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ABSTRACT

Large vision-language models (LVLMs) have achieved impressive performance
in multimodal understanding and generation, yet they remain prone to halluci-
nations, particularly object hallucinations where entities are described yet do not
exist in the input image. Existing mitigation methods often focus on output-level
adjustments, while the internal mechanisms driving hallucinations remain poorly
understood. In this work, we adopt an internal representation-level perspective by
introducing sparse autoencoders (SAEs) to decompose dense visual features into
sparse monosemantic neurons for interpreting and steering LVLMs. Building on
prior findings that injecting image noise exacerbates hallucinations, we further in-
vestigate how noise perturbations reshape internal representations, revealing that
noise alters monosemantic neuron activations, disrupts visual semantics, and in-
duces hallucinations. Furthermore, we show that manipulating specific neurons
enables controllable influence over LVLM outputs. Based on these insights, we
propose Contrastive Neuron Steering (CNS), which selectively amplifies truth
neurons while suppressing perturbation-induced activations to mitigate halluci-
nations, and further enhances understanding of image-specific features through
adaptive neuron constraints and always-on neuron suppression. Extensive ex-
periments and analyses demonstrate that CNS effectively reduces hallucinations.
Moreover, our CNS enables interpretable and controllable internal neuron-level
interventions, providing both practical mitigation and mechanistic insights into
how LVLMs encode and sometimes misrepresent visual information.

1 INTRODUCTION

Large vision-language models (LVLMs) (Liu et al., 2023b; Dai et al., 2023; Bai et al., 2023; Zhu
et al., 2023) have achieved remarkable progress in multimodal understanding and generation. De-
spite these advances, LVLMs remain vulnerable to hallucinations, particularly object hallucinations
where the model describes entities that are not present in the input image (Lee et al., 2018; Leng
et al., 2024). Such errors undermine reliability and user trust, while raising critical concerns for
safety-sensitive applications such as autonomous systems, medical imaging, and decision support.

To mitigate hallucinations, numerous techniques have been investigated, including visual instruc-
tion fine-tuning (Liu et al., 2023b; 2024b; Yu et al., 2024a), integration with external expert models,
and contrastive decoding strategies (Leng et al., 2024; Chen et al., 2024; Favero et al., 2024; Wan
et al., 2025). Nevertheless, the mechanistic origins of hallucinations remain poorly understood. Ex-
isting explanations predominantly attribute hallucinations to language biases, such as the “anchor
pattern” (Huang et al., 2023) and “text inertia” (Liu et al., 2024d), which posit that hallucinations
emerge from the dominance of linguistic priors over visual features. However, these perspectives
largely neglect the internal visual representation space of LVLMs. In this paper, we seek to explore
the relationship between internal visual representations and hallucinations, addressing the follow-
ing fundamental questions: how are visual features organized internally, how they change under
perturbations, and which aspects of the representation most directly contribute to hallucinations?

To enable deep and comprehensive analysis, we adopt an internal representation-level perspective
to address these questions. The complex, entangled visual features produced by LVLM encoders
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are difficult to interpret and control. To make them tractable, we introduce sparse autoencoders
(SAEs) (Makhzani & Frey, 2013; Templeton et al., 2024), which have shown strong promise in
interpretability research for large language models. By applying SAEs to LVLMs, we decompose
dense embeddings into sparse neurons that tend to represent interpretable, concept-specific features
(Durmus et al., 2024; Templeton et al., 2024). This enables us to analyze the drivers of hallucinations
and design interventions directly within the internal representation space.

Prior works (Leng et al., 2024; Wan et al., 2025) have shown that injecting image noise amplifies
visual uncertainty, aggravates hallucinations. We leverage the interpretable latent space to probe
how such perturbations manifests in internal visual representations. Through extensive analysis, we
find that as noise increases, an increasing number of neurons undergo activation changes, which
alters the semantic structure of visual representations and ultimately exacerbates hallucinations and
degrades performance (Figs. 5, 8). Our global image-level (Figs. 4, 9) and local patch-level anal-
yses (Figs. 3, 10) further reveal two key patterns: a subset of “always-on” neurons consistently
dominates activations while encoding generic global information, whereas most neurons capture
concrete, meaningful visual features. Moreover, we demonstrate (Figs. 2, 13, 14, 11) that enhancing
or suppressing specific neurons in the sparse space can strengthen or diminish the model’s ability
to recognize particular concepts. Together, these findings show that noise reshapes the semantic
structure of visual features, thereby inducing hallucinations, and importantly, that neuron-level in-
terventions in the sparse space provide a tractable means to steer LVLMs.

Building on these insights, we propose a novel and efficient method, Contrastive Neuron Steer-
ing (CNS), for hallucination mitigation from the perspective of internal visual representation space.
Specifically, CNS employs noisy images to activate hallucination-related neurons and contrasts them
with neurons derived from clean images. To selectively enhance informative neurons while sup-
pressing unstable ones, we design an adaptive neuron constraint incorporating both positional and
magnitude regularization. Furthermore, to mitigate the influence of redundant and non-informative
activations and sharpen attention to image-specific features, we introduce always-on neuron suppres-
sion, which explicitly down-weights neurons persistently active across all images. By directly op-
erating within the visual representation space, CNS offers an effective and complementary solution
for hallucination mitigation that remains fully compatible with existing decoding-based approaches.

Extensive experiments across multiple LVLMs and diverse benchmarks demonstrate that CNS sub-
stantially reduces hallucination rates. In addition, our detailed analyses and visualizations highlight
the interpretability of neuron-level interventions. Together, these findings show that CNS not only
improves the reliability of LVLMs in practice but also advances mechanistic understanding of inter-
nal visual representations and their role in hallucinations.

In summary, our contributions are as follows:

• We introduce SAEs to interpret and steer the internal visual representations of LVLMs, pro-
viding extensive analyses and visualizations that reveal how image noise perturbs neurons,
disrupts visual semantics, and ultimately induces hallucinations.

• We find that neuron-level interventions, such as enhancing or suppressing specific neurons
in the internal visual representations, can modulate LVLM outputs for targeted concepts,
and that coordinating multiple neurons is more effective than manipulating single neurons.

• We propose CNS, which amplifies meaningful neurons while suppressing perturbation-
induced activations for hallucination mitigation. CNS is compatible with decoding-based
mitigation approaches and consistently reduces hallucinations across diverse benchmarks.

2 RELATED WORK

Hallucinations in LVLMs. LVLMs (OpenAI et al., 2024; Anthropic, 2024; DeepSeek-AI et al.,
2025; Comanici et al., 2025; Yang et al., 2025a) have achieved significant progress by combining
visual encoders with large language models, enabling multimodal understanding and generation.
However, these models remain prone to hallucinations, particularly object hallucinations (Liu et al.,
2024a; Lee et al., 2023; Gunjal et al., 2024; Chen et al., 2024; Chuang et al., 2023), where the
model generates references to objects not present in the image. The causes include pretraining data
biases (Agarwal et al., 2020; Agrawal et al., 2016), over-reliance on parametric knowledge (Leng
et al., 2024; Lee et al., 2023; Zhibo et al., 2023), and biased visual feature learning (Zhu et al., 2024;
Huang et al., 2023; Yue et al., 2024; Han et al., 2022).
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#2104: Tractor

# 4866: Table Lamp

# 43047: Peacock

# 47238: Sailboat

# 32713: Kayaking

# 12186: Hamburger # 64147: Arctic wolve

# 62001: Alligator

65536-Dimension Sparse Feature Space

Figure 1: Neuron visualizations from SAE, showing diverse visual patterns and semantic structures.

Existing mitigation strategies fall into two groups: training-driven and training-free. Training-driven
approaches fine-tune LVLMs via data augmentation, or reinforcement learning (Liu et al., 2023a;
Sun et al., 2023; Zhou et al., 2024a; Liu et al., 2024b; Zhai et al., 2024). Training-free approaches
mainly rely on contrastive decoding, which constructs positive/negative pairs to adjust inference-
time generation (Yin et al., 2023; Park et al., 2025a; Wang et al., 2024; Li et al., 2023a).

SAEs for Interpreting and Steering LVLMs. SAEs (Templeton et al., 2024; Pach et al., 2025;
Shu et al., 2025) decompose hidden activations into sparse, monosemantic neurons, providing an
interpretable basis for analyzing and steering LVLMs. Recent improvements enhance both sparsity
and reconstruction, including BatchTopK (Bussmann et al., 2024a), JumpReLU (Rajamanoharan
et al., 2024), and hierarchical Matryoshka variants (Nabeshima, 2024; Bussmann et al., 2024b).

