
Benchmarking Deep Learning for Cloud Resource

Management: When More Data Doesn’t Help

January 30, 2025

Abstract
Deep learning has been widely explored for optimizing cloud resource

management, promising efficient workload scheduling, cost reduction, and
improved resource utilization. However, in our real-world deployment of a
deep reinforcement learning-based (DRL) scheduler for VM allocation and
scaling in a multi-cloud setting, we encountered surprising failures. De-
spite rigorous training on historical workload data, the model consistently
underperformed compared to rule-based heuristics. In this paper, we ana-
lyze the causes behind this failure, identifying distribution shifts, delayed
feedback loops, and interpretability bottlenecks as key contributors. We
discuss the lessons learned and provide actionable recommendations for
future work.

1 Introduction

Cloud computing platforms rely on efficient resource management to balance
cost, performance, and scalability. Recent literature has demonstrated the po-
tential of deep learning, particularly reinforcement learning, for dynamically
allocating virtual machines (VMs) and optimizing resource utilization. Mo-
tivated by these successes, we developed a deep reinforcement learning-based
scheduler trained on real-world cloud workload traces. However, despite ex-
haustive training and hyperparameter tuning, our model consistently failed to
outperform traditional rule-based methods.

This paper provides a detailed analysis of our negative results, outlining the
critical challenges we faced. Our findings contribute to the broader discourse on
the applicability of deep learning in cloud computing, emphasizing the need for
interpretability, data shift mitigation, and deployment-aware learning strategies.

2 Related Work

Previous studies have shown promising results in using deep learning for resource
management:

• Mao et al. (2016) proposed a DRL-based scheduler for cluster resource
allocation and demonstrated efficiency gains.

• Mirhoseini et al. (2017) applied reinforcement learning for chip placement
and observed significant performance improvements.

• Fang et al. (2020) explored deep learning for auto-scaling cloud workloads,
reporting better efficiency over traditional policies.

Despite these successes, the gap between research prototypes and real-world
deployment remains significant. Our work contributes by documenting an in-
stance where deep learning failed in a production-grade cloud environment.

3 Problem Statement and Methodology

3.1 Use Case: Deep Learning for Cloud Scheduling

Our goal was to build a DRL-based scheduler for dynamically allocating cloud
VMs based on historical usage patterns and real-time demand. The model was
trained using:

• State space: CPU, memory, and network utilization of active VMs.

• Actions: VM allocation, resizing, and termination.

• Reward function: Optimized for cost minimization and SLA adherence.

3.2 Dataset and Model Implementation

We trained the model on three months of workload traces from a large-scale
cloud platform. The dataset included CPU/memory utilization, request pat-
terns, and VM instance types. We implemented an actor-critic DRL model
using PPO (Proximal Policy Optimization) and tested it against baseline rule-
based policies.

1



4 Observed Failures and Analysis

4.1 Failure to Generalize to Real-World Workloads

Despite achieving high performance during offline training, our model struggled
in production due to distribution shifts. The workload patterns in the train-
ing dataset did not fully capture the dynamic and bursty nature of real-world
traffic.

• Issue: The model learned static patterns but failed when new workload
types emerged.

• Analysis: The reliance on historical data without dynamic adaptation
limited generalization.

4.2 Delayed Feedback Loops Lead to Instability

Cloud resource allocation decisions often have delayed effects, where the im-
pact of scaling decisions unfolds over time. The DRL model lacked mechanisms
to account for these delays, leading to oscillatory behaviors in VM alloca-
tions.

• Issue: The model overreacted to transient workload spikes, leading to
frequent scaling up/down.

• Analysis: Traditional rule-based heuristics, though simplistic, handled
delayed feedback better due to built-in thresholds.

4.3 Poor Interpretability and Debugging Challenges

Unlike rule-based systems, deep learning models are inherently black-box,
making it difficult to debug mispredictions. Operations teams found it chal-
lenging to trust the model’s decisions due to a lack of explainability.

• Issue: The model’s decisions were often counterintuitive, leading to resis-
tance from cloud operators.

• Analysis: The absence of interpretability mechanisms (e.g., SHAP, LIME)
hindered adoption.

4.4 Scalability Bottlenecks in Production Deployment

The DRL model required significant computational overhead, making real-time
inference impractical for large-scale deployments.

• Issue: Model inference latency increased with the number of active VMs.

• Analysis: Traditional heuristics, while suboptimal, were computation-
ally efficient and provided instant decisions.

2



5 Lessons Learned and Recommendations

Our negative results highlight key takeaways for applying deep learning in real-
world cloud environments:

• Handle Distribution Shifts Proactively

– Use adaptive learning techniques (e.g., continual learning) to accom-
modate changing workloads.

– Incorporate uncertainty estimation to detect out-of-distribution in-
puts.

• Model Delayed Effects Explicitly

– Use recurrent models or hybrid reinforcement learning approaches
that account for delayed impact.

– Augment training with simulated long-term effects rather than im-
mediate rewards.

• Improve Interpretability for Operator Trust

– Integrate explainability tools to make model decisions more trans-
parent.

– Develop hybrid approaches that combine ML with rule-based policies.

• Optimize for Scalability and Efficiency

– Consider lightweight ML models or mixed approaches.

– Benchmark against real-world constraints, not just offline datasets.

6 Conclusion

Our attempt to apply deep learning for cloud resource management faced unex-
pected failures due to distribution shifts, delayed feedback loops, interpretability
gaps, and scalability constraints. These findings emphasize the need for realistic
benchmarking and robust deployment strategies when applying deep learning
to complex, dynamic environments.

Our experience serves as a cautionary tale and a learning opportunity for
practitioners aiming to deploy deep learning in cloud-based decision systems.
We encourage future research to bridge the gap between theoretical ML ad-
vancements and practical deployment challenges.

References

[1] Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource man-
agement with deep reinforcement learning. ACM Workshop on Hot Topics
in Networks, 50-56.

3



[2] Mirhoseini, A., et al. (2017). Device placement optimization with reinforce-
ment learning. arXiv preprint arXiv:1706.04972.

[3] Fang, W., et al. (2020). Reinforcement learning for cloud auto-scaling: A
deep deterministic policy gradient approach. IEEE Transactions on Cloud
Computing.

4


	Introduction
	Related Work
	Problem Statement and Methodology
	Use Case: Deep Learning for Cloud Scheduling
	Dataset and Model Implementation

	Observed Failures and Analysis
	Failure to Generalize to Real-World Workloads
	Delayed Feedback Loops Lead to Instability
	Poor Interpretability and Debugging Challenges
	Scalability Bottlenecks in Production Deployment

	Lessons Learned and Recommendations
	Conclusion

