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ABSTRACT

Social communication systems must identify toxic voice audio to
support moderation that protects the safety and civility of their com-
munities. Toxicity classification for voice depends on both audio
style, such as volume and tone, and content, such as the words in the
speech individually and in context. We introduce a novel end-to-end
multi-task learning (MTL) paradigm for audio-based toxicity detec-
tion, addressing the challenges associated with existing automatic
speech recognition (ASR) and text-based systems. By employing
a hard parameter-sharing backbone and flexible soft-attention task
adapters, our model performs two tasks: a multi-label toxicity clas-
sification task that targets specific categories of toxic behavior, and
an auxiliary Audio to Keyword detection task that focuses on tran-
scribing only toxic keywords, thereby enhancing computational ef-
ficiency and complementing classification output. We observe that
the classifier significantly improves the quality of keyword detection.
We also contribute a data pipeline for automated offline labeling of
training sets.

Index Terms— Toxicity Detection, Multi-task Learning, Speech
Recognition, Audio to Keyword Detection.

1. INTRODUCTION

Voice chat on platforms such as online gaming and live chat rooms
has become an integral communication medium, facilitating real-
time interactions. This presents a significant challenge in moder-
ating potentially toxic audio content to maintain safety and civil-
ity on online platforms [1]. Most of the previous systems are text-
based classifiers [2, 3, 4, 5], adapted for speech by using an Auto-
matic Speech Recognition (ASR) component to transcribe the au-
dio into text where these classifiers are then run [6]. Such methods
are effective, but incur huge computational costs due to the expen-
sive computation requirements of ASR, and require different compo-
nents of the system to be independently trained, making it difficult
for widespread use. Moreover, the real-time nature of toxic speech
means that it is difficult for such solutions to scale to millions of
users.

In response to these challenges, some recent audio-based meth-
ods attempt to classify toxicity directly on audio [7, 8, 9], reporting
promising classification results on small-scale datasets. However,
such approaches are hamstrung by the lack of large scale training
data. Public datasets such as DeToxy [6] and IEMOCAP [10] have
extremely small balanced datasets and lack real-world characteris-
tics. Even in cases such as Yousefi and Emmanouilidou [7], where
there is access to larger scale internal training datasets up to hundreds
of hours of data, models are trained and evaluated on binary labels
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(toxic/non-toxic), which does not highlight how the model performs
across different types of toxic content.

Different approaches have been used to improve speech-based
toxicity classification methods, such as custom attention architec-
tures to model semantic information [7], or using pre-trained speech
encoders such as Wav2Vec2.0 [11] to improve robustness. Multi-
task learning (MTL) has been also proposed as an approach for im-
proving the performance of the model on these toxicity classifiers,
such as using ASR as an auxiliary task to condition the encoder while
it is jointly trained for toxicity classification [9], but the task itself is
not used towards toxicity detection.

This paper proposes an end-to-end multi-task model that at-
tempts to use multi-task learning with both tasks directed at toxicity
detection. The first task is a multi-label task that classifies 5 differ-
ent genres of toxicity, while the second task is a keyword detection
task that is formulated as a limited-vocabulary ASR task, so only
keywords relevant to toxicity are only transcribed explicitly. We also
propose alternative MTL architectures that also attempt to leverage
the dynamics between different toxicity classes and keywords. With
these two tasks, this paper is able to contribute the following. Firstly,
we introduce a novel multi-task learning paradigm for audio-based
toxicity detection, where both tasks help contribute towards moder-
ation, as keyword detection can be used to explain certain toxicity
classification decisions. Secondly, we present empirical experimen-
tal results on large-scale real-world datasets compared to previous
works on much smaller datasets, underscoring the robustness and
practical applicability of the proposed model in industry deploy-
ment. Thirdly, our multi-label problem formulation for toxicity
classification highlights how not all types of toxicity are equal, and
how dataset scale and curation can influence model evaluation met-
rics. Fourthly, through the different MTL variants we propose, we
highlight how biasing the toxicity classifier with keyword detection
features via different methods of parameter sharing influence the
classifier’s performance on different types of toxicity. We also show,
with minor penalties to specific classes, that we can get better at
toxic keyword detection with multi-task learning.