In LLMs, SAEs have been applied to explanation and control (Templeton et al., 2024; Durmus et al.,
2024), enabling neuron-level steering to reduce toxicity, sycophancy, or refusal (Gallifant et al.,
2025; Nanda et al., 2024), as well as facilitating hallucination detection (Ferrando et al., 2025),
in-context learning (Demircan et al., 2025), and improved safety (Wu et al., 2025). Extensions to
vision and multimodal domains include Revelio (Kim et al., 2024a), which uncovers interpretable
features in diffusion models; Matryoshka SAEs (MSAEs) (Bussmann et al., 2024b), which balance
sparsity and reconstruction on CLIP embeddings; and Universal SAEs (USAEs) (Thasarathan et al.,
2025), which align concepts across networks. For LVLMs, SAE-V (Lou et al., 2025) enables fine-
grained interpretation of cross-modal interactions, while Zhang et al. (Zhang et al., 2024a) show that
disentangled features can be directly exploited to steer model behavior.

3 PRELIMINARIES: SPARSE AUTOENCODERS (SAES)
Background. The hidden states inside LVLMs are dense and highly entangled, making attribution
and control difficult. SAEs (Olshausen & Field, 1997; Bricken et al., 2023) address this issue by
mapping dense embeddings into a sparse latent space with human-interpretable neurons. Formally,
given an input feature v ∈ Rd, the SAE encoder produces sparse activations

z(v) = TopK
(
ReLU(Wencv − b)

)
, (1)

and the decoder reconstructs the feature as

v̂ = W⊤
decz(v) + b. (2)

This process can be viewed as learning an overcomplete dictionary of concepts, where each latent
neuron corresponds to a basis element.

Inserting SAEs into LVLMs. SAEs can in principle be applied at different stages of LVLMs, such
as intermediate LLM layers or the visual encoder. In this work, we focus on the visual encoder
stage of LVLMs. This choice is motivated by both scientific and practical considerations: (1) It

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Insertion of bow tie (Neuron #6):

V

"Describe this photo 
in detail."

𝛼𝛼 = 10

𝛼𝛼 = 20

𝛼𝛼 = 30

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Neuron          Weight The image features a dog lying on a shelf, surrounded by 
various shoes. The dog …

The image features a brown and white dog lying on a shelf, 
surrounded by various shoes. The dog …

The image features a man wearing a tuxedo and bow tie, 
standing in a bow tie contest. He …

The image features a man wearing a tuxedo and a bow tie, 
standing in a suit and bow tie. He …

V

"Describe this photo 
in detail."

𝛼𝛼 = −10

𝛼𝛼 = −20

𝛼𝛼 = −30

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

The image features a man and a woman standing close to 
each other, both wearing matching blue shirts. They …

The image features a man and a woman standing next to 
each other, posing for a picture. They …

The image features two men standing next to each other, 
both wearing ties. They …

The image features a large gathering of people in a room, 
with some of them standing and others sitting. …

Suppression of shirt (Neuron #41):
Neuron          Weight

Figure 2: Steering an LVLM: (a) amplifying a “bow tie” neuron emphasizes this concept in gener-
ated descriptions, while (b) suppressing a “shirt” neuron prevents it from appearing.

enables deeper mechanistic studies of hallucinations by isolating the specific impact of the visual
encoder, distinguishing whether errors arise from corrupted or ambiguous visual encodings, cross-
modal misalignment during fusion, or the decoder’s reliance on language priors. (2) Some LVLMs
adopt same visual backbones, so an SAE trained on one backbone can be reused across LVLMs that
share it. (3) Operating on encoder outputs preserves the downstream fusion and decoding pipeline,
making SAE-based interventions compatible with existing decoding-level mitigation methods such
as contrastive decoding. (4) Inserting SAEs into the visual encoder requires only a single additional
encoder forward pass, making it much more efficient than full model re-inference.

Interpreting and Steering LVLMs. The sparse latent space of SAEs exhibits two key properties:
(1) Sparsity: only a few neurons are active per input, making the representation sparse. Moreover,
the magnitude of each active neuron reflects its relative importance, providing an inherent measure
of feature relevance; (2) Monosemanticity: each neuron tends to encode a single, consistent concept,
in contrast to polysemantic neurons in dense embeddings. To visualize these learned neurons, we
identify, for each neuron, the top-16 images with the highest activation values, as shown in Figs. 1, 7.
This allows inspection of the concepts captured by each neuron. These properties make SAEs a
natural tool for both interpreting and steering LVLMs. On the analysis side, the neuron dictionary
provides a principled way to interpret model behavior, enabling us to track how visual features shift
under perturbations or correlate with hallucinations. On the control side, SAEs support neuron-level
steering: by selectively amplifying or suppressing neurons, we can guide LVLM outputs toward or
away from specific concepts. For example, amplifying a “bow tie” neuron emphasizes this concept
in generated descriptions, while suppressing a “shirt” neuron prevents it from appearing (Fig.2). In
summary, SAEs provide fine-grained interpretability of internal LVLM representations and serve as
a foundation for both automated steering nd user-guided feature control.

Figure 3: Patch-Level Activation Analysis Figure 4: Image-Level Dominance Analysis

4 ANALYZING HALLUCINATION WITH SAES

We train Matryoshka SAE (Bussmann et al., 2024b) on LLaVA-1.5’s image features extracted from
ImageNet, and conduct analyses on the COCO dataset, considering both clean and noisy images.

4
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Neuron-Level Statistical Analysis. Beyond offering interpretability and controllability, SAEs also
provide a diagnostic lens into how LVLMs encode visual information. We perform two complemen-
tary analyses to characterize neuron activations (Figs. 3, 4): (1) Patch-Level Activation Analysis:
for each spatial patch, we record the Top-K neurons, which highlight detectors of local features
such as textures, edges, or object parts. (2) Image-Level Dominance Analysis: for each image,
we compute the maximum activation of each neuron across patches, and record the Top-N globally
dominant neurons. This reveals neurons encoding coarse, image-wide concepts.

A surprising observation emerges from the image-level analysis: a small group of Always-on neu-
rons (about 10 out of 65k) consistently appear in the Top-20 across nearly all images 9. Most of these
neurons are not particularly strong at the patch level, indicating that they do not correspond to spe-
cific local objects, but rather to global statistical regularities such as smooth regions, edge density, or
background color distributions. Moreover, these neurons activate across images, yet their activation
sets strongly overlap with each other, suggesting that they encode over-generalized “pseudo-global
concepts”. In contrast, patch-level neurons (fig. 10) show semantic consistency: their high activa-
tions concentrate on visually similar images (e.g., cats, grass). Notably, we also identify a unique
neuron that ranks highly under both patch-level and image-level statistics. Unlike other neurons,
this neuron responds to complex multi-object scenes.

These phenomena resonate with recent studies on the limitations of SAEs. Bussmann et al. (Buss-
mann et al., 2024b; Nabeshima, 2024) report that standard SAEs often suffer from feature absorp-
tion and feature splitting, where coarse features are either overwritten by more specific ones or
fragmented across multiple neurons. More recently, Chanin et al. (Chanin et al., 2025) identify the
problem of feature hedging, where correlated features become entangled when the dictionary size
is mismatched with the true feature complexity, producing latents that activate broadly but lack se-
mantic specificity. Our observed always-on neurons strongly resemble such hedged features: they
dominate global activations across diverse images yet encode ambiguous, over-generalized concepts.

Figure 5: Relationship between noise step, model
performance, and neuron change ratio.

Diagnosing Hallucinations with SAEs. Prior
works (Leng et al., 2024; Wan et al., 2025)
have shown that injecting image noise amplifies
visual uncertainty and exacerbates hallucina-
tions, resulting in performance degradation. We
leverage the interpretable latent space of SAEs
to probe how such perturbations reshape LVLM
representations and induce hallucinations. To
quantify this effect, we evaluate LLaVA-1.5 on
the POPE benchmark (COCO, random setup)
and report changes in F1 and accuracy under
different perturbation conditions. We further
examine how model performance is affected by selectively zeroing out different types of SAE neu-
rons. Based on our earlier analysis, we roughly categorize SAE neurons into three groups: top-
ranked always-active neurons (top-10), image-specific neurons (primarily within ranks 10–20), and
ten randomly selected neurons from ranks beyond 20. This allows us to investigate the distinct
characteristics of each neuron group and their respective impacts on model behavior.

