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ABSTRACT

While pre-trained image autoencoders are increasingly utilized in computer vision,
the application of inverse graphics in 2D latent spaces has been under-explored. Yet,
besides reducing the training and rendering complexity, applying inverse graphics
in the latent space enables a valuable interoperability with other latent-based 2D
methods. The major challenge is that inverse graphics cannot be directly applied
to such image latent spaces because they lack an underlying 3D geometry. In
this paper, we propose an Inverse Graphics Autoencoder (IG-AE) that specifically
addresses this issue. To this end, we regularize an image autoencoder with 3D-
geometry by aligning its latent space with jointly trained latent 3D scenes. We
utilize the trained IG-AE to bring NeRFs to the latent space with a latent NeRF
training pipeline, which we implement in an open-source extension of the Nerfstu-
dio framework, thereby unlocking latent scene learning for its supported methods.
We experimentally confirm that Latent NeRFs trained with IG-AE present an im-
proved quality compared to a standard autoencoder, all while exhibiting training
and rendering accelerations with respect to NeRFs trained in the image space.

1 INTRODUCTION
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(b) Inverse Graphics Autoencoder (IG-AE).

Figure 1: 3D-aware latent space. We draw inspiration from the relationship between the 3D space
and image space and introduce the concept of a 3D-aware latent space. We propose an Inverse
Graphics Autoencoder (IG-AE) that encodes images into 3D-aware latent images, hence preserving
3D-consistency. We use these latents to train scene representations in the 3D-aware latent space.

Latent image representations are increasingly used in computer vision tasks. Most recent methods
utilize latent representations for various tasks such as image generation (Rombach et al., 2022; Esser
et al., 2021), and image segmentation (Long et al., 2015; Ohgushi et al., 2020), as they allow to
represent images in a compact form which reduces their representation complexity.

Similarly to 2D computer vision, leveraging latent image representations on 3D tasks would bring nu-
merous advantages. First, training NeRFs on lower-resolution latent images would enable significant
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speed-ups in both rendering and training times. While efforts towards NeRF speed improvements
have traditionally focused on working directly on NeRF architectures, this approach would instead
tackle the space in which NeRF models are trained. This means that it would offer a broader potential
impact across various NeRF models, extending beyond a single specific NeRF improvement. Second,
latent NeRFs unlock an inter-operability between NeRFs (3D) and pre-trained latent-based methods
(2D). For instance, previous works have enabled this inter-operability in a task-specific, ad-hoc
manner to unlock applications like scene editing (Park et al., 2024) and scene generation (Metzer
et al., 2023).

Despite the potential of latent NeRFs, the adoption of latent image representations for 3D tasks, such
as Novel View Synthesis (NVS), remains limited due to the inherent incompatibilities between image
latent spaces and 3D modeling methods. These incompatibilities stem from the lack of an underlying
3D geometry in latent spaces on the one hand, and the necessity of 3D-consistency among images
for solving the inverse graphics problem on the other hand. In practice, encoding two 3D-consistent
views of an object does not lead to 3D-consistent latent representations; instead, it produces latent
images with features that vary inconsistently across views. This prohibits the direct application of
scene learning methods such as Neural Radiance Fields (Mildenhall et al., 2020, NeRF) on such
representations.

To sidestep these incompatibilities, the aforementioned methods have resorted to the ad-hoc imple-
mentation of custom, scene-dependent “adapters” (Khalid et al., 2023) or “refinement layers” (Park
et al., 2024). However, these solutions are only workarounds and do not address the root cause of the
problem: the need for a universal “3D-aware” latent space induced by an image autoencoder that
preserves 3D-consistency. Such an autoencoder would enable a broader compatibility between image
autoencoders and NeRFs, unlocking the potential of latent NeRFs. In this paper, we explore this
direction for the first time.

We start by proposing a technique that enables learning NeRF models in the latent space. We
present a training pipeline comprising two stages: Latent Supervision supervises NeRFs with
latent image representations, and RGB Alignment aligns the learned latent scene with the RGB
space. Yet, its application in a standard latent space results in sub-optimal latent NeRFs, due to their
aforementioned incompatibilities. To address this, we draw inspiration from the relationship between
the image space and 3D space (Fig. 1a) and introduce 3D-aware latent spaces, which augment regular
image latent spaces by incorporating an underlying 3D geometry. We present an Inverse Graphics
Autoencoder (IG-AE) that embeds a 3D-aware latent space (Fig. 1b). To achieve this, we apply
3D regularization on the latent space of an autoencoder by jointly training it with a synthetic set of
latent 3D scenes. During this process, we align the encoded views with the renderings of the latent
3D scenes, which enforces 3D-consistency. Additionally, we propose an autoencoder preservation
process that simultaneously autoencodes real and synthetic data while performing our training, which
allows us to conserve the reconstructive performance of the autoencoder.

We propose an open-source extension of Nerfstudio (Tancik et al., 2023) that enables learning its
supported NeRF models in latent spaces, thereby unlocking a streamlined approach for latent NeRF
learning. This enables us to evaluate various current NeRF architectures on the task of learning
scenes in latent spaces. Our results highlight the effectiveness of our IG-AE in latent scene learning
as compared to a standard AE. We consider this work to be the first milestone towards foundation
inverse graphics autoencoders, and aspire that our open-source Nerfstudio extension promotes further
research in this direction.

An overview of our contributions is given below.

• We introduce the concept of 3D-aware latent spaces that are compatible with 3D tasks,

• We present an Inverse Graphics Autoencoder (IG-AE) that maps images to a 3D-aware
latent space, all while preserving autoencoder performances,

• We propose a standardized method to train NeRF architectures in latent spaces,

• We propose an open-source extension of Nerfstudio that support training supported NeRF
models in the latent space, in an effort to streamline future work involving latent NeRFs.

• We experimentally show that IG-AE enables improved latent NeRF quality with respect to
the baseline AE and decreased training times with respect to regular NeRFs.
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2 RELATED WORK

Latent NeRFs. While NeRFs (Mildenhall et al., 2020) were originally conceived to work in the
image space, they have also been extended to work in other feature spaces (Tschernezki et al., 2022;
Kobayashi et al., 2022). Notably, Latent NeRFs are extensions of NeRFs to the latent spaces of image
autoencoders. They have been particularly explored in works targeting applications such as scene
editing (Park et al., 2024; Khalid et al., 2023) and text-to-3D generation (Metzer et al., 2023), which
are not directly feasible with regular NeRFs. To circumvent the incompatibilities between NeRFs and
latent spaces, these works have resorted to special adapter layers that correct NeRF renderings into
standard latent image representations. For novel view synthesis, Aumentado-Armstrong et al. (2023)
employ hybrid NeRFs that are trained to simultaneously render both RGB and latent components.
This is done to supervise the NeRF geometry during training, while only keeping latent components
at inference, which enables good NVS performances and rendering speed-ups. In this work, we aim
to train NeRFs that operate fully within the latent space. We address the incompatibility between
NeRFs and latent spaces by tackling its root cause: the need for a inverse graphics autoencoders that
preserves 3D consistency, or in other words, the need for 3D-aware latent spaces.

