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ABSTRACT

Algorithmic recourse recommends a cost-efficient action to a subject to reverse
an unfavorable machine learning classification decision. Most existing methods
in the literature generate recourse under the assumption of complete knowledge
about the cost function. In real-world practice, subjects could have distinct prefer-
ences, leading to incomplete information about the underlying cost function of the
subject. This paper proposes a two-step approach integrating preference learning
into the recourse generation problem. In the first step, we design a question-
answering framework to refine the confidence set of the Mahalanobis matrix cost
of the subject sequentially. Then, we generate recourse by utilizing two methods:
gradient-based and graph-based cost-adaptive recourse that ensures validity while
considering the whole confidence set of the cost matrix. The numerical evalua-
tion demonstrates the benefits of our approach over state-of-the-art baselines in
delivering cost-efficient recourse recommendations.

1 INTRODUCTION

Many machine learning algorithms are deployed to aid significant decisions in various domains.
These decisions might have a direct or indirect influence on people’s lives, especially in the case of
high-profile applications (Verma et al., 2020) such as job hiring (Harris, 2018; Pessach et al., 2020),
bank loan (Wang et al., 2020; Turkson et al., 2016) and medical diagnosis (Fatima et al., 2017; Latif
et al., 2019). Thus, it’s imperative to develop methods to explain the prediction of machine learning
models. For instance, when a person applies for a job and is rejected by a predictive model deployed
by the employer, the applicant should be notified of the reasoning behind the negative decision and
what they could do to be hired.

Recently, algorithmic recourse has become a powerful tool for explaining machine learning (ML)
models. Recourse refers to the actions a person should take to achieve an alternative predicted
outcome, and it is also known in the literature as a counterfactual explanation. In the case of job
hiring, recourse should be individualized suggestions such as “get two more engineering certificates”
or “complete one more personal project.” When a company suggests a recourse to a subject, this
recourse must be valid because the company should accept all applicants who completely implement
the suggestions provided in the recommended recourse. Throughout this paper, we use “subject” to
refer to the individual who is subject to the prediction of the algorithm. In the context of our job-
hiring example, “subject” refers to the job applicant who was rejected by the company.

Several approaches have been proposed to generate recourse for a machine learning model predic-
tion (Karimi et al., 2022; Verma et al., 2020; Stepin et al., 2021). Wachter et al. (2018) used gradient
information of the underlying model to generate a counterfactual closest to the input. Ustun et al.
(2019) introduced an integer programming problem to find the minimal and actionable change for
an input instance. Pawelczyk et al. (2020) leveraged the ideas from manifold learning literature
to generate counterfactuals on the high-density data region. Karimi et al. (2020; 2021) generated
counterfactual as a sequence of interventions based on a pre-defined causal graph.

These aforementioned approaches all assume that all subjects have the same cost function, for exam-
ple, the l1 distance (Ustun et al., 2019; Upadhyay et al., 2021; Slack et al., 2021; Ross et al., 2021)
or define the same prior causal graph for all subjects (Karimi et al., 2020; 2021). This assumption
results in two subjects with identical attributes receiving the same recourse recommendation. Unfor-
tunately, this recourse recommendation is unrealistic in practice because having identical attributes
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does not necessarily guarantee that the two subjects will have identical preferences. Indeed, human
preferences are strongly affected by many unobservable factors, including historical and societal ex-
periences, which are hardly encoded in the attributes. Thus, the cost functions could be significantly
different even between subjects with identical attributes, yet this difference is rarely considered in
the recourse generation framework (Yadav et al., 2021).

To mitigate these issues, De Toni et al. (2023) proposed a human-in-the-loop framework to gener-
ate a counterfactual explanation uniquely suited to each subject. The proposed method first fixes
the initialized causal graph and iteratively learns the subject’s specific cost function. Recourse is
generated by a reinforcement learning approach that searches for a suitable sequence of interven-
tions. The disadvantage of this approach is that it requires a pre-defined causal graph, which is
rarely available in practice (Verma et al., 2020). Besides, Rawal & Lakkaraju (2020) employed the
Bradley-Terry model to estimate a universal cost function and then utilized the user input to gen-
erate personalized recourse for the user. However, this method is additive in features; therefore,
its ability to recover the underlying causal graph remains problematic. Following the same line of
work, Yetukuri et al. (2023) captures user preferences via three soft constraints: scoring continuous
features, bounding feature values, and ranking categorical features. This method generates recourse
via a gradient-based approach. However, the fractional-score concept for user preference might not
be as straightforward, especially when the data has many continuous features.

To resolve these problems, we propose a preference elicitation framework that learns the subject’s
cost function from pairwise comparisons of possible recourses. Compared to De Toni et al. (2023),
our framework does not require the causal graph as input, and compared to Rawal & Lakkaraju
(2020) and Yetukuri et al. (2023), our framework can perform well even when the dimension of the
feature space grows large. This paper contributes by:

• proposing in Section 3 an adaptive preference learning framework to learn the subject’s cost
function parametrized by the cost matrix of a Mahalanobis distance. This framework initializes
with an uninformative confidence set of possible cost matrices. In each round, it determines
the next question by finding a pair of recourses corresponding to the most effective cut of the
confidence set, that is, a cut that slices the incumbent confidence set most aggressively. The
incumbent confidence set shrinks along iterations. We terminate the questioning upon reaching
a predefined number of inquiries. The final confidence set is employed for recourse generation.

• proposing in Section 4 two methods for generating recourse under various assumptions of the
machine learning models. These methods will consider explicitly the terminal confidence set
about the subject’s cost matrix. If the model is white-box and differentiable, we can use the
cost-adaptive gradient-based recourse-generation method that generates cost-adaptive recourse.
Otherwise, we can use the graph-based method to generate the sequential recourse.

Section 5 reports our numerical results. In Appendix A, we also extend our framework to cope with
potential inconsistencies in subject responses and extend the heuristics from pairwise comparison to
multiple-option questions. All proofs are relegated to the appendix.

Notations. Given an integer d, we use Sd and Sd+ to denote the space of d-by-d symmetric matrices
and d-by-d symmetric positive definite matrices, respectively. The identity matrix is denoted by I .
The inner product between two matrices A,B ∈ Sd is

〈
A,B

〉
=

∑
i,j AijBij , and we write A ⪯ B

to denote that B −A ∈ Sd+. The set of integers from 1 to N is JNK.

2 PROBLEM STATEMENT AND SOLUTION OVERVIEW

We are given a binary classifier Cθ : Rd → {0, 1} and access to the training dataset containing
N +M instances xi ∈ Rd, i = 1, . . . , N +M . The dataset is split into two parts:

• a positive dataset D1 = {x1, . . . , xN} containing instances with Cθ(xi) = 1 ∀xi ∈ D1.
• a negative dataset D0 = {xN+1, . . . , xN+M} containing all instances that have the negative

predicted outcome, thus Cθ(xi) = 0 ∀xi ∈ D0.

Given a subject with input x0 ∈ Rd with a negative predicted outcome Cθ(x0) = 0, we make the
following assumption on the cost function of this subject.
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Assumption 2.1. The subject x0 has a Mahalanobis cost function of the form cA0
(x, x0) = (x −

x0)
⊤A0(x− x0) for some symmetric, positive definite matrix A0 ∈ Sd++.