Specifically, we measure the stability of Top-K neuron activations across clean and perturbed inputs.
Given a clean image v and its noisy counterpart ṽ, we define the change ratio as

∆K(v, ṽ) = 1− |z(v) ∩ z(ṽ)|
K

, (3)

Higher ∆K indicates that more neurons change, reflecting larger disruption of the visual features.

As shown in Fig. 5, increasing noise steps degrades LLaVA performance while raising the neuron-
change ratio. At the token level, patch-level neurons change the fastest, indicating that noise per-
turbs almost every token. At the image level, Always-active neurons remain largely unchanged,
whereas image-specific neurons exhibit substantial variation, approaching the magnitude of patch-
level changes. These results indicate that noise mainly disrupts image-specific neurons, which in
turn triggers hallucinations. This also explains why VCD can use noise to induce hallucinations.

Table 1 illustrates the effects of zeroing different neuron groups on model predictions and hallu-
cination behavior. The results show that suppressing Always-active neurons has minimal impact
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Figure 6: Framework overview. A pretrained SAE is integrated into the LVLM visual encoder to
decouple internal dense visual features into sparse, monosemantic neurons, enabling neuron-level
interpretation and steering. Contrastive Neuron Steering (CNS) amplifies neurons activated by
clean inputs while suppressing those triggered by perturbations, mitigating hallucinations.

despite their high baseline activations, and randomly selected neurons have negligible effects due
to low relevance. In contrast, zeroing image-specific neurons induces substantial activation changes
and significantly alters model outputs. These findings indicate that image-specific neurons are the
primary drivers of input-dependent behavior and hallucination sensitivity, whereas Always-active
neurons contribute little to image-specific reasoning.

Table 1: Performance impact of zeroing out dif-
ferent types of SAE neurons.

Neuron Type Accuracy (%) ↑ F1-score (%) ↑
baseline 84.63 84.99
always-on 84.68 85.08
image-specific 63.08 57.36
random 84.31 84.65

Beyond aggregate statistics, qualitative case
studies (Fig.8) further illustrate how noisy per-
turbations induce hallucinations. For instance,
when noise is added to an image of a “cam-
era”, the activations of camera-related neurons
gradually diminish as noise intensity increases,
leading LLaVA to generate progressively less
accurate captions: from “black Konica Minolta
camera with a large lens” to “camera with a
large lens,” and finally no camera description.

Importantly, such fine-grained instability cannot be captured in the original dense feature space. By
contrast, SAEs disentangle activations into sparse, interpretable neurons, allowing us to quantify
exactly which concept units vanish and which spurious ones emerge.

In summary, image noise primarily perturbs token-level semantic neurons, especially image-specific
neurons, reshaping internal visual representations and thereby inducing hallucinations. SAEs thus
serve not only as a principled diagnostic tool to quantify these effects, but also as an interpretable
lens into the mechanisms linking image-specific neuron disruptions, visual uncertainty, and hallu-
cinations. Based on these findings, we can mitigate hallucinations by identifying image-specific
neurons and enhancing their activations to strengthen input-relevant semantic information.

5 METHOD

5.1 OVERVIEW

Our objective is to improve the reliability of LVLMs by mitigating hallucinations while simultane-
ously enabling interpretable analysis and controllable steering. As shown in Fig. 6, we integrate a
pretrained SAE into the LVLM visual encoder to decouple dense internal visual features into sparse,
monosemantic neurons, facilitating neuron-level interpretation and steering. We further propose
Contrastive Neuron Steering (CNS) to amplify image-specific neurons activated by clean inputs
while suppressing those triggered by perturbations, thereby mitigating hallucinations.

6
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5.2 CONTRASTIVE NEURON STEERING (CNS)

Our exploratory analysis reveals three key observations: (i) perturbing images (e.g., by adding noise)
significantly alters neuron activations, particularly those of image-specific neurons, and the extent of
change correlates with LVLM performance degradation (Fig. 2); (ii) directly scaling individual neu-
ron activations can increase or suppress concept-specific responses, thereby modulating generated
outputs (Fig. 5); (iii) suppressing image-specific neurons induces severe hallucinations, whereas
suppressing always-on neurons has minimal effect. Together, these findings suggest that targeted
neuron-level regulation, especially of image-specific neurons, provides a natural and effective path-
way for hallucination mitigation.

Building on these insights, we propose CNS. CNS leverages perturbed inputs to contrastively iden-
tify neuron types: neurons whose activations decrease under image perturbations are likely image-
specific neurons, encoding input-dependent semantics, whereas neurons that remain stable or in-
crease are typically always-on neurons or low-importance, input-agnostic neurons. CNS then selec-
tively amplifies image-specific neurons while suppressing these non-informative neurons, thereby
enhancing image-relevant semantic representations and mitigating hallucinations.

Contrastive Neuron Regulation (CNR). Given a clean image v and a perturbed counterpart v′
(e.g., Gaussian noise), both are encoded via the SAE to obtain sparse activations:

z(v), z(v′) ∈ Rk. (4)

We then compute a regulated activation vector:

z̃ = (1 + λ)z(v)− λz(v′), (5)

where λ controls the steering strength. This contrastive formulation promotes stability by reinforcing
neurons consistent across perturbations and attenuating those highly sensitive to noise.

Adaptive Neuron Constraints (ANC). To ensure reliable and interpretable regulation, we impose
two complementary constraints on the updated activations, each acting along a different dimension:

Position constraint: Only the neurons corresponding to the top-K most active positions in the clean
activations z(v) are eligible for regulation:

z̃i =

{
(1 + λ)zi(v)− λzi(v

′), i ∈ Top-K(z(v)),

zi(v), otherwise.
(6)

This ensures that CNS updates only the most salient neuron positions, while leaving inherently
inactive or irrelevant positions untouched, thereby avoiding unintended alterations.

Magnitude constraint: After contrastive updating, neurons with small activations may still be spuri-
ous. We therefore apply an adaptive threshold based on the maximum activation of the clean input:

z̃i ←
{
z̃i, z̃i ≥ τ(z(v)),

zi(v), otherwise.
(7)

This preserves only neurons whose updated activations remain sufficiently strong and semantically
meaningful, effectively filtering out weak, unstable, or spurious signals.

Together, these two constraints ensure that CNS modifies only the most relevant neurons both in
terms of position and magnitude, enhancing the stability and interpretability of neuron-level steering.

Always-on Neuron Suppression (ANS). Empirical analysis (Fig. 3 and Fig. 4) identifies the always-
on neurons that consistently rank high across all images and likely encode generic concepts. Table 1
shows that suppressing these neurons has a minimal effect on the overall F1-score and can even
slightly improve accuracy. Motivated by this, we propose ANS to reduce their influence and empha-
size image-specific semantic information by setting their activations to zero.

z̃i =

{
0, i ∈ A,
zi, otherwise,

(8)

where A denotes the set of always-active neurons. This encourages the model to focus on image-
specific and grounded features, reducing the propagation of generic or misleading signals.

7
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Reconstruction and Integration into LVLM. The regulated latent z̃ is decoded into a dense visual
embedding that replaces the original encoder output:

v̂ = W⊤
decz̃ + b. (9)

5.3 PLUG-AND-PLAY COMPATIBILITY

CNS operates at the representation level, while contrastive decoding methods like VCD act on the
output distribution. These approaches are naturally complementary: CNS refines encoder features
by amplifying grounded neurons and suppressing noisy ones, producing enhanced embeddings that
directly replace the original image features. This allows seamless integration with various decoding-
based methods for further hallucination mitigation.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Evaluated LVLMs. Following prior work, we use three representative open-source LVLMs:
LLaVA-1.5 (Liu et al., 2023b), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al., 2023).

Benchmarks. (1) POPE (Li et al., 2023b), a widely used benchmark for assessing object halluci-
nations in LVLMs through binary yes/no queries about object existence; (2) CHAIR (Rohrbach
et al., 2018), which evaluates object hallucinations in image captioning, where LVLMs are
prompted to describe 500 randomly selected images from the MSCOCO validation set; (3) MME-
Hallucination (Fu et al., 2023), a comprehensive benchmark consisting of four subsets: existence
and count for object-level hallucinations, and position and color for attribute-level hallucinations.

