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DualCL: Principled Supervised Contrastive Learning as Mutual
Information Maximization for Text Classification
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ABSTRACT
Text classification is a fundamental task in web content mining.

Developing text classification applications with pre-trained lan-

guage models (PLMs) and the contrastive learning objective has

sparked significant interest in research communities. Although

the existing supervised contrastive learning (SCL) approach has

achieved leading performance in text classification, it lacks funda-

mental principles to ensure training effectiveness and deployment

friendliness, thereby presenting certain limitations. In this paper,

we propose three principles to design an effective SCL approach, i.e.,

parameter-free, augmentation-easy and label-aware. Building upon

these principles, we have developed DualCL, a dual contrastive

learning framework that effectively captures the mutual relation-

ship between text representations and classifier parameters. The

implementation of DualCL is theoretically motivated by a derived

lower bound of mutual information maximization. DualCL gen-

erates classifier parameters by the PLM and simultaneously uses

them for classification and as augmented views of the input text for

supervised contrastive learning. Extensive experiments conducted

on diverse text classification datasets conclusively demonstrate that

DualCL excels in learning superior text representations and consis-

tently outperforms baseline models, yielding remarkable results.
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1 INTRODUCTION
Text classification plays a pivotal role in web content mining, which

serves as a crucial component in a diverse array of web applica-

tions, such as sentiment analysis [27], review classification [23]

and question classification [20]. Pretrained language models (PLMs)

have demonstrated stunning successes in text classification tasks
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(a) Existing SCL (b) Our DualCL

Figure 1: Existing SCL framework (a) and our DualCL frame-
work (b). The former requires learning additional classifiers.
And the latter mutually regard text representations and class
parameters as anchors for contrastive learning.

by learning informative representations [6, 16]. The representation

power of PLMs is recently invigorated by contrastive learning, an
effective representation learning approach that aims to force the

representations of matched examples to be similar and the repre-

sentations of unmatched examples to be distinct.

A primary attempt to adopt contrastive learning in text clas-

sification [10, 36, 39] is inspired by the idea of obtaining generic

representations for downstream tasks [3, 14] using unsupervised

contrastive learning. These methods promote the proximity of rep-

resentations from various views of the same example while ensuring

that representations of different examples remain distant. Although

shown promising results, unsupervised contrastive learning, not

surprisingly, still has a yawning gap with supervised learning ap-

proaches. Therefore, supervised contrastive learning (SCL) [17]

has been proposed to extend the training strategy of unsupervised

contrastive learning to a situation with supervision signals, which

pulls the representations of examples with the same label closer

and pushes the representations of examples with different labels

away. It is applied in a series of recent works and demonstrated to

be effective in different text classification scenarios [2, 4, 12, 28, 30].

However, the existing SCL approach, which is primarily derived

from the principles of unsupervised contrastive learning, may ben-

efit from further refinement to better accommodate the unique

properties associated with the supervised setting.

In this paper, we attempt to shed light on the potential shortcom-

ings of the existing SCL approach and try to develop a principled

SCL approach for text classification. Our investigation reveals that

the following three factors may impact the training effect and de-

ployment of the existing SCL models. First, as shown in Figure 1 (a),

the outcome of most existing approaches does not give a classifier

directly. Therefore, existing models train the supervised contrastive

learning loss and a softmax classifier successively [17] or jointly [12]

to perform classification. These models require learning classifiers

with additional parameters, increasing the deployment workload.
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Second, some existing SCL methods require external text data aug-

mentation techniques [1, 26, 32, 33] to obtain different views of

the examples. Building independent modules for data augmenta-

tion complicates the training process. Third, most existing SCL

models only treat the labels as evidence to construct matched and

unmatched pairs [12, 17], ignoring underlying semantics of the

classes that may encourage learning good text representations.

Based on the above discussion, we propose the following three

principles to overcome the shortcomings of the existing SCL ap-

proach. Parameter-Free: The SCL models should perform clas-

sification without learning classifiers with additional parameters.

Augmentation-Easy: The SCL models should easily obtain differ-

ent views of representations without external data augmentation

techniques. Class-Aware: The SCL models should sufficiently tap

the potential of class semantics for learning better representations.

Developing models following the above principles helps to outcome

training-effective and deployment-friendly SCL models.

As shown in Figure 1 (b), we intend to achieve parameter-free

SCL by generating the parameters of the classifier using the PLM

encoder shared with the representation learning module instead

of training an extra classifier. In this way, the classification is

performed without introducing additional parameters. To realize

augmentation-easy and class-aware SCL, the generated classifier pa-

rameters corresponding to different classes are treated as different

augmented views of the text. Then, the multi-view representations

are leveraged in supervised contrastive learning. This strategy al-

lows us to easily obtain the augmentations of texts from internal
components, releasing the SCL model from external data augmen-

tation techniques. Additionally, leveraging classifier parameters as

different views of data augmentations effectively incorporates class

semantics, leading to enhanced representation learning.

To follow up the above design, we interpret the duality between

text representations and classifier parameters and theoretically

derive a lower bound of mutual information maximization. Guided

by the theoretical findings, we develop a supervised contrastive

learning framework that directly generates classifier parameters

for each input from the PLM and uses them as augmented views

of the input text during representation learning. Concretely, on

the one hand, text representations and the generated classifier

parameters are mutually regarded as anchors and different views

of positive/negative examples to conduct supervised contrastive

learning. On the other hand, the generated classifier parameters are

concatenated as the transformation matrix of the linear classifier to

perform softmax classification. Our method generates a classifier

for each input text, enabling us to aggregate these classifiers into a

more robust and effective classifier by the ensemble approach. We

christen our framework as Dual Contrastive Learning (DualCL).