We provide two possible justifications for the aforementioned assumption in Appendix D. First, we
describe a sequential control process that affects feature transitions of a subject x0 towards a recourse
xr while minimizing the cost of efforts. We formalize this problem as a Linear Quadratic Regulator,
and then we prove that the optimal cost function has the Mahalanobis form, see Section D.1. Second,
Appendix D.2 establishes a connection between the linear Gaussian structural causal model and the
Mahalanobis cost function. We show that we can recover the Mahalanobis cost preference model
with A0 corresponding to the precision matrix of the deviation under linear Gaussian structural
equation assumption.

In the above cost function, A0 is the ground-truth matrix specific for subject x0, but it remains
elusive to the recourse generation framework. We aim to find xr which has a positive predicted
outcome Cθ(xr) = 1 and minimizes the cost cA0

(xr, x0). Because the matrix A0 is unknown, we
propose an adaptive preference learning approach (Bertsimas & O’Hair, 2013; Vayanos et al., 2020)
to approximate the actual cost function cA0(x, x0). Our overall approach is as follows: We have
a total of T question-answer rounds for cost elicitation. In each round, we choose a pair (xi, xj)
from the positive dataset D1. We then ask the subject the following binary question: “Between two
possible recourses xi and xj , which one do you prefer to implement?”. The answer from the subject
takes one of the three answers: xi or xj or indifference. The subject’s answer can be used to learn
a binary preference relation P . If xi is preferred to xj , then we denote xiPxj ; if the subject is
indifferent between xi and xj , then we have simultaneously xiPxj and xjPxi. Because both xi

and xj have positive predicted outcomes, we assume that the subject’s preference is solely based on
which recourse requires less effort. Assume that xiPxj , then A0 should satisfy

(xi − x0)
⊤A0(xi − x0) ≤ (xj − x0)

⊤A0(xj − x0). (1)

However, to model possible error in the judgment of the subject and to accommodate the indifference
answer, we will equip a positive margin ε > 0, and we have xiPxj if and only if:

(xi − x0)
⊤A0(xi − x0) ≤ (xj − x0)

⊤A0(xj − x0) + ε. (2)

Let us denote the following matrix Mij ∈ Sd as

Mij = xix
⊤
i − xjx

⊤
j + (xj − xi)x

⊤
0 + x0(xj − xi)

⊤, (3)

then we can rewrite (2) in the form
〈
A0,Mij

〉
≤ ε. Let P be a set of ordered pairs representing the

information collected so far about the preference of the subject:

P = {(i, j) ∈ JNK× JNK : xiPxj} .
For any preference set P, we can define UP as the set of possible cost matrices A that is consistent
with the revealed preferences P:

UP ≜ {A ∈ Sd+ :
〈
A,Mij

〉
≤ ε ∀(i, j) ∈ P}, (4)

then at any time, we have A0 ∈ UP. Thus, UP is considered the confidence set of the cost matrix
from the viewpoint of the recourse generation framework. Our learning framework aims to reduce
the size of UP, hoping to pinpoint a small region where A0 may reside. Afterward, we use a recourse
generation method adapted to the confidence set UP.

We present the overall flow of our framework in Figure 1. In general, our framework addresses
several questions of the cost-adaptive recourse-generation approach:

1. What are the questions to ask the subject? If N is large, asking the subject exhaustively for
O(N2) pairwise comparisons is impossible. Thus, this question aims to find the pair xi and xj

such that (i, j) /∈ P and (j, i) /∈ P, and that adding either one of these two ordered pairs to P will
bring the largest amount of information as possible (in the sense of narrowing down the set UP).

2. How to recommend a recourse xr that minimizes the cost, knowing the confidence set UP?

3. What happens if there is inconsistency in the subject’s preferences? For example, if there exist
three distinct indices (i, j, k) such that the subject states xiPxj , xjPxk and xkPxi.
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The first and third questions are the fundamental questions in preference learning literature (Lu &
Shen, 2021; Bertsimas & O’Hair, 2013; Vayanos et al., 2020). In the marketing literature (Toubia
et al., 2003; 2004) or recommendation systems literature (Zhao et al., 2016; Rashid et al., 2008;
Pu et al., 2012), the preference learning framework aims to recommend products that maximize the
utility or preference of subjects. In the adaptive questionnaire framework, we would like to ask
questions that give us the most information regardless of the response because the responses to each
question are unknown. Moreover, we would like to select the next comparison questions to ask
the subject that can maximize the acquired information and reduce the size of the confidence set as
quickly as possible (Bertsimas & O’Hair, 2013; Vayanos et al., 2020).

Guided by these ideas, we integrate the adaptive preference learning framework into the recourse
generation problem. We show the overall flow of our framework in Figure 1. Our approach gen-
erally consists of two phases: preference elicitation and recourse generation. Next, we present the
preference elicitation phase in Section 3 and recourse-generation methods in Section 4.
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Figure 1: Overall flow of our cost-adaptive recourse recommendation framework. The subject inputs
an instance x0. In each of T rounds of question-answer, we first find the Chebyshev center of the set
UP, then select the next question that minimizes the distance to the Chebyshev center. We provide
two methods to generate the cost-adaptive recourse: gradient-based and graph-based.

3 COST IDENTIFICATION VIA ADAPTIVE PAIRWISE COMPARISONS

3.1 FINDING THE CHEBYSHEV CENTER
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Figure 2: Illustration of the Chebyshev
center. Black lines represent the hyper-
planes

〈
A,Mij

〉
= ε for (i, j) ∈ P

defining the boundaries of the polytope
UP. The ball centered at the Chebyshev
center A⋆

c with radius r is the largest in-
scribed ball of UP.

First, we observe that without any loss of generality, we
can impose an upper bound constraint A ⪯ I to the set
UP. Indeed, the inequality (1) is invariant with any posi-
tive scaling of the matrix A0, and thus, we can normalize
A0 so that it has a maximum eigenvalue of one. Adding
A ⪯ I makes the set UP bounded. Given a bounded set
UP, we find the Chebyshev center of UP for each question-
answer round. Then, we find the question prescribing a
hyperplane closest to this center; thus, this hyperplane
can be considered the most aggressive cut. Notice that
a question involving xi and xj can be represented by the
hyperplane

〈
A,Mij

〉
= 0. The confidence set UP is sim-

ply a polytope in the space of positive definite matrices.

We first consider finding the Chebyshev center of the set
UP. For any bounded set with a non-empty interior, the
Chebyshev center is the center of a ball with the largest
radius inside the set. Thus, given a confidence set UP, its
Chebyshev center represents a safe point estimate of the true cost matrix. The Chebyshev center A⋆

c
and its corresponding radius r⋆ of UP is the optimal solution of the problem

(A⋆
c , r

⋆)=arg max
Ac∈Sd+, r∈R+

{
r : ∥A−Ac∥2F ≤ r2 ∀A ∈ UP

}
.

For our problem, the Chebyshev center can be found by solving a semidefinite program resulting
from the following theorem.
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Theorem 3.1 (Chebyshev center). Suppose that UP has a non-empty interior. The Chebyshev center
A⋆

c of the set UP can be found by solving the following semidefinite program

max r
s. t. Ac ∈ Sd+, r ∈ R+

Ac ⪯ I,
〈
Ac,Mij

〉
+ r∥Mij∥F ≤ ε ∀(i, j) ∈ P.