Baselines. We compare with existing methods: VCD (Leng et al., 2024), M3ID (Favero et al., 2024),
and ONLY (Wan et al., 2025). Unless otherwise specified, we adopt sampling-based decoding as
the default, where the next token is sampled directly from the post-softmax probability distribution.

Implementation Details. We train SAEs on ImageNet (Deng et al., 2009) using image features
extracted from the visual encoder of each LVLM (before the projection layer). We experiment with
Matryoshka BatchTopK SAEs (Bussmann et al., 2024b). Unless otherwise stated, the Matryoshka
groups are set as M = {0.0625ω, 0.1875ω, 0.4375ω, ω}, approximately doubling the number of
active neurons per level. We fix the maximum number of non-zero latent neurons to K = 20 and
set the expansion factor to 64. All SAEs are trained for 105 steps with a batch size of 4096, using
Adam (Kingma & Ba, 2017) with the learning rate 16

125
√
ω

, as suggested by (Gao et al., 2025).

For LVLM experiments, we follow the default query format of each model. Following VCD (Leng
et al., 2024), we adopt adaptive plausibility constraints (Li et al., 2023a) with β = 0.1 and α = 0.5.
The number of denoising steps is fixed to 500 unless explicitly stated otherwise. All experiments
are conducted on a single NVIDIA RTX 6000 Ada GPU (48GB).

6.2 EXPERIMENTAL RESULTS

Results on POPE. As shown in Tab. ??, inserting our method into different baselines consistently
improves performance across multiple LVLM backbones and evaluation settings. These results
demonstrate that CNR is both robust and broadly generalizable.

Results on CHAIR. On the open-ended CHAIR benchmark (Tab. 3), integrating our method into
various baselines significantly reduces hallucination rates across different LVLMs. This verifies that
CNR enhances open-ended multimodal understanding and yields more faithful generations.

Results on MME. In Tab. 4, we report results after inserting our method into existing baselines on
the MME benchmark. While evaluated within the same backbone setting, our method consistently
improves both object-level (Existence, Count) and attribute-level (Position, Color) scores, confirm-
ing that CNR strengthens grounding and fine-grained visual reasoning.

Overall, the CNR-adjusted features can be viewed as enhanced representations of the original visual
input, reinforcing grounded evidence while suppressing noise and spurious activations. These results
verify that CNR serves as a plug-and-play module that universally boosts the reliability of LVLMs.
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Table 2: Results on the POPE. ↑ indicates higher is better. +CNS denotes that the original visual
features are replaced with CNS-enhanced. The best and second results are bolded and underlined.

Setup Method
LLaVA-1.5 InstructBLIP Qwen-VL

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑
M

S-
C

O
C

O

Random

Regular 84.63 83.07 87.00 84.99 83.33 82.38 84.80 83.57 85.17 97.22 72.40 83.00
Regular + CNS 85.10 83.77 87.07 85.39 84.40 83.42 85.87 84.63 86.03 97.37 74.07 84.13
VCD 84.57 82.59 87.60 85.02 84.60 85.12 83.87 84.49 87.37 97.14 77.00 85.91
VCD + CNS 85.23 83.30 88.13 85.65 85.63 86.24 84.80 85.51 88.27 97.36 78.67 87.02
M3ID 86.33 85.30 87.80 86.53 85.00 84.72 85.40 85.06 86.03 97.87 73.67 84.06
M3ID + CNS 86.70 85.72 88.07 86.88 85.57 85.64 85.47 85.55 87.03 97.93 75.67 85.37
ONLY 89.57 90.68 88.20 89.42 86.13 86.04 86.27 86.15 89.63 95.70 83.00 88.90
ONLY + CNS 90.27 91.20 89.13 90.16 87.07 86.92 87.27 87.09 89.90 95.86 83.40 89.20

Popular

Regular 81.33 78.14 87.00 82.33 76.00 72.11 84.80 77.94 84.50 94.73 73.07 82.50
Regular + CNS 82.70 79.60 87.93 83.56 77.07 73.44 84.80 78.71 84.77 94.76 73.60 82.85
VCD 80.80 77.11 87.60 82.02 77.20 74.00 83.87 78.62 85.83 94.02 76.53 84.38
VCD + CNS 81.53 77.69 88.47 82.73 78.23 75.10 84.47 79.51 86.17 94.21 77.07 84.78
M3ID 82.30 79.10 87.80 83.22 77.23 73.41 85.40 78.95 85.43 95.94 74.00 83.55
M3ID + CNS 83.07 80.21 87.80 83.83 78.40 74.91 85.40 79.81 86.07 96.00 75.27 84.38
ONLY 86.10 84.64 88.20 86.39 77.50 73.40 86.27 79.31 87.70 91.92 82.67 87.05
ONLY + CNS 86.90 85.50 88.87 87.15 77.73 73.64 86.40 79.51 87.87 91.95 83.00 87.25

Adversarial

Regular 75.87 71.18 86.93 78.27 74.17 70.04 84.47 76.58 82.53 90.80 72.40 80.56
Regular + CNS 76.13 71.33 87.40 78.55 75.03 70.85 85.07 77.31 83.20 91.29 73.40 81.37
VCD 75.23 70.23 87.60 77.96 75.80 72.29 83.67 77.56 83.10 88.46 76.13 81.83
VCD + CNS 75.83 70.67 88.33 78.52 76.80 73.16 84.67 78.49 83.70 89.16 76.73 82.48
M3ID 76.63 71.79 87.73 78.97 75.40 71.26 85.13 77.58 83.03 91.12 73.20 81.18
M3ID + CNS 77.60 72.85 88.00 79.71 75.83 71.64 85.53 77.97 84.37 91.94 75.33 82.81
ONLY 79.43 75.07 88.13 81.08 75.63 71.28 85.87 77.90 83.77 85.10 81.87 83.45
ONLY + CNS 79.83 75.27 88.87 81.50 75.97 71.46 86.47 78.25 84.60 85.65 83.13 84.37

A
-O

K
V

Q
A

Random

Regular 82.17 76.47 92.93 83.90 81.60 77.40 89.27 82.91 86.13 94.72 76.53 84.66
Regular + CNS 82.43 76.57 93.47 84.18 82.97 78.87 90.07 84.10 86.97 95.04 78.00 85.68
VCD 81.70 75.55 93.73 83.67 82.53 78.91 88.80 83.56 87.80 94.09 80.67 86.86
VCD + CNS 82.83 76.90 93.87 84.54 82.90 79.05 89.53 83.96 88.40 94.31 81.73 87.57
M3ID 82.90 77.13 93.53 84.54 83.17 79.04 90.27 84.28 87.47 94.89 79.20 86.34
M3ID + CNS 83.90 78.33 93.73 85.34 83.93 80.05 90.40 84.91 88.27 94.98 80.80 87.32
ONLY 86.33 81.21 94.53 87.37 85.40 81.27 92.00 86.30 89.77 92.04 87.07 89.48
ONLY + CNS 86.57 81.50 94.60 87.57 86.40 82.42 92.53 87.19 90.30 92.30 87.93 90.06

Popular

Regular 75.40 68.81 92.93 79.07 74.80 69.23 89.27 77.98 86.17 93.71 77.53 84.86
Regular + CNS 77.00 70.43 93.07 80.18 75.57 69.92 89.73 78.60 86.93 94.25 78.67 85.76
VCD 74.83 68.02 93.73 78.83 76.33 71.08 88.80 78.96 87.03 92.24 80.87 86.18
VCD + CNS 75.60 68.66 94.20 79.43 77.33 71.93 89.67 79.82 87.43 92.70 81.27 86.61
M3ID 75.93 69.18 93.53 79.54 76.27 70.52 90.27 79.18 86.83 94.31 78.40 85.62
M3ID + CNS 76.53 69.78 93.60 79.95 77.47 71.64 90.93 80.14 87.50 94.68 79.47 86.41
ONLY 79.73 72.94 94.53 82.35 77.07 70.84 92.00 80.05 89.30 90.46 87.87 89.14
ONLY + CNS 80.23 73.46 94.67 82.73 77.93 71.75 92.13 80.68 90.03 91.21 88.60 89.89

