fine-tuning. During deployment, this policy simply takes
in the relevant demonstration τω to generate the appropriate action for any given state. (2) One-shot
meta-IL achieves generalizable imitation through context-based policy models (Dasari & Gupta,
2021; Duan et al., 2017; Mandi et al., 2022), such as Transformer (Vaswani et al., 2017), that take
demonstrations as input. The core idea is to extract representations of demonstrations through these
powerful fitting abilities of neural networks, and then use BC to reconstruct the imitation policy.
However, the demonstrations for imitation are limited, the inevitable prediction errors on unseen
states and the compounding errors of BC (Ross et al., 2011) hurt the capacities of these methods,
especially in generalizing to new tasks (Mandi et al., 2022). Different from one-shot IL, in ItorL, the
interactions with simulators of the demonstrations for training are allowed, and the demonstrations
for imitation are assumed to come from experts. This allows us to stimulate the policy to imitate
the experts and learn general behaviors to handle the situations unseen in the demonstrations via
improving the performance in reward function, and finally enables us to have the capacity to learn
to imitate based on fewer demonstrations than the imitation algorithms in other settings.

4 DEMO-ATTENTION ACTOR-CRITIC FOR IMITATOR LEARNING

In this section, we first introduce a basic context-based meta-RL framework adopted for solving
ItorL in Sec. 4.1. To enable the agent to efficiently utilize the knowledge beyond the demonstrations,
we give a novel network architecture for the actor and critic in Sec. 4.2. Finally, we integrate the
meta-RL framework with the new network architecture to our final solution, which is in Sec. 4.3.

4.1 CONTEXT-BASED META-RL FRAMEWORK FOR IMITATOR LEARNING

Since the demonstrations are assumed to be performed by experts capable of accomplishing tasks
defined by Rω , it is consistent between learning to improve the return defined by Rω and imitation.
On the other hand, we can stimulate the imitator policy to imitate the target policies by improving the
performance with Rω . Along this line, we consider handling ItorL through context-based meta-RL

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Context-based Meta-RL framework for ItorL

Input: A task set Mtrain, and a demonstration set {Tωi
} for each taskMωi

∈Mtrain

Process:
1: Initialize a task-information extractor ϕ, context-based policy π, and a replay buffer B
2: for 1, 2, 3, ... do
3: Sample a taskMω from the sampling strategy P (Mtrain)
4: Infer the demonstration representation z = ϕ(Tω)
5: for j = 1, 2, 3, ...,H do
6: Sample an action aj ∼ π(a|sj , z)
7: Rollout one step sj+1 ∼Mω(s|sj , aj), get the reward rj = Rω(sj , aj)
8: Add (sj , aj , rj , sj+1, Tω) to B
9: end for

10: Use SAC (Haarnoja et al., 2018) to update ϕ and π with batch samples from B
11: end for

techniques (Chen et al., 2021; OpenAI et al., 2019; Rakelly et al., 2019), where the pseudocode of
the framework is in Alg. 1. In context-based meta-RL framework, the imitator policy Π can be de-
composed into a context-based policy π and a task-information extractor ϕ, i.e., Π := π(a|s, ϕ(Tω)).
ϕ takes Tω as inputs, aiming to extract the representation of the task ω via latent variables z ∈ Z .
The context-based policy π takes the states and the extracted latent variables as inputs, aiming to
make adaptive decisions for each task. Specifically, for each task inMω , we infer the task presenta-
tion via z = ϕ(T), then infer the action via a ∼ π(a|s, z). A standard objective (Duan et al., 2017;
OpenAI et al., 2019) for learning the optimal extractor ϕ∗ and policy π∗ is:

max
ϕ,π

EMω∼P (Mtrain)

[
EMω,ϕ,π

[∞∑
i=0

γiRω(si, ai)

]]
,

where Mtrain is the training task set, P (Mtrain) is a sampling strategy for taskMω generating, and
EMω,ϕ,π is the expectation over trajectory {s0, a0, s1, a1, ...} sampled fromMω with ϕ and π. The
context-aware policy π is trained to take the optimal actions in all the tasks sampled from P (Mtrain).
The key to taking optimal actions in all tasks is that the parameters of ϕ will be updated through the
policy gradients (Sutton & Barto, 2018) backpropagated from π. Thus, if the optimal actions are in
conflict among differentM, the policy gradient will guide the extractor in distinguishing the repre-
sentations among T until all the optimal actions under the inferred contexts have no conflict (Chen
et al., 2021). Thus if the task set Mtrain cover the task space Ω, we can claim that, when deployed,
the optimal policy Π∗ := π∗(a|s, ϕ∗(Tω)) can take correct actions as in the training set.

To generalize over unseen tasks, ϕ necessitates exposure to a sufficiently diverse task set M spanning
the parameter space. However, it is almost impractical to construct a task set Mtrain to cover the
task space Ω. The generalization ability relies on the interpolation capabilities of neural networks.
Previous studies also show that the behavior of ϕ to unseen tasks might be unstable without further
constraints or regularization (Nagabandi et al., 2019; Wang et al., 2020). In the following, we will
propose a new architecture for actors and critics to regularize the policy behavior.

4.2 DEMONSTRATION-BASED ATTENTION ARCHITECTURE

As mentioned before, the behavior of ϕ to unseen tasks might be unstable (Luo et al., 2022; Wang
et al., 2020). Previous studies often handle the problem by adding extra losses/constraints to regular-
ize the context representation (Dasari & Gupta, 2021). Besides, we also observe that just regarding
demonstrations as context vectors are inefficient in fully mining the knowledge implied in these data
efficiently, e.g., the demonstration sequence not only tells the agent which task to accomplish but
the way to accomplish the task, finally hurting the efficiency of the algorithm to find the optimal
Π∗. Based on the above observations, in this study, instead of utilizing auxiliary losses as in prior
works, we implicitly constrain the “context representation” via the network architecture itself, i.e.,
the demonstration-based attention (DA) architecture. The architecture is based on the prior that, for
any unobserved task in the τΩ-tracebackable MDP set, imitator actions can be taken in two general
decision-making phases, which will be discussed below. The DA architecture stimulates the policy
to make decisions following the general decision-making phases.

5

Under review as a conference paper at ICLR 2024

visited state
 encoder

expert-state
 encoder

�0
 ��

 ��
 attention weighting

module

�0
 ��

 ��

expert-action
 encoder

��

�0
 ��

 ��

MLP

cross attention
(N×)

 ��

 �′0 �′� �′�

point-wise
multiplication

 �′′
sum

[�0
� , …, ��

�, …, ��
�]

[�0
� , …, ��

�, …, ��
�] ��

shared weights

Inputs

Vectors

Layers

Phase 1: which state
to follow?

Phase 2: which action
to take?

+

Figure 2: The DA architecture for the
actor. [se0, ..., s

e
i , ..., s

e
t] denote expert

states and [ae0, ..., a
e
i , ..., a

e
t] the expert

action list. sj is the visited state of the
actor at timestep j. We use q, k, and v to
denote the query, key, and value vectors
of an attention module. N× denotes an
N -layer cross-atttention module, which
takes the output v′′ of the last layer as
the input qj of the next layer.

Inspired by Prop. 2.2, we build the DA architecture based
on this intuition: For imitation, the first step is to find
a target state from the demonstration, which has high
similarity with the current state. Then the second step
is taking action based on the expert action correspond-
ing to the target state. In particular, utilizing the atten-
tion mechanism (Vaswani et al., 2017), DA uses the fol-
lowing two major phases to mimic the above process:
(1) Phase 1: determine the state to follow. Atten-
tion weighting is a module in standard attention architec-
ture (Vaswani et al., 2017), which outputs the similarity
weights of the items in the key vector k compared with the
query vector q. Specifically, one popular implementation
is w = softmax(qk⊺/

√
dk), where dk is the feature di-

mension of k, and qk⊺ is to compute the dot products of
the query with the keys in all timesteps. The dot-product
operation of k and q makes states with higher similarity
output a larger attention weight. We utilize this architec-
ture and let the representation of expert states be k and the
visited state representation be q, to regularize the policy
and determine the expert state to follow before decision-
making; (2) Phase 2: determine the action to take. The
attention weighting is followed by a point-wise multipli-
cation to compute v′′, i.e., v′′ =

∑
i viwi. Each value

vector v is a presentation of the corresponding expert ac-
tion. The point-wise multiplication applies the attention weight wi to the representation of action aei
for each timestep i to compute aj . The critic is built with the same method, which is in App. D.

We use DA architecture to fulfill the roles of both ϕ and π together to stimulate the policy to make
decisions based on the discrepancy between the current state and the states in the demonstration. In
a nutshell,the regularizer in our context is essentially the inductive bias of the prior knowledge about
the two-phase imitation introduced by the neural network architecture. The above data-processing
pipeline within the policy network implicitly guides the policy to take actions based on the expert
action with attention weights so that it can improve the efficiency of learning to imitate from input
demonstrations and the generalization ability to unseen demonstrations. We would like to point out a
limitation that the DA architecture will also hurt the decision-making ability when the task set is not
a τΩ − tracebackable MDP set defined in Def. 2.1, i.e., it does not exist a unified goal-conditioned
policy β for solving ItorL in M. For example, when the current state might be too distant from
any expert state for some inevitable reasons, the attention mechanism would fail to match any state,
degrading the architecture to mere guesswork. However, through our experiments, we found that to
some degree the attention mechanism can still consolidate actions from several locally similar states
of the expert to produce the correct action. The detailed discussion can be seen in App. F.

4.3 DEMO-ATTENTION ACTOR-CRITIC

We summarize our practical solution for ItorL as Demo-Attention Actor-Critic (DAAC). DAAC fol-
lows the context-based meta-RL framework in Alg. 1, where the imitator policy uses DA architecture
as an integrated implementation of context-based policy π and task-information extractor ϕ.

