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Abstract

We study the problem of episodic reinforcement learning in continuous state-1

action spaces with unknown rewards and transitions. Specifically, we consider the2

setting where the rewards and transitions are modeled using parametric bilinear3

exponential families. We propose an algorithm, BEF-RLSVI, that a) uses penalized4

maximum likelihood estimators to learn the unknown parameters, b) injects a5

calibrated Gaussian noise in the parameter of rewards to ensure exploration, and c)6

leverages linearity of the exponential family with respect to an underlying RKHS7

to perform tractable planning. We further provide a frequentist regret analysis of8

BEF-RLSVI that yields an upper bound of Õ(
√
d3H3K), where d is the dimension9

of the parameters, H is the episode length, and K is the number of episodes. Our10

analysis improves the existing bounds for the bilinear exponential family of MDPs11

by
√
H and removes the handcrafted clipping deployed in existing RLSVI-type12

algorithms. Our regret bound is order-optimal with respect to H and K.13

1 Introduction14

Reinforcement Learning (RL) is a well-studied and popular framework for sequential decision making,15

where an agent aims to compute a policy that allows her to maximize the accumulated reward over a16

horizon by interacting with an unknown environment [SB18].17

Episodic RL. In this paper, we consider the episodic finite-horizon MDP formulation of RL, in short18

Episodic RL [ORVR13, AOM17, DLB17]. Episodic RL is a tuple M = ⟨S,A,P, r,K,H⟩, where19

the state (resp. action) space S (resp. A) might be continuous. In episodic RL, the agent interacts20

with the environment in episodes consisting of H steps. Episode k starts by observing state sk1 . Then,21

for t = 1, . . . H , the agent draws action akt from a (possibly time-dependent) policy πt(skt ), observes22

the reward r(skt , a
k
t ) ∈ [0, 1], and transits to a state skt+1 ∼ P(. | skt , akt ) according to the transition23

function P. The performance of a policy π is measured by the total expected reward V π
1 starting from24

a state s ∈ S, the value function and the state-action value functions at step h ∈ [H] are defined as25

V π
h (s)

def
= E

[
H∑
t=h

r(st, at) | sh = s

]
, and Qπ

h(s, a)
def
= E

[
H∑
t=h

r(st, at) | sh = s, ah = a

]
.

Here, computing the policy leading to maximization of cumulative reward requires the agent to
strategically control the actions in order to learn the transition functions and reward functions
as precisely as required. This tension between learning the unknown environment and reward
maximization is quantified as regret: the typical performance measure of an episodic RL algorithm.
Regret is defined as the difference between the expected cumulative reward or value collected by the
optimal agent that knows the environment and the expected cumulative reward or value obtained by
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an agent that has to learn about the unknown environment. Formally, the regret over K episodes is

R(K) ≜
K∑

k=1

(
V π⋆

1 (sk1)− V πt
1 (sk1)

)
.

Key Challenges. The first key challenge in episodic RL is to tackle the exploration–exploitation trade-26

off. This is traditionally addressed with the optimism principle that either carefully crafts optimistic27

upper bounds on the value (or state-action value) functions [AOM17], or maintains a posterior28

on the parameters to perform posterior sampling [ORVR13], or perturbs the value (or state-action29

value) function estimates with calibrated noise [OVRW16]. Though the first two approaches induce30

theoretically optimal exploration, they might not yield tractable algorithms for large/continuous31

state-action spaces as they either involve optimization in the optimistic set or maintaining a high-32

dimensional posterior. Thus, we focus on extending the third approach of Randomized Least-Square33

Value Iteration (RLSVI) framework, and inject noise only in rewards to perform tractable exploration.34

The second challenge, which emerges for continuous state-action spaces, is to learn a parametric35

functional approximation of either the value function or the rewards and transitions in order to perform36

planning and exploration. Different functional representations (or models), such as linear [JYWJ20],37

bilinear [DKL+21], and bilinear exponential families [CGM21], are studied in literature to develop38

optimal algorithms for episodic RL with continuous state-action spaces. Since the linear assumption39

is restrictive in real-life -where non-linear structures are abundant-, generalized representations have40

obtained more attention recently [CGM21, LLS+21, DKL+21, FKQR21]. The bilinear exponential41

family model is of special interest as it is expressive enough to represent tabular MDPs (discrete42

state-action), factored MDPs [KK99], linear MDPs [JYWJ20], linearly controlled dynamical systems43