Adversarial

Regular 67.07 61.33 92.40 73.72 68.30 62.83 89.60 73.87 81.17 83.18 78.13 80.58
Regular + CNS 67.93 61.98 92.80 74.32 68.97 63.40 89.73 74.30 81.77 83.67 78.93 81.23
VCD 67.13 61.27 93.13 73.92 70.07 64.70 88.33 74.69 81.37 81.86 80.60 81.22
VCD + CNS 69.00 62.78 93.33 75.07 71.50 65.97 88.80 75.70 82.03 82.93 80.67 81.78
M3ID 67.20 61.31 93.27 73.98 68.67 63.05 90.20 74.22 81.30 83.42 78.13 80.69
M3ID + CNS 68.97 62.70 93.67 75.11 70.70 64.75 90.87 75.62 82.37 84.07 79.87 81.91
ONLY 69.10 62.67 94.47 75.35 68.17 62.41 91.33 74.15 82.17 78.87 87.87 83.13
ONLY + CNS 70.53 63.85 94.67 76.26 69.80 63.79 91.60 75.21 82.97 79.52 88.80 83.91

G
Q

A

Random

Regular 82.00 76.09 93.33 83.83 80.10 76.17 87.60 81.49 84.47 89.83 77.73 83.35
Regular + CNS 82.53 76.61 93.67 84.28 80.80 76.77 88.33 82.15 85.50 90.62 79.20 84.53
VCD 81.90 75.38 94.73 83.96 81.10 77.92 86.80 82.12 86.10 90.87 80.27 85.24
VCD + CNS 82.33 75.74 95.13 84.34 81.97 78.70 87.67 82.94 86.73 91.00 81.53 86.01
M3ID 83.10 77.00 94.40 84.82 81.63 77.80 88.53 82.82 86.13 91.63 79.53 85.15
M3ID + CNS 83.73 77.71 94.60 85.33 82.67 79.17 88.67 83.65 87.07 92.31 80.87 86.21
ONLY 86.87 81.24 95.87 87.95 83.23 79.69 89.20 84.18 88.13 89.50 86.40 87.92
ONLY + CNS 87.77 82.35 96.13 88.71 83.50 79.89 89.53 84.44 88.53 90.19 86.47 88.29

Popular

Regular 71.93 65.36 93.33 76.88 72.20 66.97 87.60 75.91 80.40 82.43 77.27 79.77
Regular + CNS 72.73 66.10 93.33 77.39 72.50 67.16 88.07 76.20 81.93 83.88 79.07 81.40
VCD 70.67 63.95 94.73 76.36 73.20 68.24 86.80 76.41 80.27 80.68 79.60 80.13
VCD + CNS 72.53 65.52 95.13 77.60 73.70 68.70 87.07 76.80 81.43 81.79 80.87 81.33
M3ID 72.10 65.28 94.40 77.19 73.40 67.96 88.53 76.90 81.87 84.14 78.53 81.24
M3ID + CNS 73.80 66.86 94.40 78.28 75.23 69.83 88.87 78.20 82.77 84.83 79.80 82.24
ONLY 74.93 67.58 95.87 79.27 74.13 68.55 89.20 77.52 81.27 78.67 85.80 82.08
ONLY + CNS 76.03 68.59 96.07 80.03 75.67 70.16 89.33 78.59 81.50 78.97 85.87 82.27

Adversarial

Regular 67.93 61.96 92.93 74.35 68.43 63.48 86.80 73.33 78.87 79.30 78.13 78.71
Regular + CNS 69.90 63.54 93.40 75.63 70.00 64.75 87.80 74.53 80.00 80.20 79.67 79.93
VCD 68.23 61.90 94.87 74.91 69.27 64.38 86.27 73.73 80.53 80.57 80.47 80.52
VCD + CNS 69.37 62.83 94.87 75.59 70.47 65.49 86.53 74.55 81.97 81.99 81.93 81.96
M3ID 68.60 62.23 94.67 75.09 69.23 64.09 87.47 73.98 81.00 81.63 80.00 80.81
M3ID + CNS 68.73 62.32 94.73 75.19 70.87 65.63 87.60 75.04 81.00 81.63 80.00 80.81
ONLY 69.33 62.66 95.67 75.73 69.30 63.82 89.13 74.38 80.47 77.23 86.40 81.56
ONLY + CNS 70.17 63.33 95.80 76.25 71.30 65.59 89.60 75.74 81.50 78.58 86.60 82.40

6.3 ABLATION STUDIES

Here we focus on the core CNS module, with additional results in Appendix E.
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Table 3: Results on CHAIR. ↓ indicates lower is better.

Method
LLaVA-1.5 InstructBLIP Qwen-VL

Max Token 64 Max Token 128 Max Token 64 Max Token 128 Max Token 64 Max Token 128

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓
Regular 26.5 9.4 55.1 16.4 31.5 11.4 57.4 17.6 33.8 12.9 52.1 16.7
Regular + CNS 25.7 8.8 54.8 16.0 30.9 11.1 57.2 16.8 33.6 12.7 51.6 16.0
VCD 24.8 8.0 54.4 16.6 30.0 10.1 60.7 18.0 33.3 13.1 50.4 17.2
VCD + CNS 24.3 7.6 54.3 16.3 30.0 10.1 60.6 17.7 33.1 12.3 49.8 16.6
M3ID 21.4 6.4 56.6 15.8 31.1 10.5 62.3 18.2 32.3 11.9 49.8 17.4
M3ID + CNS 20.7 6.2 55.9 15.3 31.1 10.2 61.9 17.9 32.2 11.7 49.2 16.6
ONLY 20.1 6.3 49.9 14.7 23.9 8.3 52.5 15.7 27.7 8.6 48.1 14.4
ONLY + CNS 19.7 5.7 49.6 14.6 23.4 7.7 52.4 15.3 27.0 7.8 47.4 14.1

Table 4: Results on MME-Hallucination.
Method

Object-level Attribute-level
MME Score ↑

Existence ↑ Count ↑ Position ↑ Color ↑
Regular 185.00 126.67 128.33 148.33 588.33
Regular + CNS 187.00 127.33 129.67 149.33 593.33
VCD 185.00 136.67 128.33 158.33 608.33
VCD + CNS 186.00 138.67 131.67 159.33 615.67
M3ID 190.00 136.67 128.33 158.33 613.33
M3ID + CNS 191.00 138.33 129.67 159.67 618.67
ONLY 190.00 143.33 133.33 148.33 614.99
ONLY + CNS 191.00 144.33 134.67 149.67 619.67

Table 5: Ablations studies on CNS components.
Strategy

POPE ↑ CHAIR ↓
Acc. Prec. Rec. F1 CHAIRS CHAIRI

Regular 84.63 83.07 87.00 84.99 26.5 9.4
+SAE 84.63 83.07 87.00 84.99 26.5 9.4
+CNR 84.87 83.45 87.01 85.19 26.2 9.2
+ANC 85.00 83.66 87.01 85.30 25.9 8.9
+ANS(full CNS) 85.10 83.77 87.07 85.39 25.7 8.8
+Zeroing #3833 85.03 83.73 87.02 85.34 25.9 8.9

CNS Components. We progressively add components to the baseline LVLM: (i) Baseline, the un-
modified model; (ii) +SAE, using only SAE-reconstructed features; (iii) +ANC, adding adaptive
neuron constraints; (iv) +ANR, further applying adaptive neuron regulation; (v) +ANS, incorporat-
ing always-on neuron suppression, which constitutes the full CNS; (vi) + Zeroing #3833, setting
neuron #3833 to zero. As shown in Tab. 5, +SAE preserves baseline performance, confirming faith-
ful reconstruction. Adding ANC, ANR, and ANS yields incremental gains. However, explicitly
suppressing neuron #3833 leads to a slight performance drop, indicating that only neurons lacking
fine-grained semantic meaning should be removed. The full configuration achieves the strongest
hallucination mitigation, demonstrating the effectiveness of our design.

For more analysis, experiments, and visualizations, please refer to the appendix.