To summarize, this work makes the following contributions: (1)

We reveal the shortcomings of the existing SCL approach and put

forward three key principles - parameter-free, augmentation-easy,

and class-aware - to construct a more effective SCL model. (2) We

theoretically interpret the duality property of text classification

with mutual information maximization and accordingly present a

dual contrastive learning framework DualCL for text classification.

(3) We conduct experiments on 5 datasets, demonstrating that our

DualCL framework is capable of learning improved text represen-

tations and achieving superior performance compared to baselines.

2 RELATEDWORK
2.0.1 Text Classification. Text classification plays a fundamental

role in natural language processing, serving as a vital tool for web

content mining. It enables the categorization of texts into distinct

groups based on their underlying semantics. Text classification has

a wide range of applications, including sentiment analysis [27],

question answering [20], etc. Extracting meaningful representa-

tions from text can be challenging due to its inherent unstructured

nature. The advent of deep learning has brought about significant

advancements in the field, leading to extensive exploration of neu-

ral network methods like Recurrent Neural Networks (RNN) [5, 15]

and Convolutional Neural Networks (CNN) [18, 35] for effective

encoding of text sequences. However, these methods face certain

limitations, including computational bottlenecks and the challenge

of capturing long-term dependencies within the text.

Recently, large-scale pre-trained language models (PLMs) based

on transformers [29] have emerged as the state-of-the-art approach

for text modelling. These PLMs, such as GPT [25], XLNet [34],

BERT [6], RoBERTa [21], and ALBERT [19], have made significant

strides in advancing text classification tasks. Auto-regressive PLMs,

like GPT and XLNet, leverage sequential generation, while auto-

encoding PLMs, including BERT, RoBERTa, and ALBERT, focus on

sentence-level representation. These models have demonstrated

remarkable improvements in text classification performance.

2.0.2 Contrastive Learning. Despite the widespread use of cross-

entropy in supervised learning, several studies have shed light on

its limitations. For instance, it has been found to be susceptible to

issues such as vulnerable to noisy labels [37], poor margins [8], and

weak adversarial robustness [24]. These drawbacks have prompted

researchers to explore alternative loss functions and techniques to

address these challenges. Drawing inspiration from the InfoNCE

loss [22], contrastive learning [13] has gained significant popularity

in unsupervised learning as a means to obtain high-quality generic

representations for downstream tasks. One notable application is

SimCLR [3], which generates multiple views of input examples by

applying data augmentations and subsequently compares positive

samples against negative samples within the dataset. Similarly,

SimCSE [11] employs dropout on each sentence twice to create

positive pairs. These approaches leverage contrastive learning to

enhance representation learning in an unsupervised setting.

Supervised contrastive learning [17] builds upon the principles of

unsupervised contrastive learning, extending its application to a su-

pervised setting. This methodology has been successfully employed

in various text classification scenarios [2, 4, 12, 28, 30]. Building a

class-aware SCL approach is not entirely unknown to the research

community. A recent work LaCon [38] considers label information

in SCL and explores the interplay between text and label repre-

sentations. The primary distinction between DualCL and LaCon

is twofold. First, LaCon introduces a learnable matrix with extra

parameters to look up label embeddings, while DualCL directly gen-

erates classifier parameters from PLM for each input, following the

parameter-free principle. Second, LaCon is theoretically motivated

by the complementarity of contrastive losses from the perspective

of the singular values, while DualCL is theoretically motivated by

the duality between text representations and classifier parameters

from the perspective of mutual information maximization.
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Figure 2: The framework of the proposed dual contrastive learning (DualCL).

3 PRELIMINARIES
3.1 Task Definition
The text classification task is concerned with predicting the class or

category of a given text, encompassing various applications such

as sentiment analysis, review classification, and question classi-

fication. Formally, let’s consider a text classification task with 𝐾

classes. The input-text space is denoted as X, and the label space is

Y. We assume that the given dataset D = {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1 comprises 𝑁

training examples, where 𝑥𝑖 ∈ X is the text-token sequence with 𝐿

words, and 𝑦𝑖 ∈ {1, 2, · · · , 𝐾} represents the assigned class label for
the input text. Throughout this study, our focus lies on text clas-

sification using representation learning methods. Specifically, the

input text 𝑥𝑖 is initially processed by an encoder 𝑓 , which produces

a representation 𝒛𝑖 ∈ R𝑑 , denoted as 𝑓 (𝑥𝑖 ) = 𝒛𝑖 . Subsequently,
classification is conducted based on the obtained representation 𝒛𝑖 .

3.2 Supervised Contrastive Learning
Previous studies utilize unsupervised or self-supervised contrastive

learning for text classification [10, 36]. Since these methods lack

supervision signals, they suffer a performance gap compared to

supervised approaches. In order to bridge this gap, supervised con-

trastive learning (SCL) [17] has recently emerged, which extends

the principles of contrastive learning to a supervised setting. SCL

aims to enhance the discriminative power of learned representa-

tions by enforcing the representations of instances belonging to

the same class to be closer, while simultaneously pushing apart the

representations of instances from different classes.

Specifically, let I = {1, 2, · · · , 𝑁 } be the set of indexes of the
input texts. A𝑖 := I \ {𝑖} is the set of indexes of all positive and
negative examples when the 𝑖th representation 𝒛𝑖 acts as an anchor.
Given dataset D, the supervised contrastive learning loss is

Lsup =
1

𝑁

∑︁
𝑖∈I

1

|P𝑖 |
∑︁
𝑝∈P𝑖

− log
exp(𝒛𝑖 • 𝒛𝑝/𝜏)∑

𝑎∈A𝑖
exp(𝒛𝑖 • 𝒛𝑎/𝜏)

, (1)

where P𝑖 := {𝑝 ∈ A𝑖 : 𝑦𝑝 = 𝑦𝑖 } is the set of indexes of positive
examples, and |P𝑖 | is the cardinality of P𝑖 . The • symbol denotes

the inner product and the parameter 𝜏 is the temperature factor.