(such as Linear Quadratic Regulators [AYS11]) as special cases [CGM21]. Thus, in this paper, we44

study the bilinear exponential family of MDPs, i.e. the episodic RL setting where the rewards and45

transition functions can be modelled with bilinear exponential families.46

The third challenge is to perform tractable planning1 given the perturbation for exploration and47

the model class. Existing work [OVR14, CGM21] assumes an oracle to perform planning and48

yield policies that aren’t explicit. The main difficulty in such planning approaches is that dynamic49

programming requires calculating
∫
P(s′ | s, a)Vh(s) for all (s, a) pairs. This is not trivial unless the50

transition is assumed to be linear and decouples s′ from (s, a), which is not known to hold except for51

tabular MDPs. Much ink has been spilled about this challenge recently, e.g. [DKWY19] asks when52

misspecified linear representations are enough for a polynomial sample complexity in several settings.53

[SS20, LSW20, VRD19] provide positive answers for specific linear settings. In this paper, we aim to54

address this issue by designing a tractable planner for the bilinear exponential family representation.55

In this paper, we aim to address the following question that encompasses the three challenges:56

Can we design an algorithm that performs tractable exploration and planning for bilinear57

exponential family of MDPs yielding a near-optimal frequentist regret bound?58

Our Contributions. Our contributions to this question are three-fold.59

1. Formalism: We assume that neither rewards nor transitions are known, whereas existing efforts on60

the bilinear exponential family of MDPs assume knowledge of rewards. This makes the addressed61

problem harder, practical, and more general. We also observe that though the transition model can62

represent non-linear dynamics, it implies a linear behavior (see Section 2) in a Reproducible Kernel63

Hilbert Space (RKHS). This observation contributes to the tractability of planning.64

2. Algorithm: We propose an algorithm BEF-RLSVI that extends the RLSVI framework to bilinear65

exponential families (see Section 3). BEF-RLSVI a) injects calibrated Gaussian noise in the rewards66

to perform exploration, b) leverages the linearity of the transition model with respect to an underlying67

RKHS to perform tractable planning and c) uses penalized maximum likelihood estimators to68

learn the parameters corresponding to rewards and transitions (see Section 4). To the best of our69

knowledge, BEF-RLSVI is the first algorithm for the bilinear exponential family of MDPs with70

tractable exploration and planning under unknown rewards and transitions.71

1By tractable planning, we mean having a planner with (pseudo-)polynomial complexity in the problem
parameters, i.e. dimension of parameters, dimension of features, horizon, and number of episodes.
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Table 1: A comparison of RL Algorithms for continuous state-actions with functional representations.

Algo Regret Tractable Tractable Free of Model, assumptions
exploration planning clipping

Thompson sampling
√
d2H3K ✗ ✓ N.A Gaussian P

[RZSD21] (Bayesian) Known rewards

LSVI-PHE
√
d3H4K ✓ ✓ ✗ Generalized V approx

[ICN+21] (Freq.) Tabular, anti-concentration

OPT-RLSVI
√
d4H5K ✓ ✓ ✗ Linear V

[ZBB+20] (Freq.)

EXP-UCRL
√
d2H4K ✗ ✗ N.A Bilinear Exp family

[CGM21] (Freq.) known rewards

BEF-RLSVI
√
d3H3K ✓ ✓ ✓ Bilinear Exp family

This work (Freq.)

3. Analysis: We carefully develop an analysis of BEF-RLSVI that yields Õ(
√
d3H3K) regret which72

improves the existing regret bound for bilinear exponential family of MDPs with known reward by73

a factor of
√
H (Section 3.2). Our analysis (Section 5) builds on existing analyses of RLSVI-type74

algorithms [OVRW16], but contrary to them, we remove the need to handcraft a clipping of the75

value functions [ZBB+20]. We also do not need to assume anti-concentration bounds as we can76

explicitly control it by the injected noise. This was not done previously except for the linear MDPs.77

We illustrate this comparison in Table 1. We highlight three technical tools that we used to improve78

the previous analyses: 1) Using transportation inequalities instead of the simulation lemma reduces79

a
√
H factor compared to [RZSD21], 2) Leveraging the observation that true value functions are80

bounded enables using an improved elliptical lemma (compared to [CGM21]), and 3) Noticing that81

the norm of features can only be large for a finite amount of time allows us to forgo clipping and82

reduce a
√
d factor from the regret compared to [ZBB+20].83

2 Bilinear exponential family of MDPs84

In this section, we introduce the bilinear exponential family model coined in [CGM21] and extend it85

to parametric rewards. Then, we state a novel observation about linearity of this representation.86