(5)

3.2 RECOURSE-PAIR DETERMINATION

Finding the next question to ask the subject is equivalent to finding two indices (i, j) ∈ JNK× JNK,
corresponding to two recourses xi and xj in the positive dataset D1, such that the corresponding
hyperplane

〈
A,Mij

〉
= 0 is as close to the Chebyshev center A⋆

c as possible. This is equivalent to
solving the minimization problem

min
(i,j)∈JNK×JNK

|
〈
A⋆

c ,Mij

〉
|

∥Mij∥F
,

where the matrix Mij is calculated as in (3). The objective function of the above problem is simply
the projection distance of A⋆

c to
〈
A,Mij

〉
= 0 under the Frobenius norm.

Similar cost heuristics. An exhaustive search over all pairs of indices (i, j) requires an O(N2)
complexity. This search may become too expensive for large datasets because we must conduct
one separate search at each round. We propose a heuristic that can produce reasonable questions
in a limited time to alleviate this burden. This heuristics is based on the following observation:
given an incumbent Chebyshev center A⋆

c , two valid recourses xi and xj are more comparable
to each other if their resulting costs measured with respect to A⋆

c are close to each other, that is,
cA⋆

c
(xi, x0) ≈ cA⋆

c
(xj , x0). If their costs are too different, for example, cA⋆

c
(xi, x0)≪ cA⋆

c
(xj , x0),

then it is highly likely that the subject will prefer xi to xj uniformly over the set of possible weighting
matrices in UP. Profiting from this observation, we consider the following similar-cost heuristic:

• Step 1: Compute the distances from xi to x0: si = (xi − x0)
⊤A⋆

c(xi − x0) for all i ∈ JNK,

• Step 2: Sort si in a non-decreasing order. The sorted vector is denoted by (s[1], . . . , s[N ]),

• Step 3: For each i = 1, . . . , N − 1, choose a pair of adjacent cost samples x[i] and x[i+1]

corresponding to s[i] and s[i+1], then compute the projection distance of the incumbent center
A⋆

c to the hyperplane
〈
M[i],[i+1], A

〉
= 0.

• Step 4: Pick a pair of ([i], [i+ 1]) that induces the smallest projection distance in Step 3.

In step 2, sorting costs O(N logN). Nevertheless, in Step 3, we only need to compute N times the
projection distance by looking at pairs of adjacent costs, contrary to the total number ofO(N2) pairs.
The comparison between similar cost heuristics and exhaustive search is relegated to Appendix B.

4 COST-ADAPTIVE RECOURSE RECOMMENDATION

Given the subject input x0, this section explores two generalizations to generate single and sequential
recourses, adapted to the terminal confidence set UP of the cost metric. In Section 4.1, we generalize
the gradient-based counterfactual generation method in Wachter et al. (2018). In Section 4.2, we
generalize the graph-based counterfactual generation method in Poyiadzi et al. (2020).

4.1 GRADIENT-BASED COST-ADAPTIVE SINGLE RECOURSE

Given a machine learning model fθ : Rd → (0, 1) that outputs the probability of being classified in
the favorable group. The binary classifier Cθ : Rd → {0, 1} takes the form of a threshold policy

Cθ(x) =
{
1 if fθ(x) ≥ 0.5,

0 otherwise,

where we have used a threshold of 0.5 similar to the setting in Wachter et al. (2018).
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We suppose that we have access to the probability output fθ. Let l be a differentiable loss function
that minimizes the gap between fθ(x) and the decision threshold 0.5; one can think of l(fθ(x), 1)
as the term that promotes the validity of the recourse. Given a weight λ ≥ 0 which balances the
trade-off between the validity and the (worst-case) cost, we can generate a recourse for an input
instance x0 by solving

min
x∈X

{
l(fθ(x), 1) + λmax

A∈UP
(x− x0)

⊤A(x− x0)

}
. (6)

Algorithm 1 Gradient descent algorithm for cost-
adaptive recourse generation

Input: Input x0 s.t. Cθ(x0) = 0
Parameters: λ > 0, learning rate α
Initialization: Set x0 ← x0

for t = 0, . . . , T − 1 do
A⋆ ← max

A∈UP
(xt − x0)

⊤A(xt − x0)

g ← ∇l(fθ(xt), 1) + 2λA⋆(xt − x0)

xt+1 ← ΠX (xt − αg),

end for
Output: xT

A practical choice for loss function is the
quadratic loss l(fθ(x), 1) = (fθ(x) − 0.5)2,
which is a differentiable function in x (Wachter
et al., 2018). Under a mild condition about the
uniqueness of the optimal solution to the inner
maximization problem, the cost term in the ob-
jective of (6) is also differentiable. Thus, one
can invoke a (projected) gradient descent algo-
rithm to solve (6) and find the recourse. Al-
gorithm 1 proceeds iteratively to solve prob-
lem (6). In each iteration, we first find a ma-
trix A⋆ of the max problem with a solver such
as Mosek (MOSEK ApS, 2019), and then we
take a gradient step in the variable x using the
computed gradient. The next incumbent solu-
tion is the projection onto the set X , where ΠX denotes the projection onto X . Furthermore, similar
to Wachter et al. (2018), we can add an early stopping criterion for Algorithm 1. For example, we
can stop the algorithm at iteration t if Cθ(xt) = 1.

4.2 GRAPH-BASED COST-ADAPTIVE SEQUENTIAL RECOURSE

X

Negatively predicted class Positively predicted class

X

X

Figure 3: The illustration of G, show-
ing negatively predicted samples as red
circles and positively predicted samples
as green circles. The input instance x0

is a gray circle. The terminal edges
and unreachable nodes of flows inF are
blue edges and green nodes with white
crosses, respectively.

In Section 4.1, we introduce a gradient-based recourse-
generation method. However, this approach requires ac-
cess to the gradient information, which is restricted in
some real-world applications (Ilyas et al., 2018; Alzan-
tot et al., 2019). In this section, we present a model-
agnostic recourse-generation approach that leverages the
ideas from FACE (Poyiadzi et al., 2020). After T rounds
of questions in Section 3, we solve problem (5) to find the
Chebyshev center A⋆ of the terminal confidence set UP.

Graph construction. We first build a directed graph
G = (V, E) that represents the geometry of the available
data: each node xi ∈ V = {x0} ∪ D1 ∪ D0 corresponds
to a data sample, and an edge (xi, xj) ∈ E represents
a feasible transition from node xi to node xj . We com-
pute the edge weight wij = cA⋆(xi, xj) based on Maha-
lanobis cost function associated with matrix A⋆. Finally,
wij =∞ for (xi, xj) /∈ E .

Sequential recourse generation. Recall that D1 is the
set of all vertices with favorable predicted outcomes. A
one-step recourse recommendation suggests a single continuous action from x0 to xr (e.g., Ustun
et al., 2019; Mothilal et al., 2020). A sequential recourse is a directed path from the input instance x0

to a node xr ∈ D1; each transition in the path is a concrete action that the subject has to implement
to move towards xr. A sequential recourse has several advantages compared to the one-step ones:
plausibility and sparsity. In real-world applications, sequential steps are more plausible than a one-
step continuous change (Ramakrishnan et al., 2020; Singh et al., 2021). Moreover, recent work
shows that sequential recourse promotes sparsity, allowing subjects to modify a few features at each
step (Verma et al., 2022). For illustration purposes, we present an example of sequential recourse in
Appendix B. The cost of a sequential recourse is computed by the sum of all the edge weights in the
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path. Thus, we can recommend a sequential and actionable recourse by finding a path that originates
from x0 and ends at the node x⋆

r ∈ D1 with the lowest path cost.