Despite the successful application of supervised contrastive

learning (SCL) in various text classification scenarios [2, 12], this

approach may suffer certain shortcomings. Firstly, it requires learn-

ing an extra classifier, which introduces additional parameters to

be trained. Secondly, SCL relies on external text data augmentation

techniques, which can be computationally expensive and may not

always be readily available or applicable to all datasets. Lastly, SCL

overlooks the incorporation of label semantics into the representa-

tion learning process, which could potentially enhance the quality

of learned representations. The existing SCL approaches can be

refined by effectively overcoming the above limitations.

4 METHODOLOGY
To mitigate the shortcomings of the existing SCL approach, we

propose three principles to design more effective SCL models, i.e.,

parameter-free, augmentation-easy and class-aware. Laying the

foundation on the principles, we design a dual contrastive learning

framework, DualCL, motivated by a derived lower bound ofmutual
information maximization. DualCL comprises three components:

Dual Representation Module, Dual Contrastive Learning Module and
Ensembled Classification Module, as the framework shown in Fig-

ure 2. This section will begin by outlining the theoretical motivation

behind DualCL and subsequently present its implementation.

4.1 Theoretical Motivation
4.1.1 The Duality between Text Representations and Classifier Pa-
rameters in Text Classification. Considering solving the text classifi-
cation problemwith a linear classifier. Let 𝑧𝑖 ∈ R𝑑 be the representa-
tions of text 𝑥𝑖 and 𝜽 ∈ R𝑑×𝐾 be the parameters of the classifier. Let

𝜽 ∗ are the classifier parameters associated with the ground-truth

label. When training this model, the softmax transformation of in-

ner product 𝜽 ∗ • z𝑖 is forced to be maximized through the optimizer.

This forms a dual relationship between the text representations

and the classifier parameters. When we adopt the inner product in

representation learning, it shows similar duality between different

representations. This motivates us to consider: Can we enhance text
representation learning with such intrinsic duality property?

3
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4.1.2 Rethink the Duality form A Mutual Information Maximization
Perspective. To answer the question, we delve into understanding

the duality in text classification from the perspective of mutual

information (MI) maximization. MI quantifies the dependence be-

tween the input features and class labels, which helps identify the

most informative features strongly associated with specific classes.

The symmetrical nature of MI enables a seamless connection to the

duality between text representations and classifier parameters. And

this opportunity presents a captivating avenue for maximizing MI

by leveraging the duality property in text classification.

Concretely, let X = {𝑥𝑖 }𝑁𝑖=1 andY = {𝑦𝑖 }𝑁𝑖=1 respectively denote
the input texts and class labels of 𝑁 samples in the training dataset

andMI(X,Y) denotes mutual information between X and Y. As-
sume that each example 𝑥𝑖 is encoded to a representation 𝑧𝑖 and

is assigned a specific classifier with parameters 𝜽 𝑖 , referred to as

one-example classifier, which will be further elaborated. And we

denote the part of parameters corresponding to ground-truth label

𝑦𝑖 as 𝜽
∗
𝑖 . Then, we can define a symmetric function as follows

𝜙 (𝑥𝑖 , 𝑦 𝑗 ) = (𝑔(𝜽 ∗𝑖 , 𝒛 𝑗 ) + 𝑔(𝜽
∗
𝑗 , 𝒛𝑖 ))/2 (2)

With the above-defined function, we derive a lower bound of mutual

information MI(X,Y) that forms the following theorem

Theorem 1. Assume that there is a constant 𝜖 such that 𝑝 (𝑥𝑖 , 𝑦𝑖 ) ≥
𝜖 holds for all 𝑖 ∈ I and 𝑝 (𝑦 𝑗 |𝒙𝑖 )

𝑝 (𝑦 𝑗 ) ∝ 𝜙 (𝒙𝑖 , 𝑦 𝑗 ):

MI(X,Y) = 1

𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑝 (𝒙𝑖 , 𝑦 𝑗 ) log
(
𝑝 (𝑦 𝑗 |𝒙𝑖 )
𝑝 (𝑦 𝑗 )

)
=

1

𝑁
𝑝 (𝒙𝑖 , 𝑦𝑖 ) log

𝜙 (𝒙𝑖 , 𝑦𝑖 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

≥ log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

log

𝜙 (𝒙𝑖 , 𝑦𝑖 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

≥ log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

1

|P𝑖 |
∑︁
𝑝∈P𝑖

log

𝑔(𝜽 ∗𝑖 , 𝒛𝑝 )∑𝑁
𝑎=1 𝑔(𝜽

∗
𝑖 , 𝒛𝑎)

+ 𝜖

𝑁

𝑁∑︁
𝑖=1

1

|P𝑖 |
∑︁
𝑝∈P𝑖

log

𝑔(𝜽 ∗𝑝 , 𝒛𝑖 )∑𝑁
𝑎=1 𝑔(𝜽

∗
𝑎, 𝒛𝑖 )

= log𝑁 − 𝜖 (L𝜽←𝒛 + L𝒛←𝜽 )

(3)

where P𝑖 is a text set associated with 𝑥𝑖 , which is sampled from X.

We give the detailed proof of Theorem 1 in Appendix. This theo-
rem indicates that the negative of the summed loss L𝜽←𝒛 + L𝒛←𝜽
serves as a lower bound of the mutual information. As a result,

minimizing the loss L𝜽←𝒛 + L𝒛←𝜽 is equivalent to maximizing

mutual information between the inputs and labels. Next, we will

describe how to implement this loss with our DualCL framework.

4.2 Dual Representation Module
4.2.1 The Necessity of Generating Classifier Parameters. Theorem 1

reveals that classifier parameters can play essential roles in learning

informative representations and we need construct a one-example

classifier for each input text to exploit the duality nature of text

classification. However, creating learnable classifiers for all input

texts is crude and impractical. Fortunately, in line with the princi-

ple of parameter-free SCL, we discover an elegant approach that

entails generating classifier parameters directly through the PLM.