Bilinear exponential family model. We consider both transition and reward kernels to be unknown87

and modeled with bilinear exponential families. Specifically,88

P (s̃ | s, a) = exp
(
ψ(s̃)⊤Mθpφ(s, a)− Zp

s,a(θ
p)
)
, (1)

P (r | s, a) = exp
(
r B⊤Mθrφ(s, a)− Zr

s,a(θ
r)
)
, (2)

where φ ∈ (Rq
+)

S×A and ψ ∈ (Rp
+)

S are known feature functions, and B ∈ Rp is a known scaling89

factor. The unknown reward and transition parameters are θp, θr ∈ Rd. Mθ·
def
=
∑d

i=1 θ
·
iAi, where90

Ai is a known p× q matrix for each i. Finally, Z denotes the log partition function:91

Zp
s,a(θ

p)
def
= log

∫
S
exp

(
ψ(s̃)⊤Mθpφ(s, a)

)
ds̃,

Zr is defined similarly. We denote V π
θp,θr,h, respectively Qπ

θp,θr,h, the value, respectively state-action92

value function for policy π in the MDP parameterized by (θp, θr) at time h. A policy π⋆ is optimal if93

for all s ∈ S, V π⋆

θ,h(s) = max
π∈Π

V π
θ,h(s). A learning algorithm minimizes the (pseudo-)regret defined94

as:95

R(K) ≜
K∑

k=1

(
V π⋆

θ,1 (s
k
1)− V πt

θ,1(s
k
1)
)
. (3)

Linearity of transitions. Now, we state an observation about the bilinear exponential family96

and discuss how it helps with the challenge of planning in episodic RL. Specifically, the popular97

assumption of linearity of the transition kernel is a direct consequence of our model. Indeed,98

2ψ (s′)
⊤
Mθpφ(s, a) = −∥(ψ(s′)−Mθpφ(s, a)∥2 + ∥ψ(s′)∥2 + ∥Mθpφ(s, a)∥2.
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Notice that the quadratic term resembles the Radial Basis Function (RBF) kernel. More precisely, for99

an RBF kernel with covariance Σ=Ip and k(x, y)def= exp
(
−∥x− y∥2/2

)
, we find100

P (s′ | s, a) = ⟨ϕp(s, a), µp(s′)⟩H, (4)

where H is the RKHS associated with the kernel, µp(s′) = (2π)−p/2 k (ψ(s′), .) exp
(
∥ψ (s′) ∥2/2

)
,101

and ϕp(s, a) = k
(
M⊤

θpφ(s, a), .
)
exp

(
∥Mθpφ(s, a)∥2/2− Zs,a(θ

p)
)
. Equation (4) shows that s′ is102

decoupled from (s, a), we see hereafter why this is crucial to reducing the complexity of planning.103

Remark. Up to our knowledge, [RZSD21] is the only work providing an example of linear transition104

kernel for RL with continuous state-action spaces. They consider Gaussian transitions with an105

unknown mean (f⋆(s, a)) and known variance (σ2). Actually, linear f⋆ is a special case of the bilinear106

exponential family model, where ψ(s′) = (s′, ∥s′∥2) and Mθφ(s, a) = (fθ(s, a)/σ
2,−1/σ2).107

Importance of linearity. To understand the planning challenge in RL, recall the Bellman equation:108

Qπ
h(s, a) = r(s, a) +

∫
s̃∈S

P (s′ | s, a)V π
h+1(s̃)ds̃,

We must approximate the integral at the R.H.S.for (s, a) ∈ S ×A. For a tabular MDP with |S| states109

and |A| actions, we need to evaluate (Qπ
h)h∈[H], i.e. to approximate |S| × |A| × H integrals per110

episode, which can be very expensive. However, if the transition model is linear (Equation (4)), then111

Qπ
θ,h(s, a) = r(s, a) +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ,h+1(s̃)ds̃

〉
. (5)

When ϕp, µp ∈ Rτ , we can obtain Qθp,θr,h by computing τ integrals per timestep, reducing the112

state-action space complexity to τ only. For our model, although ϕp and µp are infinite dimensional,113

we show in Section 4 (§ planning) that the planning complexity is still significantly reduced.114

3 BEF-RLSVI: algorithm design and frequentist regret bound115

In this section, we formally introduce the Bilinear Exponential Family Randomized Least-Squares116