Worst-case sequential recourse generation. After conducting T rounds of questioning in Sec-
tion 3, we obtain the confidence set UP for the parameter A0. However, the precise value of A0

remains unknown. In this section, we focus on minimizing the total cost of the sequential recourse
subject to the most unfavorable scenario of A0 within the final confidence set.

Let F denote the set containing all possible flows from the input subject x0 to a node in D1. Math-
ematically, we can write F as

F =

fij ∈ {0, 1} ∀(xi, xj) ∈ E :

∑
(x0,xj)∈E z0j −

∑
(xj ,x0)∈E zj0 = 1∑

xj∈D1,xi∈V\D1
zij = 1∑

(xi,xj)∈E zij −
∑

(xj ,xi)∈E zji = 0 ∀xi ∈ V\D1, xi ̸= x0

 .

Figure 3 illustrates the visual representation of the set F . The first constraint ensures that the total
flow out of x0 is precisely one. The second constraint enforces the terminal condition for flows,
halting the flow once it reaches the first node in the positive class. In the visual depiction in Figure 3,
the terminal edges of flows are visually distinguished as blue edges. Consequently, positive nodes
without direct connections from negative nodes are not part of any flows, and they are identifiable
as green nodes with white crosses in Figure 3. The third constraint imposes flow conservation at
each negatively predicted node. For any f ∈ F , we have fij = 1 if the edge (xi, xj) constitutes
one (actionable) step in the path. The optimal cost-robust sequential recourse is defined to be the
optimal flow of the min-max problem

min
f∈F

max
A∈UP

∑
(xi,xj)∈E

wij(A)fij , (7)

with the edge weight depends explicitly on the weighting matrix A as wij(A) = (xi − xj)
⊤A(xi −

xj). The next proposition asserts an equivalent form of (7) as a single-layer minimization problem.
Proposition 4.1 (Equivalent formulation). Problem (7) is equivalent to

min
〈
U, I

〉
+ ε

∑
(i,j)∈P tij

s. t. f ∈ F , tij ≥ 0 ∀(i, j) ∈ P, U ∈ Sd+
U +

∑
(i,j)∈P Mijtij ⪰

∑
(xi,xj)∈E(xi − xj)(xi − xj)

⊤fij .
(8)

Problem (8) is a binary semidefinite programming problem, which is challenging to solve due to its
combinatorial nature. Consequently, finding an optimal sequential recourse can be a daunting task.
To address this issue, we propose an alternative approach. Specifically, we associate the weight of
each edge (xi, xj) with its maximum cost taken over all possible values of A in the set UP:

w̄ij = max
A∈UP

wij(A) =

{
max

〈
A, (xi − xj)(xi − xj)

⊤〉
s. t. 0 ⪯ A ⪯ I,

〈
A,Mi′j′

〉
≤ ε ∀(i′, j′) ∈ P.

Given a graph G with the worst-case weight matrix [w̄ij ], we find the shortest paths from x0 to each
positively-predicted node in D1. The recommended sequential recourse is the path that originates
from x0 and ends at the node x⋆

r ∈ D1 with the lowest path cost.

5 NUMERICAL EXPERIMENTS

We evaluate our method, Cost-Adaptive Recourse Recommendation by Adaptive Preference Elici-
tation (ReAP), using synthetic data and seven real-world datasets: German, Bank, Student, Adult,
COMPAS, GMC, and HELOC. Notably, these datasets are commonly used in recourse litera-
ture (Verma et al., 2020; Upadhyay et al., 2021; Mothilal et al., 2020). In the main paper, we
present the results for Synthesis, German, Bank, and Student datasets. The results for other datasets
can be found in the appendix. We compare our approach against the recourse-generation baselines
implemented in CARLA Pawelczyk et al. (2021). For the gradient-based single recourse method
in Section 4.1, we compare our method to Wachter Wachter et al. (2018) and DiCE Mothilal et al.
(2020). For the graph-based sequential recourse method in Section 4.2, we compare our method to
FACE Poyiadzi et al. (2020). Codes for the experiments in the main paper are provided in the sup-
plementary material. In Appendix B, we present the detailed implementation and numerical results
for additional datasets, providing a benchmarking performance for the proposed heuristics and an
additional comparison against PEAR (De Toni et al., 2023).
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5.1 EXPERIMENTAL SETUP

Data preprocessing. Following Mothilal et al. (2020), we preprocess the data using the min-max
standardizer for continuous features and one-hot encoding for categorical features.

Classifier. For each dataset, we perform an 80-20 uniformly split (80% for training) of the original
dataset. Then we train an MLP classifier Cθ on the training data. We use the test data to benchmark
the performance of different recourse-generation methods.

Cost matrix generation. We generate 10 ground-truth matrices A0 with this procedure: first, we
generate a matrix A ∈ Rd×d of random, standard Gaussian elements, where d is the dimension
of x0. Then we compute A0 = AA⊤ and normalize A0 to have a unit spectral radius by taking
A0 ← A0/σmax(A0), where σmax is the maximum eigenvalue function.

For an input x0 and a ground-truth matrix A0, we choose T questions using the similar-cost heuris-
tics in Section 3.2 to find the set UP. After T rounds of question-answers, we solve (5) using
MOSEK to find the Chebyshev center A⋆ of the terminal confidence set UP. Then, we generate
recourse using the gradient-based method in Section 4.1 and the graph-based method in Section 4.2.
Note that with T = 0, we haven’t asked any questions. Thus, A⋆ = 1

2I (an uninformative estimate).
Hence, all algorithms share the same cost function. Within this context, the proposed worst-case se-
quential recourse generation in Section 4.2 demonstrates the effectiveness as it manages to provide
an acceptable recourse for challenging scenarios within the domain where A is a matrix satisfying
A ⪯ I, A ∈ Sd+. This approach also proves valuable when users’ responses contain significant noise
and inconsistencies, resulting in a still large search space for A0 in the final round.

5.2 METRICS FOR COMPARISON

We compare different recourse-generation methods using the following metrics:

Validity. A recourse xr generated by a recourse-generation method is valid if Cθ(xr) = 1. We
compute validity as the fraction of instances for which the recommended recourse is valid.

Cost. For the gradient-based single recourse method, we calculate the cost of a recourse xr as the
Mahalanobis distance between xr and x0 evaluated with the ground-truth matrix A0 as cA0

(xr, x0).

Shortest-path cost. For the graph-based recourse-generation, we report the cost of a sequential
recourse x0 → . . .→ xr as the path cost from input x0 to xr, evaluated with A0.

Mean rank. We borrow the ideas from Bertsimas & O’Hair (2013) and consider the mean rank
metric for ranking recourses based on subject preference. We first rank all of the recourses in
the positive dataset D1 with their preferences according to the ground-truth matrix A0. Thus, the
recourse with the smallest cost is ranked 1, and the recourse with the largest cost is ranked N
(N is the total number of recourses in the positive dataset). We then find the top K recourses
according to the cost metric cA⋆(x, x0) and compare the selected solutions with the true rank of
the recourse. Therefore, smaller values indicate that the matrix A⋆, the Chebyshev center of the
terminal confidence set, is closer to the ground truth A0. Each recourse xi ∈ D1 thus can be
assigned with a rank ri ∈ [1, . . . , N ]. We compute the normalized mean rank of top K recourses as
rmean = (

∑K
i=1 ri−rmin)/rmax where rmin =

∑K
i=1 i = (K+1)K/2 and rmax =

∑N
i=N−K+1 i =

(2N −K + 1)K/2 are normalizing constants so that rmean ∈ (0, 1).