This obviates the requirement for additional parameters to build

the classifier. The generated classifier parameters can be regarded

as augmented views of the input associated with certain classes,

eliminating the need for external data augmentation techniques.

4.2.2 Generating Text Representations and Classifier Parameters.
To obtain dual representations of the texts and class parameters, we

utilize PLMs as the encoder 𝑓 . Each class label is associated with a

special token and forms a class-token sequence. For instance, we

can use “[POS]” and “[NEG]” to represent the positive and neg-

ative classes in sentiment classification, respectively. Meanwhile,

we concatenate the class-token and text-token sequence and add a

special token “[CLS]” at the beginning. This forms a new sequence

𝑟𝑖 ∈ R𝐾+𝐿+1. Then, we pass the sequence 𝑟𝑖 through the PLM en-

coder 𝑓 . The encoder transforms the input sequence into 𝐾 + 𝐿 + 1
hidden representations. The hidden representation corresponding

to the “[CLS]” token is treated as the text representation 𝒛𝑖 . The
hidden representation for each token in the class-token sequence

is accordingly treated as the classifier parameter 𝜽𝑘𝑖 , where 𝑘 repre-

sents the index of the token in the class-token sequence. This design

allows the classifier parameters to be generated directly from the

PLM, eliminating the need for introducing additional parameters

and providing convenience for augmentation-easy implementation.

4.3 Dual Contrastive Learning Module
4.3.1 Dual Contrastive Loss. Motivated by the form of theMI lower

bound in Theorem 1, we intend to build a pair of losses that satisfies

duality.With the text representation 𝒛𝑖 and the classifier parameters

𝜽 𝑖 , we attempt to align the softmax transforms of 𝜽𝑇𝑖 𝒛𝑖 with the

label of 𝑥𝑖 . Namely, let 𝜽 ∗𝑖 denote the column of 𝜽 𝑖 corresponding
to the ground-truth label, then we expect the inner product 𝜽 ∗𝑖 • 𝒛𝑖
to be maximized. To that end, we design a dual contrastive loss

to model the dual relationship between text representations and

classifier parameters by mutually regarding them as anchors and

different views of positive/negative examples to perform SCL.

Concretely, given an anchor 𝒛𝑖 originating from the input exam-

ple 𝑥𝑖 , we take {𝜽 ∗𝑗 } 𝑗∈P𝑖 as positive examples and {𝜽 ∗𝑗 } 𝑗∈A𝑖\P𝑖 as
negative examples and define the following contrastive loss

L𝑧 =
1

𝑁

∑︁
𝑖∈I

1

|P𝑖 |
∑︁
𝑝∈P𝑖

− log
exp(𝜽 ∗𝑝 • 𝒛𝑖/𝜏)∑

𝑎∈A𝑖
exp(𝜽 ∗𝑎 • 𝒛𝑖/𝜏)

(4)

Similarly, given an anchor 𝜽 ∗𝑖 , we can also take set {𝒛 𝑗 } 𝑗∈P𝑖 as
positive examples and {𝒛 𝑗 } 𝑗∈A𝑖\P𝑖 as negative examples. Then,

we can define another contrastive loss as follows

L𝜃 =
1

𝑁

∑︁
𝑖∈I

1

|P𝑖 |
∑︁
𝑝∈P𝑖

− log
exp(𝜽 ∗𝑖 • 𝒛𝑝/𝜏)∑

𝑎∈A𝑖
exp(𝜽 ∗𝑖 • 𝒛𝑎/𝜏)

(5)

We combine the two losses L𝑧 and L𝜃 as the following dual

contrastive learning loss

L
Dual

= L𝑧 + L𝜃 (6)

The dual contrastive loss leverages class parameters with class

semantics infused in contrastive learning, enabling class-aware
optimization that helps learn better representations.

4
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4.3.2 The Equivalence between Minimizing DualCL and Maximizing
MI. By connecting Equation (4) and Equation (5) with the derivation
(3) in Theorem 1, we can conclude that the dual contrastive learning

loss is exactly equal to the lower boundL𝜽←𝒛+L𝒛←𝜽 of themutual

information MI(X,Y) with the function 𝑔 specified as

𝑔(𝜽 ∗𝑖 , 𝒛 𝑗 ) = exp(𝜽 ∗𝑖 • 𝒛 𝑗/𝜏) (7)

Therefore, minimizing the dual contrastive loss L
Dual

can accord-

ingly maximize MI between inputs and labels, thus helping learn

informative representations for text classification.

4.4 Ensembled Classification Module
4.4.1 Model Training and Testing. To fully exploit the supervised

signal, we also expect the generated parameters 𝜽 𝑖 to be good data

augmentations for 𝒛𝑖 . Thus, we also use a modified version of the

cross-entropy loss to maximize 𝜽 ∗𝑖 • 𝒛𝑖 for each input example 𝑥𝑖

LCE =
1

𝑁

∑︁
𝑖∈I
− log

exp(𝜽 ∗𝑖 • 𝒛𝑖 )∑
𝑘∈K exp(𝜽𝑘𝑖 • 𝒛𝑖 )

(8)

We jointly optimize the two objectives to train encoder 𝑓 , which

simultaneously improves the representations and classifier parame-

ters by the following loss encompassing both objectives

L
overall

= LCE + 𝜆LDual
(9)

where 𝜆 is a hyperparameter to control the loss weight. We name

the model trained with this loss DualCL.
During the testing phase, we utilize the trained encoder 𝑓 to

generate a text representation 𝒛𝑖 and a classifier 𝜽 𝑖 for each input

example 𝑥𝑖 . Here, 𝜽 𝑖 can be seen as a one-example classifier that is

specific to the example 𝒙𝑖 . We regard the label with the maximum

value of 𝜽𝑘𝑖 • 𝒛𝑖 as the predicted label, formulated as follows

𝑦𝑖 = argmax

𝑘
(𝜽𝑘𝑖 • 𝒛𝑖 ) (10)

4.4.2 Ensembled Classification. Suppose that the test set {𝑥𝑖 }𝑀𝑖=1
consists of𝑀 examples. During testing with DualCL, for each input

text 𝑥𝑖 , a one-example classifier 𝜽 𝑖 is generated for classification.