Value Iteration (BEF-RLSVI) algorithm along with a high probability upper-bound on its regret.117

3.1 BEF-RLSVI: algorithm design118

BEF-RLSVI is based on RLSVI [OVRW16] framework with the distinction that we only perturb the119

reward parameters and not all the parameters of the value function. RLSVI algorithms are reminiscent120

of Thompson Sampling, yet more tractable with better control over the probability to be optimistic.121

Algorithm 1 BEF-RLSVI
1: Input: failure rate δ, constants αp, η and (xk)k∈[K] ∈ R+

2: for episode k = 1, 2, . . . do
3: Observe initial state sk1
4: Sample noise ξk ∼ N

(
0, xk(Ḡ

p
k)

−1
)

such that
Ḡp

k = η
αpA+

∑k−1
τ=1

∑H
h=1(φ(s

τ
h, a

τ
h)

⊤A⊤
i Ajφ(s

τ
h, a

τ
h))i,j∈[d]

5: Perturb reward parameter: θ̃r(k) = θ̂r(k) + ξk
6: Compute (Qk

θ̂p,θ̃r,h
)h∈[H] via Bellman-backtracking, see Algorithm 2

7: for h = 1, . . . ,H do
8: Pull action akh = argmaxaQθ̂p,θ̃r,h(s

k
h, a)

9: Observe reward r(skh, a
k
h) and state skh+1.

10: end for
11: Update the penalized ML estimators θ̂p(k), θ̂r(k), see Equation (6) and Equation (8)
12: end for

We can see that Algorithm 1 performs exploration by a Gaussian perturbation of the reward parameter122

(Line 4). Contrary to optimistic approaches, this method is explicit and also more efficient since it123

does not a involve high-dimensional optimization.124
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Algorithm 2 Bellman Backtracking

1: Input Parameters θ̂p, θ̃r, initialize θ̃ = (θ̃r, θ̂p) and ∀s, VH+1(s) = 0
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Calculate Qθ̃,h(s, a) = Eθ̃r

s,a[r] + ⟨ϕp(s, a),
∫
Vθ̃,h+1(s

′)µp(s′)ds′⟩H.
4: end for

We can approximate Line 3 of Algorithm 2 with O(pH3K log(HK)) complexity and without125

harming the learning process (cf. § planning, Section 4). Therefore, here, planning is tractable.126

3.2 BEF-RLSVI: regret upper-bound127

We state the standard smoothness assumptions on the model [CGM21, JBNW17, LMT21].128

Assumption 1. There exist constants αp, αr, βp, βr > 0, such that the representation model satisfies:129

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αp ≤ x⊤Cθ
s,a[ψ]x ≤ βp

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αr ≤ Varθs,a(r) x⊤B⊤Bx ≤ βr

where Cθ
s,a [ψ (s′)] ≜ Es′∼Pθ|s,a

[
ψ (s′)ψ (s′)

⊤
]
− Es′∼Pθ|s,a [ψ (s′)]Es′∼Pθ|s,a

[
ψ (s′)

⊤
]

and130

Varθs,a(r) ≜
(
Eθ
s,a

[
r2
]
− Eθ

s,a [r]
2
)

is the variance of the reward under θ.131

A closer look at the derivatives of the model (see Appendix D.3) tells us that previous inequalities132

directly imply a control over the eigenvalues of the Hessian matrices of the log-normalizers.133

We now state our main result, the regret upper-bound of BEF-RLSVI.134

Theorem 2 (Regret bound). Let A ≜ (tr(AiA
⊤
j ))i,j∈[d] and Gs,a ≜ (φ(s, a)⊤A⊤

i Ajφ(s, a))i,j∈[d].135

Under Assumption 1 and further considering that136

1. max{∥θr∥A, ∥θp∥A} ≤ BA, ∥A−1Gs,a∥ ≤ Bφ,A and Eθr [r(s, a)] ∈ [0, 1] for all (s, a).137

2. noise ξk ∼ N (0, xk(Ḡ
p
k)

−1) satisfies xk ≥
(
H
√

βpβp(K,δ)
αpαr +

√
βrβr(K,δ)min{1,αp

αr }
2αr

)2

∝ dH2,138

then for all δ ∈ (0, 1], with probability at least 1− 7δ,139

R(K) ≤
√
KH

[
2H

(√
2βp

αp β
p(K, δ)γpK+(1+

√
γrK)

√
log(1/δ2)