Scene embeddings. While methods like Latent NeRFs and other feature fields modify the NeRF
rendering space by replacing scene images with “feature images”, other approaches embed the entire
scene information into a “scene embedding”. Recent works (Wang et al., 2023; Kosiorek et al., 2021;
Sajjadi et al., 2022; Lan et al., 2024) focus on training encoders to transform scene information (e.g.
images or text) into embeddings that fully encapsulate the 3D scene. NeRFs can then be obtained
directly (without training) from such scene embeddings. In contrast, our approach aligns more
closely with feature field methods (Tschernezki et al., 2022; Kobayashi et al., 2022), where NeRFs
are trained to render “feature images” derived from scene images (e.g. DINO or CLIP features),
enabling applications such as segmentation and object retrieval. However, we train NeRFs to render
latent image representations obtained from an autoencoder fine-tuned for 3D tasks, to tackle the task
of 3D reconstruction. For a more elaborate distinction across recent works, we refer the reader to
Appendix A.

Nerfstudio. Subsequent to the introduction of NeRF (Mildenhall et al., 2020), a multitude of NeRF
models emerged to improve upon the original architecture by accelerating training times (Müller
et al., 2022; Kerbl et al., 2023), improving rendering quality (Barron et al., 2021; Chen et al., 2022),
as well as targeting other limitations (Fridovich-Keil et al., 2023; Martin-Brualla et al., 2021; Yu
et al., 2021). With the escalation of NeRF methods, Nerfstudio (Tancik et al., 2023) emerged as
a unified PyTorch (Paszke et al., 2019) framework in which NeRF models are implemented using
standardized implementations, making it straightforward for researchers and practitioners to integrate
various NeRF models into their projects. Today, most well-known NeRF techniques are implemented
in Nerfstudio (Müller et al., 2022; Barron et al., 2021; Mildenhall et al., 2020; Kerbl et al., 2023),
thus allowing for a friction-free experience when testing and comparing novel techniques. While
Nerfstudio currently provides a streamlined approach for NeRFs, it limits the representation of 3D
scenes to the natural color space, hence limiting both the research and development of Latent NeRFs.
In this work, we propose an open-source extension of the Nerfstudio framework that supports training
any Nerfstudio architecture in a custom latent space, thus facilitating our current as well as future
research in this area. Furthermore, we integrate our IG-AE into this extension, which enables us to
evaluate various current NeRF architectures on the task of latent scene learning.

3 LATENT NERF

In this section, we start by presenting latent NeRFs. Then, we propose a general latent NeRF training
method, which will later serve to train NeRFs in the latent space of our IG-AE. Provided an encoder
Eϕ and decoder Dψ, our method can train any NeRF architecture in a latent space via two stages.
Latent Supervision is an adaptation of the standard NeRF training framework to the latent space
which replaces RGB images with latent images. RGB Alignment fine-tunes the decoder to align the
learned latent scene with the RGB space, which our experiments proved to be essential for strong
NVS performances in the RGB space.

3
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AE IG-AE

(a) Latent images.

Ground TruthAE IG-AE

(b) Decoded latent NeRF renderings.

Figure 2: Comparison of IG-AE and a standard AE. Encoding 3D-consistent images using an
AE leads to 3D-inconsistent latent images. When trained on such latents, NeRF renderings present
artifacts when decoded. IG-AE presents a 3D-aware latent space with 3D-consistent latent images.
Latent NeRFs trained with our IG-AE omit these artifacts and more closely match the ground truth.

3.1 DEFINITION

Latent NeRFs are conceptually similar to standard NeRFs, with the primary difference being that
they model scenes in the latent space of an autoencoder as opposed to the RGB space. As such, latent
NeRFs are simple extensions of standard NeRF methods, where the rendering resolution and the
number of output channels are modified in accordance with the latent space dimensions. Let Fθ be
a latent NeRF method with trainable parameters θ, where Fθ ∈ {Vanilla-NeRF (Mildenhall et al.,
2020), Instant-NGP (Müller et al., 2022), TensoRF (Chen et al., 2022), K-Planes (Fridovich-Keil
et al., 2023)}. For conciseness, we consider Fθ to be a generic NeRF method and abstract from
method-specific nuances. Given a camera pose p, one can render a novel view as such:

z̃p = Fθ(p) , x̃p = Dψ(z̃p) , (1)

where z̃p is the rendered latent image of shape (h,w, c), and x̃p is the decoded RGB image of shape
(H,W, 3). We define l > 1 as the resolution downscale factor when going from the RGB space to the
latent space: (h,w) = (H/l,W/l). As NeRF rendering pipelines implement classic volume rendering
(Kajiya & Von Herzen, 1984) where pixels are independently rendered, latent NeRFs reduce the
rendering complexity by a factor of l2 as compared to standard NeRFs. This makes latent NeRFs
highly attractive, as they alleviate a key bottleneck in NeRF training, while maintaining the same
target resolution after decoding.

3.2 TRAINING

Our latent NeRF training scheme consists of two stages, as illustrated in Fig. 3.

Latent Supervision. In this stage, we consider the direct adaptation of NeRF training in the latent
space, i.e. training NeRF on latent image representations rather than RGB images. Let LFθ

be the
training loss corresponding to the NeRF method Fθ. LFθ

comprises of a pixel-level reconstructive
objective that matches the NeRF renderings to ground truth views, as well as other method-specific
regularization terms. Latent Supervision consists of minimizing the following objective:

LLS(θ) =
∑
p∈P

LFθ
(θ; zp, z̃p) , (2)

where zp and z̃p are respectively the encoded latent representation of the RGB ground truth and
the rendered latent image, with pose p. P denotes the set of training camera poses. Note that, to
avoid redundantly encoding training views, we start this stage by encoding all the training images
X = {xp}p∈P into latent image representations Z = {zp}p∈P , and then caching them.

4
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Stage 1: Latent Supervision

Stage 2: RGB Alignment

Latent NeRF Inference Pipeline

NeRF Method

Field,
Ray Sampler,

Renderer,
etc.

Latent NeRF Training Pipeline

Encoding

Figure 3: Latent NeRF Training. We train a Latent NeRF in two stages. First, we train the chosen
NeRF method Fθ on posed encoded latent images using its proprietary loss LFθ

that matches rendered
latents z̃p and encoded latents zp. Subsequently, we align with the scene in the RGB space by adding
decoder fine-tuning via Lalign that matches ground truth images xp and decoded renderings x̃p.

RGB alignment. While Latent Supervision effectively captures a 3D structure in the latent space,
even minor inaccuracies in latent NeRF renderings can be magnified during the decoding process.
These inaccuracies stem from various sources of error within the pipeline, mainly: errors originating
from the latent space and autoencoding performances (i.e. imperfect AE), and errors associated with
3D modeling (i.e. imperfect NeRF). Hence, in order to alleviate the effect of these errors, we finish
our latent NeRF training by an RGB alignment process, where we fine-tune the decoder Dψ and the
latent scene Fθ to align with the RGB space. In practice, we minimize the following objective:

Lalign(θ, ψ) =
∑
p∈P

∥xp − x̃p∥22 , (3)

where xp is the RGB ground truth, and x̃p = Dψ(z̃p) is the decoded latent NeRF rendering.
Consequently, the latent NeRF not only exhibits good NVS performances in the latent space, but also
when decoding its renderings to the RGB space.