Besides, for further regularizing the policy’s behavior in states unvisited in demonstrations, we em-
bed the imitation process to RL with a general stationary imitator reward derived from a single
demonstration, which enables policy learning by imitating the input demonstration instead of from
scratch by ending rewards. Inspired by Ciosek (2022), which has shown that IL can be done by RL
with a constructed stationary reward, we heuristically design an ItorL reward RItor to embed the
imitation process into the RL in a similar way. We leave the full discussion in App. B. In summary,
we construct an imitator reward function:

RItor(s, a) := 1−min
{

d(s̄, s)2︸ ︷︷ ︸
distance to state s̄

+ d(ā, a)2/ exp(d(s̄, s)2)︸ ︷︷ ︸
weighted distance to action ā

, η
}
+ αRω(s, a), (1)

where s̄, ā is the nearest expert state-action pair: (s̄, ā) = argmin(s′,a′)∈T d(s, s′)2. The selected
action ā corresponds to the action associated with state s̄ in the transition pair. η is a hyperparameter

6

Under review as a conference paper at ICLR 2024

Table 1: Success rate comparisons on demo-navigation tasks. The agent needs to imitate demos
seen during the training, new demos from seen maps, and demos collected on new maps, namely
denoted as “seen”, “new demo”, and “new map” in this table. Our experiment uses 3 random seeds
and we bold the best scores for each task.
Map Type Single-Map Multi-Map

Obstacle Type Non-Obstacle Obstacle Non-Obstacle Obstacle

Demontrations seen new demo seen new demo seen new demo new map seen new demo new map

C
oo

rd

DAAC 1.00±0.00 0.94±0.03 0.81±0.02 0.76±0.02 0.92±0.02 0.87±0.04 0.86±0.02 0.77±0.03 0.77±0.03 0.73±0.02
DCRL 0.99±0.01 0.93±0.01 0.78±0.03 0.74±0.03 0.44±0.03 0.32±0.02 0.31±0.00 0.51±0.01 0.50±0.02 0.46±0.02
TRANS-BC 0.43±0.09 0.16±0.10 0.14±0.10 0.04±0.02 0.50±0.07 0.29±0.05 0.30±0.07 0.32±0.05 0.22±0.03 0.21±0.04
CbMRL 0.98±0.00 0.76±0.02 0.66±0.01 0.44±0.02 0.28±0.02 0.29±0.03 0.26±0.03 0.37±0.03 0.32±0.03 0.33±0.02

N
o-

C
oo

rd DAAC 0.51±0.19 0.71±0.06 0.46±0.06 0.58±0.04 0.83±0.03 0.63±0.01 0.54±0.05 0.50±0.02 0.45±0.02 0.40±0.03
DCRL 0.24±0.03 0.01±0.01 0.15±0.01 0.00±0.00 0.15±0.06 0.05±0.02 0.04±0.02 0.11±0.02 0.03±0.02 0.05±0.02
TRANS-BC 0.06±0.02 0.00±0.00 0.02±0.02 0.00±0.00 0.06±0.04 0.01±0.01 0.02±0.01 0.02±0.03 0.03±0.02 0.01±0.01
CbMRL 0.15±0.06 0.02±0.01 0.09±0.02 0.01±0.00 0.14±0.01 0.03±0.01 0.02±0.01 0.10±0.02 0.05±0.02 0.06±0.01

that clips the distance penalty calculated based on the too-far state pairs into a fixed constant, and α
is a rescale coefficient. d(·, ·) measures the distance between two inputs, and it can be customized
differently for different tasks, which is L2 distance in this work. Finally, we take the standard soft
actor-critic algorithm (Haarnoja et al., 2018) for policy learning in DAAC. More implementation
details of DAAC are in App. D and the algorithm is listed in Alg. 2.

5 EXPERIMENT

In the experiment, we build a demo-navigation benchmark for ItorL, which is a navigation task under
different complex mazes without global map information. We introduce this benchmark in Sec. 5.1
followed by our experiment setup in Sec. 5.2. In Sec. 5.3, we evaluate our method from various
perspectives, including training performance, generalization ability to unseen demonstrations, and
unexpected situations. We then verify the effects of the DA architecture and proposed imitator
reward in Sec. 5.4. In Sec. 5.5, we show that the proposed algorithm has the potential to achieve
further performance improvements by scaling up either the dataset size or the number of parameters.
Finally, we provide experimental results on more complex tasks in Sec. 5.6.

5.1 BENCHMARK FOR IMITATOR ABILITY IN UNSEEN SITUATIONS

start

unseen demo
to unseen target

unexpected
obstacle

unseenmap

agent:where to go?

state: only local view

Figure 3: Illustration of the
demo-navigation benchmark,
where the red line is run by
DAAC.

We use a simple environment to construct a challenging bench-
mark for ItorL, which is called the demo-navigation (DN) bench-
mark. In DN, we control a point agent from a start position to a
target position in a maze, based on some expert demonstrations
that can reach the target positions. The maze and target position
can be changed between episodes. The agent can observe its l-
step-length local views, while its current coordinate is optionally
provided. In our experiment, the local view is calculated using 8
rays, each within 5 step length. This agent does not capture the
global map information. Without utilizing the demonstrations, it
is impossible, under the given state space, to find routes to the
target positions for all maps. Besides, for each episode, the map
will randomly generate some rectangular obstacles on the way
to the target. These obstacles might not exist when the expert
generates the demonstrations. Thus the agent cannot exploit the
demonstration, i.e., repeat the actions in the demonstration with-
out considering the current situation, to reach the target. We give an example of DN in Fig. 3. In the
visualization, the start position is represented by a blue point, the target position by a green point,
and the current agent position by a red point with red dashed lines representing the local views.
Walls are indicated by black lines and obstacles by brown rectangles, which are not accessible to the
agent. The gray points correspond to states in an expert demonstration. The details are in App. E.

5.2 EXPERIMENT SETUP

Tasks Our primary focus is whether the policies exhibit out-of-the-box imitation capabilities be-
yond the demonstrations observed during the training. In our study, we create eight tasks within DN
by varying three factors: (1) single-map versus multi-map navigation; (2) the presence or absence of
obstacles; and (3) whether agent coordinates are provided. For each task, we gather demonstrations
targeting different points. To validate the generalization capabilities, we withhold a portion of new

7

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8
DAAC
DAAC w/o ItorL reward
DAAC using transformer

su
cc

es
s r

at
e

(a) Results of DAAC variants

ag
en

t
tr
aj

ec
to

ry

expert trajectory

(b) Attention score

1 10 100
scaling-up rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

model parameters
demonstrations quantity

su
cc

es
s r

at
e

(c) Scaling up results

Figure 4: (a) Learning curves of DAAC variants; (b) The attention score map. The vertical axis
represents the agent’s trajectory, and the horizontal axis represents the expert’s trajectory. The deeper
the color in a row, the more attention the agent pays to the corresponding expert state. (c) The
asymptotic performance of DAAC under different demonstration quantities and model parameters,
where each unit in the x-axis denotes 60 demonstrations and 0.6 million parameters respectively.
Please note that the x-axis is on a logarithmic scale. The square markers in the figure represent the
performance of the default DAAC parameters we adopted.
demonstrations in each map for testing. Moreover, in the multi-map settings, we separately create
new maps to collect demonstrations and evaluate the trained policies. More details are in App. E.

Baselines We compare DAAC with three main context-based learning approaches which also take
demonstrations as inputs: (1) DCRL (Dance et al., 2021) embeds demonstrations with Transformer
and trains policies with task-specific rewards for further improving the expert behavior via RL; (2)
TRANS-BC (Dasari & Gupta, 2021) uses Transformer to extract representations from demonstra-
tions and adopts BC for policy reconstruction. The auxiliary tasks for TRANS-BC like inverse
dynamics loss on randomized image observation are removed since the state space in our tasks is
low-dimensional with clear implications. (3) CbMRL (OpenAI et al., 2019; Peng et al., 2018) trains
policies only with environment rewards. The demonstrations are simply embedded with a multi-
layer GRU (Cho et al., 2014), which is the standard implementation of the framework in Alg. 1. All
methods are trained for the same duration with the same parameter quantity to ensure fairness.

5.3 OUT-OF-THE-BOX IMITATION ABILITY IN UNSEEN SITUATIONS

We summarize all experimental results in Tab. 1. It’s evident that DAAC dominates all tasks with
a large margin, demonstrating its superior out-of-the-box imitation ability compared to existing
baselines across all tasks. In the absence of coordinates, especially in multi-map scenarios, the
performance of DAAC is not particularly ideal (considering a generalization success rate below
60% as the standard). This aligns with our expectations that, without coordinates, local views in
a single trajectory cannot provide enough information for imitation, i.e., Prop A.2 is violated: In
this case, any map may contain an arbitrary number of states with the same local views but different
actual positions, making it difficult for the policy to distinguish them and make the correct decisions.
This resembles a partially observable MDP, and we leave further investigation as future work.

On the other hand, we can see that both DCRL and CbMRL methods demonstrate a certain de-
gree of imitation ability, which also confirms our claims in Sec. 4.1 that the context-based meta-RL
framework can, in principle, handle ItorL. However, standard context-based policy architectures
cannot fully utilize the demo information and are therefore not efficient enough. Although the
Transformer-based DCRL overall performs better than the RNN-based CbMRL, both of them are
less effective than our DA structure which is designed for ItorL scenarios. Finally, we find that the
worst-performing method among all is TRANS-BC. Although this method also employs a Trans-
former, it fails to achieve satisfactory generalization in any task. This is because the demonstrations
provided in our tasks are extremely limited. Solely relying on the BC framework without incor-
porating RL for environment interactions like other approaches makes it challenging to guarantee
appropriate action outputs in unseen states.

5.4 EFFECTS OF THE DA ARCHITECTURE AND THE REWARD FUNCTION

We conduct ablation studies about the DA architecture and our ItorL reward on multi-map imitation
tasks without obstacles and with coordinates provided. We construct two variants of DAAC: (1)
DAAC using Transformer, where the actor and critic in DAAC are replaced with standard Trans-
former; (2) DAAC w/o ItorL reward, where DAAC just learns with the ending reward Rω . We test
the trained policies directly on new maps and provide the learning curves in Fig. 4(a), we can ob-
serve that removing the imitator reward and replacing DA with Transformer results in a significant

8

Under review as a conference paper at ICLR 2024

Table 2: Success rate comparisons. The robot needs to imitate seen demonstrations and new demon-
strations. The multi-task setting collects demonstrations equally from each manipulation task. We
bold the best scores for each task.