7 CONCLUSION

In conclusion, we present a representation-level approach to understanding and mitigating halluci-
nations in LVLMs. We show how image noise perturbs internal monosemantic neurons, reshapes
visual semantics, and exacerbates hallucinations. Our CNS amplifies meaningful neurons while sup-
pressing perturbation-induced activations for hallucination mitigation. Furthermore, it enables in-
terpretable and controllable neuron-level interventions, providing both practical benefits and deeper
mechanistic insights into LVLMs’ internal visual representations and hallucinations.
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A ADDITIONAL NEURON VISUALIZATIONS

Fig. 7 presents additional examples of neurons discovered by our sparse autoencoder (SAE). Many
neurons exhibit strong associations with concrete objects or concepts, such as #14174 for corn,
#46469 for oranges, and #61697 for dogs wearing Christmas hats. Beyond object-level semantics,
some neurons capture more abstract structural cues, such as #62747, which consistently responds to
spiral or fan-shaped patterns. These examples demonstrate the richness and diversity of the learned
neuron space, ranging from fine-grained objects to higher-level structural abstractions. Such diver-
sity not only enhances the interpretability of internal visual representations but also provides a strong
foundation for precise neuron-level interventions, thereby facilitating both mechanistic understand-
ing and controllable steering of LVLM outputs.

B NOISE-INDUCED DISRUPTION OF INTERNAL VISUAL FEATURES LEADING
TO HALLUCINATIONS

In Sec. 4, we quantitatively analyzed how noise perturbs internal visual features, causing neuron ac-
tivations to shift and destabilize. These disruptions reshape the semantics of visual representations,
inducing hallucinations and degrading LVLM performance (see Fig. 5).

To illustrate this phenomenon more intuitively, Fig. 8 shows an example image containing a camera.
As increasing levels of noise are applied, the activation of the “camera” neuron gradually dimin-
ishes. Correspondingly, the LVLM output exhibits a progressive semantic drift: initially describing
a “black Konica Minolta camera with a large lens,” then simplifying to “camera with a large lens,”
and eventually omitting the camera entirely. This case demonstrates how noise-induced disruptions
at the neuron level directly erode semantic fidelity in visual features, ultimately manifesting as hal-
lucinations in model outputs.

Importantly, this example underscores the value of SAEs: by decomposing dense visual embed-
dings into sparse, monosemantic neurons, we gain the ability to trace how specific semantic con-
cepts evolve under perturbations. This neuron-level perspective provides interpretability and ana-
lytical clarity, enabling us to pinpoint which neurons are destabilized and how this relates to output
degradation. Such insights establish a principled foundation for designing targeted interventions to
mitigate hallucinations and improve LVLM reliability.

C HIGH-FREQUENCY NEURON ANALYSIS AND VISUALIZATION

To gain deeper insights into the functional roles of individual neurons in LVLM visual representa-
tions, we perform both image-level and patch-level analyses. These qualitative results complement
the quantitative findings in Sec. 4, providing a more intuitive understanding of how neurons encode
semantic information.

Image-Level Analysis and Visualizations. Fig. 9 highlights neurons with consistently high ac-
tivation across different images. We observe that a small subset of “always-on” neurons remain
persistently active regardless of image content, often encoding recurring textures or repetitive small
objects rather than scene-specific information. The bottom panel further visualizes the top-activated
images for each neuron, confirming that these neurons capture similar global patterns across diverse
inputs. Within CNS, we reduce their disproportionate influence via Always-on Neuron Suppression
(ANS), which decreases redundancy, emphasizes image-specific content, and improves the inter-
pretability of downstream neuron-level interventions.

Patch-Level Analysis and Visualizations. Fig. 10 illustrates neuron activations at the patch level.
Unlike always-on neurons, most patch-level neurons respond reliably to localized, semantically
meaningful concepts, such as distinctive textures or object parts. This indicates that individual neu-
rons often encode interpretable, fine-grained features, which are particularly well-suited for targeted
interventions. By selectively modulating these neurons, we can directly influence which visual
concepts are emphasized or suppressed in LVLM outputs, enabling fine-grained and interpretable
control.
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Summary. Together, the image-level and patch-level analyses reveal a dual organization of neuron
activations: broadly active global features and selectively tuned local features. This dual perspective
underpins our CNS approach, where targeted neuron-level interventions enable controllable and
interpretable mitigation of hallucinations, while also deepening mechanistic insights into LVLM
visual processing.

D MORE COMPLEX AND DIVERSE CASES FOR STEERING LVLMS

We further present diverse and challenging case studies to illustrate how neuron-level steering en-
ables fine-grained and interpretable control in LVLMs. These examples highlight not only the fea-
sibility of manipulating specific concepts but also the varying levels of difficulty imposed by scene
complexity and semantic distribution across neurons.

Multi-Concept Suppression. Fig. 11 shows a scene containing multiple objects (dog and chair).
By suppressing the neurons corresponding to each object, we can selectively remove them from
generated captions or descriptions. Interestingly, the difficulty of suppression varies across concepts.
Suppressing “chair” neurons is relatively straightforward, with a weight of α = −30 sufficient
to eliminate chairs from outputs. In contrast, suppressing “dog” neurons requires much stronger
intervention, sometimes leaving residual references until α = −100 fully removes them. Closer
inspection reveals that the SAE encodes a hierarchy of dog-related concepts (e.g., different breeds),
making suppression more challenging when the concept is distributed across multiple fine-grained
neurons.

Concept Insertion in Simple and Complex Contexts. We also examine concept insertion across
scenes of different complexity. As shown in Fig. 12, inserting a dog concept into a simple bird-
dominated scene requires only a modest weight (α = 50) for the concept to appear in outputs.
However, inserting the same concept into a more complex scene containing multiple objects de-
mands a much larger weight (α = 500) to manifest reliably. This contrast underscores how scene
complexity significantly affects the intervention strength required for successful concept insertion.

Multi-Neuron Steering in Complex Contexts. In highly complex visual scenes, steering a single
dog-related neuron requires very large weights (e.g., α = 500) before the concept emerges in outputs
(Fig. 13). By contrast, jointly adjusting three dog-related neurons with smaller weights (α = 20
each) produces a more natural and robust insertion. A similar pattern is observed for suppression
(Fig. 14): targeting a single neuron requires extreme negative weights (e.g., α = −100), whereas
coordinated modulation of three neurons with smaller magnitudes (α = −10 each) removes the
concept more effectively and smoothly. These findings highlight the superior stability and efficiency
of multi-neuron steering, providing strong support for our CNS design, which automatically selects
and adjusts multiple neurons to achieve reliable fine-grained control.

Summary. Across multi-concept suppression, concept insertion, and multi-neuron steering, we
find that the effectiveness of interventions depends critically on both the semantic distribution of
concepts across neurons and the contextual complexity of the scene. These case studies collectively
validate neuron-level steering as a powerful and interpretable mechanism for controlling LVLM
behavior in diverse scenarios.

E ADDITIONAL ABLATION STUDIES

We conduct ablation studies to examine the influence of key hyperparameters and neuron-level com-
ponents in Contrastive Neuron Steering (CNS). All experiments are performed on the POPE and
CHAIR benchmarks using LLaVA-1.5.

E.1 ABLATION ON CONTRASTIVE REGULARIZATION WEIGHT λ
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Table 6: Ablation study on the contrastive regu-
larization weight λ.

λ
POPE ↑ CHAIR ↓

Acc. Prec. Rec. F1 CHAIRS CHAIRI

0.25 85.17 83.78 87.19 85.45 25.8 8.9
0.5 85.20 83.85 87.20 85.49 25.7 8.8
0.75 85.13 83.71 87.17 85.41 25.8 8.9
1.0 84.87 83.38 87.25 85.27 26.1 9.1
2.0 84.77 83.14 87.29 85.17 26.2 9.2

To evaluate how the strength of contrastive neu-
ron steering affects hallucination suppression
and content preservation, we vary the weight
λ of Contrastive neuron regulation (CNR) over
0.25, 0.5, 0.75, 1.0, 2.0, keeping other param-
eters at default. As shown in Tab. 6, a moder-
ate value of λ = 0.5 achieves the best trade-
off, demonstrating the effectiveness of CNS in
balancing hallucination reduction and perfor-
mance retention.

E.2 ABLATION ON PLAUSIBILITY THRESHOLD τ

Table 7: Ablation study on the plausibility thresh-
old τ .
λ

POPE ↑ CHAIR ↓
Acc. Prec. Rec. F1 CHAIRS CHAIRI

0.001 85.13 83.74 87.10 85.39 25.9 9.1
0.01 85.20 83.82 87.17 85.46 25.8 8.9
0.1 85.20 83.85 87.20 85.49 25.7 8.8
0.2 85.17 83.83 87.12 85.44 25.8 8.9
0.3 85.10 83.68 87.09 85.35 25.9 9.1

We vary the adaptive neuron magnitude thresh-
old τ of Adaptive neuron constraints (ANC)
over 0.001, 0.01, 0.1, 0.2, 0.3 to examine its
impact on CNS performance. Other parameters
remain at default. Tab. 7 shows that τ = 0.1
achieves the best balance, effectively filtering
weak neuron signals while retaining salient vi-
sual features, confirming the robustness of our
method.