Overall, we divide latent NeRF training into Latent Supervision and RGB Alignment. Latent
Supervision is an accelerated approach that learns 3D structures in the latent space thanks to reduced
image resolutions, and RGB alignment enhances NVS quality in the RGB space by using RGB
supervision and a decoder fine-tuning, while still rendering the NeRF in the latent space. Fig. 2 (AE
columns) illustrates the results of our latent NeRF training method when applied in a standard latent
space. Latent NeRFs trained in a standard latent space with our method learn a coarse geometry.
However, due to the aforementioned incompatibilities between latent spaces and NeRFs, the decoded
renderings present artifacts in the RGB space. To address this, we shift focus to resolving these
incompatibilities in the next section, and present an inverse graphics autoencoder embedding a
3D-aware latent that is compatible with learning latent NeRFs.

4 INVERSE GRAPHICS AUTOENCODER

We present IG-AE, an autoencoder that encodes 3D-consistent images into 3D-consistent latent
representations. To attain such an autoencoder, it is necessary that its latent space encodes the
RGB space while also retaining an underlying 3D geometry. In this section, we start by defining
3D-consistency (Section 4.1), and then elaborate on how we train an IG-AE: we utilize synthetic data
to construct a learnable set of latent scenes which aims to supervise the latent space of an AE with
3D-consistent latents (Section 4.2), all while preserving autoencoding performances (Section 4.3).
Fig. 4 presents an overview of our method.

5
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RGB Scenes

Mesh
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Real Images
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Learnable Latent Scenes

Tri-Planes
Renderer

......

AE Preservation

3D Regularization

s,p

Figure 4: IG-AE Training. We jointly learn a set of latent synthetic scenes Tτ and supervise the
latent images zs,p of an autoencoder with rendered 3D-consistent latents z̃s,p using Llatent. We match
decoded latent renderings x̃s,p with the ground truth scene renderings xs,p using LRGB. We preserve
autoencoder performances on synthetic and real data respectively through L(synth)

ae and L(real)
ae .

4.1 3D-CONSISTENCY

The notion of 3D consistency ensures that corresponding points or features in different images
represent the same point or object in the scene, despite variations in viewpoint, lighting or occlusion.
We denote the posed images as X = {xp | p ∈ SE(3)}, where SE(3) is the Special Euclidean group
containing all camera poses in 3D. X are posed 3D-consistent images if and only if there exists a 3D
model M such that:

∀p ∈ SE(3), Render(M,p) = xp . (4)

Note that a NeRF model inherently produces 3D-consistent images as it is an implicit model M
rendered via classic volume rendering (Kajiya & Von Herzen, 1984). Also note that while 3D
consistency is natural for posed images X = {xp}p∈P obtained from a scene in the image space, it
does not naturally extend to the latent space, as latent representations of two 3D-consistent images
are not necessarily 3D consistent. Our 3D-aware latent space is designed to mitigate this discrepancy.

4.2 3D-REGULARIZATION

To achieve 3D-consistency in the latent space, we learn an IG-AE by aligning the latent encodings of
3D-consistent images with reference 3D-consistent latent images. However, this cannot be directly
achieved as such 3D-consistent latent images are not available. To this end, we learn a set of 3D latent
scenes with NeRFs from which 3D-consistent latents can be easily rendered. In fact, while NeRFs
cannot replicate 3D-inconsistent latents from a given autoencoder, training them via LFθ

(which
typically employs an MSE reconstructive objective) leads to a convergence towards a common coarse
geometry that most satisfies the inputs, while maintaining 3D-consistency. We utilize this property in
our approach to obtain 3D-consistent latent images with which we supervise our autoencoder. To
learn our latent scenes in practice, we adopt Tri-Plane representations (Chan et al., 2022), as their
simple architecture ensures a low memory footprint and a fast training.

Let M = {M1, ...,MN} be a dataset of 3D scenes, and Xs = {xs,p}p∈P be the set of renderings of
a scene Ms ∈ M from an array of training views P . We denote the set of latent scenes as the set of

6
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Tri-Planes Tτ = {T1, ..., TN}, where τ comprises both scene-specific trainable parameters, as well
as shared parameters present in the feature decoder of our common Tri-Plane renderer RT .

Before training our IG-AE, we start by encoding views of our scenes M into standard (i.e. 3D-
inconsistent) latent views, and training our Tri-Planes on these latents. Subsequently, we proceed to
train our IG-AE while continuing to jointly train our Tri-Planes. For each scene Ms, we encode each
view xs,p into a latent image zs,p, and render the corresponding 3D-aware latent image z̃s,p from the
latent scene Ts as follows:

zs,p = Eϕ(xs,p) , z̃s,p = RT (Ts, p) , (5)

where Eϕ is the encoder with trainable parameters ϕ. We then define a loss function Llatent that
aligns these latent representations:

Llatent(ϕ, τ ; zs,p, z̃s,p) = ∥zs,p − z̃s,p∥22 . (6)

This loss function updates both the encoder parameters ϕ and the latent scene parameters τ to
minimize the distance between the latent representations. This means that, on the one hand, the latent
scene Ts is updated to align with the 3D-inconsistent latent images zs,p, and hence learn a coarse
geometry common among all latent images of Ms. On the other hand, the encoder parameters ϕ are
updated to produce latent images that more closely reassemble the latent scene renderings z̃s,p, or in
other words, produce 3D-consistent images.

We additionally define LRGB as a loss function that mirrors Llatent in the RGB space:

LRGB(ψ, τ ;xs,p, x̃s,p) = ∥xs,p − x̃s,p∥22 , (7)

where x̃s,p = Dψ(z̃s,p) is the decoded latent scene rendering. LRGB updates both the decoder
parameters ψ and the latent scene parameters τ so that the latent scene aligns with the RGB scene
when decoded. This is to ensure the optimal decoding of 3D-consistent latents as well as NVS
performances in the RGB space.

Therefore, our 3D regularization objective minimizes the following loss:

L3D(ϕ, ψ, τ) =
∑
s,p

[λlatentLlatent(ϕ, τ ; zs,p, z̃s,p) + λRGBLRGB(ψ, τ ;xs,p, x̃s,p)] , (8)

where λlatent and λRGB are hyper-parameters.

Overall, our IG-AE is trained by aligning the latent space of an autoencoder with the space of latent
images that is inferable via Tri-Planes, while also ensuring the proper mapping from the latent space
to the RGB space. In practice, we use synthetic scenes from Objaverse (Deitke et al., 2023) to
learn 3D structure in the latent space, as they present well-defined geometry and error-free camera
parameters. Fig. 2 illustrates a comparison between a standard AE latent space and our 3D-aware
latent space. While latent NeRFs trained with an AE present artifacts when decoding their renderings,
those trained in the latent space of our IG-AE do not exhibit such artifacts. Yet, our experiments show
that solely applying our 3D-regularization optimization objective leads to a degradation of the AE’s
generalization capabilities and autoencoding performances. On that account, we present in the next
section additional components of our training that target a reconstructive objective.

4.3 AUTOENCODER PRESERVATION

As 3D regularization does not incorporate autoencoder reconstruction, this section focuses on
preserving the autoencoding performance of the AE on both synthetic and real data. To this end, we
additionally jointly learn a reconstructive objective. First, we add an autoencoder loss to align the
ground truth RGB views with the reconstructed views after encoding and decoding:

L(synth)
ae (ϕ, ψ;xs,p, x̂s,p) = ∥xs,p − x̂s,p∥22 , (9)

where x̂s,p = Dψ(zs,p) is the reconstruction of the ground truth image. This ensures that the
autoencoder still reconstructs images from the scenes.