Domain Complex Manipulation Complex Control Space
Tasks Grasping Stacking Collecting Multi-Task Reacher Pusher

Demonstrations seen new demo seen new demo seen new demo seen new demo seen new demo seen new demo

DAAC 0.98 0.84 0.77 0.84 0.99 0.61 0.89 0.45 0.98 0.95 0.96 0.94
DCRL 0.30 0.70 0.00 0.00 0.00 0.00 0.05 0.02 0.65 0.50 0.89 0.87
TRANS-BC 0.28 0.20 0.00 0.02 0.17 0.06 0.10 0.02 0.63 0.59 0.20 0.08
CbMRL 0.71 0.49 0.00 0.00 0.00 0.00 0.04 0.00 0.90 0.87 0.91 0.85

reduction in learning efficiency. Similar ablation results on robot manipulation tasks can be found
in App. G. We also give detailed ablation studies ablation about the reward function, which is in
App. G. The performance of DAAC using Transformer declines, indicating that without our DA
architecture, the agent cannot fully utilize the demonstration information.

To further verify that DA stimulates the agent making decisions based on the discrepancy between
the current state and the states in demonstrations, we visualize attention scores during the decision-
making process in Fig. 4(b), which are products of the vectors of keys in demonstrations and the
query of current states. Since the agent trajectory is similar to the expert trajectory, higher attention
values mainly concentrate on the diagonal demonstrating that the agent actively matches expert
states based on the matched state for decision making. More visualizations are provided in App. I.

5.5 THE POTENTIAL FOR FURTHER PERFORMANCE IMPROVEMENT WHEN SCALING UP

Inspired by the recent advances in large language models (OpenAI, 2023; Wei et al., 2022; Zhou
et al., 2023), we investigate the potential for out-of-the-box imitation ability improvement when
scaling up. In particular, we train DAAC policies with varying quantities of demonstrations and
model parameters in multi-map imitation tasks involving obstacles. We test demonstration quantities
in the coordinates-provided setting and model parameters in the no-coordinate setting and then verify
the policies on new maps. We visualize experimental results in Fig. 4(c) and observe a log-linear
increment of our model’s performance with an increase in either data volume or model parameters.
Particularly in the non-coordinate setting, increasing the model parameters leads to an around 2×
improvement in performance compared to the results shown in Tab. 1. These results provide strong
evidence of the potential for performance improvement when scaling up the DAAC, and we plan to
investigate further in future work.

5.6 APPLY DAAC TO COMPLEX TASKS

We deploy our DAAC method on robot tasks, including Complex Manipulation: The robot needs
to imitate types of robotics tasks like object grasping, object stacking, object collecting, and mixed
tasks in clutter environments, and Complex Control Sapce: We test the methods in the Reacher and
Pusher environments (Towers et al., 2023). These environments feature variables diverse, including
location, velocity, angular velocity, and so on, which exhibit substantial differences in magnitudes
across dimensions. The details of the environments are in App. E.

We compare DAAC with its baselines and summarize the results in Tab. 2. Our method outperforms
all baselines both on seen and new demonstrations, demonstrating that it is competent on more
complex tasks. Note that, our method is the only one that can imitate all types of manipulation
demonstrations and achieve satisfactory performance. Our method outperforms the baselines with
high task completion rates, demonstrating its robustness in complex observation spaces.

6 DISCUSSION AND FUTURE WORK

We proposed a new topic, imitator learning (ItorL), which derives an imitator module to reconstruct
task-specific policies out-of-the-box based on single expert demonstrations. We formulate the prob-
lem and propose a practical solution, Demo-Attention Actor-Critic (DAAC). We apply DAAC to
both demo-navigation tasks and complex robot manipulation tasks, which shows that DAAC outper-
forms previous IL methods with large margins both on training and unseen-tasks testing.

We believe that ItorL is a novel and challenging topic for the IL community, and there might be many
interesting ItorL applications in autonomous vehicles and robotics. The scaling-up experiments
in Sec. 5.5 also demonstrate the potential of DAAC in solving larger-scale problems, which we
will investigate in our future work. Currently, the limitations of DAAC include: (1) in without-
coordinates scenarios, which imply a “POMDP” problem, DAAC is not particularly ideal; (2) the
inference’s compute resource requirement intrinsically increases as the number of demonstrations
grows because of the self-attention mechanism; and (3) the imitator ability in far-away states.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joonwoo Ahn, Minsoo Kim, and Jaeheung Park. Vision-based autonomous driving for unstructured
environments using imitation learning. arXiv preprint arXiv:2202.10002, 2022.

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
learning for imitation learning via bi-level optimization. In International Conference on Machine
Learning, pp. 367–376, 2020.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei (Tony) Qin, Wenjie Shang, and
Jieping Ye. Offline model-based adaptable policy learning. In Advances in Neural Information
Processing Systems, pp. 8432–8443, 2021.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. In Workshop on Syntax, Semantics
and Structure in Statistical Translation, pp. 103–111, 2014.

Kamil Ciosek. Imitation learning by reinforcement learning. In International Conference on Learn-
ing Representations, 2022.

Christopher R. Dance, Julien Perez, and Théo Cachet. Demonstration-conditioned reinforcement
learning for few-shot imitation. In International Conference on Machine Learning, pp. 2376–
2387, 2021.

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In Conference on
Robot Learning, pp. 2071–2084, 2021.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
Neural Information Processing Systems, pp. 1087–1098, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
tion learning via meta-learning. Conference on Robot Learning, pp. 357–368, 2017b.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. IQ-Learn:
Inverse soft-Q learning for imitation. In Advances in Neural Information Processing Systems, pp.
4028–4039, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1856–1865, 2018.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Rainer Kümmerle, Dirk Hähnel, Dmitri Dolgov, Sebastian Thrun, and Wolfram Burgard. Au-
tonomous driving in a multi-level parking structure. In International Conference on Robotics
and Automation, pp. 3395–3400, 2009.

Jiayi Li, Tao Lu, Xiaoge Cao, Yinghao Cai, and Shuo Wang. Meta-imitation learning by watching
video demonstrations. In International Conference on Learning Representations, 2021.

Fan-Ming Luo, Shengyi Jiang, Yang Yu, Zongzhang Zhang, and Yi-Feng Zhang. Adapt to envi-
ronment sudden changes by learning a context sensitive policy. In AAAI Conference on Artificial
Intelligence, pp. 7637–7646, 2022.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
2022.

10

Under review as a conference paper at ICLR 2024

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2019.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, pp. 663–670, 2000.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving Rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real transfer
of robotic control with dynamics randomization. In International Conference on Robotics and
Automation, pp. 1–8, 2018.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, pp. 5331–5340, 2019.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics, pp. 661–668, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second Edition).
MIT Press, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, 2023. URL https://zenodo.org/record/8127025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
learning with mixture regularization. In Advances in Neural Information Processing Systems, pp.
7968–7978, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Zhao-Heng Yin, Weirui Ye, Qifeng Chen, and Yang Gao. Planning for sample efficient imitation
learning. arXiv preprint arXiv:2210.09598, 2022.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. arXiv
preprint arXiv:1802.01557wa, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
arXiv preprint arXiv:1910.10897, 2019.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben
Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian
Pei, Philip S. Yu, and Lichao Sun. A comprehensive survey on pretrained foundation models: A
history from BERT to ChatGPT. arXiv preprint arXiv:2302.09419, 2023.

11

https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2024

Appendix

Table of Contents
A Demonstration Quantity Requirements for Imitator Learning 13

B ItorL Reward from Demonstrations 14

C Related Work 15
C.1 Imitation Learning . 15
C.2 Meta-Imitation Learning . 15
C.3 Combination of Imitation Learning and Reinforcement Learning 16
C.4 Context-based Meta Reinforcement Learning 16

D Implementation Details 17
D.1 Achitecture Details . 17
D.2 Training Details . 19

E Environment Description 20
E.1 Demo-Navigation Environment . 20
E.2 Demo-Manipulation Environment . 20
E.3 Pusher and Reacher Environment . 21

F The Robustness on the Faraway States 22

G More Ablation study results 23

H Learning Curves 23

I Visualization 26

J Comparisons of Trajectories of DAAC Trained by Different Rewards 27

K The Details of the Scaling Up Experiments 28

L Comparisons of Trajectories of Different Learning Paradigms 29

M More Examples of DAAC Trajectories 30
M.1 DAAC Trajectories in Maze Environments . 30
M.2 DAAC Trajectories in Robot Manipulation Environments 32

N Societal Impact 33

12

Under review as a conference paper at ICLR 2024

A DEMONSTRATION QUANTITY REQUIREMENTS FOR IMITATOR LEARNING

Without further assumptions on task space Ω, it is always easy to construct ill-posed problems that
it is impossible for a unified imitator policy Π(a|s, Tω) to reconstruct all of the expert policies
unless the expert demonstration set T does cover the whole state-action space. However, in many
applications, it is unnecessary for Π to imitate policies for anyM. Here we give one practical task
set that enables imitator learning (ItorL) through only one demonstration.
Definition A.1 (τΩ-tracebackable MDP set). For an MDP set M := {Mω | ω ∈ Ω}, if there
exists a unified goal-conditioned policy β(a|s, g), ∀Mω ∈ M, for any τω , we have ∀si ∈ τω or
∀s0 ∈ R(d0), ∃gj ∈ τω , β(a|s, gj) can reach gj from s = si within finite timesteps, where R(X) is
the state set in X , i and j denote the timestep of states in τ and j > i, then M is a τΩ-tracebackable
MDP set.

τΩ-tracebackable MDP set depicts the similarity of the tasks in M through the demand of the policy
β(a|s, g). It means that although the transition process and the initial distribution are stochastic and
different among M, there exists a goal-conditioned policy β that for any Mω , we can guide the
agent turn back to some states in the demonstrations. For example, different navigation tasks will
have similar decisions in similar traffic conditions even in different terrains. Thus even if the vehicle
has to veer off the demonstrations for handling some unexpected situations, it usually can turn back
after some timesteps.

Based on the definition, we give an M formulation that can find a unified imitator policy Π from one
demonstration.
Proposition A.2 (1-demo imitator availability). If M := {Mω | ω ∈ Ω} is a τΩ-tracebackable
MDP set, there exists at least a unified imitator policy Π(a|s, Tω) that can accomplish any task in
M only given one corresponding demonstration, i.e., |Tω| = 1.

Proof. Since Rω inMω is an ending reward function of trajectories, given any expert demonstration
τω , we know:

Rω(s, a) =


c, s = st
0, (s, a) ∈ τω and s ̸= st
unkown otherwise

that is, any policy can accomplish the task inMω if it can reach the last state st of τω , where c is
the reward for accomplishing the task.

