

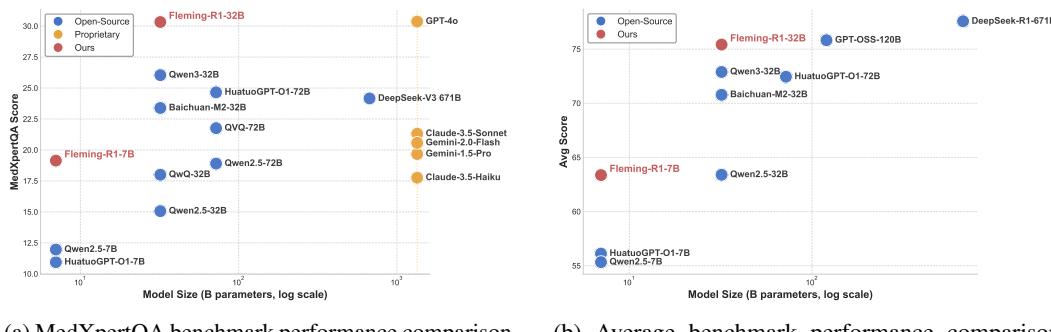
000 FLEMING-R1: TOWARD EXPERT-LEVEL MEDICAL 001 REASONING VIA REINFORCEMENT LEARNING 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 While large language models show promise in medical applications, achieving
010 expert-level clinical reasoning remains challenging due to the need for both accu-
011 rate answers and transparent reasoning processes. To address this challenge, we
012 introduce Fleming-R1, a model designed for verifiable medical reasoning through
013 three complementary innovations. First, our Reasoning-Oriented Data Strategy
014 (RODS) combines curated medical QA datasets with knowledge-graph-guided
015 synthesis to improve coverage of underrepresented diseases, drugs, and multi-hop
016 reasoning chains. Second, we employ Chain-of-Thought (CoT) cold start to dis-
017 till high-quality reasoning trajectories from teacher models, establishing robust
018 inference priors. Third, we implement a two-stage Reinforcement Learning from
019 Verifiable Rewards (RLVR) framework using Group Relative Policy Optimiza-
020 tion, which consolidates core reasoning skills while targeting persistent failure
021 modes through adaptive hard-sample mining. Across diverse medical benchmarks,
022 Fleming-R1 delivers substantial parameter-efficient improvements: the 7B variant
023 surpasses much larger baselines, while the 32B model achieves near-parity with
024 GPT-4o and consistently outperforms strong open-source alternatives. These re-
025 sults demonstrate that structured data design, reasoning-oriented initialization, and
026 verifiable reinforcement learning can advance clinical reasoning beyond simple
027 accuracy optimization. We release Fleming-R1 publicly to promote transparent,
028 reproducible, and auditable progress in medical AI, enabling safer deployment in
029 high-stakes clinical environments.
030



041 (a) MedXpertQA benchmark performance comparison
042 across different models.
043

044 (b) Average benchmark performance comparison
045 across different models.
046

047 Figure 1: Benchmark performance comparison across different models.
048

049 1 INTRODUCTION 050

051 While Large language models (LLMs) are increasingly applied to medicine, expert-level clinical
052 reasoning remains a high-complexity, high-stakes frontier Liu et al. (2025b); Singhal et al. (2023;
053 2025); Moor et al. (2023). Clinical reasoning involves constructing extended, auditable chains of
054 inference. These chains must integrate heterogeneous signals (such as history, physical exam, labs,
055 and imaging) with evolving evidence-based guidelines, and weigh risks and benefits under uncertainty
056 Joseph et al. (2025); Sun et al. (2025). Unlike general-domain tasks, success hinges on mapping
057

nuanced observations to pathophysiology and treatment principles, rather than just retrieval. A confident but incorrect answer is not merely suboptimal — it can be unsafe. Therefore, verifiability of reasoning (transparent steps that can be checked) is as central as aggregate accuracy Alufaisan et al. (2021); Coussemant et al. (2024).

Despite encouraging results of LLMs on standardized clinical benchmarks Zuo et al. (2025); Jin et al. (2021); Pal et al. (2022); Jin et al. (2019); Wang et al. (2024; 2025a); Arias-Duart et al. (2025), current systems still struggle to produce transparent and reliable reasoning processes Turpin et al. (2023). In other words, models may output correct answers but fail to produce faithful, internally consistent chains of thought or maintain guideline concordance under paraphrase or case variations Lanham et al. (2023). When accuracy is measured against outcome-linked ground truth in realistic scenarios (e.g., acute abdominal syndromes), degradations become more apparent, often accompanied by overconfidence and non-transparent trajectories. These observations suggest that simply scaling parameters or naively optimizing final-answer accuracy is insufficient for clinical readiness.

We attribute the verifiability limitations of existing works to three key factors. First, existing data formulation is dominated by static QA pairs with sparse rationale supervision and limited coverage of long-tail entities (such as rare diseases, niche drugs, and atypical presentations). Such data formulation reduces exposure to multi-hop reasoning and trade-off analysis. Second, optimization objectives primarily reward final correctness, offering weak signals about where or why reasoning fails (such as dosing errors, unjustified diagnostic leaps, or guideline deviations). Third, curriculum and initialization lack structured guidance at cold start, producing fragile schemas that collapse on out-of-distribution or compositionally complex cases.

In this paper, we propose Fleming-R1, a model for expert-level medical reasoning that is verifiable, scalable, and parameter-efficient. Fleming-R1 comprises three mutually reinforcing components that align data design, reasoning capacity initialization, and reinforcement learning with checkable signals:

1. **Reasoning-Oriented Data Strategy (RODS).** We balance curated public medical QA corpora with knowledge-graph – guided synthesis from a Wikipedia-derived medical graph (over 100,000 entities) encoding relations among diseases, symptoms, laboratory tests, imaging findings, drugs, mechanisms, and contraindications. RODS explicitly emphasizes underrepresented diseases and drugs, and constructs reasoning-intensive items by sampling multi-hop paths (e.g., symptom → pathophysiology → test → treatment). Distractors are procedurally generated to be plausible-but-wrong via relation-preserving perturbations (e.g., competing diagnoses that share core features but diverge on discriminative labs), compelling models to articulate disambiguating evidence. The synthetic set is balanced against curated data to preserve realism while expanding long-tail coverage and compositional depth.
2. **Chain-of-Thought (CoT) cold-start.** We establish foundational reasoning policies by distilling reasoning trajectories from high-capacity teachers using pass@k-based selection with iterative refinement (backtracking, path exploration, and self-correction). Candidate trajectories are filtered by verifiable signals (consistency of intermediate calculations, unit correctness, alignment with guideline snippets) and by brevity/locality criteria (explicit statements of assumptions and uncertainties).
3. **Two-stage Reinforcement Learning from Verifiable Rewards (RLVR).** Using Group Relative Policy Optimization (Shao et al., 2024), Stage 1 consolidates core skills on moderate-difficulty cases with verifiable rewards: structured answer parsing, format checking. Stage 2 targets persistent failure modes via adaptive hard-sample mining to enhance reasoning capabilities when confronting challenging problems.