To avoid overfitting on synthetic data, we additionally inject real images from Imagenet (Deng et al.,
2009) into our training pipeline, on which we also define a reconstructive objective. We denote

7
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I = {I1, ..., IL} the dataset of real images. We define the reconstructive loss on an image Ij ∈ I as
follows:

L(real)
ae (ϕ, ψ; Ij , Îj) = ∥Ij − Îj∥22 + λpLp(Ij , Îj) + λTVLTV(kj) , (10)

where λp and λTV are hyper-parameters, Îj = Dψ(kj) is the reconstruction of Ij , and kj = Eϕ(Ij)
is the encoding of Ij . Lp is a perceptual loss that refines the autoencoder reconstructions by aligning
the reconstructed and original images in the feature space of a pre-trained network. LTV is a total
variation loss that acts as a regularization term to encourage spatial smoothness by penalizing high-
frequency variations in the latent images. We found that it leads to latent images that more closely
reassemble our 3D-consistent latents. More details about TV are present in Appendix C. This is done
to prevent the IG-AE from converging towards a dual-mode solution, where it is only 3D-consistent
for synthetic scenes while functioning as a normal AE for real scenes.

Therefore, our autoencoder preservation loss is defined as follows:

Lae(ϕ, ψ) = λ(synth)ae

∑
s,p

L(synth)
ae (ϕ, ψ;xs,p, x̂s,p) + λ(real)ae

∑
j

L(real)
ae (ϕ, ψ; Ij , Îj) , (11)

where λ(synth)ae and λ(real)ae are hyper-parameters.

4.4 IG-AE TRAINING OBJECTIVE

Overall, we present a joint training objective for our IG-AE that regularizes its latent space with 3D
geometry while preserving its autoencoding performances. Our IG-AE training objective minimizes
the following loss:

LIG−AE(ϕ, ψ, τ) = L3D(ϕ, ψ, τ) + Lae(ϕ, ψ) . (12)

In summary, our training strategy exploits the well-defined geometry of synthetic data and utilizes
L3D to learn latent scenes and regularize the latent space of an AE with 3D geometry, all while
maintaining the reconstruction performance of the AE via Lae and real data.

5 EXPERIMENTS

We evaluate our method by first training an IG-AE on synthetic scenes from Objaverse, as described
in Section 4. Subsequently, we train Nerfstudio models in our 3D-aware latent space on scenes from
out-of-distribution datasets. We also train Nerfstudio models on held-out scenes from Objaverse
(results in Appendix D.3). We compare the novel view synthesis performance of the Nerfstudio
models when trained in our 3D-aware latent space (IG-AE), a standard latent space (AE), and the
RGB space. Moreover, we evaluate the auto-encoding performances of our IG-AE on held-out real
images. Finally, we assess our design choices by presenting an ablation study of our method, where
we omit either our 3D-regularization components or our AE preservation components. The details of
our Nerfstudio extension, as well as IG-AE and latent NeRF trainings, are available in Appendix B.

5.1 DATASETS

For 3D-regularization, we adopt Objaverse (Deitke et al., 2023), a synthetic dataset which is standard
when large-scale and diverse 3D data is needed (Liu et al., 2023; Shi et al., 2024).

Objaverse provides meshes of synthetic objects, and thus presents no artifact in its scenes and no
approximation errors in camera parameters. We utilize N = 500 objects from Objaverse. Each object
is rendered from V = 300 views at a 128× 128 resolution.

For AE preservation, we adopt Imagenet (Deng et al., 2009), a large dataset of diverse real images.
We utilize L = 40 000 images, which we pre-process by doing a square cropping followed by a
downscaling to a 128× 128 resolution that matches our rendered scenes.

For NeRF evaluations, we utilize synthetic, object-level data as it aligns with the training domain.
As such, we train NeRFs on held-out scenes from Objaverse, and on scenes from three out-of-
distribution datasets: Shapenet Hats, Bags, and Vases (Chang et al., 2015). Note that, as discussed
further below (Section 5.4), due to the challenges latent NeRFs face with simple object-level scenes,
our evaluation focuses on such scenes, and excludes more complex or real scenes.
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Vanilla-NeRF

Instant-NGP

TensoRF

K-Planes

AE IG-AE AE IG-AE AE IG-AE

GTGTGT

Figure 5: Qualitative results. Visualization of decoded latent NeRF renderings trained with a
standard AE and an IG-AE on scenes from three out-of-distribution datasets. Latent NeRFs trained
with an AE exhibit artifacts in decoded renderings that are not present in those trained with IG-AE.

Table 1: Main Results on ShapeNet datasets. All results are obtained by training NeRF models
in Nerfstudio using our Latent NeRF Training Pipeline, and are averaged over 4 scenes from each
dataset. Our 3D-aware latent space generalizes to out-of-distribution datasets and is more suited for
latent NeRF training.

Bags dataset Hats dataset Vases dataset

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 28.81 0.954 0.046 28.75 0.960 0.032 32.00 0.968 0.023
IG-AE 29.57 0.960 0.044 29.31 0.967 0.033 33.06 0.973 0.021

Instant-NGP AE 24.29 0.892 0.113 23.48 0.893 0.096 26.49 0.917 0.081
IG-AE 25.90 0.923 0.062 25.30 0.925 0.048 28.44 0.942 0.043

TensoRF AE 26.19 0.930 0.060 25.90 0.932 0.044 29.16 0.948 0.038
IG-AE 28.40 0.953 0.038 28.09 0.957 0.029 31.45 0.966 0.021

K-Planes AE 28.00 0.946 0.041 27.68 0.951 0.031 31.56 0.964 0.023
IG-AE 29.22 0.957 0.038 28.81 0.962 0.027 32.79 0.971 0.019

5.2 RESULTS

We report for each experiment the PSNR (↑) for pixel-level similarity, the SSIM (↑) for structural-
level similarity, and the LPIPS (↓) (Zhang et al., 2018) for perceptual similarity. Quantitative and
qualitative results can be found in Table 1 and Fig. 5, where we utilize our latent NeRF training
pipeline to train various Nerfstudio models on out-of-distribution datasets from ShapeNet, both using
our IG-AE and a standard AE. As illustrated, models trained with our IG-AE showcase a superior
NVS performance compared to those trained with a standard AE. This proves that our IG-AE embeds
a 3D-aware latent space that is more compatible with NeRF training than a standard latent space,
and that is able to generalize to novel datasets. To further support this, Table 11 in Appendix D.2
presents latent NVS metrics computed directly on latent images. Latent NeRFs showcase significantly
better latent NVS performance when trained in our latent space, further confirming its 3D-awareness.
Table 4 presents the evolution of the NVS performance throughout our two Latent NeRF training
stages. In Table 13, we provide a comparison of latent NeRF training with classical RGB training.
Latent NeRF training showcases speedups both in terms of training and rendering times, but lower
NVS performance, which we discuss in the limitations section (Section 5.4).