Figure 4: Impact of the number of questions T to the average mean rank on synthetic data and
three real-world datasets. As the number of questions increases, the mean rank tends to decrease,
highlighting that the Chebyshev center tends closer to the ground truth A0.
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5.3 NUMERICAL RESULTS

We conduct three experiments to study the efficiency of our framework in generating cost-adaptive
recourses. First, we study the impact of the number of questions T on the mean rank. Then, we
compare our two cost-adaptive recourse-generation methods: gradient-based and graph-based, with
the recourse-generation baselines implemented in CARLA (Pawelczyk et al., 2021). Appendix B
provides additional numerical results and discussions.

Impact of the number of questions T to the mean rank. Here, we analyze the impact of the
number of questions T on the mean rank. We first fix the parameter ε and vary the number of
questions T ∈ [0, 10]. For each value of T , we choose T questions with the heuristics in Section 3.2
and solve problem (5) to find the center A⋆. Then, we evaluate the mean rank with A⋆. Figure 4
demonstrates that the average mean rank decreases as the number of questions increases. This
implies that the Chebyshev center A⋆ comes closer to the ground truth A0 with the more questions
we ask, leading to a more accurate estimate of the actual cost function.

Table 1: Benchmark of Cost and Validity be-
tween gradient-based methods on four datasets.

Dataset Methods Cost Validity

Synthetic DiCE 0.31 ± 0.27 1.00 ± 0.00
Wachter 0.12 ± 0.14 1.00 ± 0.00
ReAP 0.10 ± 0.15 1.00 ± 0.00

German DiCE 0.10 ± 0.37 0.96 ± 0.19
Wachter 0.03 ± 0.02 1.00 ± 0.00
ReAP 0.01 ± 0.01 1.00 ± 0.00

Bank DiCE 1.43 ± 0.61 0.99 ± 0.10
Wachter 0.11 ± 0.10 1.00 ± 0.00
ReAP 0.08 ± 0.08 1.00 ± 0.00

Student DiCE 0.07 ± 0.18 0.64 ± 0.48
Wachter 0.05 ± 0.07 1.00 ± 0.00
ReAP 0.05 ± 0.07 1.00 ± 0.00

Gradient-based cost-adaptive recourse. In
this experiment, we generate recourse using our
gradient-based recourse-generation method. We
compute the cost as the Mahalanobis distance de-
scribed in Section 5.2. We compare our method
with three baselines: Wachter and DiCE. Ta-
ble 1 demonstrates that DiCE has the highest cost
across all datasets, and its validity isn’t perfect
in the German, Bank, and Student datasets. Our
method has similar validity to Wachter but at a
lower cost in three out of four datasets. It’s im-
portant to note that if T = 0, the Chebyshev cen-
ter is A⋆ = 1

2I , and the cost metric cA⋆(x, x0)
becomes the squared Euclidean distance between
x and x0, which DiCE and Wachter directly op-
timize. Thus, these results indicate that our ap-
proach effectively adjusts to the subject’s cost
function and adequately reflects the individual subject’s preferences.

Table 2: Benchmark of Path cost
between graph-based ReAP and
FACE. All methods attain the va-
lidity of 1.00± 0.00.

Dataset Methods Path cost

Synthetic FACE 0.73 ± 0.55
ReAP 0.70 ± 0.56

German FACE 0.66 ± 0.48
ReAP 0.53 ± 0.49

Bank FACE 1.20 ± 0.69
ReAP 0.82 ± 0.39

Student FACE 1.10 ± 0.76
ReAP 1.04 ± 0.66

Graph-based cost-adaptive recourse. In this experiment, we
generate recourse using the graph-based sequential recourse
method. We compute the cost of a sequential recourse as the
shortest-path cost described in Section 5.2. We compare our
graph-based method with FACE. Table 2 demonstrates that our
ReAP framework has the lowest cost across all four datasets.
The validity of the two methods is perfect in all four datasets
because the two methods both find a path from the input node
x0 to the node xr ∈ D1. As mentioned above, if T = 0,
the cost metric cA⋆(x, x0) becomes squared of the Euclidean
distance between x and x0, and FACE builds the graph us-
ing this Euclidean metric. These observations show that our
graph-based method accurately captures the subjects’ prefer-
ences and adapts to their cost function.

6 CONCLUSIONS

This work proposes an adaptive preference learning framework for the recourse generation problem.
Our proposed framework aims to approximate the true cost matrix of the subject in an iterative man-
ner using a few rounds of question-answers. At each round, we select the question corresponding
to the most effective cut of the confidence set of possible cost matrices. We provide two recourse-
generation methods: gradient-based and graph-based cost-adaptive recourse. Finally, we generalize
our framework to handle inconsistencies in subject responses and extend the heuristics to choose the
questions from pairwise comparison to multiple-option questions. Extensive numerical experiments
show that our framework can adapt to the subject’s cost function.
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Broader Impacts and Limitations. This paper aims to generate recourse adapted to each subject’s
cost function. The gradient-based method in Section 4.1 and graph-based method in Section 4.2 re-
quire access to gradient information and training data, respectively. We want to highlight that access
to this information is leveraged in existing gradient-based methods such as ROAR (Upadhyay et al.,
2021) or graph-based methods such as FACE (Poyiadzi et al., 2020). A frequent criticism of the
needed access to data or model information is that it could violate the privacy of the machine learn-
ing system. Moreover, recent research demonstrates that solutions produced by recourse-generation
methods and those produced by adversarial example-generating algorithms are highly compara-
ble (Pawelczyk et al., 2022). To increase the system’s trustworthiness, a decision-making system
must, therefore, be able to discern between an adversarial example and a recourse. We may use
various strategies and approaches to ensure privacy to overcome these problems. However, these
issues are outside our work’s scope, so we left these problems for future research.

A GENERALIZATIONS

In this section, we describe two main generalizations of our framework: Section A.1 considers
possible inconsistencies in the preference elicitation of the subject, and Section A.2 considers the
generalization to a k-way questioning.

A.1 ADDRESSING INCONSISTENCY IN COST ELICITATION

It is well-documented that human responses in behavior elicitation may exhibit inconsistencies.
Inconsistencies occur when there exist three distinct indices (i, j, k) such that the user states xiPxj ,
xjPxk and xkPxi. In this case, the set UP becomes empty, and finding a Chebyshev center A⋆

c is
impossible. One practical approach to alleviate the effect of the inconsistency is to allow a fraction
of the stated preferences to be violated in the definition of the cost-uncertainty set UP. Let |P| denote
the cardinality of the set P. Suppose we tolerate α% of inconsistency, i.e., there are at most α|P|
preferences in the set P that can be violated. We define Uα

P as the set of possible cost matrices A
with at most α% inconsistency with the preference set P. This set can be represented using auxiliary
binary variables as

Uα
P =

A ∈ Sd+ :

∃γij ∈ {0, 1} ∀(i, j) ∈ P∑
(i,j)∈P γij ≤ α|P|〈

A,Mij

〉
≤ ε+ γijM

 , (9)

where M is a big-M constant. Intuitively, γij is an indicator variable: γij = 1 implies that the
preference xiPxj is inconsistent, and thus the corresponding halfspace becomes

〈
A,Mij

〉
≤ ε+M,

which is a redundant constraint. The Chebyshev center of the set Uα
P can be found by solving a

binary semidefinite program.
Theorem A.1 (Chebyshev center with inconsistent elicitation). Given α ∈ (0, 1). The Chebyshev
center A⋆

c of the set Uα
P can be found by solving the binary semidefinite program

max r
s. t. Ac ∈ Sd+, r ∈ R+, γij ∈ {0, 1} ∀(i, j) ∈ P〈

Ac,Mij

〉
+ r∥Mij∥F ≤ ε+ γijM ∀(i, j) ∈ P∑

(i,j)∈P γij ≤ α|P|
Ac ⪯ I,

(10)

whereM is a big-M constant.