E.3 ABLATION
ON TOP-k NEURONS FOR ANS

Table 8: Ablation study on the number of top-k
neurons for ANS.

Top-k Acc. Prec. Rec. F1 CHAIRS CHAIRI

10.0 85.20 83.84 87.19 85.48 25.8 8.9
20.0 85.20 83.85 87.20 85.49 25.7 8.8
30.0 85.17 83.83 87.12 85.44 25.8 8.9
40.0 85.16 83.82 87.06 85.41 25.9 9.1

To evaluate the effect of the number of top-
k neurons in Always-on Neuron Suppression
(ANS), we vary k over 10, 20, 30, 40. Tab. 8
shows that k = 20 provides the optimal trade-
off, effectively suppressing generic neurons
without removing informative, image-specific
signals.

E.4 ABLATION ON NOISE STEPS IN
ADAPTIVE CONSTRAINTS

Table 9: Effect of denoising steps in adaptive
plausibility constraints.

Steps Acc. Prec. Rec. F1 CHAIRS CHAIRI

0 85.00 83.61 87.07 85.30 26.5 9.4
100 85.17 83.97 86.93 85.42 26.4 9.2
200 85.10 83.86 86.93 85.37 26.2 9.3
300 85.13 83.87 87.00 85.41 26.1 9.1
400 85.20 83.89 87.13 85.48 26.0 8.9
500 85.20 83.85 87.20 85.49 25.7 8.8
600 85.20 83.63 87.53 85.54 25.9 8.9
700 85.10 83.51 87.47 85.44 26.2 9.1
800 85.07 83.42 87.53 85.43 26.3 9.2
900 84.73 83.02 87.33 85.12 26.6 9.4
999 84.93 83.25 87.47 85.31 26.9 9.6

We investigate how the number of denoising
steps in the adaptive plausibility constraint af-
fects neuron stability and hallucination reduc-
tion, testing steps from 0 to 999. Tab. 9 shows
that increasing the number of steps improves
stability and reduces hallucinations, with 500
steps achieving the best performance while bal-
ancing computational cost.
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#42325 #44141 #46469 #47852 #48486 #49733

#1777 #2770 #4817 # 6958 #8773 #9983

#10874 #12158 #14172 #16286 #18394 #19718

#52818 #53834 #55841 #56849 #57874 #59891

#21356 #21955 #23830 #25970 #27906 #29972

#31864 #34599 #36896 #37989 #39768 #40792

#60993 #61697 #62747 #63271 #64619 #65042
Figure 7: Additional visualizations of monosemantic neurons learned by the SAE. The neu-
rons exhibit diverse semantics, ranging from specific objects (e.g., corn #14174, oranges #46469,
Christmas-hat dogs #61697) to abstract structural patterns (e.g., spirals or fan-like shapes #62747).
This diversity demonstrates the interpretability of the internal representation space and provides a
strong foundation for explaining and steering LVLMs through neuron-level interventions.
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The image features a black Konica 
Minolta camera with a large lens, 
sitting on a white surface. The 
camera… possibly a DSLR…

𝛼𝛼 = 10.352
𝑡𝑡 = 200

The image features a close-up of a 
camera lens, showcasing the lens 
and its surroundings. …The camera 
lens appears to be a part of a larger 
camera, possibly …𝛼𝛼 = 7.217

𝑡𝑡 = 700

The image features a black Konica 
Minolta camera with a large lens, 
sitting on a white background. The 
camera… possibly a Dynax 7 …𝛼𝛼 = 10.607

𝑡𝑡 = 100

The image features a close-up of a 
camera lens, showcasing the front 
of the camera. The lens is the main 
focus of the image, with the 
camera's body not visible. 𝛼𝛼 = 8.531

𝑡𝑡 = 600

The image features a black Konica 
Minolta camera with a large lens, 
sitting on a white surface. The 
camera… possibly a DSLR…𝛼𝛼 = 10.318

t = 300

The image features a close-up of a 
camera lens, showcasing the 
intricate details of the lens. The lens 
is positioned in the center of the 
image…𝛼𝛼 = 5.502

𝑡𝑡 = 800

The image features a close-up of a 
black digital camera with a large 
lens. The camera… The camera 
appears to be a Nikon model, and it 
is set to take a picture.𝛼𝛼 = 9.968

𝑡𝑡 = 400

The image features a close-up of a 
colorful, patterned object, possibly 
a piece of art or a decorative item. 
The object is surrounded by a 
variety of colors and patterns…𝛼𝛼 = 2.118

𝑡𝑡 = 900

The image features a close-up of a 
black digital camera with a large 
lens. The camera… The camera 
appears to be a Nikon model, and it 
is set to take a picture.𝛼𝛼 = 9.409

𝑡𝑡 = 500

The image features a close-up of a 
colorful, circular object with a 
patterned surface. The object 
appears to be a piece of art or a 
decorative item…𝛼𝛼 = 0.827

𝑡𝑡 = 999

The image features a black Konica Minolta camera 
with a large lens, sitting on a white background. The 
camera is positioned in the center of the frame, and the 
lens is prominently displayed. The camera appears to be 
a professional model, possibly a DSLR…

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝛼𝛼 = 10.827

Figure 8: Example of noise affecting visual feature representations. The image contains a camera.
As noise increases, the activation of the “camera” neuron gradually decreases, and the LVLM output
progressively loses detail: from “black Konica Minolta camera with a large lens” to “camera with a
large lens,” and finally no camera description. This demonstrates how noise disrupts internal seman-
tic representations, leading to hallucinations. It also highlights the advantage of SAEs in decoupling
dense LVLM features into sparse, monosemantic neurons, allowing us to track and analyze internal
visual feature changes at the neuron level.
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#2026 #2652 #2808 #2875 #998

#4039 #4047 #2105 #3833 #2039

#628 #2729 #1341 #819 #1554

#1736 #155 #1981 #760 #4077

Figure 9: Image-Level Dominance Analysis and Visualization. The top panel shows neurons with
consistently high activation rates across different images. The bottom panel visualizes the top-
activated images for each neuron. These “always-on” neurons often correspond to recurring textures
or small objects and represent similar global information. Red highlights indicate neurons selected
for suppression in CNS via ANS. Suppressing these neurons emphasizes image-specific objects,
providing an interpretable basis for our method.
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#3833 #0 #1 #2 #3

#4 #1341 #5 #6 #4039

#7 #8 #9 #10 #1736

#11 #1631 #12 #13 #1518

Figure 10: Patch-Level Activation Analysis and Visualization. At the patch level, neurons often
capture concrete, localized concepts. Activation patterns show that most neurons reliably represent
specific visual features, supporting fine-grained neuron-level interventions.
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𝛼𝛼 = −10

𝛼𝛼 = −20

𝛼𝛼 = −30

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

The image features a large brown dog sitting comfortably in a 
green folding chair. The chair…

The image features a large brown dog sitting on a green
chair. The chair …

The image features a large, brown dog sitting on top of a 
green chair. The chair …

The image features a large, furry dog sitting on a couch. The 
dog is positioned in the center of the scene…

"Describe this photo in 
detail."

Neuron #29:

(Other “dog” related Neurons)

𝛼𝛼 = −10

𝛼𝛼 = −20

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛼𝛼 = −50

𝛼𝛼 = −100

The image features a large brown dog sitting comfortably in 
a green folding chair. The dog appears to be enjoying… 

The image features a small dog sitting in a folding chair… 
and it seems to be enjoying its time in the chair.…

The image features a man sitting in a chair, with a large 
water bottle placed next to him. The man …

The image features a small dog sitting in a folding chair… 
and is comfortably seated in the chair. …

The image features a small black chair placed in the center 
of the scene. The chair…a person sitting on the black chair.

Neuron #39:

Figure 11: Multi-concept suppression. Suppressing “chair” neurons effectively removes chairs from
model outputs. Suppressing “dog” neurons is more challenging, requiring stronger intervention
since the SAE has learned a hierarchy of dog-related concepts (e.g., different breeds). This highlights
the difficulty of eliminating concepts encoded in multiple fine-grained neurons.

"Describe this photo 
in detail."