Namely, we can generate𝑀 classifiers {𝜽 𝑖 }𝑀𝑖=1 by sending all test

examples to encoder 𝑓 . These classifiers can be viewed as “weak”

classifiers of the classification task, and we can adopt the ensemble

method to aggregate the classifiers as a “strong” classifier. In this

context, we introduce two ensembled classification methods to

combine the outputs of the individual classifiers {𝜽 𝑖 }𝑀𝑖=1.
The first one is Hard Ensembling (HE). This method first predicts

𝑀 labels for a test example 𝑥𝑖 using each classifier in {𝜽 𝑖 }𝑀𝑖=1, then
conducts a majority vote on the 𝑀 labels and treats the most fre-

quent one as the final predicted label. We name the DualCL model

using the hard ensembling method in prediction DualCL+HE. The
second one is Soft Ensembling (SE). For each test example 𝑥𝑖 , this

method first computes the softmax transform scores 𝜽𝑇𝑖 𝒛𝑖 for all

classifier parameters {𝜽 𝑖 }𝑀𝑖=1, then averages the𝑀 score vectors and

treats the label corresponding to the maximum score as the final

predicted label. We call the DualCL model adopting soft ensembling

in prediction DualCL+SE. Note that the process of classifier en-
sembling can be efficiently achieved through matrix multiplication,

which greatly reduces the computational complexity involved.

Table 1: The statistics of the five text classification datasets.
#Class, AvgLen, #Train and #Test denote the number of
classes, the average length of the texts, the size of the train-
ing set and the size of the test set, respectively.

Dataset #Class AvgLen #Train #Test

SST-2 2 17 7,447 1,821

SUBJ 2 21 9,000 1,000

TREC 6 9 5,452 500

PC 2 7 32,097 13,759

CR 2 18 3,394 376

5 EXPERIMENTS
5.1 Datasets and Experiment Settings
5.1.1 Datasets. We evaluate our models on 5 benchmark text clas-

sification datasets: SST-2, SUBJ, TREC, PC and CR. SST-2 [27] is a
sentiment classification dataset of movie reviews. The SUBJ dataset

[23] contains labeled sentences categorized as either subjective or

objective. It serves as a benchmark for tasks like sentiment analy-

sis and subjective/objective classification. TREC [20] is a question

classification dataset with six distinct classes. It is widely used in

information retrieval and natural language understanding research.

PC [9] is a binary sentiment classification dataset that includes Pros

and Cons data. It offers a unique perspective on sentiment analysis,

focusing on both positive and negative aspects. The CR dataset

[7] consists of customer reviews labeled as positive or negative. It

provides valuable data for sentiment analysis and opinion mining.

The detailed dataset statistics is shown in Table 1.

5.1.2 Experiment Settings. We compare our DualCL model and its

variants with existing contrastive learning baselines. We take into

account the following models for comparison:

CE: A basic model with additional learnable classifiers, which is

trained with the cross-entropy loss.

CE+CL: A contrastive learning model that jointly train the cross-

entropy loss and self-supervised contrastive learning loss [11].

CE+SCL: The SOTA SCL model [12] which jointly train the cross-

entropy loss and the supervised contrastive learning loss [17].

DualCL w/o L
dual

: The ablated model of DualCL that only trains

with LCE and incorporates proposed external data augmentations.

The difference compared to CE is that the classifier of this model is

generated from PLM without additional parameters.

DualCL: The proposed framework that jointly optimizes the dual

contrastive learning loss L
Dual

and the cross-entropy loss LCE.

DualCL+HE, DualCL+SE: DualCL+HE and DualCL+SE are Du-

alCL models adopting hard ensembling (HE) and soft ensembling

(SE) of the generated classifiers, respectively.

To make a fair comparison, we reproduce the results of all base-

lineswith the same hyperparameter configurations as in the original

paper and report the mean accuracy averaged over 10 runs with

different random seeds. To evaluate the models in low-resource

scenarios, we also train the models on 10% of the training data and

report the results, besides training them on the full training data.
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Table 2: Text classification results on the SST-2, SUBJ, TREC, PC and CR datasets. The models are trained with 10% of the
training data or with full training data. We reproduce the results with the same hyperparameter configurations for all baselines
for a fair comparison and report the average accuracy and standard deviation across 10 different random seeds.

Model Method SST-2 SUBJ TREC PC CR Avg.

10% training data

BERT

CE 86.05±0.24 93.05±0.25 93.29±0.22 91.09±0.23 86.58±0.29 90.01±0.25
CE+SCL 86.64±0.17 93.20±0.16 93.70±0.24 91.46±0.23 88.14±0.26 90.63±0.21
CE+CL 87.66±0.28 94.27±0.21 94.20±0.29 91.67±0.27 87.72±0.32 91.10±0.27
DualCL w/o L

Dual
87.90±0.19 93.50±0.18 94.01±0.31 91.83±0.22 88.13±0.30 91.07±0.24

DualCL 88.40±0.20 94.50±0.21 94.93±0.23 92.36±0.16 89.01±0.28 91.84±0.22

RoBERTa

CE 90.91±0.23 94.03±0.19 94.51±0.21 90.65±0.20 92.06±0.27 92.43±0.22
CE+SCL 91.00±0.29 94.37±0.30 94.85±0.24 90.82±0.20 92.32±0.25 92.67±0.26
CE+CL 91.04±0.17 94.47±0.19 95.68±0.26 91.90±0.14 92.55±0.28 93.13±0.21
DualCL w/o L