This paper makes the following contributions:

- We present Fleming-R1, a model that integrates RODS, CoT cold-start, and two-stage RLVR to address the problem of models generating final answers without providing a coherent reasoning process, thereby significantly enhancing its effectiveness in handling complex medical problems.
- We demonstrate strong parameter efficiency and scalability: the 7B-parameter variant surpasses 72B-class baselines on key medical benchmarks, while the 32B-parameter variant

108 achieves parity with closed-source state-of-the-art models (e.g., GPT-4o) across multiple
 109 benchmarks—together validating that our training regimen maximizes reasoning perfor-
 110 mance under tight parameter budgets.

111

- 112 • We release the model to facilitate reproducibility, compliance auditing, and collaborative
 113 advancement of medical AI research.

114

115 2 RELATED WORK

116

117 The deployment of Large Language Models (LLMs) in professional domains has advanced from
 118 foundational research to overcoming practical barriers Raza et al. (2025); Wang & Zhang (2024);
 119 Wang et al. (2025b); Li et al. (2024). Research focuses on three main directions: injecting domain-
 120 specific knowledge, adapting general reasoning, and optimizing decision-making with reinforcement
 121 learning. The medical field is a key area for these applications, where the robustness and verifiability
 122 of clinical reasoning are paramount. Our work addresses this core challenge.

123 Early medical LLMs were enhanced with specialized knowledge through techniques like supervised
 124 fine-tuning with medical knowledge graphs Kraljevic et al. (2021); Wang et al. (2023a). However,
 125 these models struggle with complex, multi-step clinical reasoning and often exhibit a disconnect
 126 between their knowledge reserves and practical application, a phenomenon described as "answer
 127 without justification" Aljohani et al. (2025). This gap is evident as LLMs still underperform compared
 128 to human clinicians in diagnostic tasks Hager et al. (2024), indicating that merely increasing model
 129 or data scale is insufficient. The primary challenge lies in embedding rigorous, verifiable medical
 130 reasoning processes.

131 To improve reasoning, general techniques like Chain-of-Thought (CoT) Wei et al. (2022); Kojima
 132 et al. (2022); Wang et al. (2023b) have been adapted for medicine Liu et al. (2024). Works such as
 133 HuatuoGPT-O1 have shown that explicit reasoning paths can improve performance on medical tasks
 134 Chen et al. (2025); Nori et al. (2023). Nonetheless, this approach faces significant hurdles, including
 135 the high cost of creating expert-verified medical CoT data and the tendency for generic reasoning
 136 paths to neglect the specific logical paradigms of clinical decision-making.

137 Reinforcement Learning (RL) offers another avenue, with a trend shifting from outcome-oriented
 138 (RLHF) Ouyang et al. (2022) to process-oriented optimization Liu et al. (2025a); Lai et al. (2025);
 139 Zhang et al. (2025). Recent innovations include dynamic verification systems with patient simulators
 140 to provide feedback, as seen in Baichuan-M2 Dou et al. (2025). A key limitation is that reward
 141 signals may not adequately target and correct logical errors within the reasoning chain. Furthermore,
 142 while various RL algorithms like PPO Schulman et al. (2017) and GRPO Shao et al. (2024) are being
 143 explored Chen et al. (2025); Lai et al. (2025); Shao et al. (2024), developing effective curriculum
 144 learning strategies to guide models through complex reasoning challenges remains an open area of
 145 research.

146

147 3 METHOD

148

149 As shown in Figure 2, the training pipeline of Fleming-R1 consists of three core stages: reasoning-
 150 oriented data strategy, reasoning capability cold start, and complex reasoning enhancement via
 151 reinforcement learning.

152

153

154 3.1 REASONING-ORIENTED DATA STRATEGY

155

156

157

158

159

160

161

To train a robust and reliable medical reasoning model, our multi-source data strategy integrates
 diverse data sources, filtering mechanisms, and synthetic data generation techniques. The data
 pipeline consists of three core components: (1) curation of diverse public medical question-answering
 datasets, (2) construction of large-scale synthetic data via automated knowledge discovery and
 topological sampling from a Wikipedia-derived medical knowledge graph, and (3) multi-stage data
 refinement including format validation, label correction, and difficulty-based stratification. This
 multi-source approach ensures comprehensive coverage of medical knowledge from both curated
 datasets and dynamically generated synthetic data.

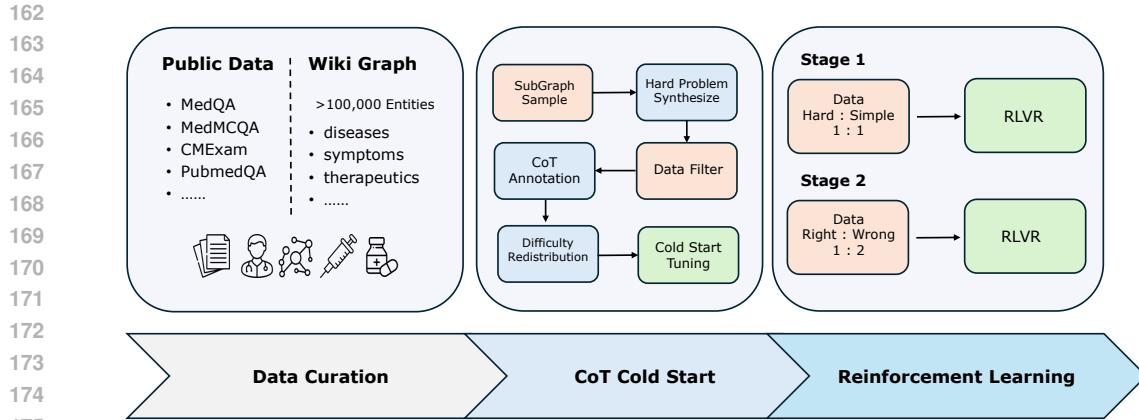


Figure 2: The overall training pipeline of Fleming-R1. This framework integrates a multi-source data strategy, reasoning capability cold start, and two-stage reinforcement learning with curriculum learning and GRPO for stable gains.

