
Under review as submission to TMLR

The Deep Learning Recipe for LLM Applications

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have revolutionized AI research and enabled exciting
applications. To build a complex LLM application, such as an LLM agent, most existing
research relies on insights from other domains or heuristics to manually build the application.
However, this approach often requires heavy hand-engineering and fails to fully optimize for
the downstream task of interest. Inspired by the tremendous success of deep learning, we
proposed to construct LLM applications in a modular manner, similar to building a deep
neural network. Our key insight is to make analogies between LLM building blocks, such as
retrievals, memories, and prompting strategies, and the successful deep learning modules,
such as MLPs, attention, and recurrent modules. We further design forward inference and
feedback mechanisms for LLMs, where prompts in LLMs are considered as the weights in deep
models, and the prompt optimization from feedback is analogous to the back-propagation
algorithm. We additionally leverage a search algorithm to search for the best configuration of
LLM applications, similar to the neural architecture search (NAS) in deep learning research.
Comprehensive experimental results demonstrate that the proposed deep learning recipe
for LLM applications is highly effective, in particular: (1) Organizing LLM modules into
deep-learning-style architectures yields noticeable performance gain; (2) Automatic prompt
optimization, equivalent to backpropagation, is efficient in incorporating feedback from the
task of interest and achieves at least 5% performance improvement; (3) NAS equivalent
algorithm works well for further optimizing the LLM application architecture with 11%
performance gain compared with randomly designed architectures. Overall, our research
demonstrates the exciting opportunity of transferring the success of deep learning to building
LLM applications.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable potential in achieving Artificial General
Intelligence (AGI) due to their impressive planning and reasoning abilities (Wu et al., 2023b; Ge et al., 2023),
which has sparked an upsurge in studies investigating sophisticated LLM applications such as AI agents
(Zhao et al., 2023; Wang et al., 2023; Peng et al., 2023). LLM applications usually involve various LLM
building blocks (Packer et al., 2023; Yao et al., 2023; Topsakal & Akinci, 2023; Pandya & Holia, 2023; Jeong,
2023), such as retrieval (Robertson et al., 2009; Izacard et al., 2022; Lin et al., 2023), memory modules (Zhao
et al., 2023; Wang et al., 2023), and prompting strategies (Yao et al., 2024). We argue that the success of
LLM applications relies on the integration of multiple LLM modules (Zhao et al., 2023; Talebirad & Nadiri,
2023; Wu et al., 2023a), which still receives limited attention from the community. Therefore, our paper
aims to raise attention to the pressing research question: how to effectively and automatically construct LLM
applications based on basic building blocks.

Constructing effective LLM applications often involves leveraging insights from various disciplines, such as
neuroscience (Yao et al., 2022; Shinn et al., 2023; Kwon et al., 2023) and computer architecture (Packer
et al., 2023; Talebirad & Nadiri, 2023). For example, MEMGPT (Packer et al., 2023) draws inspiration from
hierarchical memory systems in traditional operating systems to construct an LLM agent application with
several manually designed LLM building blocks. However, applying such interdisciplinary insights to LLM
application construction has the following shortcomings: (1) The approach is often domain-specific and not

1

Under review as submission to TMLR

generic, requiring heavy manual designs; (2) Designing the LLM application necessitates extensive trial and
error, making the process both costly and inflexible.

The tremendous success of Deep Learning (DL) has brought us a new perspective on solving the above
problems. In the area of DL, researchers have proposed various basic modules such as Recurrent Neural
Network (RNN) (Li et al., 2019; Selvin et al., 2017; Jordan, 1997) and Attention Network (Wang et al., 2017;
Fu et al., 2019; Hou et al., 2019) to process various tasks. Constructing the basic modules into complicated
architectures like Transformer (Vaswani et al., 2017b; Han et al., 2021) and further leveraging the forward and
back propagation (Johansson et al., 1991; Buscema, 1998) to train such architectures have further contributed
to the success of DL on tackling complex real-world applications.

Inspired by the success of DL, we propose to design LLM applications with a Deep Learning recipe. Our
approach involves defining building blocks of LLMs analogous to the DL modules, constructing LLM applications
similar to defining NN architectures, and developing the prompt optimization algorithm of LLMs similar to
the backpropagation algorithm. Specifically, we explore LLM modules including: (1) vanilla LLM as a single
layer MultiLayer Perceptron (MLP) (Popescu et al., 2009); (2) Memory processer (Zhang et al., 2023; Packer
et al., 2023) as an RNN; (3) Retrieval (Robertson et al., 2009; Izacard et al., 2022; Lin et al., 2023) as an
attention network (Wang et al., 2017; Fu et al., 2019; Hou et al., 2019); (4) prompting strategies (Besta et al.,
2023; Yao et al., 2024) as Graph Neural Networks (GNNs) (Zhang et al., 2021; Shi et al., 2019; Kenning
et al., 2022). Based on the defined LLM modules, we could construct more complex LLM applications
by referencing successful DL architectures, notably, Transformer (Vaswani et al., 2017a). Furthermore, we
design a meta prompt module similar to the training parameters in DL to guide the forward inference, and
a feedback-propagation module that incorporates the external feedback and iteratively updates the meta
prompt similar to the backpropagation algorithm. We additionally leverage a search algorithm to search the
best configuration of LLM applications, similar to the neural architecture search (NAS) (Liu et al., 2018) in
DL research. In summary, our main contributions are as follows:

• The first work to investigate constructing LLM applications from the DL perspective and recipe,
extends the science and engineering of LLM applications.

• Proposing DL-style building blocks for LLMs and constructing a “Transformer” architecture for
LLM application. Observing at least 5% performance gain by “backpropagating” through the LLM
application via a novel feedback-propagation propagation algorithm.

• An automatic search algorithm for the best configuration of LLM application, similar to NAS in DL,
brings 11% performance gain compared to prior practice.

2 Related Works

In this section, we first revisit the basic DL modules and how they are used to build complex NN architectures.
We then review the current approaches in building LLM applications and discuss how can we bring insights
from the success of DL applications to LLM applications.