5.3 ABLATIONS

To justify our design choices, we conduct an ablation study in which we alternatively omit our 3D
regularization pipeline and our AE preservation components. Ablation results on held-out Objaverse
scenes for Vanilla NeRF can be found in Table 2. “IG-AE (no Pr)” removes the AE preservation
components from our training by deactivating Lae. “IG-AE (no 3D)” omits our 3D regularizatiom
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Table 2: Ablations. A comparison between IG-AE and the baseline AE on two tasks. First, we
compare their NVS performances when used to train a latent Vanilla-NeRF. Second, we compare
their reconstruction performances when auto-encoding held-out images from ImageNet. Our method
presents both strong NVS and reconstruction performances as compared to its ablations, validating
our design choices. The bold and underlined entries indicate the best and second-best results.

NVS
Reconstruction

Cake Figurine

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

AE 33.18 0.962 0.053 31.46 0.972 0.017 27.69 0.856 0.023
IG-AE (no 3D) 32.09 0.951 0.063 30.94 0.965 0.021 29.83 0.898 0.013
IG-AE (no Pr) 33.87 0.966 0.050 33.73 0.982 0.012 17.66 0.410 0.279
IG-AE 34.38 0.966 0.051 33.17 0.979 0.012 29.57 0.887 0.015

by deactivating L3D. As illustrated, IG-AE (no Pr) presents deteriorated autoencoding performance
due to overfitting on the task of 3D-regularization. IG-AE (no 3D) showcases good autoencoding
performances, but lower NVS performances, as the latent space here is not 3D-aware due to the
lack of 3D-regularization. Our method (IG-AE) demonstrates both good NVS and autoencoding
reconstruction performances as compared to its ablations, thereby justifying the components of
our pipeline. Note that ablating both our 3D regularization components and our AE preservation
components leads back to the case of a standard autoencoder (AE). Additional ablations done with
other NeRF models can be found in Table 10 in Appendix D.2.

5.4 LIMITATION

Table 13 compares latent NeRF training with classical RGB training. Despite speedups both in
terms of training and rendering times, latent NeRFs have a lower NVS performance. This is due to a
limitation in the representation of high frequencies in latent NeRFs. We speculate that this issue arises
because enforcing 3D consistency in the latent space tends to prioritize regularizing low-frequency
structures over high-frequency details. This leads to the loss of high-frequency details when decoding
latent NeRF renderings back to the RGB space, as it can be seen in Fig. 5. Furthermore, this currently
hinders the applicability of latent NeRFs on complex scenes with abundant high-frequency details,
such as real-world scenes. We leave this to future work, as our approach is the first to propose a
3D-aware latent space via an image autoencoder, and is compatible with various NeRF architectures.

6 CONCLUSION

In this paper, we propose IG-AE, the first image autoencoder embedding a 3D-aware latent space.
Moreover, we present a latent NeRF training pipeline that brings NeRF architectures to the latent
space. We integrate our pipeline into an open-source extension of Nerfstudio, thereby enabling latent
NeRF training for its supported architectures. Extensive experiments show the notable improvements
our 3D-aware latent space brings as compared to training NeRFs in a standard latent space, as well as
the efficiency improvements it brings with respect to training NeRFs in the RGB space. In concluding
this paper, several directions of future work arise, as we consider this work to the first milestone
towards foundation inverse graphics autoencoders. This includes, for instance, the exploration of
approaches improving the representation of high-frequency details when decoding latent NeRFs. We
hope that our proposed Nerfstudio extension, as well as our open-source codebase, will promote
further research in this direction. In a separate contribution, Anonymous (2024) propose a method
tackling “scaled inverse graphics”, in which our 3D-aware latent space serves as a key component.
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A RELATED WORK

Table 3: Comparison with related work. Our work is the first to train various NeRF architectures
in the latent space of an autoencoder, where NeRFs are able to render images that match AE latent,
thanks to the 3D-aware latent space of our IG-AE.

Method Rendering space
3D alignment
of rendering and
reference spaces

NeRF Repr. Task

NeRF-VAE RGB yes (RGB) Vanilla-NeRF Generation
Rodin RGB yes (RGB) Tri-Planes Generation
LN3Diff RGB yes (RGB) Tri-Planes Generation
StyleNeRF Feature — Vanilla-NeRF Generation

Latent-NeRF
VAE Latent (Train)
RGB (Inference) yes (RGB) I-NGP Generation

LERF RGB & CLIP yes (RGB) Vanilla-NeRF 3D Distillation
N3F RGB & DINO no (DINO) Tri-Planes 3D Distillation

Latent-Editor VAE Latent no (VAE) Vanilla-NeRF 3D Editing
ED-NeRF VAE latent no (VAE) TensoRF 3D Editing

RLS
RGB & VAE Latent (Train)
VAE Latent (Inference) no (VAE) Vanilla-NeRF Reconstruction

Ours IG-AE Latent (3D-aware) yes (IG-AE)
Vanilla-NeRF,
K-Planes, TensoRF,
Instant-NGP

Reconstruction

This section is dedicated to compare some recent works utilizing NeRFs with scene embeddings and
feature images. Table 3 summarizes this section.

As discussed in the related work (Section 2), some methods encode scene information (e.g. images,
text) into a scene embedding that then serves to produce a NeRF. Such works do not tackle changing
the RGB rendering space of NeRFs.

• NeRF-VAE (Kosiorek et al., 2021) trains a VAE to encode scene images into a scene
embedding. This embedding is then used to condition a NeRF model. They can additionally
sample such embeddings in the VAE latent space, which allows for scene generation.

• Rodin (Wang et al., 2023) enable scene generation with an optional conditioning via images
and/or text. They encode the input image and/or textual prompt into a scene embedding,
which is then used to condition a diffusion model that generates a Tri-Plane representing the
scene.

• LN3Diff (Lan et al., 2024) enable fast text/single-image-to-3D generation. For single-image-
to-3D, the image is encoded into a scene embedding, which is used to condition a DiT
transformer that generates a Tri-Plane representing the scene.

Other works do change the rendering space of NeRFs, which makes them more closely related to our
work, with still some key differences.

• StyleNeRF (Gu et al., 2022) propose a high-resolution generative model with multi-view
consistency. They achieve style-based generation via NeRFs that render feature images
followed by a decoder. However, these features can only be obtained via the NeRF rendering
procedure.

• Latent-NeRF (Metzer et al., 2023) tackle text-to-3D object generation. They train latent
NeRFs such that their renderings match the posterior distribution of Stable Diffusion (Rom-
bach et al., 2022) under a descriptive text prompt. After this optimization, the latent NeRF is
converted into an RGB NeRF to resolve the issues arising from training NeRFs in a standard
latent space.

• LERF (Kerr et al., 2023) distills CLIP features in NeRFs while simultaneously learning the
RGB components of the scene, which allows for language queries in 3D.
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• N3F (Tschernezki et al., 2022) distills DINO features into a NeRF representation, while
simultaneously learning the RGB components of the scene. This allows to apply image-level
tasks (e.g. scene editing, object segmentation) on NeRF renderings. The DINO features
rendered by NeRFs represent a 3D-consistent version of the original DINO features.

• Latent-Editor (Khalid et al., 2023) and ED-NeRF (Park et al., 2024) achieve scene editing
by training NeRFs in a VAE latent space. To make this possible, they implement special
layers (“adapter” and “refinement layer”) that correct the NeRF renderings to match latent
images.