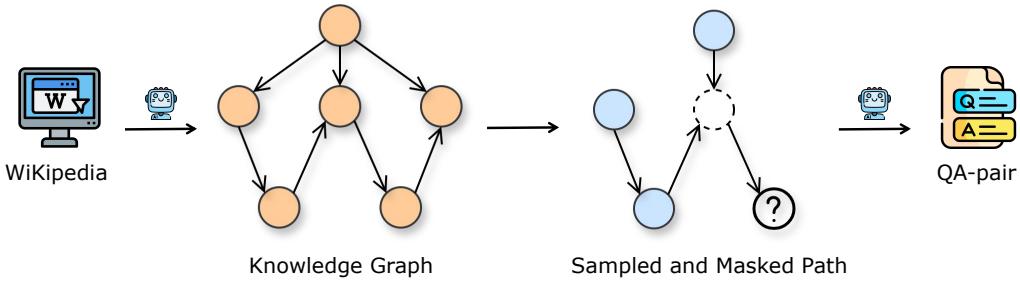


Figure 3: The pipeline for synthetic data generation. An autonomous agent discovers medical knowledge from Wikipedia to construct a knowledge graph. Subgraphs are then extracted via topological sampling and masked to create complex reasoning questions.

We begin by aggregating high-quality public medical QA datasets, including MedQA Jin et al. (2021), MedMCQA Pal et al. (2022), CMExam Liu et al. (2023), and PubMedQA Jin et al. (2019). These datasets provide a solid foundation of clinically relevant questions spanning a broad spectrum of medical domains, with explicit coverage across a comprehensive spectrum of medical domains—including diseases, symptoms, anatomy, physiology, diagnostics, therapeutics, drugs, and pathology—etc., ensuring comprehensive representation of medical knowledge essential for robust clinical reasoning. The MedQA and MedMCQA datasets offer challenging multiple-choice questions derived from medical licensing exams, providing a rigorous benchmark for factual knowledge and diagnostic reasoning. CMExam, a comprehensive Chinese medical exam dataset, ensures our model’s capability extends to non-English medical contexts and diverse healthcare systems. PubMedQA, which contains questions derived from biomedical research abstracts, introduces a layer of complexity by requiring the model to understand and synthesize information from scientific literature, a crucial skill for evidence-based medicine.

To significantly expand the scope and depth of training data, we developed an autonomous knowledge discovery agent that systematically navigates Wikipedia to extract medical entities and their interrelations, constructing a large-scale medical knowledge graph comprising over 100,000 entities. The pipeline for this synthetic data generation is illustrated in Figure 3. This knowledge graph captures accurate, up-to-date, and verifiable medical information directly from a trusted source, mitigating the risk of hallucination during training. The agent performs entity linking and relation extraction to build a structured representation of medical knowledge, connecting concepts such as diseases, symptoms,

treatments, and anatomical structures. From this graph, we employ a topological sampling method to extract subgraphs representing coherent medical concepts or clinical scenarios. A key aspect of our sampling strategy is the deliberate focus on less common diseases and drugs. By prioritizing these underrepresented entities, we generate a higher proportion of challenging questions that require specialized knowledge and complex reasoning, thereby directly enhancing the model’s ability to handle rare and difficult cases. By randomly masking portions of these subgraphs, we generate complex reasoning questions that challenge the model’s ability to perform inference under partial information—a critical skill in real-world clinical decision-making. For instance, a question might present a patient’s symptoms and lab results (the observed inputs) and ask for a diagnosis (the masked label), requiring the LLM to synthesize the evidence, weigh multiple hypotheses, and select the most appropriate diagnosis. This synthetic data generation process ensures both factual accuracy and pedagogical value, enabling the model to learn robust reasoning patterns grounded in real medical knowledge. It also allows us to create a vast number of unique training instances, particularly for rare conditions or complex interactions that are underrepresented in public datasets.

All collected and generated data undergo a multi-phase filtering and preparation pipeline. First, format-based filtering removes instances with structural anomalies such as duplicate answer options, malformed inputs, or encoding artifacts. Second, we implement a label accuracy verification step using a large language model as a validator. Specifically, any instance that fails to be correctly answered by a state-of-the-art LLM (e.g., GPT-4) across five independent trials is flagged for manual review to determine whether the labeling is incorrect. This step acts as a robust quality control mechanism, filtering out any erroneous or ambiguous data that could mislead the model. Additionally, sensitive information is systematically anonymized during preprocessing to ensure patient privacy and data safety. The final training dataset is constructed through deliberate data mixing, balancing the proportion of public and synthetic data to optimize model performance across knowledge breadth and reasoning depth. This mixing strategy is carefully tuned to prevent the model from overfitting to the patterns in synthetic data while still leveraging its benefits for enhancing reasoning capabilities.

Finally, we perform difficulty-level annotation using a large language model to classify each question into one of three tiers: *Easy*, *Moderate*, or *Difficult*. This classification is based on the cognitive and domain expertise demands of the question: *Easy* questions assess basic medical knowledge commonly known among practitioners; *Moderate* questions require detailed medical understanding or intermediate clinical reasoning; and *Difficult* questions demand advanced or specialized knowledge, complex multi-step inference, or familiarity with rare conditions. The difficulty-based bucketing strategy is integral to curriculum learning, enabling staged training from foundational concepts to complex diagnostic challenges, and supports targeted evaluation across different levels of complexity. This allows us to first stabilize the model on fundamental knowledge before progressively introducing more challenging problems, leading to a more robust and generalizable model.

3.2 REASONING CAPABILITY COLD START

To establish a robust foundation for advanced reasoning, we introduce a targeted cold start phase that directly imbues the base model with sophisticated reasoning behaviors. Rather than treating supervised fine-tuning as a conventional knowledge transfer step, we reframe it as a strategic cold start of reasoning patterns. Our approach centers on distilling expert-level reasoning trajectories from a high-capacity teacher model (e.g., GPT-OSS-120B) into the student model through a curated dataset of complex medical problems. For each query, we provide the base model with the question and its ground-truth answer, prompting the teacher model to generate a concise, logically structured Chain-of-Thought (CoT) that bridges the two. This ensures the reasoning is both accurate and pedagogically effective, focusing on essential inferential steps while avoiding extraneous detail.