Modules of Deep Learning. In the area of DL, researchers have designed various basic modules to tackle
different tasks. In the early period of DL design, researchers propose MLP (Popescu et al., 2009) to solve tasks
such as classification, prediction, and regression. However, this basic architecture is less effective for complex
input data. Consequently, researchers have developed specialized modules with various functionalities. RNNs
(Li et al., 2019; Selvin et al., 2017; Jordan, 1997) are tailored for sequential data, maintaining a hidden
state to capture information across time steps. CNNs (Kiranyaz et al., 2015; 2019) excel at capturing local
patterns within images. Additionally, Attention mechanism (Wang et al., 2017; Fu et al., 2019; Hou et al.,
2019) further refines model focus by emphasizing the most salient segments within the data. By combining
and arranging these specialized modules, researchers have developed numerous powerful architectures. For
instance, the Transformer (Vaswani et al., 2017b; Han et al., 2021), one of the most popular architectures
today, relies on the attention mechanism and simple feed-forward layers. It has demonstrated surprising
results in generative AI. Additionally, some researchers have integrated the attention mechanism into RNNs,
yielding very promising outcomes (Wang & Tax, 2016; Merity, 2019). Researchers have further developed

2

Under review as submission to TMLR

automating architecture engineering, such as Neural Architecture Search (NAS) (Liu et al., 2018; Zoph & Le,
2016; Pham et al., 2018), aiming to find the optimized design of our machine learning model.

Construction of LLM Applications. Much of the current research on LLM application relies on the
insights and observations from other domains (Yao et al., 2022; Shinn et al., 2023; Kwon et al., 2023; Chen
et al., 2023). However, these designs are often problem-specific and do not offer a systematic approach to
defining a good LLM application architecture. Recent efforts, like Langchain 1 and LlamaIndex 2, aim to offer
standardized building blocks and modules for LLM applications. However, they still lack a systematic approach
to designing different LLM applications for various tasks, providing limited guidance on their integration
for sophisticated and meaningful architectural compositions. In response, we propose the development of
standardized modules for LLM application design, inspired by the proven methodologies within the DL
domain. In this work, we show that these basic building blocks can be synthesized into a coherent framework,
offering a novel, modular approach to architectures in LLMs that builds a bridge between LLMs and DL.

3 The Deep Learning Recipe for LLM Applications

To explore the deep learning recipe for LLM applications, we first introduce the basic building blocks of
LLMs in Sec 3.1, which demonstrates the relationships between DL and LLM building blocks. Inspired by
the success of DL’s training process, we then illustrate the forward inference and feedback propagation of
LLM in Sec 3.2. Finally, we introduce the instantiations of: building a “Transformer” with LLM building
blocks in Sec 3.3.

3.1 Deep-Learning-Style Building Blocks of LLM Applications

To introduce the basic building blocks of LLM and the relationship between DL and LLMs, we "translate"
the modules of LLM into modules of DL as shown in Figure 1.

Vanilla LLM as Single Layer MLP. As a basic component when constructing an LLM application, an
LLM receives a query q and outputs a response r. It can be translated as a single layer MLP, as shown in
Figure 1(a), which also plays a fundamental role in DL (Popescu et al., 2009).

Memory Processer as Recurrent Neural Network. During the interaction process of the LLM, it will
store the knowledge obtained by the interaction as memories {m0, m1, ...mn, q} and utilize these memories
for future response (Shinn et al., 2023; Kwon et al., 2023) as shown in Figure 1(b). Similarly, Recurrent
Neural Network (RNN) excels at processing sequential data due to their inherent structure that allows for the
storage and utilization of previous information (Li et al., 2019; Selvin et al., 2017; Jordan, 1997). It achieves
this by maintaining hidden states ht that are updated at each time step t, effectively encoding the history of
the sequence {m0, m1, ...mn, q} up to that point. Therefore, we regard the memory processor as RNN.

Retrieval as Attention Network. When LLMs interact with factual knowledge stored in the corpus
context C, they utilize retrieval (Robertson et al., 2009; Izacard et al., 2022; Lin et al., 2023) to efficiently
retrieve accurate context for future response. As shown in the left part of Figure 1(c), to retrieve the accurate
context, retrieval exploits the embedding similarity between query q and corpus context C and obtains the
retrieved context Cr of the top K similarity ranking. This process is similar to the attention network shown
in the right part of Figure 1(c). They both utilize the embedding similarity between query q and corpus
context C to obtain an important score f , which determines the important weights of each context. From
this perspective, we translate the retrieval as an attention network. To be specific, single-query retrieval can
be interpreted as single-head attention and multi-query retrieval can be regarded as multi-head attention
(Wang et al., 2017; Fu et al., 2019; Hou et al., 2019).

Prompting Strategies as Graph Neural Network. As shown in Figure 1(d), common prompting
strategies, such as Tree of Thoughts (ToT) (Yao et al., 2024) and Graph of Thoughts (GoT) (Besta et al.,
2023) both decompose query q into interconnected thoughts, which are connected and related to each other.

1https://www.langchain.com
2https://www.llamaindex.ai

3

Under review as submission to TMLR

LLM

Weighted
Context

a LLM as Single Layer MLP b Memory Processer as Recurrent Neural Network

Retrieval as Attention Network c

Response

Query

RNN
Cell

RNN
Cell

RNN
Cell

...

......

LLM

+Memory
Translate

V

K

Q
Query

Softmax

Score

Corpus Context

Attention Network

Embed

Embed
Query

Softmax

Score

Corpus Context Retrieved
ContextCopy

Top

Retrieval

Translate

Translate

 Query

Response

 Query

Response

Translate Translate

Prompting Strategies, such as ToT/GoT, as Graph Neural Networkd

Tree of Thoughts Graph of Thoughts

LLM MLP Memory Processer Recurrent Neural Network

Graph Neural Network

Figure 1: Basic Building Blocks of LLM applications. (a) A vanilla LLM can be translated into a single
layer MLP, which receives a query q and outputs a response r; (b) Memory processor can be regarded as RNN
since they both utilize historical data for future planning; (c) Retrieval is analogous to the attention network
of DL because they both extract the importance information of the corpus context; (d) Prompting strategies,
such as Tree/Graph of thoughts, are translated to GNNs since they decompose query q into interconnected
thoughts, which are connected and related to each other.