2. DATA PIPELINE

Human data labeling is slow and expensive. For toxic communica-
tion, it is also desirable to minimize the exposure of toxic content to
human labellers. We developed a scalable automated data pipeline
that produces audio labeled with toxicity classes and keywords. We
applied this to audio gathered from the Roblox Voice Chat product
to train our model.

The data pipeline comprises three stages shown in Figure 1:
chunk splitting determined by the Opus codec’s DTX extension;
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Fig. 1. Data Pipeline for Automatic Annotation of Speech Utter-
ances.

ASR implemented with the publicly available models [12]; and text
classification with the Roblox Text Filter.

We pre-process the raw audio into chunks of continuous speech.
These are transcribed and segmented into audio phrases using the
ASR models. It then applies Roblox’s Text Filter for classification.
The Text Filter is an ensemble model trained on human-labeled toxic
text data comprising an extended DistilBERT model [13, 14] and
regular expressions. Finally, chunks that the Text Filter classifies as
toxic are annotated with keywords from the ASR transcription.

3. PROPOSED SYSTEM

In this section, we describe the toxicity systems developed for our
experiments. We propose three different systems, which include
an audio-only toxicity classifier, an audio to keyword system, and a
multi-task learning system. We used WavLM [15] as the encoder for
our three systems. WavLM is a transformer-based model that learns
a universal speech representation from massive unlabeled data in a
self-supervised manner. The model is composed of multiple layers
of CNNs for local feature extraction and transformer-based blocks
for global context modeling. We chose WavLM since it presented
the state-of-the-art performance on SUPERB benchmark for almost
all the tasks [16].

3.1. Audio to Toxicity Classifier

The Toxicity Classifier is a multi-label model with six categories:
Profanity, Bullying, Dating & Sexting, Racism, Other, and No-
Violation. The Other category consists of a wide variety of toxic
speech such as Grooming, Drugs and Alcohol references, Radical-
ization, etc. that do not fall cleanly into the first four toxic categories
which the text toxicity classifier picks up. Given that a single audio
clip can embody multiple types of violations, the task inherently
becomes multi-label rather than a conventional multi-class classi-
fication problem. We fine-tuned the entire network including head
layers for this task with Cross-Entropy (CE) loss.

3.2. Audio to Keyword Detection

To improve the explainability of toxicity classification, we designed
a keyword detector that directly operates on the audio signal and
localizes specific keywords. This task diverges from conventional
ASR systems by focusing on a predefined list of keywords that are
congruent with the toxic categories outlined in the Toxicity Classifier
task. The ground truth transcriptions are replaced by these keywords
in a word-by-word fashion. Words not in the keyword list are substi-
tuted by a dummy word, specifically “good” in our experiments.

The task serves multiple objectives. 1) Focused Information Ex-
traction: Contrary to conventional ASR systems that transcribe au-
dio signals to every possible word, Audio to Keyword filters out

noise by only concentrating on a subset of words deemed relevant
for toxicity classification. This not only facilitates better generaliza-
tion but also diminishes hypothesis space. 2) Task Synergy: We hy-
pothesize that the close semantic relationship between the Toxicity
Classifier and Audio to Keyword tasks aids in parameter sharing dur-
ing the multi-task learning process can yield positive inductive bias
for both tasks. 3) Scope Adaptability: This predefined keyword list
also allows for incremental keyword addition or removal, allowing
for dynamic performance tuning of the toxicity classifier. Since the
goal of audio to keyword is to detect toxic words, general word error
rate or character error rate are not pursued, instead we use weighted
AP and F1 score of detected words as evaluation metrics.

Compared to other relevant methods like keyword spotting
[17, 18] that identifies the presence of keywords, our sequence-
to-sequence task is trained on datasets that contain a larger audio
context with word by word ordering, which allows our system to
predict the location of toxic words. We found that using a simple
CTC loss to directly map the acoustic frames to character sequences
worked well for our experiments and avoids some of the complexity
associated contextual biasing approaches [19]. Notably, to account
for the spelling errors commonly associated with CTC decoding,
an N-gram language model [20] is employed during the decoding
process, thereby minimizing transcription errors.