To elevate the quality of reasoning further, we implement an iterative refinement protocol for the most challenging cases. The teacher model first generates an initial CoT, which is then evaluated against the ground truth. If the reasoning is incomplete or flawed, we initiate a refinement loop where the model revises its output using advanced strategies: (1) **Backtracking** to re-examine earlier assumptions, (2) **Path Exploration** to generate alternative hypotheses, and (3) **Self-Correction** to identify and fix logical errors. This meta-cognitive process produces final reasoning trajectories that reflect deep, reflective thinking with built-in error correction. By training on these high-quality, self-validated reasoning paths, the model internalizes the practice of “thinking before answering,” a hallmark of expert clinicians. This cold start phase is not merely about learning facts but about

270 acquiring a robust reasoning framework, preparing the model for the subsequent stage of complex
 271 reasoning enhancement through reinforcement learning.
 272

273 **3.3 COMPLEX REASONING ENHANCEMENT VIA REINFORCEMENT LEARNING**
 274

275 Building upon the reasoning foundation established during the cold start, we introduce a reinforcement
 276 learning (RL) phase designed to amplify the model’s complex reasoning capabilities. This stage
 277 moves beyond simple accuracy optimization, focusing instead on cultivating deep, resilient reasoning
 278 patterns through a dynamically adaptive training framework.
 279

280 To refine the policy π_θ , we employ Group Relative Policy Optimization (GRPO). This algorithm
 281 updates the policy by rewarding outputs that are better than the average of other candidate outputs
 282 generated for the same input. The objective is to minimize the following loss function:
 283

$$\mathcal{L}_{\text{GRPO}} = -\mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^k \sim \pi_\theta(\cdot|x)} \left[\frac{1}{k} \sum_{i=1}^k \log \pi_\theta(y_i|x) \cdot A(x, y_i) \right] \quad (1)$$

287 The advantage function $A(x, y_i)$ is what distinguishes GRPO. For each input x , we first sample
 288 a group of k candidate outputs, $\{y_1, y_2, \dots, y_k\}$, from the current policy π_θ . The advantage for a
 289 specific candidate y_i is then computed relative to the average performance of this group:
 290

$$A(x, y_i) = r(x, y_i) - \bar{r}_{G(x)} \quad (2)$$

292 Here, $r(x, y_i)$ is the total reward for the trajectory y_i . To mitigate the risk of reward hacking,
 293 our reward scheme is deliberately restricted to two criteria: correctness of the final answer and
 294 adherence to the required reasoning format. We deliberately exclude all other potential confounding
 295 factors—e.g., response length—from influencing the reward signal. The term $\bar{r}_{G(x)}$ is the group-level
 296 baseline, which is the average reward across all k sampled candidates for the input x :
 297

$$\bar{r}_{G(x)} = \frac{1}{k} \sum_{j=1}^k r(x, y_j) \quad (3)$$

301 By normalizing rewards within a group of contextually similar outputs, this baseline significantly
 302 reduces the variance of the gradient updates. This approach provides a more stable training signal and
 303 effectively encourages the model to discern and favor superior reasoning paths over other plausible
 304 alternatives.
 305

306 Our RL framework follows a two-phase curriculum design. The first phase emphasizes the consol-
 307 idation of fundamental reasoning skills through a balanced blend of Easy and Moderate difficulty
 308 questions. This promotes stable policy updates and steady learning progress. Once the model’s per-
 309 formance plateaus—signaled by the emergence of reward sparsity—we transition to the second phase,
 310 which focuses on complex reasoning enhancement. Here, we introduce an adaptive hard sample
 311 mining strategy: the model is evaluated across the full dataset, and its repeated failures—particularly
 312 on Difficult questions requiring multi-step inference or specialized knowledge—are identified as
 313 high-priority training samples.
 314

315 To address reward sparsity as the model improves, the second stage adopts an iterative curriculum
 316 learning approach that continuously refines the training distribution to target the model’s current
 317 weaknesses. We use the model from the previous phase to detect reasoning errors and dynamically
 318 adjust the difficulty mix. Furthermore, we increase the number of rollouts during on-policy training
 319 to encourage broader exploration. This approach enables the acquisition of more sophisticated and
 320 robust reasoning strategies, leading to strong performance on challenging medical reasoning tasks.
 321

322 **4 EXPERIMENTS**
 323

324 This section presents the evaluation of our medical language model, detailing the benchmarks used,
 325 baseline models for comparison, and the experimental results.
 326

324 Table 1: Main results on medical benchmarks. Our model sets new state-of-the-art performance on
 325 both 7B and 32B scales.

Model	CareQA	JMED	Medbullets	MedMCQA	MedQA	MedXpertQA	PubMedQA	MMLU-Pro		Avg.
	> 100B		10B-100B		< 10B		Biology	Health		
DeepSeek-R1-671B	93.68	66.50	79.87	80.40	92.93	37.59	76.00	90.24	80.93	77.57
GPT-OSS-120B	91.25	64.70	81.54	75.09	90.97	34.73	78.20	89.96	75.92	75.82
Fleming-R1-32B	90.41	68.70	76.51	74.52	89.32	30.33	80.40	90.93	77.63	75.42
Qwen3-32B	88.29	69.30	71.81	72.51	86.96	26.04	77.00	88.56	75.55	72.89
HuatuoGPT-O1-72B	87.69	61.70	72.48	76.02	88.30	24.65	79.80	86.61	74.82	72.45
Baichuan-M2-32B	86.05	64.00	70.81	69.81	88.22	23.39	75.20	83.96	75.55	70.78
GPT-OSS-20B	87.08	60.40	71.48	68.78	85.55	26.45	77.40	85.50	72.00	70.51
Qwen2.5-32B	81.55	66.50	48.99	64.50	71.56	13.63	73.60	82.01	68.22	63.40
Fleming-R1-7B	77.28	59.60	57.05	64.16	75.10	19.14	78.60	74.76	64.67	63.37
HuatuoGPT-O1-7B	72.00	52.70	41.61	62.11	66.30	10.94	64.46	74.34	60.51	56.12
Qwen2.5-7B	70.56	59.20	42.95	55.89	59.86	11.96	74.00	72.38	52.08	55.43

339 4.1 EVALUATION SETTINGS

341 Our benchmarks and baselines are detailed in Appendix B and C.

342 We selected Qwen2.5-7B (Team, 2024) as the base model for Fleming-R1-7B, and Qwen3-32B
 343 (Yang et al., 2025) as the base model for Fleming-R1-32B. The Fleming-R1-7B model underwent a
 344 full training process including CoT cold-start and RLVR training. In contrast, since Qwen3 already
 345 possesses substantial reasoning capabilities, the Fleming-R1-32B model only received RLVR training.

347 4.2 EXPERIMENTAL RESULTS

349 We evaluate on nine medical benchmarks. Table 1 reports per-task accuracy and the macro average
 350 (“Avg.”).

352 **Main results by model size.** At the < 10B scale, Fleming-R1-7B attains the best average (63.37%),
 353 outperforming HuatuoGPT-O1-7B (56.12%) and Qwen2.5-7B (55.43%) by +7.25 and +7.94 per-
 354 centage points (pp), respectively. It ranks first on all reported tasks within this size class (e.g., CareQA
 355 77.28%, MedMCQA 64.16%, MedQA 75.10%, PubMedQA 78.60%, MedXpertQA 19.14%). Not-
 356 ably, despite being 7B, it surpasses the 32B Qwen2.5 model on several benchmarks (e.g., MedBullets,
 357 MedQA, MedXpertQA, PubMedQA), indicating strong parameter efficiency.