Since M := {Mω | ω ∈ Ω} is a τΩ-tracebackable MDP set, there exists a unified goal-conditioned
policy β(a|s, g), ∀Mω ∈ M, for any τω which can accomplish the task inMω , we have ∀si ∈ τω
or ∀s0 ∈ R(d0), ∃gj ∈ τω , β(a|s, gj) can reach gj from s = si within finite timesteps, where R(X)
is the state set in X , i and j denote the timestep of states in τ and j > i. We can construct a unified
imitator policy by (1) searching a gj ∈ τω that can be reached by β(a|s, gj) from current state si
within finite timesteps, where j > i; (2) executing β(a|s, gj) until reaching gj ; (3) repeat (1) and
(2) to the end. When deployed, for anyMω , in the beginning, s0 ∼ d0, thus the agent will reach
one of the state si ∈ τω after finite timesteps, where i > 0. Since si ∈ τω , following β(a|s, gj), the
agent will arrive another state sj ∈ τω . The process will be repeated until the agent reaches the last
state st. Once Rω(st, ·) = c, the task is accomplished.

Although we focus on 1-demo imitator availability, note that the 1-demo imitator availability can be
extended to the “n-demo” case by extending τΩ-tracebackable MDP set to “ TΩ-tracebackable MDP
set”.

Fig. 5 gives a vehicle navigation illustration for the proposition, where all tasks in M ask the vehicle
to reach some locations based on its coordinates and local views. We first consider a simple case
in which the initial state is deterministic and is the same as the first state in τω . In this case, even
if a truck might be parked unexpectedly (states unvisited in the demonstrations), relying on the
local-view information, for any τω , we have a unified goal-conditioned policy β(a|s, g), i.e., closing
to some of the successor expert states without collision, that can drive the vehicle to be close to
the locations in τω . With policy β, there exists at least a unified imitator policy Π(a|s, Tω) that
can accomplish any task in M only given one corresponding demonstration: repeatedly traces a
reachable successor state gj ∈ τω and uses β to guide the agent until reaching the ending state.

13

Under review as a conference paper at ICLR 2024

demo state ending state

imitator traj. demo traj.

a parked trunk inexistent in the demo.

far-away state

an impassable wall

local view

entrance A

entrance B

entrance

？

？

Figure 5: A vehicle navigation example.
“traj.” is the abbreviation of “trajectory”.

In the following, we consider a counter-example where
the agent state can be put to untracebackable states, e.g.,
the square point in Fig. 5, for some unforeseen reasons.
In this case, if the local view is limited and cannot reach
the location of entrances and the entrance might exist
either in A or B, it is impossible to construct a unified
goal-conditioned policy β(a|s, g) since in the square
point, the correct way to trace back to the demonstra-
tions is agnostic (can be in left or right).

Note that the trace-backable property relies on the in-
formation we have from the states, e.g., with global
map information in the state space, the unified goal-
conditioned policy can be constructed by planning a
trajectory in the map then the above task set is trace-
backable.

B ITORL REWARD FROM DEMONSTRATIONS

A theoretical analysis in Ciosek (2022) shows that, for deterministic experts, IL can be done by RL
with a constructed stationary reward: Rint(s, a) = I[(s, a) ∈ T], where I[·] denotes the indicator
function and T is the expert demonstration. In practice, the constructed reward function:

RIL(s, a) = 1− min
(s′,a′)∈T

dℓ2((s, a), (s
′, a′))2, (2)

which is a practical imitation reward Rint that can also imitate the experts in several benchmark
tasks. Here dℓ2(·, ·) denotes the ℓ2 distance of two normalized vectors.

𝑠𝑡−1

𝑎𝑡−1

𝑠𝑡

𝐴

𝐵
𝐶

ො𝑎𝐴

ො𝑎𝐵

obstacle

demo traj. visited state ill-posed action

ො𝑎𝐶

Figure 6: Illustration of the ill-posedness of RIL. A, B, and C denote states, and red dashed arrows
(âA, âB , and âC) denote the corresponding ill-posed sub-optimal actions to earn more the cumula-
tive RIL rewards. The agent fails on hitting the obstacle. st is the last state, also the target state for
task completion.

Inspired by this, we propose to construct a stationary imitator reward RItor to embed IL into the
RL process, i.e., replacing the reward function Rω in Alg. 1 (Line 7) with RItor. First, we observe
that RIL and Rint can reconstruct the expert policy only when we have a diverse enough dataset T
which covers the state-action space. When only with limited demonstrations, the reward function
will be ill-posed in three aspects. We depict that based on the illustration in Fig. 6: (1) A state: if
the minimum-distance tuple in Eq. 2 is far away from the visited state, e.g., (st−1, at−1) in Fig. 6,
the action that reduces the ℓ2-norm between the next state and st−1 might ignore the impassable
terrains between states and finally hit the obstacle; (2) B state: even if the action to reduce the ℓ2-
norm between the next state of B and st−1 is correct to go back to the demonstration, to reduce the
ℓ2-norm between actions at−1 and the current action at the same time, the derived action might be
biased by at−1 and finally lead to an unsafe state; (3) C state: even if the state perfectly matches
the one in the demonstration, the agent still has the potential to stay where it is until it reaches
the maximum episode length, as RIL might be greater than 0. To handle the above problems, we

14

Under review as a conference paper at ICLR 2024

construct a new imitator reward function RItor(s, a) via:

RItor(s, a) := 1−min
{
d(s̄, s)2 +

d(ā, a)2

exp(d(s̄, s)2)
, η
}
+ αRω(s, a), (3)

where (s̄, ā) = argmin(s′,a′)∈T d(s, s′)2, η is a hyperparameter that clips the distance penalty
calculated based on the too-far state pairs into a fixed constant, α = 1/(c(1 − γ)) is a rescale
coefficient, and c is the reward for accomplishing the task defined in Rω .

RItor(s, a) uses a clipping term η to make the imitation rewards based on the too-far state pairs
invalidated to avoid the potential misleading (to handle the “A-state” case). A reweighting item
1/ exp(d(s̄, s)2) is used for the action’s distance computation to adaptively adjust the weight of
rewards on action matching. This is a heuristic reweighting term to avoid the agent overly penalizing
for not strictly following the expert action when its current state is far from the demonstration states
and chooses to turn back (to handle the “B-state” case). The necessity of the reweighting term stems
from its pivotal role in preventing undesired behaviors in situations where the agent strictly adheres
to the demonstrated actions due to state bias. By incorporating the reweighting term, we ensure
that the agent does not blindly follow the demonstrations, thereby reducing the risk of unintended
consequences. α rescales the ending rewards, which makes the discount on delay to get the ending
reward larger than the bonus of repeatedly collecting the immediate rewards, i.e., αc > 1− ϵ+γαc,
where ϵ denotes a larger-than-zero penalty contributed by the second item in Eq. 3 (to handle the
“C-state” case).

Note that although we give several tricks to make RItor give reasonable rewards in the state-action
space, it is still inevitable to output ill-posed rewards in some corner cases. Hence, the ending reward
is essential, as it helps the agent focus more on task completion rather than repeatedly collecting RIL

rewards. The large coefficient α on the task-specific reward Rω makes the policies always focus on
completing the tasks rather than repeatedly collecting RIL rewards. In this situation, RItor just
serves as a crucial signal by providing a dense reward, enabling the agent to closely follow the
demonstrations and accomplish tasks effectively during the early stages. We leave a theoretical-
grounded reward function design as future work.

C RELATED WORK

C.1 IMITATION LEARNING

Imitation learning (IL) focuses on training a policy with action labels from expert demonstrations.
There are two mainstream approaches for IL, namely behavior cloning (BC) (Pomerleau, 1991;
Ross & Bagnell, 2010) and inverse reinforcement learning (IRL) (Ng & Russell, 2000). The former
BC converts IL into a supervised paradigm by minimizing the action probability discrepancy with
Kullback Leibler (KL) divergence between the actions of the imitating policy and the demonstration
actions. The latter IRL fashion learns the hidden reward function behind the expert policy to avoid
the impact of compounding errors.

Since IL can learn directly from already collected data, it is widely adopted by complex domains like
game playing (Ross & Bagnell, 2010), autonomous driving (Chen et al., 2019; Pan et al., 2018), and
robot manipulation (Xie et al., 2020). Although achieving impressive performances, we observe
that in many applications, what humans require is the ability to perform many different tasks out
of the box, through very limited demonstrations of corresponding tasks, instead of imitating from
scratch based on a mass of demonstrations. Adapting the trained policy to unseen tasks is beyond
the capability of pure IL, which is designed for single-task learning.

C.2 META-IMITATION LEARNING

Meta-IL includes few-shot meta-IL and one-shot meta-IL. Few-shot meta-IL aims to get a gener-
alizable policy that can complete new tasks with only a few expert trajectories. The mainstream
solutions utilize model-agnostic meta-learning (MAML) (Finn et al., 2017a) to learn initial task
parameters and fine-tune them via a few steps of gradient descent to satisfy new task needs (Finn
et al., 2017b; Li et al., 2021; Yu et al., 2018). However, these approaches need extra computa-
tion infrastructure for gradient update and determining a suitable amount of fine-tuning steps be-
fore deployment (Finn et al., 2017a). One-shot meta-IL achieves generalizable imitation through

15

Under review as a conference paper at ICLR 2024

context-based policy models (Dasari & Gupta, 2021; Duan et al., 2017; Mandi et al., 2022), such
as Transformer (Vaswani et al., 2017), that take demonstrations as input. The core idea is to extract
representations of demonstrations through these powerful fitting abilities of neural networks, then
use BC to reconstruct the imitation policy. However, the demonstrations for imitation are limited,
the inevitable prediction errors on unseen states and the compounding errors of BC (Ross et al.,
2011) hurt the capacities of these methods, especially in generalizing to new tasks (Mandi et al.,
2022). Different from one-shot IL, In ItorL setting, we argue that the interactions with simula-
tors are allowed, so that we have more potential ways to handle the generalization ability with less
demonstration. Our ItorL method also utilizes a context-based model to achieve the out-of-the-box
imitation ability. Instead of using BC, we integrate IL into the RL process, which allows the agent to
interact with the environment. This approach can regularize the policy behavior when facing states
unvisited in demonstrations.