3.3. Multi-task Learning

3.3.1. Model Architecture

The architecture of the proposed multi-task learning model (MTL)
is illustrated in Figure 2(a). We use pre-trained WavLM Base+ fine-
tuned on 100 hours of LibriSpeech clean as the shared base back-
bone. The output logits from the encoder are partitioned into two
sets of logits for each individual task. These are then directed to-
wards two distinct task-specific heads, one for multi-label toxicity
classification and another for audio-to-keyword detection. This is
the basic configuration for MTL where the two tasks share the en-
coder backbone and are totally decoupled during the decoding pro-
cess, and serves as a benchmark for other MTL variants described
later. The advantage of this approach is the limited parameter size
increase (less than 0.1M compared with the single classification task)
and simpler/faster training.

3.3.2. Task Adapter

A more complex variant of MTL architecture share the features from
a common trunk and adapts it to the classification and keyword de-
tection tasks. The task adapter is a soft-attention mask, designed to
operate after any encoder block. The features in the shared back-
bone and the task adapters for each task can be learned jointly to
learn the generalization of the shared features across multiple tasks,
and simultaneously maximize the task-specific performance. We ap-
ply the adapter to each task in order to learn a combination of task-
shared global features and task-specific features in a self-supervised
manner.

As shown in Figure 2(b), the extracted feature from the CNN
layers is first directed into a position embedding layer. We introduce
the task adapter combining a convolution layer and a soft-attention
layer. The function of this module resembles that of adapter [21,
22], though its application differs. While adapters typically act as
lightweight networks within the backbone to learn domain-specific
knowledge, our task adapter tunes the features to be task-specific
without losing the generality from the shared encoder.
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Fig. 2. Proposed MTL architectures: (a) Architecture Overview: feature extractor and encoder in grey is the shared backbone, multi-label
toxicity classifier and audio to keyword detection branch are marked in blue and red respectively; (b) Encoder architecture with Task Adapter;
(c) Decoder architecture with Information Sharing.

3.3.3. Decoder

Figure 2(c) shows a third MTL variant that operates on the decoder
for each task, with the multi-label classification branch optimized us-
ing CE loss and the audio to keyword detection branch utilizing CTC
loss. The total multi-task loss is computed as their weighted sum.
The network’s parameters are updated through back-propagation.
The outputs from each task’s projector are normalized and added to-
gether, subsequently serving as the input to their respective final lay-
ers prior to undergoing GeGLU activation. We experimented with
several combinations of addition and concatenation alongside acti-
vation functions including GELU, GeGLU, and SwiGLU. Our em-
pirical results indicate that the combination of addition with GeGLU
activation works best in practice. For the basic MTL version men-
tioned in 3.3.1, the outputs from each task’s projector are directly
sent to their final layers.

Rather than using task balancing methods such as weight uncer-
tainty [23] or GradNorm [24], we choose to set the weight manu-
ally, since we want to have control over the importance of each task.
We set different weights for multi-label classification and audio-to-
keyword detection as follows:

LMTL = λ ∗ LCE + (1− λ) ∗ LCTC (1)

In the experimental results, we set all λ to 0.7. A N-gram
language model is incorporated as an add-on for audio to keyword
branch to regularize the decoding process for the language model
head, in order to minimize the misspelling errors. In our experi-
ments, we use a 4-gram language model trained from the training
transcription corpus.

Profanity Dating & Sexting Racist Bullying Other No Violation Total

Training Dataset (hours)

1755.1 307.2 225.0 902.5 1,559.5 1791.4 4080.3

Human Labeled Utterances (hours)

15.38 2.52 3.10 4.25 - 9.93 27.47

Large-Scale Data Pipeline Labeled Utterances (hours)

155.50 34.11 27.81 99.92 145.09 1539.50 1733.50

Table 1. Training and evaluation data statistics.