358 Within 10B–100B, Fleming-R1-32B achieves the highest average (75.42%), ahead of Qwen3-32B
 359 (72.89%), HuatuoGPT-O1-72B (72.45%), Baichuan-M2-32B (70.78%), and GPT-OSS-20B (70.51%)
 360 by +2.53, +2.97, +4.64, and +4.91 pp, respectively. It leads on 7/9 tasks at this scale—CareQA
 361 (90.41%), MedBullets (76.51%), MedQA (89.32%), MedXpertQA (30.33%), PubMedQA (80.40%),
 362 and both MMLU-Pro subsets (Biology 90.93%, Health 77.63%)—while remaining close on the two
 363 remaining tasks (JMED 68.70% vs. 69.30% for Qwen3-32B; MedMCQA 74.52% vs. 76.02% for
 364 HuatuoGPT-O1-72B).

365 **Against larger models.** Although trained at 32B, Fleming-R1 approaches the > 100B tier. Its
 366 average (75.42%) is within 2.15 pp of DeepSeek-R1-671B (77.57%) and within 0.40 pp of GPT-
 367 OSS-120B (75.82%). Moreover, Fleming-R1-32B surpasses GPT-OSS-120B on 4/9 tasks, including
 368 JMED (68.70% vs. 64.70%), PubMedQA (80.40% vs. 78.20%), and both MMLU-Pro subsets
 369 (Biology 90.93% vs. 89.96%; Health 77.63% vs. 75.92%). These head-to-head results highlight
 370 strong generalization and reasoning capabilities relative to substantially larger systems.

372 4.3 ABLATION ANALYSIS

374 Table 2 disentangles the contribution of each training stage for Fleming-R1 at 7B and 32B.

376 **7B.** Starting from the Non-Inference baseline (Avg 55.4%), adding the CoT cold start yields a clear
 377 gain to 58.5% (+3.1 pp), indicating that explicit early-stage reasoning scaffolds benefit downstream
 378 medical QA. Introducing RLVR (Stage 1) further lifts performance to 61.2% (+5.8 pp over Base). Our

378 Table 2: Ablation of training stages for Fleming-R1 at 7B and 32B. Numbers are accuracy (%). Δ Avg
 379 is the absolute gain over the corresponding Base within the same size. Best results per size in **bold**.
 380

Model Variant Size Variant	CareQA	JMED	Medbullets	MedMCQA	MedQA	MedXpertQA	PubMedQA	MMLU-Pro		Avg.	Δ Avg
								Biology	Health		
7B	Base	70.6	59.2	43.0	55.9	59.9	12.0	74.0	72.4	52.1	55.4 +0.0
	+COT Cold Start	72.2	54.4	52.7	58.5	67.2	16.1	78.6	69.9	57.0	58.5 +3.1
	+RL Stage 1	75.9	59.6	53.7	61.5	69.4	17.2	77.4	74.8	61.3	61.2 +5.8
32B	+RL Stage 2	77.3	59.6	57.1	64.2	75.1	19.1	78.6	74.8	64.7	63.4 +7.9
	Base	88.3	69.3	71.8	72.5	87.0	26.0	77.0	88.6	75.6	72.9 +0.0
	+RL Stage 1	90.0	70.1	73.5	74.0	88.4	27.7	78.8	91.2	76.9	74.5 +1.6
	+RL Stage 2	90.4	68.7	76.5	74.5	89.3	30.3	80.4	90.9	77.6	75.4 +2.5

388
 389 full two-stage regimen—which couples RLVR with curriculum learning and adaptive hard-sample
 390 mining—delivers the best 7B result at 63.4% (+7.9 pp). Improvements are broad-based rather than
 391 benchmark-specific: e.g., MedQA +15.2 pp (59.9 \rightarrow 75.1), MedBullets +14.1 pp (43.0 \rightarrow 57.1),
 392 MedMCQA +8.3 pp (55.9 \rightarrow 64.2), MedXpertQA +7.1 pp (12.0 \rightarrow 19.1), and MMLU-Pro (Health)
 393 +12.6 pp (52.1 \rightarrow 64.7). These trends suggest that Stage 2 effectively targets persistent failure modes
 394 and consolidates clinical reasoning under distributional stress.
 395

396
 397 **32B.** Given the stronger innate reasoning of the 32B model, we omit CoT cold start and focus
 398 on RLVR. The Base reaches 72.9%, RL Stage 1 improves to 74.5% (+1.6 pp), and our full two-
 399 stage schedule attains 75.4% (+2.5 pp). The largest per-task gains arise on MedBullets (+4.7 pp),
 400 MedXpertQA (+4.3 pp), PubMedQA (+3.4 pp), and MedQA (+2.3 pp), alongside steady advances on
 401 MMLU-Pro Biology/Health (+2.3/+2.0 pp). While JMED exhibits a minor fluctuation (−0.6 pp), the
 402 overall average increases monotonically across RL stages, indicating that targeted optimization on
 403 hard cases sharpens the model’s already-strong reasoning.
 404

405 **Ablation Summary.** Across both 7B and 32B settings, the two-stage RLVR consistently improves
 406 accuracy while scaling with model capacity. At 7B, it yields a +7.9 pp gain over the Base (Avg
 407 55.4 \rightarrow 63.4), with broad improvements on MedQA (+15.2 pp), MedBullets (+14.1 pp), MedMCQA
 408 (+8.3 pp), MedXpertQA (+7.1 pp), and MMLU-Pro (Health) (+12.6 pp). At 32B, it adds +2.5 pp
 409 over the Base (72.9 \rightarrow 75.4), with notable gains on MedBullets (+4.7 pp), MedXpertQA (+4.3 pp),
 410 PubMedQA (+3.4 pp), and steady advances on MMLU-Pro Biology/Health (+2.3/+2.0 pp), despite a
 411 minor dip on JMED (−0.6 pp). These results support our design: establish foundational reasoning
 412 early and then apply curriculum-guided RL on hard cases to eliminate residual errors and strengthen
 413 clinical reasoning robustness.
 414

4.4 ANALYSIS OF REASONING CAPABILITIES

415
 416 We evaluate clinical reasoning on MedXpertQA, a rigorously curated expert-level medical benchmark.
 417 Compared with prior medical QA suites, MedXpertQA increases difficulty via specialty-board style
 418 items, rich clinical contexts (e.g., patient records and exam results), leakage mitigation through data
 419 synthesis, and multi-round expert review, thereby stressing multi-hop, verifiable reasoning rather
 420 than shallow pattern matching. Figure 4 and Figure 1 summarizes our results (“*” from our runs; “+”
 421 from the official leaderboard).