Dual
92.48±0.18 94.40±0.17 95.18±0.16 91.50±0.14 92.88±0.20 93.29±0.17

DualCL 92.67±0.21 94.78±0.19 95.36±0.18 92.17±0.20 93.24±0.24 93.64±0.20
full training data

BERT

CE 91.19±0.23 96.40±0.19 97.21±0.20 95.06±0.14 92.09±0.24 94.39±0.20
CE+SCL 91.71±0.20 96.25±0.19 97.58±0.16 95.26±0.13 93.06±0.20 94.77±0.18
CE+CL 91.95±0.22 96.72±0.15 97.80±0.14 95.21±0.11 93.19±0.19 94.97±0.16
DualCL w/o L

Dual
91.99±0.15 96.78±0.13 97.70±0.19 95.30±0.15 93.14±0.19 94.97±0.16

DualCL 92.40±0.17 97.20±0.17 98.22±0.17 95.56±0.14 93.78±0.17 95.43±0.16

RoBERTa

CE 94.09±0.24 96.60±0.21 97.10±0.20 95.10±0.19 93.41±0.24 95.26±0.22
CE+SCL 93.65±0.20 96.73±0.23 97.18±0.19 95.35±0.19 93.60±0.17 95.30±0.20
CE+CL 94.33±0.21 97.04±0.17 97.52±0.15 95.32±0.10 93.49±0.25 95.54±0.18
DualCL w/o L

Dual
94.41±0.23 96.79±0.24 97.10±0.25 95.30±0.12 94.01±0.25 95.52±0.22

DualCL 94.91±0.17 97.34±0.19 97.40±0.17 95.59±0.12 94.39±0.23 95.93±0.18

5.2 Implementation Details
We implement our model using the PyTorch deep learning frame-

work. The code and data are released with an anonymous link for

reproduction
1
. We leverage the powerful BERT-base-uncased and

RoBERTa-base models as the encoders (referred to as 𝑓 ) to obtain

representations. To address the potential influence of label orders

during training, we adopt a random ordering strategy on the token

list before feeding it into the PLM encoder. During optimization,

we employ the AdamW optimizer with default settings, which in-

clude a weight decay rate of 0.01. The training process consists of

a maximum of 30 epochs, with a linear learning rate decay from

2 × 10
−5

to 10
−5
, ensuring a gradual adjustment of the learning

rate over time. To prevent overfitting, we incorporate dropout with

a rate of 0.1 across all layers of the models. Additionally, a batch

size of 64 is used for all datasets. We employ a grid search strategy

to identify the best configuration of the hyperparameters. Through

this approach, we determine that the optimal loss weight is set to

𝜆 = 0.5, striking a balance between different components of the

training objective. Moreover, we set the temperature factor in con-

trastive learning to 𝜏 = 0.1 to govern the scale of the inner products.

To ensure fair execution and training, all involved experiments are

conducted on an NVIDIA Tesla A100 GPU with 40GB of memory.

1
Anonymous link for code and data: https://file.io/rKk80kR2TR3r

5.3 Evaluation Results on Benchmark Datasets
The evaluation results on benchmark datasets are presented in

Table 2, it becomes evident that the DualCL approach, utilizing

both BERT and RoBERTa encoders, consistently achieves superior

classification performance across almost all experimental settings,

except when the DualCL framework is employed in pre-trained

RoBERTa on the TREC dataset. When compared to the CE+CL

method with full training data, DualCL exhibits an average im-

provement of 0.46% and 0.39% on BERT and RoBERTa, respectively.

These results manifest the effectiveness of our DualCL.

What’s more intriguing is that DualCL demonstrates even more

pronounced advantages over the CE+CL method when only 10% of

the training data is available. In such cases, DualCL surpasses the

CE+CLmethod by a notably largermargin, achieving improvements

of 0.74% and 0.51% on BERT and RoBERTa, respectively. These com-

pelling findings serve as robust evidence that the DualCL approach

is highly effective, especially in the face of the inherent challenge

posed by the limited availability of training data.

Moreover, the superior performance exhibited by DualCL serves

as a testament to the efficacy of the parameter-free, augmentation-

easy and label-aware principles and the dual contrastive learning

strategy. These findings highlight the significance of incorporating

these innovative ideas to enhance text classification outcomes.
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Table 3: Accuracy on the GLUE validation set. The models are trained with 10% of the training data or with full training data. We
report average accuracy across 10 different random seeds. The training speed is shown through updates per second (ups/sec).

Model Method SST-2 CoLA MRPC QNLI MNLI Avg. ups/sec

10% training data

BERT

CE 90.25±0.31 78.62±0.22 71.32±0.28 83.10±0.29 77.62±0.17 80.18±0.25 12.44
DualCL 90.78±0.29 78.66±0.31 73.49±0.36 85.99±0.24 78.08±0.20 81.40±0.28 11.32

DualCL+HE 91.06±0.24 78.78±0.37 74.02±0.30 86.15±0.28 78.37±0.24 81.68±0.29 10.76

DualCL+SE 91.17±0.35 78.83±0.34 74.10±0.39 86.09±0.31 78.44±0.23 81.73±0.32 10.55

RoBERTa

CE 92.78±0.29 78.81±0.39 78.92±0.23 88.31±0.25 83.20±0.21 84.40±0.27 11.25
DualCL 92.91±0.22 78.95±0.36 79.59±0.27 87.63±0.30 83.04±0.19 84.42±0.27 10.94

DualCL+HE 92.94±0.34 79.03±0.27 80.13±0.31 87.75±0.33 83.04±0.17 84.58±0.28 10.81