These query and thought nodes and their relationships can be abstracted into nodes and edges of Graph
Neural Networks respectively. For convenience, we translate ToT and GoT into TNN and GNN in DL
respectively in the subsequent introduction.

3.2 Forward Inference and Feedback Propagation for LLM Applications

The success of DL not only lies in the design of fundamental modules discussed in Sec 3.1, but also in the
training process containing forward and back propagation (Buscema, 1998) that brings external signals and
feedback to the DL application. Inspired by this, we design the forward inference and feedback propagation
of LLMs as shown in Figure 2.

Parameters of the LLM Application. The parameters can be divided into two categories: training
parameters and hyperparameters. Here, the meta prompt in Figure 2 is equivalent to training parameters in
deep learning, since it guides forward inference and can be updated through feedback propagation. Moreover,
hyperparameters in LLM applications include max tokens of each LLM (size of MLP); number of retrievals
(head number of attention network); retrieve number of each retrieval (mask); node number or depth of
tree/graph of thoughts (node number or layer number of GNN); etc. These are predefined before using the
LLM applications.

4

Under review as submission to TMLR

Composition of
LLM Blocks Previous Responses:

Climate change is primarily caused by human
activities.
Climate change is mainly due to natural factors.

Reflection:
This response overlooks the significant impact of
human activities.

Based on previous responses/reflection of
responses, answer the following query:
What are the primary causes of climate change?

MLP

RNN

Attention Network

Directed GNN

LLM Evaluation

Metric Calculation

Or

Self-reflectionMeta Prompt

Update parameters of LLM

Forward Inference

Feedback Propagation

Response
Query

Figure 2: Forward and Back Propagation Algorithms for Large Language Model. In this process,
meta prompt is regarded as trainable parameters in DL. For the forward inference, the input query goes
through the composition of LLM building blocks to obtain the response, which is guided through the meta
prompt. For the feedback propagation, the feedback from the self-reflection updates the parameters (meta
prompt) of LLM.

Forward Inference. In the forward inference process of DL, the input data passes through each block of
the neural network to obtain the final output (Buscema, 1998; Prabhushankar & AlRegib, 2022). Similar
to this, in the forward inference process of LLM, the input query goes through the composition of LLM
building blocks to obtain the response as shown in Figure 2. Here we set up a meta prompt to guide the
forward inference of LLM, which contains the input query, previous responses, and reflection returned by the
self-reflection module.

Feedback Propagation. Many researchers contribute the success of DL to the feedback propagation
process of DL (Buscema, 1998; Luft, 2014), which updates the parameters of DL through feedback of losses
between outputs and ground truths. Inspired by this, as illustrated in Figure 2, we regard the meta prompt as
parameters of LLM and design a self-reflection module as the loss function to evaluate the effect of response
on input query and update the parameters of LLM. Specifically, the self-reflection contains LLM Evaluation
and Metric Calculation. For some queries whose response quality has clear metrics, we will choose Metric
Calculation. Otherwise, we utilize LLM Evaluation to make LLM judge the quality of the response. The
generated reflections and responses will be used to update the meta prompt to guide the LLM response of
the next round.

3.3 Case study: Building a “Transformer” with LLM Building Blocks

In this section, we introduce how to build a (cross-attention) Transformer with LLM building blocks. As
illustrated in Figure 3, we show the correspondence between the main modules of the cross-attention
transformer and LLM building blocks to illustrate how to utilize LLM building blocks to build a transformer.
For the cross-attention transformer, the two different features of data will first go through a cross-attention
network and the output will be obtained through an MLP layer. To avoid the vanishing gradient problem
or gradient explosion, researchers will also add the residual module to improve the training performance
of the transformer (Vaswani et al., 2017b; Han et al., 2021). The success of the transformer in integrating
and processing information from different features has inspired the design of LLM. As shown in the right
part of Figure 3, we analogize the raw query and the corpus context into two different features of data, like
Feature1 and Feature2. On this basis, we first design a meta prompt containing raw queries to guide the
LLM to generate multiple queries. Then we propose a multi-query retrieval based on multiple queries to
retrieve relevant context from corpus context, which is equivalent to the multi-head cross-attention network.
Additionally, we add the raw query to the generated multiple queries to ensure the effectiveness of our LLM,
which is similar to the design of the residual module. Finally, an LLM will output the response like an MLP

5

Under review as submission to TMLR

Cross-attention Network

＋

Residual

MLP
Output

Multi-Dense
Retriever

Raw Query

LLM
Prompting

Multi-Dense
Retriever

Multi-Query
Retriever

Append
Query

Residual

LLM

Response

Copy Meta
Prompt

Corpus
Context

Retrieve

Figure 3: Build a Cross-attention Transformer with LLM Building Blocks. The multi-query retrieval
is equivalent to the cross-attention network and the LLM is translated to MLP in DL. Additionally, the
process of appending the raw query to the generated multiple queries is equivalent to the residual.

based on the retrieved context and input query. We summarize the DL recipe for LLM applications as a user
instruction manual in Table 5 and please refer to Appendix A for details.

4 Experimental Setup

4.1 Datasets and Tasks

Table 1: Overview of Datasets.
Dataset Task Type Cases

Without External Knowledge
TSP Optimization 30
GSM8K Math Problem 30

With External Knowledge
StrategyQA Commonsense Reasoning 30
Related-multi Summary 30

We evaluate LLM applications on two ma-
jor categories of tasks. They differ in
whether the LLMs interact with external
knowledge (Sun et al., 2023), such as ex-
ternal factual knowledge.