The main differences between the Meta-IL approach and our approach are primarily in two aspects:
(1) no need for fine-tuning: Our objective is to create an imitator policy, Π(a|s, Tω), informed
solely by a pre-collected expert demonstration set, without requiring any fine-tuning. During de-
ployment, this policy simply takes in the relevant demonstration τω to generate the appropriate ac-
tion for any given state. In contrast, most few-shot IL techniques, like MAML (Finn et al., 2017a),
necessitate fine-tuning for the target task. (2) imitation with single demonstration: Our deploy-
ment only requires a single trajectory for imitation. While some algorithms might achieve imitation
without fine-tuning using transformer architectures, both MAML and Transformer-BC (Dasari &
Gupta, 2021) necessitate a substantial volume of trajectories for target adaptation during deploy-
ment. Our ability to achieve imitation with even fewer trajectories comes from our interaction with
simulators, enabling the implicit learning of cross-task general imitation behavior.

C.3 COMBINATION OF IMITATION LEARNING AND REINFORCEMENT LEARNING

We are not the first study to combine IL and RL. Previous studies have combined these for different
proposes: Hester et al. (2018) leverage small sets of demonstrations for deep q-learning which
massively accelerates the learning process. Rajeswaran et al. (2018) use demonstrations to reduce
the sample complexity of learning dexterous manipulation policy and enable natural and robust robot
movement. Fujimoto & Gu (2021) add BC to the online RL algorithm TD3 (Fujimoto et al., 2018)
for advanced offline RL performance. Our method extends the ideas of combining IL and RL to
handle a new problem: a multi-policy imitation problem based on limited demonstrations.

C.4 CONTEXT-BASED META REINFORCEMENT LEARNING

Besides IL, context-based policy models are also widely used in meta-RL. Building a representative
context enables a single agent of learning meta-skills and identifying new tasks. Goal-conditioned
RL (Florensa et al., 2018; Nair et al., 2020) is the most direct way to build a context-based meta-
policy, which scales a single agent to a diverse set of tasks by informing the agent of the explicit
goal contexts, e.g., the target to go or the object to pick. The demonstrations can be regarded as an
informative “goal” for IL tasks. The demonstration sequence not only tells the agent which task to
accomplish but also the way to accomplish it.

Some other works collect interaction trajectories from the environment for understanding the task
identity. Chen et al. (2021); Luo et al. (2022); Nagabandi et al. (2019); OpenAI et al. (2019); Peng
et al. (2018) use a end-to-end architecture for environment-parameter representation and adaptable
policy learning. A recurrent neural network is introduced for environment-parameter representa-
tion, then the context-aware policy takes actions based on the outputs of RNN and the current states.
Rakelly et al. (2019) share the same end-to-end architecture and design a new neural network to
represent the probabilistic latent contexts of the environment parameters. Instead of collecting tra-
jectories from the environment for identifying the task, we mine the information from the static
expert trajectories to identify the expert policy which can accomplish the task.

Demonstration-conditioned RL (DCRL) (Dance et al., 2021) takes sub-optimal demonstrations as
input and seeks to further improve demonstration behavior via RL. Yeh et al. (2022) adopt a similar
idea to solve unseen compound robot tasks that contain multiple stages by retrieving from demon-
strations. Instead of taking demonstration as the base for policy improvement, ItorL aims to fully
utilize the demonstrations to imitate the expert policy for each task.

16

Under review as a conference paper at ICLR 2024

D IMPLEMENTATION DETAILS

D.1 ACHITECTURE DETAILS

We give the demonstration-based attention architecture for the critic in Fig. 7, and related hyper-
parameters of the architecture in Tab. 3.

visited state
 encoder

expert-state
 encoder

�0
 ��

 ��
 attention weighting

module

�1
 ��

 ��

expert-action
 encoder

��

�0
 ��

 ��

MLP

cross attention
(N×)

 ��
�

 �′1 �′� �′�

point-wise
multiplication

 �′′
sum

[�0
� , …, ��

�, …, ��
�]

[�0
� , …, ��

�, …, ��
�] ��

shared weights

Inputs

Vectors

Layers

[�0
�, …, ��

�, …, ��
�]

 � ��

concat

+

Figure 7: The architecture of demonstration-based attention for the critic. [se0, ..., s
e
i , ..., s

e
t] and

[ae0, ..., a
e
i , ..., a

e
t] denote state and action list in an expert demonstration. aπ0 , ..., a

π
i , ..., a

π
t denote

the output action of current actor Π on se0, ..., s
e
i , ..., s

e
t respectively. aj is the output action of Π on

sj . sj is the visited state of the actor at timestep j. Inspired by OpenAI et al. (2019); Miki et al.
(2022), we feed the task parameter ω to the critic for Q value prediction. It is valid because the
critic will not be used when deployed, and ω gives important information for value inference. We
use q, k, v to denote the query, key, and value vectors of an attention module. N× denote a N -layer
cross-atttention module, which take the output v′′ of the last layer as the input qj of the next layer.

where (s̄, ā) = argmin(s′,a′)∈T dℓ2(s, s
′)2, η is a hyperparameter that clips the distance penalty

calculated based on the too-far state pairs into a fixed constant, α = 1/(c(1 − γ)) is a rescale
coefficient, and c is the reward for accomplishing the task defined in Rω .

In DA architecture, we introduce three encoders for expert actions, expert states, and visited states
respectively, where the encoders of expert states and visited states share the same weights. The
detailed architecture is shown in Fig. 8.

17

Under review as a conference paper at ICLR 2024

Table 3: DAAC Hyper-parameters.

Parameter Value

learning rate (λ) 5 · 10−5

discount (γ) 0.99
replay buffer size 105

number of hidden units per layer 256
number of samples per minibatch 256
optimizer RMSprop

Actor
encoder layer number (K) 3
cross-attention layer number (N) 6
embedding dimension 128

Critic
encoder layer number (K) 4
cross-attention layer number (N) 4
embedding dimension 128

ItorL Rewards for Demo-Navigation
rescale coefficient (α) 100
penalty threshold (η) 2

ItorL Rewards for Robot Manipulation
rescale coefficient (α) 200
penalty threshold (η) 2

Feed
Forward

Add&Norm

Inputs

Vectors
Layers

[�0
� , …, ��

�, …, ��
�]

Dropout

�1
 ��

 ��

 (N×)

Figure 8: The encoder architecture employed in the DA model. As an example, we consider the
input sequence [se0, ..., s

e
i , ..., s

e
t]. However, it is worth noting that this architecture can also accom-

modate [ae0, ..., a
e
i , ..., a

e
t] and [aπ0 , ..., a

π
i , ..., a

π
t] as inputs. The encoder leverages the Transformer

backbone, which incorporates three layers: dropout, feedforward, and add&norm. These layers are
organized using the residual connection mechanism. The input sequence passes through N stacked
blocks, converting it into key vectors.

18

Under review as a conference paper at ICLR 2024

D.2 TRAINING DETAILS

Algorithm 2 Demo-Attention Actor-Critic for ItorL

Input: A task set Mtrain, and a demonstration set {Tωi} for each taskMωi ∈Mtrain

Process:
1: Initialize Actor πϕ, Critic Qθ and a replay buffer B
2: for 1, 2, 3, ... do
3: Sample a taskMω from the sampling strategy P (Mtrain)
4: Get the single expert trajectory τω since |Tω| = 1
5: for j = 1, 2, 3, ...,H do
6: Sample an action aj ∼ πϕ(a|sj ; τω)
7: Rollout one step sj+1 ∼Mω(s|sj , aj), get the reward rj = RItor(sj , aj)
8: Add (sj , aj , rj , sj+1, τω) to B
9: end for

10: for each update step do
11: update Critic θ ←− θ − λ∇JQ(θ)
12: update Actor ϕ←− ϕ− λ∇Jπ(ϕ)
13: end for
14: end for

We use the SAC (Haarnoja et al., 2018) algorithm to update the DA-actor and DA-critic. The goal of
SAC also maximizes the expected entropy return beyond the objective of a standard RL agent which
maximizes the expected sum of rewards:

J(π) =

T∑
t=0

E(st,at)∼ρπ
[r(st, at) + αH(π(· |st))], (4)

whereH(π(· |st)) is the entropy value of the policy distribution. For learning the maximum entropy,
a policy alternates between policy evaluation and policy improvement. For policy evaluation of a
fixed policy, we can obtain its soft state value function by iteratively applying the Bellman update:

V (st) = Eat∼π[Q(st, at; τω)− αlogπ(at|st; τω)]. (5)

And we can execute critic update through collected buffer data and the objective:

JQ(θ) = E(st,at,τω)∼D

[
1

2

(
Qθ (st, at; τω)− Q̂ (st, at)

)2
]
, (6)

with

Q̂(st, at) = rt + γEst+1∼p[V (st+1)], (7)

And we can execute policy improvement through collected buffer data and the objective:

Jπ(ϕ) = Est∼DDKL

(
πϕ(· |st; τω)

∥∥∥∥ exp (Qθ(st, · ; τω))
Zθ(st)

)
, (8)

where the partition function Zθ(st) normalizes the distribution. We adopt one policy (actor) net-
work, two Q-networks (critic), and two target Q-networks for SAC training. Each network consists
of one demonstration-based attention module for task-information extraction and projects the task
embedding into actions.

For learning robust policies, we randomly choose a state from the given demonstration as a start and
add a disturbance of 0.1 × N(0, 1) to this state coordinate. We maintain a separate buffer for each
demonstration and gather a batch of training data from 5 different buffers. To accelerate the training
process, we also add demonstration data which takes 20% of the batch size for joint training. For
fair comparisons, all the baselines we compared followed the above setting. The detailed hyper-
parameters used for our ItorL method training are summarized in Tab. 3.

19

Under review as a conference paper at ICLR 2024

E ENVIRONMENT DESCRIPTION

E.1 DEMO-NAVIGATION ENVIRONMENT

We include details of our two-dimensional maze environment for navigation tasks, where the maze
layout takes a size of 24×24. The maze is generated by randomly traversing all the cells in a
Depth-First manner with path width 2. The path in the maze is connected, thereby our environment
is τΩ-tracebackable and 1-demo imitator available, which satisfies our ItorL needs. We fixed the
starting point as the center of the map. The expert trajectories can also be obtained by a Depth-First
search. We can formulate this environment as Markov Decision Process, which can be presented as
a tuple (S,A, T,R).