DualCL+SE 92.99±0.26 78.93±0.24 80.22±0.28 88.01±0.34 83.14±0.26 84.66±0.28 10.14

full training data

BERT

CE 92.32±0.17 83.03±0.22 81.37±0.24 91.07±0.23 83.83±0.37 86.32±0.25 12.42
DualCL 92.44±0.29 83.20±0.22 83.89±0.27 91.24±0.21 84.03±0.31 86.96±0.26 11.26

DualCL+HE 92.53±0.31 83.32±0.28 84.80±0.37 91.35±0.26 84.17±0.21 87.23±0.29 10.88

DualCL+SE 92.78±0.33 83.46±0.24 84.75±0.30 91.39±0.28 84.24±0.32 87.32±0.29 10.49

RoBERTa

CE 94.15±0.19 84.08±0.24 87.99±0.18 92.73±0.21 87.04±0.26 89.20±0.22 11.20
DualCL 94.20±0.25 83.83±0.27 88.27±0.29 92.76±0.22 87.04±0.19 89.22±0.24 11.21

DualCL+HE 94.38±0.30 83.99±0.32 88.48±0.35 92.84±0.33 87.07±0.20 89.35±0.30 10.89

DualCL+SE 94.54±0.22 83.97±0.29 88.56±0.30 92.84±0.35 87.09±0.24 89.40±0.28 10.07

Pos. input
Neg. input

(a) CE+SCL

Pos. classifier
Pos. input
Neg. classifier
Neg. input

(b) DualCL w/o L
Dual

Pos. classifier
Pos. input
Neg. classifier
Neg. input

(c) DualCL

Figure 3: The tSNE plots of the learned representations on the SST-2 dataset.

5.4 Visualization of Learned Representations
To delve into the investigation of how dual contrastive learning

enhances the quality of representations, we present the t-SNE plots

that showcase the learned representations on the SST-2 test set.

For our experimentation, we employ RoBERTa as the encoder and

proceed to fine-tune the encoder using 25 training samples for

each class. In Figure 3, we visualize the outcomes of three distinct

approaches: CE, DualCL w/o L
Dual

, and DualCL.

Upon analyzing the t-SNE plots in Figure 3, we expect to investi-

gate the model’s capability to produce discriminative representa-

tions for the input samples and the classifier parameters associated

with each example. By comparing Figure 3 (c) with Figure 3 (a)

and Figure 3 (b), we observe a noticeable distinction. Specifically,

the representations of the input texts and the corresponding class

parameters are better aligned with each other in DualCL than in

CE+SCL and DualCL w/o L
Dual

. It becomes evident that the dual

contrastive loss plays a crucial role in facilitating the model’s acqui-

sition of more discriminative and robust representations for both

the input representations and the generated classifier parameters.

The t-SNE plots depicted in Figure 3 suggest the effectiveness of

the improved learning process of DualCL. In essence, by integrating

the dual contrastive loss into the DualCL framework, the model be-

comes capable of leveraging the inherent duality between training

examples and classifier parameters. This integration enables the

model to generate more insightful and robust representations for

both the input samples and the classifier parameters.
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5.5 Effectiveness of Ensembled Classification
To validate the effectiveness of the ensembled classification ap-

proach on more challenging datasets, we conduct experiments on

the subset of GLUE benchmark tasks [31] (SST-2, CoLA, MRPC,

QNLI and MNLI) in both full-data and low-resource settings. The

results obtained are presented in Table 3. Notably, we observed

that DualCL+HE and DualCL+SE, when incorporating ensembled

predictions, almost consistently outperform their non-ensembled

counterparts. Specifically, in comparison to the DualCL method,

DualCL+HEwith hard ensemble exhibited an improvement of 0.28%

and 0.15% in accuracy for the BERT and RoBERTa models, respec-

tively. Furthermore, DualCL+SE with soft ensemble showcased an

additional enhancement of 0.35% for the BERT model and 0.21% for

the RoBERTa model when compared to the DualCL method.

The above results suggest that the ensembled classification ap-

proach is effective in improving text classification performance

by aggregating multiple outputs. It is worth mentioning that the

computational overheads introduced by the ensemble-based pre-

diction schemes were minimal, as evident from the last column of

Table 3. Although CE is known for its exceptional training speed,

the DualCL approach and its ensembled variants demonstrate a

comparable training speed, suffering only negligible speed loss.

5.6 Effectiveness in Low-Resource Scenarios
In order to examine the effectiveness of the proposed dual con-

trastive loss and the data augmentations generated by internal

components in enhancing text classification performance under

low-resource scenarios, we conducted experiments on the SST-2

and SUBJ datasets with varying numbers of training examples.

Specifically, we evaluated the performance of the compared models

using different numbers of 𝑁 training samples per class, where 𝑁

is selected from the set of {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

To present the findings, we depicted the results of three models:

BERT trained with cross-entropy loss (CE), DualCL without the

dual contrastive learning loss (DualCL w/o L
Dual

), and DualCL.

The test accuracy of using a various number of training examples

on the SST-2 and SUBJ datasets is shown in Figure 4. The evalua-

tion results clearly demonstrate that DualCL outperforms CE and

DualCL without L
Dual

, especially when the number of training

examples is limited. The improvement achieved by DualCL is par-

ticularly noteworthy, reaching up to about 8.5% on SST-2 and 5.4%

on SUBJ, even when only 5 training samples are available per class.

It is worth noting that even without utilizing the dual contrastive

loss, DualCL w/o L
Dual

, which is trained using cross-entropy loss

with the generated classifiers and data augmentations, consistently

outperforms CE in low-resource scenarios. This observation under-

scores the efficacy of the proposed internal data augmentations as a

means to improve the generalization capability of the model, which

leads to better classification results when training data is scarce.