LLM without External Knowledge.
We evaluate non-retrieval-based meth-
ods using two datasets: (1)Traveling
Salesman Problem (TSP) (Hahsler &
Hornik, 2007), where we create instances
by randomly generating n nodes with x
and y coordinates in the [−10, 10] range. As a classic combinatorial optimization problem, performance is
evaluated by the length of the best solution within the fixed exploration step. (2) GSM8k (Cobbe et al.,
2021), which contains high-quality, linguistically diverse grade-school math word problems necessitating
multi-step reasoning, crafted by expert problem writers. Each problem includes a detailed reasoning process
and the correct final answer, with performance evaluated based on final answer accuracy.

LLM with External Knowledge. Our evaluation of retrieval-based frameworks utilizes two datasets: (1)
StrategyQA (Geva et al., 2021), a benchmark for open-domain commonsense reasoning question-answering
that highlights the importance of implicit reasoning. It involves retrieving pertinent evidence paragraphs
from a corpus to correctly answer questions. We compare the retrieved paragraphs with the ground truth and
obtain Precision, Recall, and F1 as evaluation metrics. (2) Related-multi (will be released after review),
designed to assess a language model’s capability to effectively use extensive context from real-world academic
papers for answering queries. Specifically, the task is to write a related work section based on the title and

6

Under review as submission to TMLR

Given a simple mathematical question along with any previous attempts to solve it, please directly provide the final
answer. Be aware that the details about past explorations may contain inaccuracies.

Question: {question};
Previous Responses: Here are the previous responses, which may not be accurate: {pre_res};
Evaluation for the Past Response: {eval}

Your response should follow the structure outlined below:
R: <Replace Here With Your Reasonings>;
A: Place your Final Answer here as a clear numeric value. Ensure there are no additional words, signs, or
explanations! Enclose the numeric value in angle brackets.

An example of the desired output is:
R: First find the total number of starfish arms: 7 starfish * 5 arms/starfish = <<7*5=35>> arms \n Then add the
number of seastar arms to find the total number of arms: 35 arms + 14 arms = <<35+14 = 49>> arms\n
A: <49>

Figure 4: An example of the meta prompt used for RNN-MLP on the GSM8K dataset. The blue text contains
input questions and previous responses/evaluations. The purple text describes the output format instructions.

abstract of a target paper. LLM needs to use the title and abstract as the query to retrieve text chunks to
complete this task. Text chunks depict the abstracts of several papers (each text chunk corresponds to the
abstract of a paper), where some papers are cited in the related work section of the target paper, while others
are randomly sampled from the same broader field. The retrieved text chunks are compared with the ground
truth to obtain Precision, Recall, and F1 as evaluation metrics.

4.2 Models: Various Architectures for LLM Applications

We delve into the detailed descriptions of the architectures we explored, with a particular emphasis on
their implementations and the methods employed for backward propagation across various modules. For
the two LLM datasets without external knowledge, we design the following four basic architectures: (1)
MLP: a single LLM; (2) RNN-MLP: previous responses are appended into the meta prompt to guide the
generation of response; (3) TNN-MLP: utilize ToT to generate multiple thoughts for response generation;
(4) GNN-MLP: GoT is exploited to develop various thoughts for response generation.

We also develop four basic architectures for LLM applications with external knowledge. In order to interact
with external knowledge, the four architectures are supplemented with the attention to retrieve relevant
information based on the above architectures: (1) Att-MLP: a single retrieval to retrieve relevant information
for LLM; (2) RNN-Att-MLP: previous responses are appended into the meta prompt to change the query
for retrieval; (3) TNN-Att-MLP: utilize ToT to generate new query for retrieval; (4) GNN-Att-MLP:
GoT is exploited to develop new query to retrieve. More details about the basic architectures of LLM
applications are introduced in Appendix C. Additionally, we have shown an example of the meta prompt used
for RNN-MLP on the GSM8K dataset in Figure 4. Other meta prompts are also summarized in Appendix B.

5 Results

5.1 Performance of Different Architectures of LLM Applications

Different Applications Lead to Different Ideal LLM Architectures. Our results across two distinct
types of datasets are illustrated in Figures 2 and 3, demonstrating that the integration of RNN, TNN, and
GNN generally enhances the MLP’s performance across various tasks. Specifically, in reasoning (GSM8K)
and optimization (TSP) problems that do not require external knowledge, GNN, and TNN excel due to their
strong logical capabilities. For tasks involving reasoning (StrategyQA) and long-context summary (Related-
multi) that necessitate external knowledge, RNNs proved most effective, in line with our expectations. This
effectiveness is attributed to their capability to process and retain long sequences of information. Consistent
with findings in DL, combining RNNs with attention mechanisms has been shown to yield promising results.

7

Under review as submission to TMLR

Table 2: Performance of Differ-
ent LLM applications on TSP and
GSM8k.

Type Without External Knowledge

Dataset TSP GSM8k

Method Length Accuracy

MLP 79.2 53.3%

RNN-MLP 76.6 60.0%

TNN-MLP 73.2 66.7%

GNN-MLP 73.9 64.3%

Table 3: Performance of Different LLM applications on
StrategeyQA and Related-multi.

Type With External Knowledge

Dataset StrategeyQA Related-multi

Method Precision Recall F1 Precision Recall F1

Att-MLP 0.45 0.40 0.42 0.31 0.17 0.22

RNN-Att-MLP 0.72 0.62 0.66 0.33 0.19 0.24

TNN-Att-MLP 0.53 0.47 0.50 0.34 0.20 0.25

GNN-Att-MLP 0.58 0.51 0.54 0.29 0.16 0.21

Feedback-Propagation Effectively Optimizes of LLM Application Performance without Human
Intervention. Through our experiments, we discover that our automatic prompt optimization technique,
akin to backward propagation, consistently improves the performance of the LLM applications in most
scenarios. This verifies that the LLM applications benefit from integrating past experiences and self-
evaluations. Figure 6 presents the results at different steps on the TSP datasets, illustrating that feedback
propagation can bring at least 5% performance gain for LLM applications. Moreover, we can also observe
that GNN-MLP and TNN-MLP iterate faster than other architectures and obtain better results. This is
because they explore more solutions at each step and improve the efficiency of optimization.