Proof of Theorem A.1. Using the definition of the set UP as in (9), the optimization problem to find
the Chebyshev center and its radius can be rewritten as

max r
s. t. Ac ∈ Sd+, r ∈ R+〈

Ac +∆,Mij

〉
≤ ε ∀∆ ∈ Br, ∀(i, j) ∈ P∑

(i,j)∈P γij ≤ α|P|.
where Br is a ball of symmetric matrices with Frobenius norm bounded by r:

Br = {∆ ∈ Sd : ∥∆∥F ≤ r}.
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Pick any (i, j) ∈ P, the semi-infinite constraint〈
Ac +∆,Mij

〉
≤ ε+ γijM ∀∆ ∈ Br

is equivalent to the robust constraint〈
Ac,Mij

〉
+ sup

∥∆∥F≤r

〈
∆,Mij

〉
≤ ε+ γijM.

Because the Frobenius norm is a self-dual norm, we have

sup
∥∆∥F≤r

〈
∆,Mij

〉
= r∥Mij∥F .

Replacing the above equation to the optimization problem completes the proof.

Unfortunately, problem (10) is a binary SDP, and state-of-the-art solvers such as Mosek and
GUROBI do not support this class of problem. Adhoc methods to solve binary SDP can be found
in Ni & So (2018) and the references therein.

A.2 MULTIPLE-OPTION QUESTIONS

Previous results rely on the pairwise comparison settings: given two valid recourses, xi and xj , the
subject indicates one preferred option. These settings can be easily generalized to k-option compar-
ison: Given k distinct indices i1, . . . , ik, the subject is asked “Which recourse among xi1 , . . . , xik
do you prefer the most?.” The answer from the subject will reveal k − 1 binary preferences: for
example, if the subject prefers xi1 the most, then it is equivalent to a revelation of k−1 preferences:
xi1Pxi2 , . . . , xi1Pxik . Thus, if we use a k-option question, we can add k − 1 relations to the set
P, which correspond to k − 1 hyperplanes to the set UP. The computation of the Chebyshev center
A⋆

c in Section 3.1 remains invariant. The only added complication is the increased complexity in
searching for the next k recourses to ask the subject: instead of O(N2) questions, the space of pos-
sible questions is now of order Nk. Fortunately, we can slightly modify the similar cost heuristics
to accommodate the k-option questions. More specifically, in Step 3 of the heuristics, we can use
the following:

• Step 3: For each i = 1, . . . , N − k + 1, choose a tuple of adjacent cost samples
(x[i], . . . , x[i+k−1]) corresponding to k-adjacent costs (s[i], . . . , s[i+k−1]), then compute the av-
erage projection distance of the incumbent center A⋆

c to the hyperplanes
〈
M[i+k′],[i+k′+1], A

〉
=

0 for k′ = 0, . . . , k − 2.

The complexity of this heuristics remains O(N log(N)).

B ADDITIONAL EXPERIMENTS

In this section, we provide the detailed implementation and additional numerical results. All codes
can be accessed from https://anonymous.4open.science/r/ReAP-07E9/.

B.1 DATASETS

Real-world data. We use seven real-world datasets which are popular in the settings of recourse-
generation (Mothilal et al., 2020; Upadhyay et al., 2021): German credit (Dua & Graff, 2017),
Bank (Dua & Graff, 2017), Student performance (Cortez & Silva, 2008), Adult (Becker & Kohavi,
1996), COMPAS, GMC and HELOC (Pawelczyk et al., 2021). We describe the selected subset of
features from German, Bank, and Student datasets in Table 3. Additionally, we follow the same
features selection procedure for Adult, COMPAS Recidivism Racial Bias, Give Me Some Credit
(GMC), and HELOC datasets as in Pawelczyk et al. (2021).

Synthetic data. Following previous work (Nguyen et al., 2022), we generate the synthetic dataset
with two-dimensional data samples by sampling uniformly in a rectangle x = (x1, x2) ∈ [−2, 4]×
[−2, 7] with the following labeling function f :

f(x) =

{
1 if x2 ≥ 1 + x1 + 2x2

1 + x3
1 − x4

1,
0 otherwise.
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Table 3: Features selection from German, Bank, and Student datasets in our experiments.

Dataset Features

German Status, Duration, Credit amount, Personal Status, Age
Bank Age, Education, Balance, Housing, Loan, Campaign, Previous, Outcome
Student Age, Study time, Famsup, Higher, Internet, Health, Absences, G1, G2

Example of gradient-based single recourse and graph-based sequential recourse. We provide
an example of a gradient-based and a graph-based recourse on the Bank dataset in Figure 5. A
one-step recourse specifies only the final state at which the model yields a favorable outcome. A
sequential recourse consists of several smaller steps that lead the subject toward a favorable outcome.

Figure 5: Example of a gradient-based one-step recourse recommendation (left) and a graph-based
sequential recourse recommendation (right) on the Bank dataset. ✗ denotes the unfavorable out-
comes, and ✓ denotes the favorable outcomes.

B.2 IMPLEMENTATION DETAILS

Classifier. We train a three-layer MLP with 20, 50, and 20 nodes and a ReLU activation function in
each layer for each dataset. We report the accuracy and AUC of the underlying classifier for each
dataset in Table 4.

Table 4: Accuracy and AUC of the MLP classifiers on eight datasets.

Dataset Synthesis German Bank Student Adult COMPAS GMC HELOC

Accuracy 0.98 0.72 0.89 0.93 0.85 0.83 0.94 0.74
AUC 0.99 0.62 0.68 0.97 0.9 0.82 0.84 0.81

Settings for Figure 4. In this experiment, we fix ε = 0.01 and vary the number of questions as an
integer T ∈ [0, 10].

Settings for Table 1. In this experiment, we select a total of T = 5 questions for our ReAP
framework. We choose λ = 1.0 and α = 0.01 for ReAP and Wachter’s method. We use the
default setting for the proximity weight and the diversity weight of DiCE with values 0.5 and 1.0,
respectively.

Settings for Table 2. We follow the implementation of CARLA (Pawelczyk et al., 2021) to construct
a nearest neighbor graph with K = 10. We choose T = 5 questions for our ReAP method.
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B.3 ADDITIONAL NUMERICAL RESULTS

B.3.1 BENCHMARK OF PROPOSED HEURISTICS

Comparison between two-option questions and multiple-option questions. Here, we compare
two heuristics for choosing the questions: The recourse-pair heuristics in Section 3.2 and multiple-
option heuristics in Appendix A.2. We denote the recourse-pair heuristics as ReAP-2 and multiple-
option heuristics as ReAP-K. The setting of this experiment is the same as Figure 4.