422
 423 **7B scale.** Fleming-R1-7B attains 19.14% on MedXpertQA, substantially ahead of comparable 7B
 424 baselines (e.g., Qwen2.5-7B-Instruct 11.96%), and even surpasses some much larger general models
 425 (e.g., Qwen2.5-72B 18.90%). This highlights the parameter efficiency of our training recipe—CoT
 426 cold start plus two-stage RLVR—under expert-level clinical difficulty.
 427

428
 429 **32B scale.** Fleming-R1-32B reaches 30.33%, achieving near parity with GPT-4o at 30.37% (ab-
 430 solute gap **0.04** points; \approx 0.13% relative) while remaining fully open-source. Among \leq 32B open
 431 models, it establishes a new strong baseline (e.g., Qwen3-32B 26.04%, Baichuan-M2-32B 23.39%),
 432 demonstrating that our approach closes most of the remaining gap to leading closed-source systems
 433 on complex medical reasoning.
 434

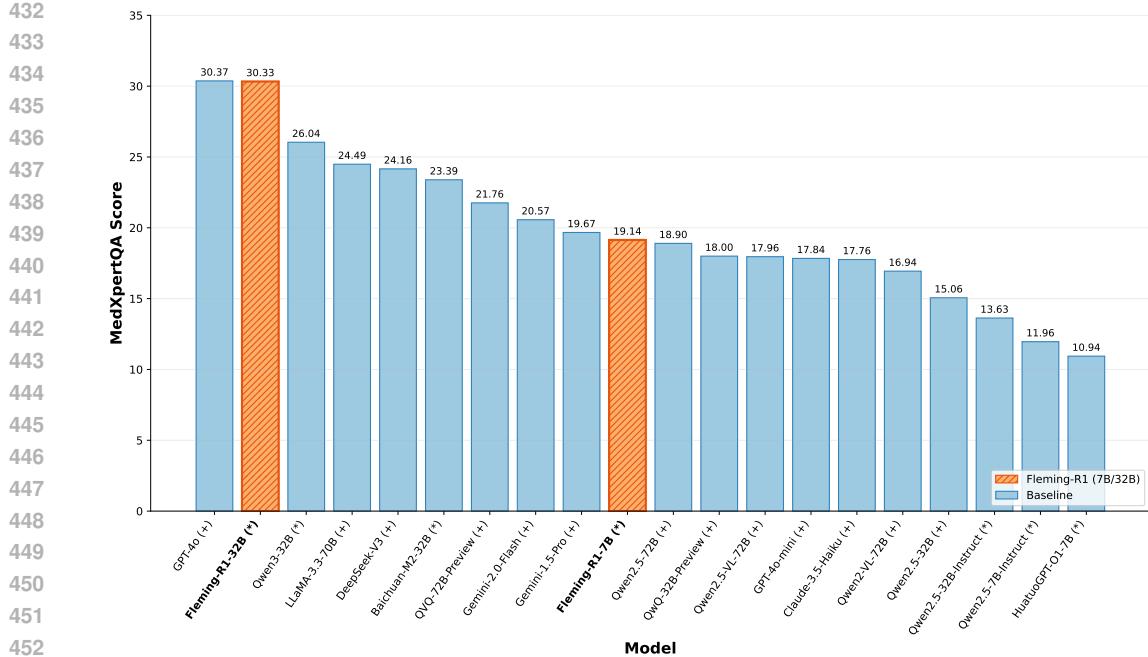


Figure 4: Comparison on MedXpertQA across models. “**” indicates results from our runs; “+” from the official leaderboard. Fleming-R1 achieves near-GPT-4o performance at 32B and leads among 7B models, underscoring parameter efficiency and expert-level clinical reasoning under a high-difficulty benchmark.

Discussion. Taken together, these results on MedXpertQA—a benchmark expressly designed to assess expert medical reasoning—indicate that our framework does more than memorize facts: the CoT cold start builds multi-source reasoning priors, and the curriculum-driven two-stage RLVR (with adaptive hard-sample mining) systematically attacks persistent failure modes. The outcome is a scalable, parameter-efficient improvement in clinical reasoning, from 7B (strong gains over peers) to 32B (GPT-4o-level performance) within an open-source paradigm.

5 CONCLUSION

We present Fleming-R1, a model for expert-level medical reasoning that targets core limitations of current LLMs in clinical settings. Our training framework combines three complementary components: (i) a reasoning-oriented data strategy, (ii) a Chain-of-Thought (CoT) cold start that lays a foundation for structured inference, and (iii) a two-stage RLVR regimen with curriculum learning and GRPO to deliver stable gains in correctness and consistency.

Empirically, Fleming-R1 achieves strong, scale-consistent improvements on expert-level evaluation. On MedXpertQA—a challenging benchmark spanning 4,460 items across 17 specialties and 11 body systems—our 7B model attains state-of-the-art performance among comparable models and even surpasses larger systems, evidencing substantial parameter efficiency. The 32B model reaches 30.33%, essentially matching GPT-4o (30.37%) while exceeding open baselines, and delivers competitive results across a comprehensive medical suite. These outcomes validate our design: establish broad, structured reasoning priors early, then refine them via verifiable, curriculum-guided RL to reduce persistent error modes.

We release our model as an open resource to support transparent, reproducible, and auditable research in clinical AI. In addition to helping advance medical reasoning capabilities, Fleming-R1 aims to facilitate the verification of model behavior, support compliance auditing, and promote safer deployment in high-stakes medical settings.

ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics and confirm that our work adheres to its principles. Our research does not involve human subjects or personally identifiable information. The datasets we used are publicly available, and we strictly followed their licenses and usage policies. We have carefully considered potential risks of privacy leakage, bias, or unfairness. We believe our findings contribute positively to the research community without foreseeable harmful applications.

REPRODUCIBILITY STATEMENT

We are firmly committed to ensuring the reproducibility of our research. To this end, we have provided a comprehensive description of our methodology in Section 3 and a thorough account of our experimental configurations and settings in Section 4, Appendix B and C. Furthermore, to facilitate the verification of our results and to encourage future research in this area, we will make our models publicly available upon the publication of this work.

REFERENCES

Manar Aljohani, Jun Hou, Sindhura Kommu, and Xuan Wang. A comprehensive survey on the trustworthiness of large language models in healthcare. *arXiv preprint arXiv:2502.15871*, 2025.

Yasmeen Alufaisan, Laura R Marusich, Jonathan Z Bakdash, Yan Zhou, and Murat Kantarcioglu. Does explainable artificial intelligence improve human decision-making? In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 6618–6626, 2021.