State space S: The maze state consists of the (x, y) coordinate and the local view of the agent
along 8 different directions with an equal interval π/4. For the simplest task where coordinates are
provided and no obstacles exist, the local view length l is set to 1.5; otherwise 5 for observing the
surrounding environment changes.

Action spaceA: The agent is able to take action (∆x,∆y) which are continuous values in the range
of [−1, 1].
Transition function T : When applied with the action (∆x,∆y) at the coordinate (x, y), the agent
translates itself to the (x + ∆x, y + ∆y) coordinate. Some obstacles, which have lengths in the
range of [1.1, 1.3] and widths of 1.35, may appear in the demonstration path. The obstacle will be
generated with a fixed probability p = 0.1 for each demonstration step and with a maximum number
of 4. Once hits the wall or the obstacles, the agent will be dead and the trajectory will be terminated.

Reward function Rω: We only have a simple reward function Rω which indicates the ending of
trajectories, e.g., c for reaching the target goal, 0 for failure in 50 timesteps, and −c for dead, where
ω is the goals we set.

Due to the unavailability of the global map, the agent is expected to follow the demonstration and
reconstruct the expert’s behavior to reach the goal, as illustrated in Fig. 9(a). Beyond this, some
unexpected obstacles may occur, which results in that strictly following the demonstration no longer
working, as shown in Fig. 9(b). The agent is expected to learn robust policies that can bypass
obstacles and finish the task, based on imitating the given demonstration.

For single-map scenarios, we randomly choose 90% of all demonstrations (290 demos for each map)
for training while the left is for evaluation. For multi-map imitation, we generate 240 different maps
and only select a small number of 10 training demonstrations from each map. We treat the remaining
new demonstrations to verify generalization. Besides, we also create 10 new maps separately to
verify whether the agent trained on the multi-map scenarios works.

E.2 DEMO-MANIPULATION ENVIRONMENT

We introduce details of our robot manipulation environment to verify the imitation ability of our
method across different tasks. This environment consists of three types of robotics manipulations,
namely object grasping, object stacking, and object collecting. We provide illustrations in Fig. 10,
where the workspace is a 50 cm × 70 cm area. To collect demonstrations, we instruct the robot to
execute predefined primitives in sequence. For instance, grasping a single object comprises three
primitives: 1) moving the gripper to the object; 2) closing the gripper; 3) moving the gripper to the
target. We present the Markov formalization of this environment in the following.

State space S: The robot manipulation state includes the absolute position of the robot gripper, the
absolute positions of the objects, and the relative positions of the gripper fingers.

Action space A: The agent is able to take action (∆x,∆y,∆z,∆c), each of which is continuous
value in the range of [−1, 1]. The first three dimensions indicate the desired increment in the gripper
position at the next timestep, while the last dimension controls the positions of the gripper fingers.

Transition function T : When applied with the action (∆x,∆y,∆z) at the coordinate (x, y, z), the
robot gripper moves to the new coordinate (x+∆x, y+∆y, z+∆z). If ∆c > 0, the gripper opens;
otherwise, it closes. The task is considered failed if any object falls off the desk.

20

Under review as a conference paper at ICLR 2024

(a) Without obstacle. (b) With obstacles.

Figure 9: Fig. 9(a) shows a demonstration sample on a map without obstacle, where we fix the start
position as the center of the map (colored in blue), while the agent is expected to reach the specified
goal colored in green. The agent should follow the expert trajectory to achieve the goal due to the
unavailability of the global map. Fig. 9(b) shows a demonstration sample on a map with obstacles.
Here strictly imitating the expert trajectory cannot well handle unexpected situations, e.g., the agent
is blocked by obstacles when it follows the given demonstration. Beyond pure imitation, the agent
should also explore the environment to learn robust policies.

(a) Grasping (b) Stacking (c) Collecting

Figure 10: Various tasks of robot manipulation. (a): Grasp the blocked target object (cyan). (b):
Stack the objects. (c): Collect the objects scattered over the desk together to the specified area
(yellow).

Reward function R: Similar to the demo-navigation environment, our reward function R is simple
and only indicates the end of trajectories. That is, we use c to indicate task accomplishment, −c for
failure, and 0 for all other situations. The criteria for accomplishing each task differs. In the object
grasping task, the robot needs to grasp the target object without colliding with other objects. In the
object stacking task, the robot must stack three blocks together, which are initially placed anywhere
on the workspace. Lastly, in the object collecting task, the robot needs to collect all objects scattered
over the desk and place them in a specified area.

We generate 300 demonstrations for each task, of which 60 are used for training and the remaining
240 are for testing. To verify the imitation ability of our method across multiple manipulation tasks,
we generate 100 demonstrations for each of the three tasks. We randomly select 20 demonstrations
from each task for training and leave 240 new demonstrations for the test.

E.3 PUSHER AND REACHER ENVIRONMENT

For the pusher task, the state comprises the positions and velocities of the robot’s joints (a total of
7), as well as the position of the robot tip arm and the manipulated object. The agent accomplishes
the task by taking actions that modify the rotation of each joint and drive the robot to push the object

21

Under review as a conference paper at ICLR 2024

to the specified position. The specific contents of the state space and action space are provided in
the following:

Table 4: Details of Pusher observation space.

Num Observation Min Max Name Joint Unit
0 Rotation of the panning the shoulder -Inf Inf r shoulder pan joint hinge angle (rad)
1 Rotation of the shoulder lifting joint -Inf Inf r shoulder lift joint hinge angle (rad)
2 Rotation of the shoulder rolling joint -Inf Inf r upper arm roll joint hinge angle (rad)
3 Rotation of hinge joint that flexed the elbow -Inf Inf r elbow flex joint hinge angle (rad)
4 Rotation of hinge that rolls the forearm -Inf Inf r forearm roll joint hinge angle (rad)
5 Rotation of flexing the wrist -Inf Inf r wrist flex joint hinge angle (rad)
6 Rotation of rolling the wrist -Inf Inf r wrist roll joint hinge angle (rad)
7 Rotational velocity of the panning the shoulder -Inf Inf r shoulder pan joint hinge angular velocity (rad/s)
8 Rotational velocity of the shoulder lifting joint -Inf Inf r shoulder lift joint hinge angular velocity (rad/s)
9 Rotational velocity of the shoulder rolling joint -Inf Inf r upper arm roll joint hinge angular velocity (rad/s)
10 Rotational velocity of hinge joint that flexed elbow -Inf Inf r elbow flex joint hinge angular velocity (rad/s)
11 Rotational velocity of hinge that rolls the forearm -Inf Inf r forearm roll joint hinge angular velocity (rad/s)
12 Rotational velocity of flexing the wrist -Inf Inf r wrist flex joint hinge angular velocity (rad/s)
13 Rotational velocity of rolling the wrist -Inf Inf r wrist roll joint hinge angular velocity (rad/s)
14 x-coordinate of the fingertip of the pusher -Inf Inf tips arm slide position (m)
15 y-coordinate of the fingertip of the pusher -Inf Inf tips arm slide position (m)
16 z-coordinate of the fingertip of the pusher -Inf Inf tips arm slide position (m)
17 x-coordinate of the object to be moved -Inf Inf object (obj slidex) slide position (m)
18 y-coordinate of the object to be moved -Inf Inf object (obj slidey) slide position (m)
19 z-coordinate of the object to be moved -Inf Inf object cylinder position (m)

Table 5: Details of Reacher observation space.

Num Action Control Min Control Max Name Joint Unit
0 Rotation of the panning the shoulder -2 2 r shoulder pan joint hinge torque (N m)
1 Rotation of the shoulder lifting joint -2 2 r shoulder lift joint hinge torque (N m)
2 Rotation of the shoulder rolling joint -2 2 r upper arm roll joint hinge torque (N m)
3 Rotation of hinge joint that flexed elbow -2 2 r elbow flex joint hinge torque (N m)
4 Rotation of hinge that rolls the forearm -2 2 r forearm roll joint hinge torque (N m)
5 Rotation of flexing the wrist -2 2 r wrist flex joint hinge torque (N m)
6 Rotation of rolling the wrist -2 2 r wrist roll joint hinge torque (N m)

F THE ROBUSTNESS ON THE FARAWAY STATES

1 2 3 4 5 6 7
offset range

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

su
cc

es
s r

at
e

Figure 11: Illustration of DAAC in
offset-range test. The X-axis is the off-
set range on the initial states, while the
Y-axis shows the corresponding success
rate of DAAC under this offset.

In general ItorL scenarios, the task set we faced might vi-
olate the assumptions defined in Def. 2.1, for example, the
transition function might, with some probabilities, lead
the agent to some states that are “significantly far away
from” the expert states. More specifically, in these far-
away states, we cannot trace back to the demonstrations
just by relying on the current states’ information; e.g.,
in the Maze-navigation benchmark, if the current states’
coordinations are far away from the demonstrations, the
way back to the demonstrations depends on the walls’ lo-
cation in the maps, which is unseeable to the agent, thus
the agent cannot find a unified behavior to back to the
demonstration and reach the goal. In this section, we
conducted an offset-range test in the maze benchmark to
verify the robustness of DAAC in faraway states. In par-
ticular, we use a DAAC policy trained in the setting of
multi-map navigation without obstacles and with coordi-
nates provided. When deploying the policy, we generate
100 unseen maps and add positional offsets sampled from a uniform distribution to the initial states.
We average the success rate under different ranges of offsets in Fig. 11.

In the maze environment, it’s noteworthy that an offset range of initial states larger than could
potentially make the agent be separated from the expert trajectory by a wall, which violates the
property of 1-demo imitator availability in Prop. 2.2. Correspondingly, the results show that the
policy sustains a respectable success rate within an offset of 2.4. After that, expanding the range

22

Under review as a conference paper at ICLR 2024

leads to a nearly linear decrease in success rate. The experiment demonstrated the agent’s success
in devising a well-performed policy for the scope of tasks with 1-demo imitator availability. Similar
results can also be found in other experiments in which there is no exact match between the current
and target state in these scenarios.

• In maze settings with obstacles (Fig. 25, 26, 29, and 30), we have observed the agent’s
remarkable ability to adaptively adjust its behavior when encountering obstacles.