)
︸ ︷︷ ︸

Transition concentration ≈ dH

+ βr
√
βr(n, δ)γrK

2αr︸ ︷︷ ︸
Reward concentration ≈ d

+ cβr
√
xKdγrK log(dK/δ) +

βr
√
xKdγrK log(e/δ2)

Φ(−1)
(1+

√
log(d/δ))︸ ︷︷ ︸

Noise concentration ≈ d3/2H

]

+
√
HγrK

[
βrCd

(√
βr(K, δ)

2αr + c
√
xKd log(dK/δ)

)
︸ ︷︷ ︸

Estimation error for no clipping ≈ dH

+
βrd

√
xK

Φ(−1)
(1+

√
log(d/δ))

√
Cd

(
1+

αrBφ,AH

η

)
︸ ︷︷ ︸

Learning error for no clipping ≈ (dH)3/2

]
,

where for i ∈ [p, r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also,140

Cd ≜ 3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, Φ is the Gaussian CDF, and c is a universal constant.141

Theorem 2 entails a regret R(K) = O(
√
d3H3K) for BEF-RLSVI, where d is the number of142

parameters of the bilinear exponential family model, K is the number of episodes, and H is the143

horizon of an episode. We now clarify how this contrasts with related literature.144
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Comparison with Other Bounds. The closest work to ours is [CGM21] as it considers the same145

model for transitions but with known rewards. They propose a UCRL-type and PSRL-type algorithm,146

which achieve a regret of order Õ(
√
d2H4K). There are two notable algorithmic differences with147

our work. First, they do exploration using intractable-optimistic upper bounds or high-dimensional148

posteriors, while we do it with explicit perturbation. The second difference is in planning. While149

they assume access to a planning oracle, we do it explicitly with pseudo-polynomial complexity150

(Section 4). Moreover, we improve the regret bound by a
√
H factor thanks to an improved analysis,151

(cf. Lemma 18). But similar to all RLSVI-type algorithms, we pick up an extra
√
d (cf. [AL17]).152

[ZBB+20] proposes a variant of RLSVI for continuous state-action spaces, where there are low-rank153

models of transitions and rewards. They show a regret bound R(K) = Õ(
√
d4H5K), which is larger154

than that of BEF-RLSVI by O(
√
dH2). In algorithm design, we improve on their work by removing155

the need to carefully clip the value function. Analytically, our model allows us to use transportation156

inequalities (cf. Lemma 13) instead of the simulation lemma, which saves us a
√
H factor.157

[RZSD21] considers Gaussian transitions, i.e. s′ = f∗(s, a) + ϵ such that ϵ ∼ N
(
0, σ2

)
. This is a158

particular case of our model. They propose to use Thompson Sampling, and have the merit of being159

the first to have observed linearity of the value function from this transition structure. But they do not160

connect it to the finite dimensional approximation of [RR07] unlike us (Section 4). Finally, they show161

a Bayesian regret bound of O(
√
d2H3K). This notion of regret is weaker than frequentist regret,162

hence this result is not directly comparable with Theorem 2.163

Tightness of Regret Bound. A lower bound for episodic RL with continuous state-action spaces is164

still missing. However, for tabular RL, [DMKV21] proves a lower bound of order Ω(
√
H3SAK).165

If we represent a tabular MDP in our model, we would need d = S2 × A parameters (Section 4.3,166

[CGM21]). In this case, our bound becomes R(K) = O(
√

(S2A)3H3K), which is clearly not tight167

is S and A. This is understandable due to the relative generality of our setting. We are however168

positively surprised that our bound is tight in terms of its dependence on H and K.169

4 Algorithm design: building blocks of BEF-RLSVI170

We present necessary details about BEF-RLSVI and discuss the key algorithm design techniques.171

Estimation of parameters. We estimate transitions and rewards from observations similar to172

EXP-UCRL [CGM21], i.e. by using a penalized maximum likelihood estimator173

θ̂p(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
sth+1 | sth, ath

)
+ η pen(θ).