5.2 Case Study: Results of “Transformer-style” LLM Applications

Multi-Dense
Retriever

Raw Query

LLM
Prompting

Multi-Dense
Retriever

Multi-Query
Retriever

Append
Query

Residual

LLM

Response

Meta
Prompt

Corpus
Context

Retrieve

Self-reflection

Update

Output Size

Output Size

Output Size

Head Num

Retrieve
Num

Opt

Figure 5: Optimization on trans-
former to maximize F1.

We utilize variants of the transformer as an example to show the role of
different LLM building blocks when building complex architectures. To
be specific, we set up the following variants. (1) Transformer: It de-
notes transformer illustrated in Sec 3.3. (2) RNN-Transformer: We
add previous responses to the meta prompt of the transformer to utilize
its memory, which is commonly used in DL (Xia et al., 2019; Liu et al.,
2019) when processing historical data. (3) TNN-Transformer/GNN-
Transformer: ToT/GoT is added to transformer to guide multi-query
generation, which is similar to GraphTransformer (Yun et al., 2019;
Hu et al., 2020; Rampášek et al., 2022) in DL. We compare their per-
formance on two datasets with the same hyperparameters and report
all the results in Figure 7. It can be observed that the Transformer
performs best in StrategyQA. This is because StrategyQA’s tasks are
relatively simple, and Transformer is already relatively complex, there-
fore other variants do not perform well. We can also observe that
TNN-Transformer and GNN-Transformer perform relatively better
than other variants on Related-multi. It is because writing-related work requires more thinking and divergence
of thoughts (Randolph, 2019; Torraco, 2005).

5.3 Automatic Architecture Search of LLM Applications

To automatically optimize the LLM application architecture like NAS, we propose an optimization framework
based on Optuna (Akiba et al., 2019), which is an efficient and lightweight hyperparameter optimization
software. To better illustrate our framework, we take the optimization of the transformer introduced in Sec
3.3 on Related-multi as an example. As shown in Figure 5, we optimize the hyperparameters of each module
using Optuna. To be specific, we first conclude the hyperparameters and define their optimization range in

8

Under review as submission to TMLR

1 2 3 4 5 6 7 8
Optimization Steps

74.0

76.0

78.0

80.0

82.0

84.0
TS

P
P

at
h

Le
ng

th
MLP
RNN-MLP

TNN-MLP
GNN-MLP

Figure 6: The performance of LLM applica-
tions on the TSP dataset will get better as
the feedback propagation progresses.

StrategyQA Related-multi
Datasets

0

0.2

0.4

0.6

0.8

1

F1

Transformer
RNN-Transformer

TNN-Transformer
GNN-Transformer

Figure 7: Case Study: Using LLM Building
Blocks to Build Variants of Transformer.

Table 6 of Appendix D: Output size m1 (max tokens) for LLM prompting, head num h and retrieve num n
of each head for multi-retrieval, output size m2 for output LLM, and output size m3 for self-reflection. We
utilize 30% of the dataset (training set) for searching optimization architecture and 70% for testing (testing
set) and further define F1 as the optimization goal. For each set of hyperparameters pri = (m1, m2, m3, h, n),
we calculate its F1 performance on training set. As illustrated in Figure 16 of Appendix D, we can obtain
{pri, F1i}k via k trials (120 trials in our experiment) and optimize the architecture by maximizing F1.
In addition, as shown in Table 4, we select some points to illustrate that the LLM application becomes
better as the number of trials increases. Through the experiment, we obtain the optimized hyperparameters
pr = (m1 = 192, m2 = 192, m3 = 320, h = 2, n = 4) with F 1 = 0.712 on the testing set, which has 11% better
performance than randomly designed architectures (obtained by conducting experiments in which m groups
of hyperparameters were randomly selected and averaging the corresponding F1 scores).

6 Conclusion and Discussion

Table 4: As the number of LLM architecture
searches increases, the LLM application is
getting better.

0 7 43 78

F1 Score 0.541 0.685 0.694 0.712

Conclusion. In conclusion, our work introduces a pi-
oneering modular approach to the construction of LLM
applications, establishing parallels with DL. We provide
comprehensive methods and insights into viewing and
assembling LLM building blocks in a manner analogous
to DL architectures. Through extensive experimentation,
we demonstrate that specific classic LLM modules are
optimized for distinct tasks, similar to those in DL, and can be integrated in a manner reminiscent of DL
configurations. Moreover, our feedback system enhances the performance of LLMs, paralleling the training
mechanisms in DL. Finally, we propose an automatic optimization method for identifying the most effective
LLM frames, presenting a promising avenue for future research.

Discussion. This work represents a pioneering effort in the development of systematic and scientifically
grounded LLM applications, drawing upon DL insights to inaugurate a new era of efficiency and standardization
in the research and application of LLMs. By establishing fundamental LLM applications, our objective is
to reconcile the existing diversity of paradigms within LLM research and, akin to DL, introduce classic
and standardized modules that enhance scientific rigor, effectiveness, and innovation within the academic
community. In the industrial context, the adoption of foundational and systematic architectures enables the
creation of more efficient LLM building blocks, thus establishing a solid basis for the field of LLM applications.
These advanced LLM building blocks possess the potential to streamline the deployment of LLM products,
thereby enabling significant real-world impact and facilitating transformative changes across various sectors.
Inspired by the progression of DL, this work introduces a suite of standardized modules within the LLM
application, setting a foundation for future research to explore multi-LLM settings, integrate more established

9

Under review as submission to TMLR

DL modules and architectures like CNN, and adopt self-exploration algorithms akin to NAS to revolutionize
the optimization of LLM applications, potentially accelerating the discovery of innovative solutions.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving
elaborate problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

Massimo Buscema. Back propagation neural networks. Substance use & misuse, 33(2):233–270, 1998.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021.

Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention network
for scene segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3146–3154, 2019.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu, Juntao Tan, and Yongfeng Zhang. Llm as os (llmao),
agents as apps: Envisioning aios, agents and the aios-agent ecosystem. arXiv preprint arXiv:2312.03815,
2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle use a
laptop? a question answering benchmark with implicit reasoning strategies. Transactions of the Association
for Computational Linguistics, 9:346–361, 2021.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal of
Statistical Software, 23(2):1–21, 2007.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in transformer.
Advances in neural information processing systems, 34:15908–15919, 2021.

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Cross attention network for
few-shot classification. Advances in neural information processing systems, 32, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings
of the web conference 2020, pp. 2704–2710, 2020.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. Unsupervised dense information retrieval with contrastive learning, 2022.

Cheonsu Jeong. Generative ai service implementation using llm application architecture: based on rag model
and langchain framework. Journal of Intelligence and Information Systems, 29(4):129–164, 2023.

Erik M Johansson, Farid U Dowla, and Dennis M Goodman. Backpropagation learning for multilayer feed-
forward neural networks using the conjugate gradient method. International Journal of Neural Systems, 2
(04):291–301, 1991.

Michael I Jordan. Serial order: A parallel distributed processing approach. In Advances in psychology, volume
121, pp. 471–495. Elsevier, 1997.

10

Under review as submission to TMLR

Michael Kenning, Jingjing Deng, Michael Edwards, and Xianghua Xie. A directed graph convolutional neural
network for edge-structured signals in link-fault detection. Pattern Recognition Letters, 153:100–106, 2022.

Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-specific ecg classification by 1-d
convolutional neural networks. IEEE transactions on biomedical engineering, 63(3):664–675, 2015.

Serkan Kiranyaz, Turker Ince, Osama Abdeljaber, Onur Avci, and Moncef Gabbouj. 1-d convolutional neural
networks for signal processing applications. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 8360–8364. IEEE, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611–626, 2023.

Yuanjun Li, Ruixiao Sun, and Roland Horne. Deep learning for well data history analysis. In SPE Annual
Technical Conference and Exhibition?, pp. D011S008R002. SPE, 2019.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau Yih, and
Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable dense retrieval. arXiv
preprint arXiv:2302.07452, 2023.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the European
conference on computer vision (ECCV), pp. 19–34, 2018.

Shanshan Liu, Sheng Zhang, Xin Zhang, and Hui Wang. R-trans: Rnn transformer network for chinese
machine reading comprehension. IEEE Access, 7:27736–27745, 2019.

Caroline Di Bernardi Luft. Learning from feedback: The neural mechanisms of feedback processing facilitating
better performance. Behavioural brain research, 261:356–368, 2014.

Stephen Merity. Single headed attention rnn: Stop thinking with your head. arXiv preprint arXiv:1911.11423,
2019.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez. Memgpt:
Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Keivalya Pandya and Mehfuza Holia. Automating customer service using langchain: Building custom
open-source gpt chatbot for organizations. arXiv preprint arXiv:2310.05421, 2023.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language models with external
knowledge and automated feedback. arXiv preprint arXiv:2302.12813, 2023.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR, 2018.

Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos Mastorakis. Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7):579–588, 2009.

Mohit Prabhushankar and Ghassan AlRegib. Introspective learning: A two-stage approach for inference in
neural networks. Advances in Neural Information Processing Systems, 35:12126–12140, 2022.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Justus Randolph. A guide to writing the dissertation literature review. Practical assessment, research, and
evaluation, 14(1):13, 2019.

11

Under review as submission to TMLR

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon, and KP Soman. Stock price
prediction using lstm, rnn and cnn-sliding window model. In 2017 international conference on advances in
computing, communications and informatics (icacci), pp. 1643–1647. IEEE, 2017.

Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-based action recognition with directed graph
neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 7912–7921, 2019.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowledgeable are
large language models (llm)? aka will llms replace knowledge graphs? arXiv preprint arXiv:2308.10168,
2023.

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of intelligent llm
agents. arXiv preprint arXiv:2306.03314, 2023.

Oguzhan Topsakal and Tahir Cetin Akinci. Creating large language model applications utilizing langchain:
A primer on developing llm apps fast. In International Conference on Applied Engineering and Natural
Sciences, volume 1, pp. 1050–1056, 2023.

Richard J Torraco. Writing integrative literature reviews: Guidelines and examples. Human resource
development review, 4(3):356–367, 2005.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017b.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou
Tang. Residual attention network for image classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3156–3164, 2017.

Feng Wang and David MJ Tax. Survey on the attention based rnn model and its applications in computer
vision. arXiv preprint arXiv:1601.06823, 2016.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. arXiv preprint
arXiv:2308.11432, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023a.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as intelligent
agents. arXiv preprint arXiv:2310.01557, 2023b.

Rui Xia, Mengran Zhang, and Zixiang Ding. Rthn: A rnn-transformer hierarchical network for emotion cause
extraction. arXiv preprint arXiv:1906.01236, 2019.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as submission to TMLR

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models.(2023). arXiv preprint arXiv:2210.03629, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Kai Zhang, Fubang Zhao, Yangyang Kang, and Xiaozhong Liu. Memory-augmented llm personalization with
short-and long-term memory coordination. arXiv preprint arXiv:2309.11696, 2023.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet: A neural
network for directed graphs. Advances in neural information processing systems, 34:27003–27015, 2021.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm agents
are experiential learners. arXiv preprint arXiv:2308.10144, 2023.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

13

Under review as submission to TMLR

A User Instruction Manual

Table 5: Deep Learning Recipe for LLM Applications.
LLM Applications Deep Learning Architecture
Vanilla LLM Single layer MLP
Memory processor Recurrent neural network
Retrieval Attention Network
Prompting strategies (ToT & GoT) Graph neural network
Prompts Training parameters
Max tokens of each LLM Size of MLP
Number of retrievals Head number of attention network
Node number or depth of tree/graph Node number or layer number of GNN
Forward inference of LLMs Forward inference
Feedback propagation Back propagation
Self-reflection Loss function
Retrieve number of each retrieval Mask

B Prompts

You are given a list of points with coordinates below: {question}.
Below are the previous traces and their lengths. Lower length is better.
Previous Solutions: {pre_res};

Give me a new trace that is different from all traces above, and has a length lower than any of the above. The
trace should traverse all points exactly once. The trace should start with <trace> and end with </trace>.