Figure 6 demonstrates that as T increases, the mean rank of ReAP-K decreases faster than ReAP-2.
Because the complexity of both heuristics is O(N log(N)), these results indicate that the multiple-
option heuristic is more efficient in our adaptive preference learning framework.
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Figure 6: Comparison of two heuristics: recourse-pair heuristics (ReAP-2) and multiple-option
heuristics (ReAP-K) with the average mean rank on synthetic data and three real-world datasets.

Exhaustive search and similar-cost heuristics. We compare the run time of the similar-cost heuris-
tics and the exhaustive search for a recourse-pair question. This experiment is conducted on a ma-
chine with an i7-10510U CPU.

First, we generate N 2-dimensional data samples for each value N = 100, . . . , 10000. Then, for
each value of N , we compute the average run time of two methods and report the results in Figure 7.
We can observe that at N = 10000, the exhaustive search requires more than 40s to search for a
question, which is impractical in real-world settings.
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Figure 7: Run time comparison of two heuristics: recourse-pair heuristics (ReAP-2) and multiple-
option heuristics (ReAP-K) with the average mean rank on four datasets.

Table 5: The suboptimality gap between the objective of exhaustive search and similar-cost heuris-
tics with inconsistency threshold γ = 0.01 in four datasets.

Synthetic German Bank Student

Gap 0.001 0.017 0.021 0.029
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Table 6: Benchmark of Cost and Validity between gradient-based methods on four datasets.

Dataset Methods Cost Validity

Adult DiCE 2.89 ± 1.42 1.00 ± 0.00
Wachter 0.06 ± 0.04 1.00 ± 0.00
ReAP 0.04 ± 0.05 1.00 ± 0.00

COMPAS DiCE 0.51 ± 1.32 1.00 ± 0.00
Wachter 0.03 ± 0.04 1.00 ± 0.00
ReAP 0.03 ± 0.04 1.00 ± 0.00

GMC DiCE 0.25 ± 0.16 1.00 ± 0.00
Wachter 0.02 ± 0.01 1.00 ± 0.00
ReAP 0.01 ± 0.00 1.00 ± 0.00

HELOC DiCE 0.43 ± 0.22 1.00 ± 0.00
Wachter 0.05 ± 0.07 1.00 ± 0.00
ReAP 0.05 ± 0.06 1.00 ± 0.00

Let obje and objh be the optimal values for exhaustive search and similar-cost heuristics, respec-
tively. We compare the relative suboptimality gap between the objective of those two methods as
the following:

gap(obje, objh) =
|obje − objh|

obje
.

The experiment results show that the suboptimality gap between the objective of the two methods is
approximately of order 10−6 in all datasets. These results demonstrate empirically that our heuristic
method can generate good solutions to the original problem at a fraction of the computational time.

Heuristics to address human inconsistencies. To account for similarity-dependent uncertainty, we
can adapt our heuristics by taking into consideration only an adjacent pair of ([i], [i+1]) for i ∈ JNK
if the disparity between their costs is larger than an inconsistency threshold, denoted as γ.

We compare the objective values, in terms of their difference, of those two methods in Table 5.
These results demonstrate that the proposed heuristic method can generate reasonable solutions to
the original problem at a fraction of the computational time compared to the exhaustive search.

B.3.2 RESULTS ON MORE DATASETS

Here, we report the additional numerical results for four datasets available in CARLA (Pawelczyk
et al., 2021), including Adult, COMPAS, GMC, and HELOC. We report the results in Table 6 and
Table 7. These results demonstrate that our method outperforms other baselines, effectively adjusts
to the subject’s cost function, and adequately reflects the individual subject’s preferences.

B.3.3 COMPARISON WITH PEAR

We implement the PEAR method proposed by De Toni et al. (2023) based on our understanding of
the method and the details outlined in the original paper.1 We conduct this experiment using Adult
and GMC datasets, consistent with their usage in De Toni et al. (2023).

Comparing our method to PEAR (De Toni et al., 2023) is not straightforward due to the difference
in the cost modeling. Specifically, De Toni et al. (2023) utilizes a linear structural causal model,
whereas we assume the cost function takes the form of the Mahalanobis distance. In this experiment,
we employ a Manhattan (ℓ1) distance to measure the cost of the actions. In this way, both our method
and the PEAR method are misspecified. This experiment aims to benchmark which method is more
robust to the misspecification of the cost functional form. As we assume that the subject x0 has
the true cost function of the form c(x, x0) = ∥x − x0∥1, between two recourses xi and xj , xi is
preferred to xj if

∥xi − x0∥1 ≤ ∥xj − x0∥1.
1As of submission’s date, the implementation for De Toni et al. (2023) has not been publicly released.
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Table 7: Benchmark of Path cost between graph-based ReAP and FACE. All methods attain the
validity of 1.00± 0.00. Thus, we do not display Validity in the table.

Dataset Methods Path cost

Adult FACE 0.77 ± 0.56
ReUP 0.75 ± 0.52

COMPAS FACE 0.93 ± 0.75
ReUP 0.79 ± 0.61

GMC FACE 0.61 ± 0.49
ReUP 0.65 ± 0.42

HELOC FACE 1.05 ± 0.76
ReUP 0.95 ± 0.65

Table 8: Benchmark of Path cost between PEAR and graph-based ReAP. All methods attain the
validity of 1.00± 0.00. Thus, we do not display Validity in the table.

Dataset Methods Path cost ↓
Adult PEAR 1.78 ± 0.91

ReAP 1.76 ± 1.02

GMC PEAR 0.96 ± 0.52
ReAP 0.81 ± 0.39

Our approach employs the above response model for the construction of the terminal confidence set
UP. In contrast, PEAR utilizes the same model for the selection of the optimal intervention in each
iteration (De Toni et al., 2023, Algorithm (1)). Regarding the objective, our method is designed to
learn the matrix A0 within the framework of Mahalanobis distance while PEAR’s objective is to
learn the optimal weights for the cost function outlined in De Toni et al. (2023, Equation (3)).

We choose T = 10 questions for both methods to ensure a fair comparison. Additionally, since our
approach involves pairwise comparisons between recourses, we set the choice set size for PEAR to 2,
which aligns with our method. Following the settings in De Toni et al. (2023), the prior distribution
of weights takes the form of a mixture of Gaussians with 6 components, where the means were
randomized, and the covariance matrix was set to identity. When T = 0, the weights are initialized
using the expected prior value.

After we have learned the cost function using each method, we use the graph-based recourse method
wherein we construct the graph using the methodology outlined in the FACE method (Poyiadzi et al.,
2020). FACE initiates by constructing a k-NN graph denoted as G = (V, E), which serves as a
representation of the underlying data’s geometry. The graph’s vertices correspond to the sampled
instances, specifically the training data, while edges establish connections between instances that
are in proximity based on the Euclidean distance metric. This closeness measure is encoded in the
weights assigned to the edges. Subsequently, for our method, we proceed to reassign the weights of
the edges (xi, xj) ∈ E within the graph, employing the cost function w̄ij = cA⋆(xi, xj), where A⋆ is
the Chebyshev center of the terminal confidence set. For PEAR, we reassign the edge weights using
the cost function defined in De Toni et al. (2023, Equation (3)). Thus, the two methods can access
the same graph structure but different edge costs. We then solve the graph-based recourse problem
in Section 4.2. Finally, we evaluate the path cost from input x0 to xr, evaluated with Manhattan
distance, which is the true cost function in this experiment.

Table 8 reports the mean and standard deviation of path cost over 100 test samples. These results
demonstrate that our method ReAP performs comparable to PEAR in the Adult dataset, while we
outperform PEAR in the GMC dataset.
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C PROOFS

We here provide the proof of Theorem 3.1 and Proposition 4.1 that are omitted in the main text.