4. EXPERIMENTAL EVALUATION

In this section, we benchmark each of the described systems in the
previous section on two different evaluation datasets. We report our
results in terms of per-class average precision (AP), and mean Aver-
age Precision (mAP) in percentage for classification task. For key-
word detection, we use false accept rate, false reject rate, weighted
AP, and F-1 score in percentage.

4.1. Training Protocol

We use the following training protocol for all the experiments to
ensure equitable comparison and reproducibility. We use Adam op-
timizer with a learning rate of 4.0e-5, an epsilon value of 1e-8 and a
weight decay factor of 0.2. A linear scheduler with a warm-up ratio
of 0.1 is used. We use 8 A100 GPUs, with a per-device batch size
of 32, and trained for up to 25 epochs. For evaluation, we use a 15
second chunk of audio at a time. For longer than 15 seconds audio
segments, we use a stride of 15 sec to divide it into smaller chunks.
We trained the models with 81 keywords and evaluated for the same
set of keywords.

For the MTL model with task adapter, each task adapter has
about 4.3M parameters. For our experiment, we did not investigate
the optimal positions and the number of adapters to apply, and in-
stead attach every transformer block with a task adapter for each
task. This resulting in 26 total task adapters. Note that task adapter
in encoder and information sharing in decoder are different design
perspectives and are applied separately. Through our initial experi-
ments, we observe that applying both together cause severe perfor-
mance degeneration.

Fig. 3. Duration distributions of utterances in training and evaluation
datasets.
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Model Details Toxicity Classification Results Audio to Keyword Detection Results

Model Num. Params (M) Profanity Dating & Sexting Racist Bullying Other No Violation mAP False Accept Rate False Reject Rate Weighted AP F1

Human Labeled Utterances

Toxicity Classifier 94.6 98.12 54.40 84.35 58.63 - 78.04 74.71 - - - -
Audio to Keyword 94.4 - - - - - - - 19.59 2.51 45.81 62.36
MTL 94.6 97.52 53.74 81.53 56.05 - 76.27 73.02 17.11 2.89 50.13 66.55
MTL + Info. Sharing 95.2 98.15 51.09 83.41 55.95 - 77.94 73.31 13.10 2.86 54.46 70.57
MTL + Task Adapter 207.2 96.76 57.73 80.74 54.53 - 78.43 73.64 12.46 3.27 55.60 71.55

Large-Scale Data Pipeline Labeled Utterances

Toxicity Classifier 94.6 69.03 39.97 40.31 55.35 64.83 97.57 61.18 - - - -
Audio to Keyword 94.4 - - - - - - - 5.41 3.98 32.25 54.30
MTL 94.6 66.17 37.61 39.54 52.06 62.37 97.46 59.20 4.45 4.70 36.76 58.27
MTL + Info. Sharing 95.2 67.49 36.46 35.04 52.07 66.91 97.62 59.27 4.00 4.81 38.82 59.65
MTL + Task Adapter 207.2 67.26 40.09 42.32 54.07 60.42 97.68 60.31 3.76 4.94 39.94 60.53

Table 2. Evaluation results of single task Toxicity Classification and Audio to Keyword Detection, and multi-task (MTL) architectures.

4.2. Training & Evaluation Datasets

We processed a large batch of audio data from Roblox’s Voice Chat
using the data pipeline (Section 2) to produce training labels (Table
1). The duration distribution of training data was limited to 15 sec-
onds. We prepare two evaluation datasets, once is a more balanced
human labeled dataset consisting of 9795 utterances, or about 27
hours of audio containing up to 30 seconds of audio per utterance,
and a much larger evaluation set consisting of 537,311 utterances
sampled from a real world distribution that are labelled using the
data pipeline, comprising of about 1733 hours of audio data, con-
taining up to 60 seconds of audio per utterance. Note that human
labeled evaluations do not have an “Other” category, due to this cat-
egory being a broad catch-all for a broad variety of toxic behavior
captured by the text classifier. Finally, the duration distribution of
the different datasets are shown in Figure 3, which motivates our
choice of a 15 sec window for audio context in our pipeline.