Here is an example of the output format: '<trace> 0,3,2,5,4,7,8,1,9,6 </trace> length: 2254'. Please don't include
any extra words, don't tell me your reasoning process.

Figure 8: An example of the meta prompt used for RNN-MLP on the TSP dataset. The blue text contains
input questions and previous responses/evaluations. The purple text describes the output format instructions.

14

Under review as submission to TMLR

ToT/GoT Strategy:
You are given a list of points with coordinates below:
Question: {question};
Below are the previous traces and their lengths. Lower length is better.
Previous Solutions: {past_stra};
Evaluation for the Past Strategy: {eval}

Give me a new trace that is different from all traces above, and has a length lower than any of the above. The
trace should traverse all points exactly once. The trace should start with <trace> and end with </trace>.

Here is an example of the output format: '<trace> 0,3,2,5,4,7,8,1,9,6 </trace> length: 2254'.

ToT/GoT Vote:
Given a TSP question and 5 proposed strategies, please determine the most promising strategy as your output
without additional words.
Question:{question};
Strategies: {strategies};
Please output use the following format:
<trace> PONTS </trace>.
Replace PONTS with points 1 to 9.

Figure 9: An example of the meta prompt used for TNN-MLP/GNN-MLP on the TSP dataset. The blue text
contains input questions and previous responses/evaluations. The purple text describes the output format
instructions.

Given a simple mathematical question along with any previous attempts to solve it, please directly provide the final
answer. Be aware that the details about past explorations may contain inaccuracies.

Question: {question};
Previous Responses: Here are the previous responses, which may not be accurate: {pre_res};
Evaluation for the Past Response: {eval}

Your response should follow the structure outlined below:
R: <Replace Here With Your Reasonings>;
A: Place your Final Answer here as a clear numeric value. Ensure there are no additional words, signs, or
explanations! Enclose the numeric value in angle brackets.

An example of the desired output is:
R: First find the total number of starfish arms: 7 starfish * 5 arms/starfish = <<7*5=35>> arms \n Then add the
number of seastar arms to find the total number of arms: 35 arms + 14 arms = <<35+14 = 49>> arms\n
A: <49>

Figure 10: An example of the meta prompt used for RNN-MLP on GSM8K dataset. The blue text contains
input questions and previous responses/evaluations. The purple text describes the output format instructions.

15

Under review as submission to TMLR

ToT/GoT Strategy:
Given a question and past strategy with evaluations, your task is to provide 5 different potential strategies to solve
it.
Question: {question};
Previous Strategy: {past_stra};
Evaluation for the Past Strategy: {eval}

Please format your response by listing the strategies separately.

Here is an example:
Original Question: Every tree that Bart cuts down gives him 75 pieces of firewood. If he burns 5 logs a day from
November 1 through February 28, how many trees will he need to cut down?
Strategy: November has 30 days, December has 31 days, January has 31 days and February has 28 days for a
total of 30+31+31+28 = <<30+31+31+28=120>>120 days\nHe burns 5 pieces of wood every day so 120*5 =
<<120*5=600>>600 pieces of wood\nEvery tree he cuts down supplies 75 pieces of firewood and he will burn 600
pieces so he needs 600/75 = <<600/75=8>>8 trees

ToT/GoT Vote:
Given a question and 5 proposed strategies, please determine the most promising strategy as your output.
Question:{question};
Strategies: {strategies};
Please output use the following format:
To solve the question, we should <Content Of The Best Strategy>

Figure 11: An example of the meta prompt used for TNN-MLP/GNN-MLP on GSM8K dataset. The blue
text contains input questions and previous responses/evaluations. The purple text describes the output
format instructions.

Given an original question and the past responses, your task is to enhance the original question for better retrieval
outcomes.

Question: {question};
Previous Resposnes for references: {past_stra};
Evaluation on the Last Response: {past_eval};

Here is an example:
Original Question: Is Christmas celebrated during winter?
Response: What is the date of Christmas, and does it occur in winter?

Figure 12: An example of the meta prompt used for RNN-Att-MLP on StrategeyQA dataset. The blue text
contains input questions and previous responses/evaluations. The purple text describes the output format
instructions.

16

Under review as submission to TMLR

ToT/GoT Strategy:
Given a question and past strategy with evaluations, your task is to provide 5 different potential strategies to solve
it:
Question: {question};
Previous Solutions: {past_stra};
Evaluation for the Past Strategy: {eval}

Please format your response by listing the strategies separately.

Here is an example:
Original Question: Are more people today related to Genghis Khan than Julius Caesar?
Identified Questions: 1. 'Firstly, we need to investigate the number of kids Julius Caesar have, then we need to
investigate the number of kids of Genghis Khan, then we do comparison to determine which number is greater.', ...

ToT/GoT Vote:
Given a TSP question and 5 proposed strategies, please determine the most promising strategy as your output
without additional words.
Question:{question};
Strategies: {strategies};
Please output use the following format:
<trace> PONTS </trace>.
Replace PONTS with points 1 to 9.

Figure 13: An example of the meta prompt used for TNN-Att-MLP/GNN-Att-MLP on StrategeyQA dataset.
The blue text contains input questions and previous responses/evaluations. The purple text describes the
output format instructions.

Your task is to analyze a given question, a previous answer, and the evaluation of that answer, which includes
suggested perspectives. Based on this information, decompose the original query into new separate question.
Each of these questions should target a critical perspective or element that is necessary for fully answering the
original question, taking into account the provided evaluation. Aim to cover various aspects and considerations
vital for crafting a comprehensive response.

Here are the details you will work with:
Question: {question};
Previous Resposnes for references: {past_stra};
Evaluation on the Last Response: {past_eval};

Please list the five decomposed questions separately, ensuring that each one addresses a unique and significant
perspective related to the original question. Format your response by numbering each decomposed question, as
shown in the example.