5.7 Case Study
To study the effectiveness of DualCL in capturing informative fea-

tures, we employ an attention-scoring mechanism between the

representation of the “[CLS]” token and each word in the given

sentence. Initially, we fine-tuned the RoBERTa encoder using the

complete training set. Subsequently, we compute the ℓ2 distance

5 10 20 30 40 50 60 70 80 90 100
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Figure 4: Test accuracy on the SST-2 (left) and SUBJ (right)
datasets with different numbers of training examples.

what
might
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been a

predictably
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warming tale is
suffused

with

complexity'

CE

DualCL

remote
buttons are

small and
closely

spaced ,

especially with the
menu

button

CE

DualCL

Figure 5: The visualization of attention map for CE and Du-
alCL. The darker blue refers to higher attention scores.

between the extracted features and proceed to visualize the result-

ing attention map in Figure 5. From the visualization results, we

can conclude that the attention maps of different words exhibit

distinguishable patterns when performing the classification.

For instance, in the upper example sampled from the SST-2

dataset, ourmodel demonstrates higher attention towards the phrase

"predictably heart warming" in the sentence representing a "posi-

tive" sentiment. Conversely, in the lower example derived from the

CR dataset, our DualCL model emphasizes the word "small" with

greater attention, indicative of "negative" sentiment. In contrast, the

CE method fails to concentrate on these distinctive features. These

outcomes indicate that our DualCL framework successfully learns

to attend to the informative keywords within the sentence, enabling

it to capture relevant and discriminative features effectively.

6 CONCLUSION
In this paper, we attempt to overcome the potential shortcomings in

the existing supervised contrastive learning (SCL) approach for text

classification. We propose the parameter-free, augmentation-easy

and label-aware principles to design an effective SCL approach.

Motivated by our derived lower bound of mutual information max-

imization based on the duality of text classification, we develop

a dual contrastive learning framework DualCL. This framework

generates classifier parameters as augmented views of the input

text and simultaneously uses them for ensembled classification.

Extensive experimentation convincingly demonstrates the efficacy

of both the proposed principles and the DualCL framework. We

aspire for this streamlined and efficient framework to emerge as a

compelling alternative to existing supervised contrastive learning

methods, demonstrating its versatility across various domains.
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APPENDIX
6.1 Proof of Theorem 1

Theorem 1. Assume that there is a constant 𝜖 such that 𝑝 (𝒙𝑖 , 𝑦𝑖 ) ≥
𝜖 holds for all 𝑖 ∈ I and 𝑝 (𝑦 𝑗 |𝒙𝑖 )

𝑝 (𝑦 𝑗 ) ∝ 𝜙 (𝒙𝑖 , 𝑦 𝑗 ):

MI(X,Y) ≥ log𝑁 − 𝜖 (L𝜽←𝒛 + L𝒛←𝜽 ) (11)

where 𝜙 is a symmetric function with diverse definitions. In our case,
𝜙 (𝑥𝑖 , 𝑦 𝑗 ) = (𝑔(𝜽 ∗𝑖 , 𝒛 𝑗 ) + 𝑔(𝜽

∗
𝑗 , 𝒛𝑖 ))/2.

Proof. Let𝑀𝑖 =
∑𝑁
𝑗=1

𝑝 (𝑦 𝑗 |𝒙𝑖 )
𝑝 (𝑦 𝑗 ) and assume that

1

| P𝑖 |
∑
𝑝∈P𝑖 𝜙 (𝒙𝑖 , 𝑦𝑝 ) =

𝜙 (𝒙𝑖 , 𝑦𝑖 ) when |P𝑖 | is sufficiently large. We have:

MI(X,Y) = 1

𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑝 (𝒙𝑖 , 𝑦 𝑗 ) log
(
𝑝 (𝑦 𝑗 |𝒙𝑖 )
𝑝 (𝑦 𝑗 )

)
=

1

𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑝 (𝒙𝑖 , 𝑦 𝑗 )
(
log

𝑝 (𝑦 𝑗 |𝒙𝑖 )
𝑝 (𝑦 𝑗 )𝑀𝑖

+ log𝑀𝑖
)

=
1

𝑁
𝑝 (𝒙𝑖 , 𝑦𝑖 ) log

𝜙 (𝒙𝑖 , 𝑦𝑖 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

+ 1

𝑁

∑︁
𝑗≠𝑖

𝑝 (𝒙𝑖 , 𝑦 𝑗 ) log
𝜙 (𝒙𝑖 , 𝑦 𝑗 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

+ log𝑁

≥ log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

log

𝜙 (𝒙𝑖 , 𝑦𝑖 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

= log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

1

|P𝑖 |
∑︁
𝑝∈P𝑖

log

𝜙 (𝒙𝑖 , 𝑦𝑝 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

≥ log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

log

𝜙 (𝒙𝑖 , 𝑦𝑖 )∑𝑁
𝑡=1 𝜙 (𝒙𝑖 , 𝑦𝑡 )

≥ log𝑁 + 𝜖

𝑁

𝑁∑︁
𝑖=1

1

|P𝑖 |
∑︁
𝑝∈P𝑖

log

𝑔(𝜽 ∗𝑖 , 𝒛𝑝 )∑𝑁
𝑎=1 𝑔(𝜽

∗
𝑖 , 𝒛𝑎)

+ 𝜖

𝑁

𝑁∑︁
𝑖=1

1

|P𝑖 |
∑︁
𝑝∈P𝑖

log

𝑔(𝜽 ∗𝑝 , 𝒛𝑖 )∑𝑁
𝑎=1 𝑔(𝜽

∗
𝑎, 𝒛𝑖 )

= log𝑁 − 𝜖 (L𝜽←𝒛 + L𝒛←𝜽 )

(12)

□

This theorem proves that the negative of loss L𝜽←𝒛 +L𝒛←𝜽 is a

lower bound of the mutual information MI(X,Y). Thus, when we

specify the loss L𝜽←𝒛 + L𝒛←𝜽 by the dual contrastive loss L
Dual

and minimize it, the mutual information between inputs and labels

is accordingly maximized.
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