Here, pen(θ) is a trace-norm penalty: pen(θ) = 1
2∥θ∥A and A = (tr(AiA

⊤
j ))i,j . By properties of174

the exponential family, the penalized maximum likelihood estimator verifies, for all i ≤ d:175

k∑
t=1

H∑
h=1

(
ψ
(
sth+1

)
− Eθ̂

p
k

sth,a
t
h
[ψ (s′)]

)⊤

Aiφ
(
sth, a

t
h

)
= η∇i pen

(
θ̂pk

)
. (6)

Equation (6) can be solved in closed form for simple distributions, like Gaussian, but it can involve176

integral approximations for other distribution. We estimate the parameter for reward, i.e. θr, similarly177

θ̂r(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
rt | sth, ath

)
+ η pen(θ), (7)

=⇒
k∑

t=1

H∑
h=1

(
rt − Eθ̂rk

sth,a
t
h
[r]
)
B⊤Aiφ

(
sth, a

t
h

)
= η∇i pen

(
θ̂rk

)
∀i ∈ [d]. (8)

Exploration. A significant challenge in RL is handling exploration in continuous spaces. The majority178

of the literature is split between intractable, upper confidence bound-style optimism or Thompson179

sampling algorithms with high-dimensional posterior and guarantees only in terms of Bayesian180

regret. In BEF-RLSVI, we adopt the approach of reward perturbation motivated by the RLSVI-181

framework [ZBB+20, OVRW16]. We show that perturbing the reward estimation can guarantee182
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optimism with a constant probability, i.e. there exists ν ∈ (0, 1] such that for all k ∈ [K] and sk1 ∈ S ,183

P
(
Ṽ1(s

k
1)− V ⋆

1 (s
k
1) ≥ 0

)
≥ ν.

[ZBB+20] proves that this suffices to bound the learning error. However, their method clashes with184

not clipping the value function, as it modifies the probability of optimism. Thus, [ZBB+20] proposes185

an involved clipping procedure to handle the issue of unstable values. Instead, by careful geometric186

analysis (cf. Lemma 19), we bound the occurrences of the unstable values, and in turn, upper bound187

the regret without clipping. Note that unlike [ICN+21], BEF-RLSVI does not guarantee that the188

estimated value function is optimistic but still is able to control the learning error (cf. Section 5).189

Planning. Recall that with our model assumptions, we can write the state-action value function190

linearly (Equation (5)). Using BEF-RLSVI, we have at step h:191

Qπ
θ̂p,θ̃r,h

(s, a) = Eθ̃r [r(s, a)] +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ̂p,θ̃r,h+1
(s̃)ds̃

〉
.

Then, we select the best action greedily using dynamic programming to compute Qh(s, a). Although192

our model yields infinite dimensional ϕp and ψp, approximating them (cf. next paragraph) with193

linear features of dimension O(pH2K log(HK)) is possible without increasing the regret. Thus, the194

planning is done in O(pH3K log(HK)), which is pseudo-polynomial in p, H and K, i.e. tractable.195

For details about the finite-dimensional approximation of our transition kernel, refer to Appendix D.5.196

Now, we highlight the schematic of a finite-dimensional approximation of ϕp and ψp. We proceed197

in three steps. 1) We have with high probability S(Vθ̂p,θ̃r,h) ≤ dH3/2 (Section 5). 2) If we have a198

uniform ϵ-approximation of Pθp , we show that using it incurs at most an extra O(ϵdH5/2K) regret.199

3) Finally, following [RR07], we approximate uniformly the shift invariant kernels, here the RBF in200

Equation (4), within ϵ error and with features of dimensions O(pϵ−2 log 1
ϵ2 ), where p is dimension of201

ψ. Associating these three elements and choosing ϵ = 1/
√

(H2K), we establish our claim.202

5 Theoretical analysis: proof outline203

To convey the novelties in our analysis, we provide a proof sketch for Theorem 2. We start by204

decomposing the regret into an estimation loss and a learning error, as given below205

R(K) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θp,θr,1)(s1k) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1
− V πk

θp,θr,1︸ ︷︷ ︸
Estimation

)(s1k). (9)

For the estimation error, we use smoothness arguments with concentrations of parameters up to206

some novelties. Regarding the learning error, we show that the injected noise ensures a constant207

probability of anti-concentration. Applying Assumption 1 and Lemma 18 leads to the upper-bound.208

5.1 Bounding the estimation error209

We further decompose the estimation error into the errors in estimating transitions and rewards.210

V π
θ̂p,θ̃r

(s1k)− V π
θp,θr(s1k) = V π

θ̂p,θr
(s1k)− V π

θp,θr(s1k)︸ ︷︷ ︸
transition estimation

+V π
θ̂p,θ̃r

(s1k)− V π
θ̂p,θr

(s1k)︸ ︷︷ ︸
reward estimation

(10)