• In robot manipulation tasks (Fig. 31-36), we present a showcase of the robotic arm’s pro-
ficiency in following a trajectory while optimizing its operational efficiency. Moreover, in
the corresponding video, which records rollouts generated by the DAAC policy, we can
observe the simultaneous activation of multiple expert states through attention mechanisms
when an exact match between the current state and the target state is lacking. The video
can be found in the supplementary material.

In conclusion, within our solution scope, i.e., the problem with 1-demo imitator availability defined
in Prop. 2.2, the imitator policy works well, even if the current states do not perfectly match the
expert states. Besides, the policy still works to some degree in faraway states. However, we argue
that without further information, assumptions, or prior knowledge, it is impossible to find a perfect
imitator policy when the agent is inevitable to reach some faraway states. We leave the imitator
learning problem in this setting as future work.

G MORE ABLATION STUDY RESULTS

- We have conducted an ablation study considering reward design in maze and complex robot ma-
nipulation tasks. In particular, for clipping term η in RItor, we set η as infinite value (DAAC-w/o
clip), the results can be found in Fig. 12 and Fig. 13. The results show that directly removing the
clipping function of η, which enhances the probabilities of ill-posedness led by the L2 distance, e.g.,
a wall obstructing the path between two states will have a small L2 distance, reduces the sample effi-
ciency of DAAC, but the asymptotic performance is still similar, which demonstrates the robustness
of DAAC to the ill-posedness of the L2 distance.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time-step ×106

0

20

40

60

80

100

DAAC
DAAC-w/o clip
DAAC-w/o ItorL reward

su
cc

es
s r

at
e

(a) Seen demonstrations.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0

20

40

60

80

DAAC
DAAC-w/o clip
DAAC-w/o ItorL reward

su
cc

es
s r

at
e

(b) New demonstrations.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0

20

40

60

80
DAAC
DAAC-w/o clip
DAAC-w/o ItorL reward

su
cc

es
s r

at
e

(c) New maps.

Figure 12: Learning curves of agents with varying reward settings in the demo-navigation bench-
mark. The task is the Multi-map imitation without obstacles and with coordinates.

H LEARNING CURVES

We list the learning curves in this section. Fig. 14, Fig. 15, and Fig. 16 show the learning curves in
eight different navigation tasks respectively. Fig. 17 shows the BC loss of TRANS-BC, which is the
mean squared error (MSE) loss between expert actions and agent actions. To ensure conciseness in
our description, we employ the following abbreviations: “SM” for Single-Map, “MM” for Multi-
Map, “Ob” for scenes with obstacles, “Non-Ob” for scenes without obstacles, “Co” for scenes with
coordinates and “Non-Co” for scenes without coordinates.

23

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 DAAC
DAAC-w/o clip
DAAC-w/o ItorL reward
DAAC using transformer

su
cc

es
s r

at
e

(a) Seen demonstrations.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
time-step ×106

0.0

0.1

0.2

0.3

0.4 DAAC
DAAC-w/o clip
DAAC-w/o ItorL reward
DAAC using transformer

su
cc

es
s r

at
e

(b) New demonstrations.

Figure 13: Learning curves of agents with varying training settings in the demo-manipulation en-
vironment. Note that the task is the Multi-task imitation which learns Grasping, Stacking, and
Collecting simultaneously.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(a) SM Non-Ob Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.2

0.4

0.6

0.8
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(b) SM Ob Co.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0 CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(c) MM Non-Ob Co.

1 2 3 4 5
time-step ×106

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(d) MM Ob Co.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0 CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(e) SM Non-Ob Non-Co

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(f) SM Ob Non-Co.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(g) MM Non-Ob Non-Co.

1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(h) MM Ob Non-Co.

Figure 14: Learning curves on demonstrations seen during the training.

24

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(a) SM Non-Ob Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(b) SM Ob Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(c) MM Non-Ob Co.

0 1 2 3 4 5
time-step ×106

0.0

0.2

0.4

0.6

0.8
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(d) MM Ob Co.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(e) SM Non-Ob Non-Co.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(f) SM Ob Non-Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(g) MM Non-Ob Non-Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5 CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(h) MM Ob Non-Co.

Figure 15: Learning curves on new demonstrations from seen maps.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(a) MM Non-Ob Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(b) MM Ob Co.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(c) MM Non-Ob Non-Co.

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

CbMRL
DAAC
DCRL
Trans-BC

su
cc

es
s r

at
e

(d) MM Ob Non-Co.

Figure 16: Learning curves on demonstrations collected from new maps.

0.0 0.2 0.4 0.6 0.8 1.0
time-step ×106

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Single-Map Coord
Multi-Map Coord
Single-Map Non-Coord
Multi-Map None-CoordBC

 lo
ss

Figure 17: BC Loss of TRANS-BC. Note that both scenes with obstacles and tasks without obstacles
use the same set of offline demonstrations, thus there are a total of four curves representing eight
tasks.

25

Under review as a conference paper at ICLR 2024

I VISUALIZATION

In Fig. 18, we give more visualizations. In these tasks, the agent knows its coordinate and is required
to imitate demonstrations collected on new maps without obstacles.

(a) Demonstration A (b) Demonstration B (c) Demonstration C (d) Demonstration D

0 5 10 15 20

expert trajectory

0

5

10

15

20

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(e) Attention pattern A

0 10 20 30 40

expert trajectory

0

5

10

15

20

25

30

35

40

ag
en

t t
ra

je
ct

or
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(f) Attention pattern B

0 5 10 15 20 25 30 35

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(g) Attention pattern C

0 5 10 15 20 25 30 35 40

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

(h) Attention pattern D

(i) Demonstration E (j) Demonstration F (k) Demonstration G (l) Demonstration H

0 10 20 30 40 50

expert trajectory

0

10

20

30

40

50

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(m) Attention pattern E

0 5 10 15 20 25

expert trajectory

0

5

10

15

20

25

30

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(n) Attention pattern F

0 5 10 15 20 25 30 35

expert trajectory

0

5

10

15

20

25

30

35

ag
en

t t
ra

je
ct

or
y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(o) Attention pattern G

0 5 10 15 20

expert trajectory

0

5

10

15

20

25

ag
en

t t
ra

je
ct

or
y

0.02

0.04

0.06

0.08

0.10

0.12

(p) Attention pattern H

Figure 18: Illustrations of attention patterns in DAAC. In Fig.(e)-(h) and Fig.(m)-(p), the vertical
axis of the attention score map corresponds to the trajectory of the agent, while the horizontal axis
represents the trajectory of the expert. The intensity of color within a row indicates the level of
attention allocated by the agent to the corresponding expert state. The imitator agent actively aligns
with expert states by leveraging the matched state for decision-making, with higher attention values
predominantly concentrated along the diagonal.

26

Under review as a conference paper at ICLR 2024

J COMPARISONS OF TRAJECTORIES OF DAAC TRAINED BY DIFFERENT
REWARDS

In Fig. 19, we provide visualized comparisons of trajectories of DAAC trained with our ItorL reward
and without. In the tasks, the agent knows its coordinate and is required to imitate demonstrations
collected on new maps without obstacles. Through random sampling of multiple tasks, we have
observed that in specific scenarios, intelligent agents without ItorL reward tend to encounter wall
collisions or deviate from the correct path, resulting in being lost. This behavior can potentially arise
from their inclination to take shortcuts as a means to expedite reaching the goal.

(a) Sample 1 (w/o ItorL
reward)

(b) Sample 2 (w/o ItorL
reward)

(c) Sample 3 (w/o ItorL re-
ward)

(d) Sample 4 (w/o ItorL
reward)

(e) Sample 1 (ItorL re-
ward)

(f) Sample 2 (ItorL re-
ward)

(g) Sample 3 (ItorL re-
ward)

(h) Sample 4 (ItorL re-
ward)

(i) Sample 5 (w/o ItorL re-
ward)

(j) Sample 6 (w/o ItorL re-
ward)

(k) Sample 7 (w/o ItorL
reward)

(l) Sample 8 (w/o ItorL re-
ward)

(m) Sample 5 (ItorL re-
ward)

(n) Sample 6 (ItorL re-
ward)

(o) Sample 7 (ItorL re-
ward)

(p) Sample 8 (ItorL re-
ward)

Figure 19: comparisons of trajectories of DAAC trained with or without the ItorL reward.

27

Under review as a conference paper at ICLR 2024

K THE DETAILS OF THE SCALING UP EXPERIMENTS

Experiments on Different Demonstration Quantity To investigate the influence of demonstra-
tion quantity on model performance, we conducted experiments with four varying quantity settings:
60, 240, 960, and 2160. The results are in Fig. 20. We observed that fewer data leads to quicker
initial learning speed and rapid performance improvement. However, a bottleneck emerges when
aiming for generalization performance. As demonstration quantity increases, the learning task be-
comes more difficult, resulting in slower initial learning. Nonetheless, the final model exhibits
notably superior performance on new demos and new maps compared to experiments conducted
with fewer data.

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

1.0

60
240
960
2160

su
cc

es
s r

at
e

(a) Seen demos

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

60
240
960
2160

su
cc

es
s r

at
e

(b) New demos

0.0 0.5 1.0 1.5 2.0
time-step ×106

0.0

0.2

0.4

0.6

0.8

60
240
960
2160

su
cc

es
s r

at
e

(c) New maps

Figure 20: Learning curves of agents with varying demonstration quantity. Note that the task is the
Multi-map imitation without obstacles and with coordinates.

Experiments on Different Model Parameters In this experiment, We focused on tuning dmodel,
nhead, Lencoder and Ldecoder for both actor and critic to construct DAAC variants with different
model parameters, where dmodel represents the desired number of features in the encoder/decoder
inputs, nhead denotes the number of heads in the multi-head attention mechanism, Lencoder rep-
resents the number of sub-encoder layers within the encoder, and Ldecoder refers to the number of
sub-decoder layers within the decoder. The details of parameters selection are in Tab. 6, and the
learning curves are in Fig. 21.

0 1 2 3 4 5
time-step ×106

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(a) Seen demos

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(b) New demos

0 1 2 3 4 5
time-step ×106

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.6M
1.9M
2.3M
2.9M
5.7M
9.3M
19.4M

su
cc

es
s r

at
e

(c) New maps

Figure 21: Learning curves of agents with varying model sizes. Note that the task is the Multi-map
imitation with obstacles and without coordinates.

28

Under review as a conference paper at ICLR 2024

Table 6: Architecture hyperparameters for DAAC variants with different model parameters.