• RLS (Aumentado-Armstrong et al., 2023) are the closest to our work. They employ hybrid
NeRFs that are trained to simultaneously render both RGB and latent components of a scene,
where the latent components are learned via a VAE decoder. At inference, they exclusively
render the latent components. However, due to the lack of a 3D-aware latent space, they still
require RGB components at training time to supervise the geometry of the scene.

The presented methods either tackle a different task or use a different rendering space, which makes
them not directly comparable with out work. This means that our work the first to propose training
purely latent NeRFs, where no RGB components are utilized, for the reconstructive task.

B IMPLEMENTATION DETAILS

B.1 NERFSTUDIO EXTENSION

We extend Nerfstudio to support latent scene learning in a code which we include in the supplementary
material and will publicly release as open-source. Our extension omits the constraint of training
models in the RGB space and allows to train Nerfstudio models in any feature space. Concurrently,
we incorporate our latent NeRF training pipeline as well as IG-AE into Nerfstudio while adhering
to its coding conventions, thereby enabling the training of any Nerfstudio model in our 3D-aware
latent space. We modify the ray batching process to make it correspond to full images, where the
default behavior uses randomly sampled pixels. This is necessary to be able to decode the rendered
images without breaking the gradient flow. Beyond reproducibility purposes for this paper, we hope
the proposed generic extension will facilitate research on latent NeRFs and their applications.

B.2 NERFSTUDIO MODELS TRAINING DETAILS

We test the following models from Nerfstudio: Vanilla-NeRF (Mildenhall et al., 2020), Instant-NGP
(Müller et al., 2022), TensoRF (Chen et al., 2022), and K-Planes (Fridovich-Keil et al., 2023). For
each method, the Nerfstudio framework provides a proprietary loss Fθ, as well as a custom training
procedure that includes specific optimizers, schedulers and other method-specific components. To
train a latent NeRF in Nerfstudio, we first train the chosen model for 10 000 iterations to minimize
LLS using the method-specific optimization process. Subsequently, we continue the training with
15 000 iterations of RGB alignment by minimizing Lalign. To account for the change of image
representations, we modulate the learning rate of each method by a factor of ξLS in latent supervision,
and a factor ξalign for RGB alignment. Appendix F.2 details the hyper-parameters we used in
Nerfstudio, including the values of these factors for each method.

B.3 IG-AE TRAINING DETAILS

We adopt the pre-trained “Ostris KL-f8-d16” VAE (Burkett, 2024) from Hugging Face, which has a
downscale factor l = 8, and c = 16 feature channels in the latent space. We apply a Total Variation
(TV) regularization on our Tri-Planes with a factor λ3DTV which prevents overfitting on train views
(we exclude it from Eq. (8) for clarity). Analogously, we also apply TV regularization on encoded
real images kj . A detailed presentation of TV and its benefits for NVS can be found in Appendix C.
Training IG-AE takes 60 hours on 4× NVIDIA L4 GPUs. Our detailed hyper-parameter settings can
be found in Appendix F.1.
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C TRI-PLANE REPRESENTATIONS

Tri-Plane representations (Chan et al., 2022) are explicit-implicit scene representations enabling
scene modeling in three axis-aligned orthogonal feature planes, each of resolution K × K with
feature dimension F . To query a 3D point x ∈ R3, it is projected onto each of the three planes to
retrieve bilineraly interpolated feature vectors Fxy, Fxz and Fyz . These feature vectors are then
aggregated via summation and passed into a small neural network to retrieve the corresponding color
and density, which are then used for volume rendering (Kajiya & Von Herzen, 1984). We adopt
Tri-Plane representations for our set of latent scenes for their lightweight architectures and relatively
fast training times.

TV regularization. Total variation measures the spatial variation of images. It can act as a
regularisation term to denoise images or ensure spatial smoothness. Total variation on images is
expressed as follows:

LTV (I) =
1

HW

∑
i,j

[∥Ii,j − Ii−1,j∥qp + ∥Ii,j − Ii,j−1∥qp] , (13)

where ∥·∥qp is the lp norm to the power q.

Total variation regularization was adapted for inverse graphics to promote spatial smoothness in
implicit-explicit NeRF representation (Fridovich-Keil et al., 2023; 2022; Chen et al., 2022). Accord-
ingly, we regularize our Tri-Planes with total variation, which we write below:

L3D
TV (T ) =

∑
c

LTV (T (c)) , (14)

where T (c) represents the feature plane of index c in T . In practice, we add the regularization term
λ3DTV

∑
i L3D

TV (Ti) to our 3D regularization loss L3D (Eq. (8)), where λ3DTV is a hyperparameter. While
this TV regularization is done on plane features, it effectively translates to the latent 3D scene, as
latents are obtained from decoding these regularized features. This leads to smooth latent renderings
and smooth gradients, as we utilize TV regularization here with (p, q) = (2, 2), which discourages
high frequency variations in features.

Additionally, we use total variation in our AE preservation loss LAE (Eq. (10)) with (p, q) = (2, 1) to
discourage our autoencoder from producing latents with high frequency variations, while conserving
sharp edges (Rudin et al., 1992). In fact, we noticed during our experiments that solely using an
l2 reconstructive objective on an autoencoder leads to latents with high frequencies. These high
frequencies are inconsistent across latent encodings of the same 3D-consistent object. Hence, to
ensure the compatibility of L(real)

ae with the 3D regularization term L3D, we add a TV regularization
on encoded latents.

D SUPPLEMENTARY RESULTS

D.1 RGB ALIGNMENT VALUE

We show in Table 4 the importance of the second stage of RGB Alignment in the Latent NeRF
Training Pipeline, where NVS performances in the RGB space improves after aligning latent scenes
with the RGB views.

D.2 QUANTITATIVE RESULTS

Tables 5 to 10 illustrate additional quantitative evaluations of various NeRF architectures trained
in a standard AE latent space and our IG-AE 3D-aware latent space on held-out Objaverse scenes,
using our latent NeRF training pipeline. These results further support our conclusions. Additionally,
Table 10 also includes our ablations.

Table 11 compares the NVS performance of latent NeRF methods on latent images. Particularly, it
compares NeRF-rendered latent images with encoded latent images. Methods trained in the latent
space of our IG-AE exhibit significantly better latent NVS performance, confirming its 3D-awareness.
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Table 12 compares the autoencoding performance of our IG-AE and the baseline AE when used on
images from held-out Objaverse scenes and OOD Shapenet scenes. Our IG-AE showcases better
PSNR and SSIM metrics but slightly worse LPIPS metrics, which indicates a minor loss in high
frequency details.

Table 13 compares RGB NeRFs and Latent NeRFs using IG-AE, on various Nerfstudio methods, in
terms of NVS performance as well as training and rendering times.

D.3 QUALITATIVE RESULTS

Figs. 6 to 8 compares the renderings of NeRFs respectively trained on the Cake, House and Figurine
scene from Objaverse using our ablated models as well as our full model. Latent NeRFs trained with
IG-AE (no 3D) present artifacts when decoding their renderings to the RGB space, as the latent space
is not 3D-aware. IG-AE (no Pr) and IG-AE both have 3D-aware latent space and present no artifacts,
as previously illustrated, IG-AE (no Pr) demonstrates degraded auto-encoding performances.