Here is an example:
Original Question: Will Ronda Rousey hypothetically defeat X-Men's Colossus in a fight?
Response: What is Ronda Rousey's background in combat sports?

Figure 14: An example of the meta prompt used for RNN-Att-MLP on Related-multi dataset. The blue text
contains input questions and previous responses/evaluations. The purple text describes the output format
instructions.

17

Under review as submission to TMLR

ToT/GoT Strategy:
Given a question and past responses with evaluations, your task is to provide 5 different potential responses to
solve it:
Question: {question};
Previous Solutions: {past_stra};
Evaluation for the Past Strategy: {eval}

Please format your response by listing the strategies separately.

ToT/GoT Vote:
Given a TSP question and 5 proposed responses, please determine the most promising responses as your output
without additional words.
Question:{question};
Responses: {responses};
Please output use the following format:
To solve the question, we should <Content Of The Best Strategy>

Figure 15: An example of the meta prompt used for TNN-Att-MLP/GNN-Att-MLP on Related-multi dataset.
The blue text contains input questions and previous responses/evaluations. The purple text describes the
output format instructions.

18

Under review as submission to TMLR

C Details of Architectures for LLM Applications

MLP. For the single-layer MLP setup, as previously defined, the LLM processes an input query q and
generates a corresponding output response r. Subsequently, through a process of backpropagation, the LLM
undertakes a self-evaluation mechanism. The outcomes of this self-evaluation e and response r are then
integrated into the original q, facilitating an updated r.

RNN-MLP. In this RNN+MLP framework, the model processes a query q and a sequence of past experiences
m0, m1, . . . , mn with evaluations e0, e1, . . . , en. At each step, the latest three experiences mn−2, mn−1, mn

and evaluations en−2, en−1, en are integrated into the query q. This enriched query is then utilized to
generate the next response mn+1. After that, we evaluate it to get en+1. mn+1 and en+1 are then fed back
through backward propagation for subsequent iterations. Figure 4 shows the example meta prompt for how
RNN+MLP works on GSM8K.

TNN-MLP. In this setting, we use zero-shot ToT. Specifically, a query q and a meta prompt qm for
decomposing q into interconnected thoughts are used to construct a comprehensive prompt p. This prompt
serves as input for an LLM, yielding a response r. During backward propagation, a self-evaluation is performed,
and the resulting evaluation e is utilized to refine qm into an updated version q′

m, leading to the formation of
an updated prompt p′.

GNN-MLP. This is similar to that of ToT+MLP architecture with the key difference that we allow for
deeper graph-based thoughts.

Att-MLP. In our single retrieval Att-MLP model, an initial input query q and a meta query qm are used
to generate an enhanced query p. Information Cr is retrieved from context C based on p, and both q and
Cr are inputted into an LLM (MLP) to generate a response r. A feedback system evaluates this response,
producing an evaluation e. Both r and e are then fed to qm which is then utilized to update p.

RNN-Att-MLP. In single retrieval with RNN, the model processes an input query q, a meta query qm,
and a sequence of past experiences m0, m1, . . . , mn alongside their evaluations e0, e1, . . . , en. At each step,
the latest three experiences mn−2, mn−1, mn and their evaluations en−2, en−1, en, combined with the input
query q, are integrated into the meta query qm to generate an enhanced query p. Information Cr is then
retrieved from context C based on p, and both q and Cr are fed into an LLM (MLP) to produce a response
mn+1. This response is evaluated by a feedback system, generating an evaluation en+1. Both mn+1 and en+1
are stored for future use.

TNN-Att-MLP. In the ToT-Att-MLP configuration implements zero-shot ToT before the attention module,
a query q, a meta prompt qm, and a meta query qn are provided. Initially, q is processed through qm to
decompose into interconnected thoughts T1, .., Tn. Then we vote for the best thought as our strategys. This
strategy s along with q are inputted into qn to produce an enhanced query p. Based on p, information Cr is
retrieved from the context C, and both q and Cr are fed into an LLM (MLP) to generate a response r. A
feedback system then evaluates r, yielding an evaluation e. This evaluation e is subsequently fed to qm for
updated strategy in the next iteration.

GNN-Att-MLP. The GNN-Att-MLP setup is similar to the TNN-Att-MLP configuration but introduces
the capability to develop deeper graph-based strategies based on previous ones. Initially, for a given query q,
we generate a series of thoughts T1, . . . , Tn and identify the best one among them, denoted as Tb. Subsequently,
we construct a second layer of thoughts T ′

1, . . . , T ′
n based on the initial set T1, . . . , Tn. The most effective

strategy s is then selected from among Tb and T ′
1, . . . , T ′

n. This chosen strategy s undergoes the same
procedure as described in the TNN-Att-MLP setting.

D Automatic Optimization

19

Under review as submission to TMLR

Table 6: Optimization range of each hyperparameter.
Range

Output Size m1 [64, 128, 192, 256, 320]
Output Size m2 [64, 128, 192, 256, 320]
Output Size m3 [64, 128, 192, 256, 320]
Head Num h [1, 2, 3, 4, 5]
Retrieve Num n [1, 2, 3, 4, 5]

Figure 16: The optimization process on transformer. The x-axis represents the number of trials. For
each trial, we will get a set of pr, F1; the y-axis represents the F1 value.

20

	Introduction
	Related Works
	The Deep Learning Recipe for LLM Applications
	Deep-Learning-Style Building Blocks of LLM Applications
	Forward Inference and Feedback Propagation for LLM Applications
	Case study: Building a ``Transformer'' with LLM Building Blocks

	Experimental Setup
	Datasets and Tasks
	Models: Various Architectures for LLM Applications

	Results
	Performance of Different Architectures of LLM Applications
	Case Study: Results of ``Transformer-style'' LLM Applications
	Automatic Architecture Search of LLM Applications

	Conclusion and Discussion
	User Instruction Manual
	Prompts
	Details of Architectures for LLM Applications
	Automatic Optimization