Transition estimation Since the reward parameter is exact, the value function’s span is ≤ H . Then,211

using the transportation of Lemma 13 we obtain the bound H
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p). We notice212

that since the reward parameter is exact, the bound is actually H min{1,
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p)}.213

Using Lemma 18 under Assumption 1, we win a
√
H factor compared to the analysis of [CG19].214

Reward estimation Previous work uses clipping to help control this error, but in this case it can215

hinder the optimism probability by biasing the noise. [ZBB+20] proposes an involved clipping216

depending on the norms ∥(Aiφ(s
k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 , which is somewhat delicate to analyze and217

7



deploy. We remedy the situation acting solely in the proof. First let’s define what we call the set218

of “bad rounds”:
{
k ∈ [K],∃h : ∥(Aiφ(s

k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 ≥ 1

}
, these rounds are why clipping219

is necessary. Thanks to Lemma 19, we know that the number of such rounds is at most O(d).220

Surprisingly, it depends neither on H nor on K. We show that the “bad rounds” incur at most221

O(d3/2H2) regret, independent of K. Therefore, our algorithm can forgo clipping for free.222

Remark. If it wasn’t for the episodic nature of our setting, we could have used the forward algorithm223

to eliminate the span control issue. We refer to [Vov01, AW01] for a description of this algorithm,224

[OMP21] for a stochastic analysis, and Section 4 therein for an application to linear bandits.225

5.2 Bounding the learning error226

To upper-bound this term of the regret, we first show that the estimated value function is optimistic227

with a constant probability. Then, we show that this is enough to control the learning error.228

Stochastic optimism. The perturbation ensures a constant probability of optimism. Specifically,229

(Vθ̂p,θ̃r,1−V
⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1
−Q⋆

1)(s1, π
⋆(s1))

≥ V π⋆

θ̂p,θr
(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1)︸ ︷︷ ︸

second term

+V π⋆

θ̂p,θ̃r
(s1)− V π⋆

θ̂p,θ̂r
(s1)︸ ︷︷ ︸

third term

The first and second terms are perturbation free, we handle them similarly to the estimation error, i.e.230

using concentration arguments for θ̂p and θ̂r. For the third term, we use transportation of rewards231

(Lemma 17) and anti-concentration of ξk (Lemma 12). We find that with probability at least 1− 2δ232

(Vθ̂p,θ̃r,1 − V ⋆
θp,θr,1)(s1) ≥ξ⊤k E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]
B

−Hc(n, δ)

∥∥∥∥∥
H∑

h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡ

p
k)

−1

,

where c(n, δ) =
(√

βpβp(n, δ)/αp+
√
βrβr(n, δ)min{1, αp/αr}/(2αr)

)
. Since ξk ∼ N (0, xk(Ḡ

p
k)

−1)233

and xk≥H2c(n, δ)2, we get P
(
V π
θ̂p,θ̃r,1

(s1)− V ⋆
θp,θr,1(s1) ≥ 0

)
≥ Φ(−1), where Φ is the normal234

CDF. This is ensured by the anti-concentration property of Gaussian random variables, see Lemma 12.235

From stochastic optimism to error control: Existing algorithms require the value function to be236

optimistic (i.e. negative learning error) with large probability. Contrary to them, BEF-RLSVI only237

requires the estimated value to be optimistic with a constant probability. When it is, the learning238

happens. Otherwise, the policy is still close to a good one thanks to the decreasing estimation error,239

and the learning still happens. This part of the proof is similar in spirit to that of [ZBB+20].240

Upper bound on V ⋆
1 : Draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K] and define the event where optimism241

holds as Ōk ≜ {Vθ̂p,θ̃rk,1(s
k
1)−V ⋆

1 (s
k
1) ≥ 0}. This implies that V ⋆

1 (s
k
1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1
(sk1)].242

Lower bound on Vθ̂p,θ̃r : Consider V1(s
k
1) to be a solution of the optimization problem243

min
ξk

Vθ̂p,θ̂r+ξk,1
(sk1) subject to: ∥ξk∥Ḡk

≤
√
xkd log(d/δ),

As the injected noise concentrates, we obtain V1(s
k
1) ≤ Vθ̂p,θ̃r(s

k
1).244

Combination: Using these upper and lower bounds, we show that with probability at least 1− δ,245

V ⋆
1 (s

k
1)−Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤ Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]

≤
(
Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]− Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk),