C.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. The proof of Theorem 3.1 follows a similar line of argument as Theorem A.1,
in which we consider the form

max r
s. t. Ac ∈ Sd+, r ∈ R+〈

Ac +∆,Mij

〉
≤ ε ∀∆ ∈ Br, ∀(i, j) ∈ P.

A similar reformulation to Theorem A.1 using the dual norm leads to the postulated result.

C.2 PROOF OF PROPOSITION 4.1

Proof of Proposition 4.1. Semidefinite programming duality asserts that

max
A∈UP

∑
(i,j)∈E

wij(A)fij =

 max
〈
A,

∑
(i,j)∈E(xi − xj)(xi − xj)

⊤fij
〉

s. t.
〈
A,Mij

〉
≤ ε ∀(i, j) ∈ P

0 ⪯ A ⪯ I

=


min

〈
U, I

〉
+ ε

∑
(i,j)∈P tij

s. t. U +
∑

(i,j)∈P Mijtij ⪰
∑

(xi,xj)∈E(xi − xj)(xi − xj)
⊤fij

tij ≥ 0 ∀(i, j) ∈ P, U ∈ Sd+.

Replacing the minimization above into the objective function leads to the postulated result.

D MOTIVATION FOR THE MAHALANOBIS COST FUNCTION

We provide two arguments to support the choice of the Mahalanobis cost function. The first ar-
gument involves a control theory viewpoint, while the second argument is the connection with the
structural causal model.

D.1 LINEAR QUADRATIC REGULATOR COST

In this section, we describe a sequential control process that affects feature transitions of a subject
x0 towards a target feature while minimizing the cost of efforts. Let x0 and xr be the initial feature
of the subject and the target feature. We consider a discrete-time system that, at each iteration, an
input effort u(t) drives x(t) to x(t+1)

x(t+1) = x(t) + u(t), x(0) = x0.

The objective is to finding the best input efforts u(t) (∀t = 0, . . . ,∞) to move from x0 toward xr.
One can formulate this as solving a Linear Quadratic Regulator (LQR) problem of the form:

c(x0, xr) =


min

∑∞
t=0(x

(t) − xr)
⊤Q(x(t) − xr) + (u(t))⊤Ru(t)

s. t. u(t) ∈ Rd ∀t = 0, . . . ,∞
x(t+1) = x(t) + u(t) ∀t
x(0) = x0,

where the parameters Q and R are the subject’s state cost and input cost matrices, respectively.
The matrix Q is positive semidefinite symmetric while R is positive definite symmetric. The value
c(x0, xr) is the cost to implement the recourse xr.
Proposition D.1 (Quadratic cost). The optimal cost function c(x0, xr) is quadratic, that is:

c(x0, xr) = (x0 − xr)
⊤A0(x0 − xr),

where A0 is a positive definite symmetric matrix satisfying the following equation:

Q = A0(R+A0)
−1A0.
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Proposition D.1 asserts that the minimal cost function has the Mahalanobis form, which solely relies
on the initial input x0 and the target features xr.

Proof of Proposition D.1. Because xr is a fixed vector, use the following change of variables z(t) ←
x(t) − xr, we have the equivalence

c(x0, xr) =


min

∑∞
t=0(z

(t))⊤Qz(t) + (u(t))⊤Ru(t)

s. t. u(t) ∈ Rd ∀t = 0, . . . ,∞
z(t+1) = z(t) + u(t) ∀t
z(0) = x0 − xr.

Let V (z) be the minimum LQR cost-to-go, starting from state z as follows:

V (z) =


min

∑∞
t=0(z

(t))⊤Qz(t) + (u(t))⊤Ru(t)

s. t. u(t) ∈ Rd ∀t = 1, . . . ,∞
z(t+1) = z(t) + u(t) ∀t
z(0) = z.

According to Bertsekas (2012, Section 4.1), the function V has a quadratic form V (z) = z⊤A0z,
for some symmetric matrix A0. Because Q is a positive semidefinite symmetric matrix and R is a
positive definite symmetric matrix, V (z) > 0 for all z ∈ Rd, meaning that A0 is a positive definite
symmetric matrix. Substituting

∑∞
t=1(z

(t))⊤Qz(t) + (u(t))⊤Ru(t) by V (z + u(0)), we have:

V (z) = min
u(0)

z⊤Qz + (u(0))⊤Ru(0) + V (z + u(0)),

which implies that

z⊤A0z = min
u(0)

z⊤Qz + (u(0))⊤Ru(0) + (z + u(0))⊤A0(z + u(0)).

It is easy to see that the objective function of the right-hand side optimization problem is convex.
Therefore, the optimal solution of u(0) satisfies

Ru(0) +A0(z + u(0)) = 0 =⇒ u(0)∗ = −(R+A0)
−1A0z.

Here the inversion of (R + A0) is feasible because R and A0 are positive definite matrices. Then
we have:

z⊤A0z = z⊤Qz + (u(0)∗)⊤Ru(0)∗ + (z + u(0)∗)⊤A0(z + u(0)∗)

⇔ z⊤A0z = z⊤(Q+A0 −A0(R+A0)
−1A0)z.

Therefore, the matrix A0 needs to satisfy the following condition:

A0 = Q+A0 −A0(R+A0)
−1A0 ⇔ Q = A0(R+A0)

−1A0.

This completes our proof.

Remark D.2 (Finite time horizon). The argument in this section relies on an infinite horizon control
problem to simplify the discussion. One can formulate a similar finite horizon problem, which leads
to a similar Mahalanobis form. The proof follows from an induction argument, which is standard in
the control theory literature; see Bertsekas (2012).

D.2 CASUAL GRAPH RECOVERY

This section discusses the connection between the linear Gaussian structural causal model and the
Mahalanobis cost function. We consider a linear Gaussian structural equation model (SEM ) for the
deviation δ ∈ Rd from the initial input x0 ∈ Rd as follows:

δ ∼ SEM(W0, D0)⇔ δ = W0δ + ϵ, (11)

where ϵ ∼ N (0, D0) is a multivariate Gaussian with mean vector zero and a covariance matrix
D0 ∈ Sd++. The W0 ∈ Rd×d is equivalent to the weight w of the structural causal model (SCM) for
cost formulation from a directed acyclic graph (DAG) G. Each node of G is associated with a single
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feature, and a nonzero entry (W0)i,j corresponds to a causal relationship from node j to node i. The
SEM (11) implies that:

δ ∼ N (0, (I −W0)
−1D0(I −W0)

−⊤),

where I is the identity matrix. The density function for δ is:

f0(δ) =
1

(2π)d/2|(I −W0)−1D0(I −W0)−⊤|1/2 exp

(
−1

2
δ⊤(I −W0)

⊤D−1
0 (I −W0)δ

)
.

Between two deviations δi = xi−x0 and δj = xj−x0, the subject prefers a deviation with a higher
likelihood, and thus δi is preferred to δj if

δ⊤i (I −W0)
⊤D−1

0 (I −W0)δi ≤ δ⊤j (I −W0)
⊤D−1

0 (I −W0)δj .

We recover the Mahalanobis cost preference model with A0 corresponding to the precision matrix
of the deviation under the linear Gaussian structural equation model. Specifically, the value of A0 is
computed as

A0 = (I −W0)
⊤D−1

0 (I −W0).
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