Fig. 9 illustrates real images that are auto-encoded using all our models.

E CHOICE OF AUTOENCODER

Table 14 compares autoencoders with various latent resolutions. For this comparison, we adopt the
autoencoders “kl-f4”, “kl-f8”, “kl-f16” from (Rombach et al., 2022), exhibiting downscale factors of
4, 8, and 16 respectively. Note that the compared autoencoders are not trained into inverse graphics
autoencoders to conduct this study. As the table presents, NVS performances are directly correlated
with latent resolution. We speculate that this comes from the fact that a higher resolution latent
space encourages a more local dependency between the RGB image and its latent representation,
which is more advantageous in the context of 3D-awareness. As a baseline for IG-AE, we select an
autoencoder with a downscale factor of 8 as a compromise between latent resolution and rendering
speed.

F HYPERPARAMETERS

This section is dedicated to illustrate our hyperparameter settings for both our IG-AE training and our
Latent NeRF training in Nerfstudio.

F.1 IG-AE TRAINING SETTINGS

Table 15 details the hyperparameters taken to train our IG-AE.

F.2 NERFSTUDIO TRAINING SETTINGS

Table 16 details the hyperparameters taken to train NeRF models in Nerfstudio.

Table 4: RGB alignment value. We show our NVS performances after latent supervision and RGB
Alignment when training NeRF models with IG-AE. NVS has better performances in the RGB space
after doing our stage 2 of RGB alignment. All results are obtained on the Cake scene from the
Objaverse dataset.

Latent Supervision RGB Alignment

PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF 24.34 0.870 0.175 34.68 0.967 0.050
Instant-NGP 22.08 0.826 0.182 28.41 0.917 0.063
TensoRF 24.12 0.862 0.175 33.06 0.962 0.043
K-Planes 22.68 0.842 0.200 33.20 0.962 0.053
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Table 5: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.

Helmet Book Burger

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 32,42 0,973 0,024 30,55 0,967 0,044 33,21 0,968 0,037
IG-AE 33,24 0,977 0,021 32,02 0,973 0,039 34,23 0,972 0,037

Instant-NGP AE 24,63 0,918 0,087 23,61 0,904 0,144 23,52 0,862 0,123
IG-AE 28,27 0,951 0,035 27,22 0,950 0,058 27,48 0,922 0,044

TensoRF AE 28,45 0,954 0,040 26,79 0,947 0,070 27,55 0,931 0,038
IG-AE 32,27 0,972 0,021 30,36 0,968 0,041 31,70 0,962 0,022

K-Planes AE 31,14 0,966 0,027 28,90 0,959 0,051 31,91 0,958 0,040
IG-AE 33,27 0,975 0,019 31,42 0,970 0,039 33,53 0,968 0,037

Table 6: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.

Cartoon Dragon Flower

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 29,54 0,974 0,017 32,20 0,981 0,022 35,59 0,984 0,014
IG-AE 30,99 0,981 0,012 33,99 0,987 0,015 37,62 0,989 0,010

Instant-NGP AE 22,58 0,906 0,104 25,32 0,932 0,108 27,66 0,925 0,091
IG-AE 25,68 0,949 0,038 28,42 0,961 0,044 31,07 0,963 0,035

TensoRF AE 25,44 0,946 0,045 28,53 0,964 0,044 30,62 0,962 0,038
IG-AE 29,29 0,973 0,017 32,65 0,983 0,017 35,44 0,985 0,013

K-Planes AE 28,22 0,967 0,021 31,09 0,976 0,027 33,77 0,978 0,023
IG-AE 30,57 0,979 0,012 33,24 0,984 0,016 37,26 0,988 0,011

Table 7: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.

Gravestone Hut Painting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 31,64 0,973 0,034 30,33 0,963 0,030 36,07 0,984 0,018
IG-AE 32,63 0,978 0,029 30,70 0,964 0,027 37,79 0,989 0,013

Instant-NGP AE 22,95 0,885 0,169 22,64 0,881 0,154 27,02 0,930 0,089
IG-AE 26,68 0,941 0,073 26,04 0,933 0,066 34,34 0,980 0,020

TensoRF AE 26,65 0,944 0,076 26,89 0,943 0,058 31,51 0,967 0,037
IG-AE 31,15 0,974 0,032 30,00 0,963 0,030 37,75 0,989 0,012

K-Planes AE 28,72 0,960 0,053 28,68 0,955 0,038 34,79 0,982 0,020
IG-AE 31,25 0,973 0,031 30,19 0,961 0,029 38,28 0,990 0,012

Table 8: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.

Pig Ringer Robot

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 33,21 0,981 0,029 32,14 0,975 0,024 29,94 0,962 0,028
IG-AE 34,34 0,987 0,019 33,70 0,982 0,015 31,76 0,973 0,019

Instant-NGP AE 24,61 0,913 0,140 24,68 0,901 0,119 23,49 0,884 0,107
IG-AE 28,35 0,956 0,067 28,24 0,951 0,042 26,01 0,923 0,049

TensoRF AE 28,61 0,959 0,060 27,71 0,947 0,057 26,43 0,933 0,042
IG-AE 32,58 0,981 0,027 32,03 0,976 0,019 29,96 0,963 0,024

K-Planes AE 31,03 0,972 0,044 30,61 0,964 0,032 29,08 0,954 0,031
IG-AE 33,12 0,981 0,026 32,99 0,975 0,020 31,10 0,967 0,022
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Table 9: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.

Soap Table Villa

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF AE 30,61 0,968 0,042 33,06 0,978 0,024 30,72 0,970 0,033
IG-AE 33,17 0,976 0,032 34,96 0,983 0,019 32,18 0,977 0,024

Instant-NGP AE 21,67 0,876 0,211 23,29 0,873 0,161 24,21 0,903 0,138
IG-AE 27,25 0,941 0,071 29,19 0,956 0,042 26,18 0,935 0,084

TensoRF AE 27,35 0,946 0,076 27,16 0,943 0,071 26,86 0,943 0,065
IG-AE 31,87 0,973 0,034 33,20 0,979 0,020 30,59 0,971 0,031

K-Planes AE 29,30 0,960 0,053 30,72 0,965 0,036 28,86 0,957 0,048
IG-AE 31,56 0,971 0,036 33,25 0,976 0,023 31,66 0,972 0,027

Table 10: Supplementary evaluations. Quantitative NVS results on held-out scenes from Objaverse.
This table also extends Table 2 by conducting our ablations on all our adopted representations.