The last step follows from the tower rule. Note that the term inside the expectations is positive246

with high probability but not necessarily in expectation. We follow the lines of the estimation error247

analysis to complete the proof of Theorem 2. We refer to Appendix B.2 for the detailed proof.248
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6 Related works: functional representations with regret and tractability249

Our work extends the endeavor of using functional representations to perform optimal regret mini-250

mization in continuous state-action MDPs. We now provide a few complementary details.251

General functional representation. [DSL+18] provides the first convergence guarantee for general252

nonlinear function representations in the Maximum Entropy RL setting, where entropy of a policy is253

used as a regularizer to induce exploration. Thus, the analysis cannot address episodic RL, where we254

have to explicitly ensure exploration with optimism. [WSY20] proposes a framework that leverages255

the optimism with confidence bound approach for general functional representations with bounded256

Eluder dimensions, which is a complexity measure in RL. However, knowing the Eluder dimension257

is crucial for the optimistic confidence bound in their algorithm. Eluder dimension is not known for258

MDPs except linear and tabular MDPs. To concretize our design, we focus on the general but explicit259

bilinear exponential family of MDPs than any abstract representation.260

Bilinear exponential family of MDPs. Exponential families are studied widely in RL theory, from261

bandits to MDPs [LMT21, KKM13, FCGS10, KH06], as an expressive parametric family to design262

theoretically-grounded model-based algorithms. [CGM21] first studies episodic RL with Bilinear263

Exponential Family (BEF) of transitions, which is linear in both state-action pairs and the next-264

state. It proposes a regularized log-likelihood method to estimate the model parameters, and two265

optimistic algorithms with upper confidence bounds and posterior sampling. Due to its generality266

to unifiedly model tabular MDPs, factored MDPs, linear MDPs, and linearly controlled dynamical267

systems, the BEF-family of MDPs has received increasing attention [LLS+21]. [LLS+21] estimates268

the model parameters based on score matching that enables them to replace regularity assumption269

on the log-partition function with Fisher-information and assumption on the parameters. Both270

[CGM21, LLS+21] achieve a worst-case regret of order Õ(
√
d2H4K) for known reward. On a271

different note, [DKL+21, FKQR21] also introduces a new structural framework for generalization in272

RL, called bilinear classes as it requires the Bellman error to be upper bounded by a bilinear form.273

Instead of using bilinear forms to capture non-linear structures, this class is not identical to BEF class274

of MDPs, and studying the connection is out of the scope of this paper. Specifically, we address the275

shortcomings of the existing works on BEF-family of MDPs that assume known rewards, absence of276

RLSVI-type algorithms, and access to oracle planners.277

Tractable planning and linearity. Planning is a major byproduct of the chosen functional represen-278

tation. In general, planning can incur high computational complexity if done naïvely. Specially,279

[DKWY19] shows that for some settings, even with a linear ϵ-approximation of the Q-function, a280

planning procedure able to produce an ϵ-optimal policy has a complexity at least 2H . Thus, different281

works [SS20, LSW20, VRD19] propose to leverage different low-dimensional representations of282

value functions or transitions to perform efficient planning. Here, we take note from [RZSD21]283

that Gaussian transitions induce an explicit linear value function in an RKHS. And generalize this284

observation with the bilinear exponential. Moreover, using uniformly good features [RR07] to285

approximate transition dynamics from our model enables us to design a tractable planner. We provide286

a detailed discussion of this approximation in Section 4. More practically, [RZSD21, NY21] use287

representations given by random Fourier features [RR07] to approximate the transition dynamics and288

provide experiments validating the benefits of this approach for high-dimensional Atari-games.289

7 Conclusion and future work290

We propose the BEF-RLSVI algorithm for the bilinear exponential family of MDPs in the setting291

of episodic-RL. BEF-RLSVI explores using a Gaussian perturbation of rewards, and plans tractably292

(complexity of O(pH3K log(HK))) thanks to properties of the RBF kernel. Our proof shows293

that clipping can be forwent for similar RLSVI-type algorithms. Moreover, we prove a
√
d3H3K294

frequentist regret bound, which improves over existing work, accommodates unknown rewards, and295

matches the lower bound in terms of H and K. Regarding future work, we believe that our proof296

approach can be extended to rewards with bounded variance. We also believe that the extra
√
d in297

our bound is an artefact of the proof, and specifically, the anti-concentration. We will investigate it298

further. Finally, we plan to study the practical efficiency of BEF-RLSVI through experiments on tasks299

with continuous state-action spaces in an extended version of this work.300
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