Anna Arias-Duart, Pablo Agustin Martin-Torres, Daniel Hinjos, Pablo Bernabeu-Perez, Lucia Urce-ley Ganzabal, Marta Gonzalez Mallo, Ashwin Kumar Gururajan, Enrique Lopez-Cuena, Sergio Alvarez-Napagao, and Dario Garcia-Gasulla. Automatic evaluation of healthcare LLMs beyond question-answering. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)*, pp. 108–130, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-190-2. doi: 10.18653/v1/2025.naacl-short.10. URL <https://aclanthology.org/2025.naacl-short.10/>.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, and Benyou Wang. Towards medical complex reasoning with LLMs through medical verifiable problems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 14552–14573, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.751. URL <https://aclanthology.org/2025.findings-acl.751/>.

Kristof Coussement, Mohammad Zoynul Abedin, Mathias Kraus, Sebastián Maldonado, and Kazim Topuz. Explainable ai for enhanced decision-making. *Decision Support Systems*, 184:114276, 2024. ISSN 0167-9236. doi: <https://doi.org/10.1016/j.dss.2024.114276>. URL <https://www.sciencedirect.com/science/article/pii/S016792362400109X>.

Chengfeng Dou, Chong Liu, Fan Yang, Fei Li, Jiyuan Jia, Mingyang Chen, Qiang Ju, Shuai Wang, Shunya Dang, Tianpeng Li, et al. Baichuan-m2: Scaling medical capability with large verifier system. *arXiv preprint arXiv:2509.02208*, 2025.

Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

Paul Hager, Friederike Jungmann, Robbie Holland, Kunal Bhagat, Inga Hubrecht, Manuel Knauer, Jakob Vielhauer, Marcus Makowski, Rickmer Braren, Georgios Kaassis, et al. Evaluation and mitigation of the limitations of large language models in clinical decision-making. *Nature medicine*, 30(9):2613–2622, 2024.

540 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
 541 disease does this patient have? a large-scale open domain question answering dataset from medical
 542 exams. *Applied Sciences*, 11(14):6421, 2021.

543

544 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset
 545 for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
 546 Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 547 Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
 548 IJCNLP)*, pp. 2567–2577, Hong Kong, China, November 2019. Association for Computational Lin-
 549 guistics. doi: 10.18653/v1/D19-1259. URL <https://aclanthology.org/D19-1259/>.

550 Girish Joseph, Neena Bhatti, Rithik Mittal, and Arun Bhatti. Current application and future prospects
 551 of artificial intelligence in healthcare and medical education: A review of literature. *Cureus*, 17(1):
 552 e77313, jan 2025. doi: 10.7759/cureus.77313.

553

554 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 555 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 556 22199–22213, 2022.

557 Zeljko Kraljevic, Anthony Shek, Daniel Bean, Rebecca Bendayan, James Teo, and Richard Dobson.
 558 Medgpt: Medical concept prediction from clinical narratives. *arXiv preprint arXiv:2107.03134*,
 559 2021.

560

561 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning
 562 for generalizable medical reasoning in vision-language models. *arXiv preprint arXiv:2503.13939*,
 563 2025.

564 Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez,
 565 Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
 566 chain-of-thought reasoning. *arXiv preprint arXiv:2307.13702*, 2023.

567

568 Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana Sitaram, and Xing Xie. Culturellm: Incorporat-
 569 ing cultural differences into large language models. *Advances in Neural Information Processing
 570 Systems*, 37:84799–84838, 2024.

571 Che Liu, Haozhe Wang, Jiazen Pan, Zhongwei Wan, Yong Dai, Fangzhen Lin, Wenjia Bai, Daniel
 572 Rueckert, and Rossella Arcucci. Beyond distillation: Pushing the limits of medical llm reasoning
 573 with minimalist rule-based rl. *arXiv preprint arXiv:2505.17952*, 2025a.

574

575 Fenglin Liu, Hongjian Zhou, Boyang Gu, Xinyu Zou, Jinfa Huang, Jing Wu, Yiru Li, Sam S.
 576 Chen, Yining Hua, Peilin Zhou, Junling Liu, Chengfeng Mao, Chenyu You, Xian Wu, Yefeng
 577 Zheng, Lei Clifton, Zheng Li, Jiebo Luo, and David A. Clifton. Application of large language
 578 models in medicine. *Nature Reviews Bioengineering*, 3(6):445–464, 2025b. doi: 10.1038/
 579 s44222-025-00279-5. URL <https://doi.org/10.1038/s44222-025-00279-5>.

580 Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Tianyi Zhou, and Zuozhu Liu. MedCoT: Medi-
 581 cal chain of thought via hierarchical expert. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 582 Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural
 583 Language Processing*, pp. 17371–17389, Miami, Florida, USA, November 2024. Associa-
 584 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.962. URL <https://aclanthology.org/2024.emnlp-main.962/>.

586

587 Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang,
 588 Chenyu You, Zhenhua Guo, Lei Zhu, et al. Benchmarking large language models on cmexam-a
 589 comprehensive chinese medical exam dataset. *Advances in Neural Information Processing Systems*,
 590 36:52430–52452, 2023.

591 Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M. Krumholz, Jure Leskovec,
 592 Eric J. Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelligence.
 593 *Nature*, 616(7956):259–265, 2023. doi: 10.1038/s41586-023-05881-4. URL <https://doi.org/10.1038/s41586-023-05881-4>.

594 Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carignan, and Eric Horvitz. Capabilities
 595 of gpt-4 on medical challenge problems. *arXiv preprint arXiv:2303.13375*, 2023.
 596

597 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 598 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 599 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 600 27744, 2022.

601 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 602 multi-subject multi-choice dataset for medical domain question answering. In *Conference on
 603 health, inference, and learning*, pp. 248–260. PMLR, 2022.

604 Mubashar Raza, Zarmina Jahangir, Muhammad Bilal Riaz, Muhammad Jasim Saeed, and Muham-
 605 mad Awais Sattar. Industrial applications of large language models. *Scientific Reports*, 15
 606 (1):13755, 2025. doi: 10.1038/s41598-025-98483-1. URL <https://doi.org/10.1038/s41598-025-98483-1>.

607 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 608 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

609 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 610 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
 611 ical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

612 Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 613 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne,
 614 Paul Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schärli, Aakanksha Chowdhery, Philip
 615 Mansfield, Dina Demner-Fushman, Blaise Agüera y Arcas, Dale Webster, Greg S. Corrado, Yossi
 616 Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral,
 617 Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language models encode
 618 clinical knowledge. *Nature*, 620(7972):172–180, aug 2023. ISSN 1476-4687. doi: 10.1038/
 619 s41586-023-06291-2. URL <https://doi.org/10.1038/s41586-023-06291-2>.

620 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
 621 Kevin Clark, Stephen R Pfohl, Heather Cole-Lewis, et al. Toward expert-level medical question
 622 answering with large language models. *Nature Medicine*, 31(3):943–950, 2025.