Cake House Figurine

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF

AE 33.18 0.962 0.053 31.71 0.946 0.031 31.46 0.972 0.017
IG-AE (no Pr) 33.87 0.966 0.050 34,08 0,961 0,022 33.73 0.9821 0.012
IG-AE (no 3D) 32.09 0.951 0.063 30,56 0,923 0,046 30.94 0.9650 0.021

IG-AE 34.68 0.967 0.050 33,10 0,954 0,027 33.10 0.979 0.013

Instant-NGP

AE 24.69 0.860 0.122 22.67 0.784 0.196 24.62 0.908 0.086
IG-AE (no Pr) 28.04 0.917 0.052 27,22 0,882 0,055 26.46 0.9297 0.043
IG-AE (no 3D) 27.17 0.904 0.087 23,34 0,805 0,189 24.48 0.9078 0.091

IG-AE 28.41 0.917 0.063 27,04 0,882 0,064 27.20 0.941 0.040

TensoRF

AE 28.79 0.928 0.046 27.31 0.904 0.066 27.60 0.949 0.037
IG-AE (no Pr) 34.30 0.966 0.041 32,92 0,952 0,025 32.86 0.9780 0.012
IG-AE (no 3D) 29.56 0.936 0.094 27,99 0,891 0,083 28.89 0.9515 0.034

IG-AE 33.06 0.962 0.043 31,78 0,951 0,026 31.36 0.972 0.018

K-Planes

AE 31.82 0.954 0.056 30.06 0.927 0.038 30.45 0.965 0.021
IG-AE (no Pr) 34.75 0.966 0.049 33,22 0,949 0,026 33.67 0.9796 0.011
IG-AE (no 3D) 29.47 0.935 0.103 29,75 0,902 0,088 30.20 0.9602 0.027

IG-AE 33.53 0.963 0.052 31,73 0,940 0,031 32.44 0.9751 0.014

Table 11: Latent NVS performance. Quantitative evaluation of NVS performance of NeRF methods
on latent images. The metrics compare NeRF-rendered latent images with encoded latent images.
Methods trained in the latent space of our IG-AE exhibit significantly better latent NVS performance,
confirming its 3D-awareness.

Objaverse (cake) Shapenet (vase)

PSNR SSIM PSNR SSIM

Vanilla-NeRF AE 38.36 0.854 38.48 0.841
IG-AE 50.31 0.989 48.20 0.979

Instant-NGP AE 35.87 0.768 35.94 0.734
IG-AE 44.11 0.967 43.84 0.955

TensoRF AE 36.79 0.817 36.56 0.780
IG-AE 47.37 0.983 46.34 0.967

K-Planes AE 36.85 0.798 36.53 0.755
IG-AE 44.74 0.969 44.26 0.949
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Table 12: Synthetic reconstruction. Comparison of autoencoding performances of IG-AE and the
baseline autoencoder (AE) on images from Objaverse held-out scenes and Shapenet OOD scenes. In
each dataset, the metrics are averaged over the images of all the test scenes.

Objaverse Shapenet

PSNR SSIM LPIPS PSNR SSIM LPIPS

AE 36.47 0.975 0.005 34.78 0.985 0.007
IG-AE 37.92 0.980 0.011 37.16 0.989 0.009

Table 13: Comparison with RGB training. Bringing NeRFs to the IG-AE latent space entails
significantly lower training and rendering times for most methods. Rendering times represent an
average over 1000 image renderings. RGB methods render images at a 128× 128 resolution, whereas
latent methods render at 16×16. Note that for latent NeRF methods, decoding takes an additional 6.7
ms for each method to obtain the final 128× 128 images. Training and rendering time is measured
using a single NVIDIA L4 GPU. As for rendering quality (NVS), some methods are more compatible
with training in latent spaces than others, which we see as a direction of future improvements. NVS
metrics are averaged over three Objaverse scenes: Cake, House and Figurine.

Training
Space

Training
Time (min)

Rendering
Time (ms)

NVS

PSNR SSIM LPIPS

Vanilla NeRF RGB 637 1201 40.78 0.993 0.003
IG-AE 28 19.7 33.60 0.966 0.030

Instant NGP RGB 6 11.3 37.78 0.985 0.006
IG-AE 19 7.3 27.47 0.913 0.056

TensoRF RGB 92 101.4 40.65 0.992 0.003
IG-AE 20 10.4 32.04 0.961 0.029

K-Planes RGB 88 63.3 32.98 0.964 0.027
IG-AE 29 11.3 32.36 0.958 0.033

Table 14: Autoencoder choice. Comparison of the performance of autoencoders with various
downscale factors on the task of latent NeRF training. We choose an autoencoder with an intermediate
downscale factor of 8 as a compromise between latent NVS performance and training time.

kl-f16 kl-f8 kl-f4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF 29.58 0.941 0.047 32.22 0.962 0.027 35.38 0.978 0.013
Instant-NGP 23.54 0.844 0.117 26.16 0.900 0.084 30.03 0.948 0.036
TensoRF 25.91 0.891 0.080 28.46 0.934 0.042 33.56 0.972 0.014
K-Planes 27.59 0.917 0.060 30.06 0.943 0.032 33.42 0.966 0.017
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Vanilla-NeRF

Instant-NGP

TensoRF

K-Planes

AE IG-AE IG-AE 
(no 3D)

IG-AE
(no Pr) RGB

GT

Figure 6: Qualitative comparison. NeRF renderings of the Cake scene from Objaverse.

Vanilla-NeRF

Instant-NGP

TensoRF

K-Planes

AE IG-AE IG-AE 
(no 3D)

IG-AE
(no Pr) RGB

GT

Figure 7: Qualitative comparison. NeRF renderings of the House scene from Objaverse.
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Vanilla-NeRF

Instant-NGP

TensoRF

K-Planes

AE IG-AE IG-AE 
(no 3D)

IG-AE
(no Pr) RGB

GT

Figure 8: Qualitative comparison. NeRF renderings of the Figurine scene from Objaverse.

IG-AE
(no Pr)

IG-AE
(no 3D) IG-AE AE GT

Figure 9: Qualitative comparison of reconstruction quality when autoencoding. IG-AE (no Pr)
presents artifacts when auto-encoding images. IG-AE (no 3D) omits these artifacts but does not
embed a 3D-aware latent space. IG-AE omits the artifacts present in IG-AE (no Pr), while still
integrating a 3D-aware latent space.
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Table 15: IG-AE hyperparameters. Hyperparameters used for our IG-AE training. More detailed
information can be found in the configuration files of our open-source code.

Parameter Value
General

Number of scenes N 500
Pretraining epochs 50
Training epochs 75

Loss

λlatent 1
λRGB 1
λ3DTV 1× 10−4

λ
(synth)
ae 0.1

λ
(real)
ae 0.1
λp 0.1
λTV 1× 10−4

Optimization

Optimizer Adam
Batch size (scene views) 12
Batch size (real images) 3
Learning rate (encoder) 5× 10−5

Learning rate (decoder) 5× 10−5

Learning rate (Tri-Planes) 1× 10−4

Scheduler Exponential Decay
Decay factor 0.988

Table 16: Latent NeRF training hyperparameters. Hyperparameters taken to train our Latent
NeRFs in Nerfstudio. More detailed information can be found in the configuration files of our
open-source Nerfstudio extension.

NeRF model Parameter Value

Any

Latent Supervision iterations 10 000
RGB Alignment iterations 15 000
Batch size 4
NeRF learning rate Nerfstudio default
NeRF optimizer Nerfstudio default
NeRF scheduler Nerfstudio default
Decoder learning rate 1× 10−4

Decoder optimizer Adam
Decoder scheduler Exponential decay
Decoder decay factor 0.9996

Vanilla NeRF ξLS 0.1
ξalign 1

Instant-NGP ξLS 0.001
ξalign 0.1

TensoRF ξLS 0.01
ξalign 0.1

K-Planes ξLS 0.1
ξalign 0.1
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