Total Parameters Actor Critic
dmodel nheads Lencoder Ldecoder parameters dmodel nheads Lencoder Ldecoder parameters

0.6M 64 16 3 3 0.4M 64 16 2 2 0.2M
1.9M 64 32 3 6 0.6M 128 16 4 4 1.3M
2.3M 96 32 3 6 1.0M 128 16 4 4 1.3M
2.9M 128 64 3 6 1.6M 128 16 4 4 1.3M
5.7M 192 16 3 6 3.1M 192 16 4 4 2.6M
9.3M 256 16 3 6 5.1M 256 16 4 4 4.2M
19.4M 384 16 3 6 10.7M 384 16 4 4 8.7M

L COMPARISONS OF TRAJECTORIES OF DIFFERENT LEARNING PARADIGMS

The demonstration input not only tells the agent which task to accomplish but the way to accomplish
the task. To better illustrate that our DAAC method leverages information from demonstrations to
understand the task and enables more efficient and better generalization ability learning by imitating
the demonstrations, we provide visualized agent behaviors of different learning paradigms in Fig. 22.
(a) TRANS-BC attempts to mimic demonstrations but lacks the ability to generalize to states not
seen in the demonstrations, resulting in failure. (b) DCRL successfully completes the task but does
not explicitly imitate the demonstrations. (c) In contrast, our DAAC method efficiently learns the
task while imitating demonstrations. The results demonstrate the generalization ability learned by
the imitator learning than other paradigms.

(a) TRANS-BC (b) DCRL (c) DAAC

Figure 22: Visualized trajectories of different learning paradigms.

29

Under review as a conference paper at ICLR 2024

M MORE EXAMPLES OF DAAC TRAJECTORIES

M.1 DAAC TRAJECTORIES IN MAZE ENVIRONMENTS

In Fig. 23-30, we show the trajectories generated by DAAC agents in all of the tasks.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 23: Illustration of trajectories generated by DAAC agents where the agents are trained on the
single-map setting without obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 24: Illustration of trajectories generated by DAAC agents where the agents are trained on the
multi-map setting without obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 25: Illustration of trajectories generated by DAAC agents where the agents are trained on the
single-map setting with obstacles and with coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 26: Illustration of trajectories generated by DAAC agents where the agents are trained on the
multi-map setting with obstacles and with coordinates provided.

30

Under review as a conference paper at ICLR 2024

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 27: Illustration of trajectories generated by DAAC agents where the agents are trained on the
single-map setting without obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 28: Illustration of trajectories generated by DAAC agents where the agents are trained on the
multi-map setting without obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 29: Illustration of trajectories generated by DAAC agents where the agents are trained on the
single-map setting with obstacles and without coordinates provided.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 30: Illustration of trajectories generated by DAAC agents where the agents are trained on the
multi-map setting with obstacles and without coordinates provided.

31

Under review as a conference paper at ICLR 2024

M.2 DAAC TRAJECTORIES IN ROBOT MANIPULATION ENVIRONMENTS

In Fig. 31-36, we show the trajectories generated by DAAC agents in all of the tasks. In all of
the figures, the red line represents the expert demonstrations collected by sequentially executing
predefined heuristic primitives, the lighter the latter. The blue dots are event points denoting the
agent trajectory, the lighter the latter. The event points generated by our method always distribute
around the demonstration trajectories, which demonstrates that the agent actively matches expert
states for decision making. Besides, we recorded the corresponding videos in the supplementary
material.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 31: Illustration of trajectories generated by DAAC agents and corresponding demonstrations
in object-grasping tasks. The agents are trained on object-grasping tasks and tested with unseen
object-grasping demonstrations. The robot needs to grasp the target object without colliding with
other objects.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 32: (a)-(d) Robot manipulation trajectories generated by DAAC agents. The agents are
trained on object-stacking tasks and tested with unseen object-stacking demonstrations. The robot
needs to stack three initially placed objects together.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 33: Illustration of trajectories generated by DAAC agents and corresponding demonstrations
in object-collecting tasks. The agents are trained on object-collecting tasks and tested with unseen
object-collecting demonstrations. The robot needs to collect all objects scattered over the desk and
place them in the specified area (yellow).

32

Under review as a conference paper at ICLR 2024

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 34: Illustration of trajectories generated by DAAC agents trained to imitate three types of
manipulation tasks simultaneously. The agents are tested with unseen object-grasping demonstra-
tions.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 35: Illustration of trajectories generated by DAAC agents trained to imitate three types of
manipulation tasks simultaneously. The agents are tested with unseen object-stacking demonstra-
tions.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 36: Illustration of trajectories generated by DAAC agents trained to imitate three types of
manipulation tasks simultaneously. The agents are tested with unseen object-collecting demonstra-
tions.

N SOCIETAL IMPACT

This work studies a new topic called imitator learning (ItorL), which aims to derive an imitator mod-
ule that can on-the-fly reconstruct the imitation policies based on very limited expert demonstrations
for different unseen tasks, without any extra adjustment. ItorL enables imitation in many real-world
application applications where humans require performing various tasks out of the box, through very
limited demonstrations of corresponding tasks. For example, for autonomous vehicles, we would
like the vehicle to park in different parking lots directly (Ahn et al., 2022; Kümmerle et al., 2009)
by presenting a human navigation trajectory; for robot manipulation, we aim for a robot arm to per-
form a variety of tasks directly (Dance et al., 2021; Yu et al., 2019) by just giving the corresponding
correct operation demonstrations. Nonetheless, it is important to consider the ethical implications of

33

Under review as a conference paper at ICLR 2024

deploying these RL agents in real-world settings. Ensuring that these systems maintain transparency
and accountability is of paramount importance.

34

Under review as a conference paper at ICLR 2024

APPENDIX REFERENCES

Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Deep imitation learning for autonomous driving
in generic urban scenarios with enhanced safety. In International Conference on Intelligent Robots
and Systems, pp. 2884–2890, 2019.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei (Tony) Qin, Wenjie Shang, and
Jieping Ye. Offline model-based adaptable policy learning. In Advances in Neural Information
Processing Systems, pp. 8432–8443, 2021.

Christopher R. Dance, Julien Perez, and Théo Cachet. Demonstration-conditioned reinforcement
learning for few-shot imitation. In Marina Meila and Tong Zhang (eds.), International Conference
on Machine Learning, pp. 2376–2387, 2021.

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In Conference on
Robot Learning, pp. 2071–2084, 2021.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
Neural Information Processing Systems, pp. 1087–1098, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
tion learning via meta-learning. Conference on Robot Learning, pp. 357–368, 2017b.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, pp. 1514–
1523, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, pp. 20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In AAAI Conference on
Artificial Intelligence, pp. 3223–3230, 2018.

Jiayi Li, Tao Lu, Xiaoge Cao, Yinghao Cai, and Shuo Wang. Meta-imitation learning by watching
video demonstrations. In International Conference on Learning Representations, 2021.

Fan-Ming Luo, Shengyi Jiang, Yang Yu, Zongzhang Zhang, and Yi-Feng Zhang. Adapt to envi-
ronment sudden changes by learning a context sensitive policy. In AAAI Conference on Artificial
Intelligence, pp. 7637–7646, 2022.

Zhao Mandi, Fangchen Liu, Kimin Lee, and Pieter Abbeel. Towards more generalizable one-shot
visual imitation learning. In International Conference on Robotics and Automation, pp. 2434–
2444, 2022.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2019.

Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-aware prediction: Learning to model what
matters. In International Conference on Machine Learning, pp. 7207–7219, 2020.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. International
Conference on Machine Learning, pp. 663–670, 2000.

35

Under review as a conference paper at ICLR 2024

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving Rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A.
Theodorou, and Byron Boots. Agile autonomous driving using end-to-end deep imitation learn-
ing. In Robotics: Science and Systems, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real transfer
of robotic control with dynamics randomization. In International Conference on Robotics and
Automation, pp. 1–8, 2018.

Dean Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, pp. 88–97, 1991.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Robotics: Science and Systems, 2018.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, pp. 5331–5340, 2019.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics, pp. 661–668, 2010.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics, pp. 627–635, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Fan Xie, Alexander Chowdhury, M. Clara De Paolis Kaluza, Linfeng Zhao, Lawson L. S. Wong,
and Rose Yu. Deep imitation learning for bimanual robotic manipulation. In Advances in Neural
Information Processing Systems, pp. 2327–2337, 2020.

Jia-Fong Yeh, Chi-Ming Chung, Hung-Ting Su, Yi-Ting Chen, and Winston H. Hsu. Stage conscious
attention network (SCAN): A demonstration-conditioned policy for few-shot imitation. In AAAI
Conference on Artificial Intelligence, pp. 8866–8873, 2022.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. arXiv
preprint arXiv:1802.01557, 2018.

36

	Introduction
	Problem Formulation of Imitator Learning
	Imitator Learning
	Imitator Learning Based on Only One Demonstration

	Related Work
	Demo-Attention Actor-Critic for Imitator Learning
	Context-based Meta-RL Framework for Imitator Learning
	Demonstration-based Attention Architecture
	Demo-Attention Actor-Critic

	Experiment
	Benchmark for Imitator Ability in Unseen Situations
	Experiment Setup
	Out-of-the-Box Imitation Ability in Unseen Situations
	Effects of the DA Architecture and the Reward Function
	The Potential for Further Performance Improvement when Scaling Up
	Apply DAAC to Complex Tasks

	Discussion and Future Work
	 Appendix
	Demonstration Quantity Requirements for Imitator Learning
	ItorL Reward from Demonstrations
	Related Work
	Imitation Learning
	Meta-Imitation Learning
	Combination of Imitation Learning and Reinforcement Learning
	Context-based Meta Reinforcement Learning

	Implementation Details
	Achitecture Details
	Training Details

	Environment Description
	Demo-Navigation Environment
	Demo-Manipulation Environment
	Pusher and Reacher Environment

	The Robustness on the Faraway States
	More Ablation study results
	Learning Curves
	Visualization
	Comparisons of Trajectories of DAAC Trained by Different Rewards
	 The Details of the Scaling Up Experiments
	Comparisons of Trajectories of Different Learning Paradigms
	More Examples of DAAC Trajectories
	DAAC Trajectories in Maze Environments
	DAAC Trajectories in Robot Manipulation Environments

	Societal Impact