623 Qiyang Sun, Alican Akman, and Björn W Schuller. Explainable artificial intelligence for medical
 624 applications: A review. *ACM Transactions on Computing for Healthcare*, 6(2):1–31, 2025.

625 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

626 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always
 627 say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural
 628 Information Processing Systems*, 36:74952–74965, 2023.

629 Dandan Wang and Shiqing Zhang. Large language models in medical and healthcare fields: applica-
 630 tions, advances, and challenges. *Artificial Intelligence Review*, 57(11):299, 2024. doi: 10.1007/
 631 s10462-024-10921-0. URL <https://doi.org/10.1007/s10462-024-10921-0>.

632 Guoxin Wang, Minyu Gao, Shuai Yang, Ya Zhang, Lizhi He, Liang Huang, Hanlin Xiao, Yexuan
 633 Zhang, Wanyue Li, Lu Chen, et al. Citrus: Leveraging expert cognitive pathways in a medical
 634 language model for advanced medical decision support. *arXiv preprint arXiv:2502.18274*, 2025a.

635 Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo:
 636 Tuning llama model with chinese medical knowledge, 2023a.

637 Haochun Wang, Sendong Zhao, Zewen Qiang, Zijian Li, Chi Liu, Nuwa Xi, Yanrui Du, Bing Qin,
 638 and Ting Liu. Knowledge-tuning large language models with structured medical knowledge
 639 bases for trustworthy response generation in chinese. *ACM Trans. Knowl. Discov. Data*, 19(2),
 640 February 2025b. ISSN 1556-4681. doi: 10.1145/3686807. URL <https://doi.org/10.1145/3686807>.

648 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 649 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 650 models. In *The Eleventh International Conference on Learning Representations*, 2023b. URL
 651 <https://openreview.net/forum?id=1PL1NIMMrw>.

652 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 653 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 654 task language understanding benchmark. *Advances in Neural Information Processing Systems*, 37:
 655 95266–95290, 2024.

656 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 657 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 658 neural information processing systems*, 35:24824–24837, 2022.

659 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 660 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 661 2025.

662 Sheng Zhang, Qianchu Liu, Guanghui Qin, Tristan Naumann, and Hoifung Poon. Med-rlvr:
 663 Emerging medical reasoning from a 3b base model via reinforcement learning. *arXiv preprint
 664 arXiv:2502.19655*, 2025.

665 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
 666 and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding.
 667 *arXiv preprint arXiv:2501.18362*, 2025.

671 APPENDIX

672 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

673 In accordance with the ICLR policy on LLM usage, we hereby disclose that Large Language
 674 Models (LLMs) were only used as auxiliary tools for language polishing and minor grammatical
 675 improvements in the writing process. They were not involved in research ideation, experimental
 676 design, implementation, data analysis, or the generation of scientific content. The authors take full
 677 responsibility for the content of this paper.

678 B DETAILS OF BASELINES

679 We compare our model with strong general-purpose and medical-domain baselines, focusing on state-
 680 of-the-art systems that represent the current frontier in their respective areas (e.g., DeepSeek-R1 (Guo
 681 et al., 2025), Baichuan-M2 (Dou et al., 2025), Qwen3 (Yang et al., 2025), HuatuoGPT-O1 (Chen
 682 et al., 2025)). Table 3 summarizes these baselines with parameter counts and whether they include
 683 inference-time reasoning.

684 C DETAILS OF BENCHMARKS

685 To assess our model’s capabilities, we evaluate it on a comprehensive suite of eight medical bench-
 686 marks, detailed below and summarized in Table 4. We report accuracy on the standard close-ended
 687 (MCQ) splits. We instruct the model to enclose the answer choices within the <answer></answer>
 688 tokens to facilitate accurate extraction of the response.

- 689 • **MedXpertQA (Text)** Zuo et al. (2025): Expert-level medical QA with 4,460 questions
 690 spanning 17 specialties and 11 body systems, provided in text-only and multimodal subsets
 691 to assess advanced reasoning under clinically realistic settings. We used the text-only subset.
- 692 • **MedQA (USMLE)** Jin et al. (2021): Multiple-choice questions collected from professional
 693 medical board exams (commonly referenced via the USMLE split), widely used to measure
 694 broad medical knowledge and diagnostic reasoning.

702
703
704 Table 3: Baseline models and their sizes and reasoning capabilities.
705
706
707
708
709
710

Model	Parameters	Reasoning Capability
DeepSeek-R1	671B	Inference
GPT-OSS	20B, 120B	Inference
Baichuan-M2	32B	Inference
Qwen3	32B	Inference
HuatuoGPT-O1	7B, 72B	Inference
Qwen2.5	7B, 32B	Non-inference

711 “Reasoning Capability” indicates whether the model supports inference-time (test-time) reasoning mechanisms.
712
713714 Table 4: Benchmarks used in our evaluation.
715

Benchmark	Data Source	Answer Format	Test Dataset Size
MedXpertQA (Text)	Examination	4-option MCQs	2,450
MedQA (USMLE)	Examination	4-option MCQs	1,273
MedMCQA	Examination	4-option MCQs	4,183
MMLU-Pro (Biology)	Examination	10-option MCQs	717
MMLU-Pro (Health)	Examination	10-option MCQs	818
CareQA	Examination	4-option MCQs	5,621
JMED	Hospital	21-option MCQs	1,000
PubMedQA	Literature	3-option MCQs	1,000

723
724

- **MedMCQA** Pal et al. (2022): Large-scale MCQ benchmark sourced from AIIMS and NEET PG entrance exams (194k items across 21 subjects), designed to stress multi-subject medical knowledge and reasoning.
- **PubMedQA** Jin et al. (2019): Biomedical QA where each item asks a research question answered as *yes/no/maybe* from the corresponding PubMed abstract; includes a 1k expert-labeled test set.
- **MMLU-Pro (Biology)** Wang et al. (2024): Biology subset of MMLU-Pro, which increases difficulty and robustness over MMLU by using ten-option MCQs and more reasoning-centric items.
- **MMLU-Pro (Health)** Wang et al. (2024): Health subset of MMLU-Pro under the same ten-option, reasoning-oriented setting.
- **JMED** (Wang et al., 2025a): A clinical-practice evaluation set constructed from anonymized doctor–patient dialogues at JD Health Internet Hospital. The evaluation split is cast as 21-option MCQs (including a “None of the above” choice) to reflect ambiguity in real consultations and enable continuous updates.
- **CareQA** Arias-Duart et al. (2025): A newly released benchmark derived from Spain’s Specialized Healthcare Training (FSE/MIR) exams (2020–2024). It includes a close-ended MCQ set (5,621 items across medicine, nursing, biology, chemistry, psychology, and pharmacology) and an English open-ended variant created via controlled rephrasing and human review.

745
746
747
748
749
750
751
752
753
754
755