4.3. Results

4.3.1. Toxicity Classification Results

We observe from Table 2 that for different distributions of evaluation
data, the same model yields drastically different AP values for every
class. This shows the difficulty of the toxicity classification task
on real-world data distribution as such models generalize to thou-
sands of hours of audio. We notice that the larger dataset with data
pipeline labels is more discriminative across different model variants
across different classes, and we hypothesize that the imbalanced dis-
tribution as well as the larger diversity of data in the larger dataset
amplifies the performance differences between each model.

Profanity seems to be the best performing toxicity class to de-
tect, and this makes sense because profanity requires shorter context
windows than other toxicity categories to reliably detect it. Dating &
Sexting and Racism can occur over longer sentences, as well as Bul-
lying, and these differences do show up in our toxicity classification
systems performance on each of these classes.

The comparison of per-class AP, with and without MTL, high-
lights some interesting nuances. We note that all multi-task variants
exhibit a relative reduction in mAP values from the baseline, rang-
ing from 1.4% to 3.2% across both datasets. The biggest changes
in AP with abuse categories which require longer context windows,
including Dating and Sexting, Racism and Bullying. Information
sharing improves keyword specific categories such as profanity but
drops for less keyword dependent categories such as Dating & Sex-
ting and Racist classes. We also see that information sharing gives
the best performance on the “Other” category over all other variants,
which contains a lot of the toxic speech that are detected by keyword

specific text classifiers. Adding a task adapter seems to alleviate the
performance drop due to the keyword detection head by giving the
classification task head its own set of parameters that can focus en-
tirely on the classification. The task adapter and information sharing
MTL variant results suggest that the toxicity classifier performance
also depends on its ability to distinguish non-keyword based toxicity.

4.3.2. Audio to Keyword Detection Results

For keyword detection, we observe the impact of dataset distribu-
tion on key metrics is less pronounced between the balanced and
real world distribution evaluation sets. Multi-task learning improves
keyword detection across the board, with a relative F1 score im-
provement of around 6.3% to 11.5%, and a relative weighted AP
improvement of around 9.4% to 23.8% across both datasets, with
the largest gains seen by the information sharing and task adapter
MTL variants. We note this is a significant improvement to the key-
word detection task, and these architectures are viable for better ex-
plainable toxicity detection, with minimal loss in performance for
toxicity classification. With only a 0.6% increase in parameters, in-
formation sharing improves upon the standard MTL pipeline with by
up to 1-2% increase in weighted AP and F1 score at the cost of non-
keyword based categories. The task adapter MTL model shows the
most promise, getting the best audio to keyword performance with
the smallest penalty to toxicity classification, particularly in cate-
gories that are not keyword-centric.

5. CONCLUSIONS

We present a novel multi-task learning architecture for audio-based
toxicity detection, specifically toxicity classification and audio to
keyword detection tasks. We benchmark the performance of pro-
posed MTL models on large-scale real-world datasets, and find that
toxicity classification helps improve audio to keyword classification,
but such an inductive bias by the keyword task does not help all tox-
icity classes equally. The results presented here are for English, but
the same model can be extended to multi-lingual toxicity detection
and keyword detection. In the future, we plan to further optimize
the model footprint for enabling deployment on compute resource
constraint devices and continue to improve the classification per-
formance for some of the challenging categories such as Dating &
Sexting and Bullying. Overall, we believe this work would help ac-
celerate the research community to pursue audio based solutions for
toxicity detection.
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[20] Zoltán Tüske, Ralf Schlüter, and Hermann Ney, “Investigation
on lstm recurrent n-gram language models for speech recogni-
tion,” in Interspeech, 2018, pp. 3358–3362.

[21] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly, “Parameter-efficient transfer
learning for nlp,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2790–2799.

[22] Jonathan Pilault, Amine Elhattami, and Christopher Pal, “Con-
ditionally adaptive multi-task learning: Improving transfer
learning in nlp using fewer parameters & less data,” arXiv
preprint arXiv:2009.09139, 2020.

[23] Alex Kendall, Yarin Gal, and Roberto Cipolla, “Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 7482–
7491.

[24] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich, “Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks,” in International
conference on machine learning. PMLR, 2018, pp. 794–803.

335