𝛼𝛼 = 10

𝛼𝛼 = 20

𝛼𝛼 = 50

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Neuron #39:

The image features a beautiful brown and yellow bird perched 
on a wooden surface, possibly a fence or a table. The bird is…

The image features a large, brown, very large, dog standing 
in the middle of a field. The dog appears to…

The image features a small bird perched on a bird feeder, 
surrounded by a variety of birdseed. The bird is…

The image features a small bird perched on a bird feeder, 
surrounded by a variety of birdseed. The bird is…

"Describe this photo 
in detail."

𝛼𝛼 = 50

𝛼𝛼 = 300
𝛼𝛼 = 500

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Neuron #39:

The image features a woman standing in a room, wearing a 
dress. She is positioned in the middle of the scene…

The image features a large, white dog standing on a beach. 
The dog is positioned near the center of the scene…

The image features a woman with a tattoo, standing in a room 
with a brown wall. She is we is wearing a brown shirt …

The image depicts a cozy living room with a dining table in 
the center. The table is surrounded by several chairs…

…

Figure 12: Concept insertion in simple contexts. By slightly amplifying a single dog-related neuron,
the model begins to hallucinate the presence of dogs in unrelated scenes. Compared to suppression,
concept insertion is easier: small weights suffice to introduce the new concept.
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"Describe this photo 
in detail."

𝛼𝛼 = 50

𝛼𝛼 = 300
𝛼𝛼 = 500

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Neuron #39:

The image features a woman standing in a room, wearing a 
dress. She is positioned in the middle of the scene…

The image features a large, white dog standing on a beach. 
The dog is positioned near the center of the scene…

The image features a woman with a tattoo, standing in a room 
with a brown wall. She is we is wearing a brown shirt …

The image depicts a cozy living room with a dining table in 
the center. The table is surrounded by several chairs…

Neuron #39, #242, #251:

𝛼𝛼 = 10

𝛼𝛼 = 20

𝛼𝛼 = 50

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

The image features a woman standing in a room with a TV on 
the wall. A dog is also appears to be present in the room.

The image features a person holding, likely a woman, and a 
dog. She ...

The image depicts a woman standing in a room, she is 
positioned near a dining table, which is surrounded by chairs.

The image depicts a cozy living room with a dining table in 
the center. The table is surrounded by several chairs…

"Describe this photo 
in detail."

…

Figure 13: Concept insertion in complex contexts. (a) Steering with a single dog-related neuron
requires a very large weight (α = 500) to produce visible effects. (b) Coordinated steering of three
dog-related neurons with smaller weights (α = 20 each) yields natural insertions. This demonstrates
the advantage of multi-neuron steering and motivates our CNS approach.

"Describe this photo in 
detail."

𝛼𝛼 = −10

𝛼𝛼 = −20

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛼𝛼 = −50

𝛼𝛼 = −100

The image features a large brown dog sitting comfortably in 
a green folding chair. The dog appears to be enjoying… 

The image features a small dog sitting in a folding chair… 
and it seems to be enjoying its time in the chair.…

The image features a man sitting in a chair, with a large 
water bottle placed next to him. The man …

The image features a small dog sitting in a folding chair… 
and is comfortably seated in the chair. …

The image features a small black chair placed in the center 
of the scene. The chair…a person sitting on the black chair.

Neuron #39:

Neuron #39, #242, #251:

"Describe this photo in 
detail."

𝛼𝛼 = −10

𝛼𝛼 = −20

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛼𝛼 = −30

𝛼𝛼 = −50

The image features a large brown dog sitting comfortably in 
a green folding chair. The dog appears to be enjoying… 

The image features a small, cozy chair placed in the center of 
a room. The chair is positioned on a blue rug …

The image features a large, empty room with a few items 
scattered around. A few other chairs…but they are not in use.

The image features a small dog sitting in a folding chair, 
which is placed on a white background. The dog appears to…

The image features a small, cozy room with a comfortable 
chair placed in the center of the space. The chair is …

Figure 14: Concept suppression in complex contexts. (a) Suppressing a single dog-related neuron
requires a very large negative weight (α = −100) before the concept disappears from outputs. (b)
Jointly suppressing three dog-related neurons with smaller weights (α = −10 each) removes the
concept more naturally and reliably, illustrating the effectiveness of multi-neuron steering.
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Table 10: Results of the newer and stronger LLaVA-Next and LLaVA-OneVision models on the
POPE benchmark, following SECOND’s setup.

Model LLM Method F1 (↑)
MSCOCO OKVQA GQA

LLaVA-Next

Vicuna-7B

baseline 86.5 88.8 86.3
(CLIP-336) baseline + CNS (ours) 87.0 89.3 86.8

VCD 87.3 88.6 84.9
SECOND 87.5 89.1 86.3
SECOND + CNS (ours) 88.2 90.2 87.1

LLaVA-OneVision

Qwen2-0.5B

baseline 87.4 88.7 86.3
(SigLIP-384) baseline + CNS (ours) 87.9 89.2 86.8

VCD 86.4 88.9 86.4
SECOND 86.3 88.1 86.7
SECOND + CNS (ours) 87.1 89.6 87.6

Table 11: Results of the more recent and stronger Qwen2.5-VL on the POPE benchmark, following
MFCD’s setup.

Model Decoding F1 Score (↑)
Random Popular Adversarial

Qwen2.5-VL

Sample (base) 80.03 78.93 80.03
Sample + CNS (ours) 80.61 79.52 80.58
Dola 77.46 77.43 77.47
VCD 81.39 79.91 79.98
SID 79.95 79.38 78.82
MFCD (ours) 82.91 82.01 81.75
MFCD + CNS (ours) 83.45 82.54 82.29

F REBUTTAL

F.1 EVALUATION ON MORE METHODS AND MODELS

To further verify the generality and robustness of VDC, we extend our evaluation to a broader set
of hallucination mitigation methods, including DoLA (Chuang et al., 2023), OPERA (Huang
et al., 2023), VCD (Leng et al., 2024), Woodpecker (Yin et al., 2023), LURE (Zhou et al., 2023),
HALC (Chen et al., 2024), CODE (Kim et al., 2024b), EAH (Zhang et al., 2024b), VHR (He et al.,
2025), AD-HH (Yang et al., 2025b), SID (Huo et al., 2024), SECOND (Park et al., 2025b), and
MFCD (Liu et al., 2025), as well as diverse LVLM architectures, including MiniGPT-4 (Zhu et al.,
2023), mPLUG-Owl2 (Ye et al., 2024), and the more recent and stronger LLaVA-Next (Liu et al.,
2024c), LLaVA-OneVision, (Li et al., 2024) and Qwen2.5-VL (Bai et al., 2025). We evaluate these
models on both the POPE and CHAIR benchmarks.

As shown in Tabs. 10, 11, 12, and 14, our proposed CNS consistently improves performance across
different decoding strategies and hallucination mitigation methods. Specifically, CNS reduces hal-
lucination rates (lower CHAIRS and CHAIRI scores) while maintaining or improving captioning
quality (higher F1 and BLEU scores), demonstrating its effectiveness across a wide range of LVLM
architectures and mitigation strategies. These results confirm that CNS is a generally applicable
and robust module for enhancing the reliability of open-ended visual question answering and image
captioning tasks.

F.2 EVALUATION ON MORE CHALLENGING BENCHMARKS

We further evaluate our CNS method on several recently proposed, more challenging benchmarks
to assess its robustness and generality.
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Table 12: Results of the newer and stronger LLaVA-Next with a maximum token length of 128 on
CHAIR Benchmark, following the VHR’s setup.

Method CHAIRs ↓ CHAIRi ↓
Greedy 29.08±2.09 8.08±0.74
Greedy + CNS (ours) 28.22±1.82 7.26±0.56
DoLa 28.76±2.58 8.12±0.78
VCD 30.80±2.48 8.72±0.94
CODE 27.84±2.73 7.98±0.92
EAH 28.13±1.13 6.62±0.49
VHR 24.96±2.09 6.80±0.59
VHR + CNS (ours) 24.42±1.68 6.28±0.36

Table 13: Following the evaluation protocol of AD-HH, we report results of CHAIRS and CHAIRI

on COCO and Nocaps (out-of-domain) image captioning tasks, where lower scores indicate better
performance. Our method yields strong improvements over existing approaches and can be seam-
lessly combined with AD-HH, achieving further reductions in hallucination rates.

Methods COCO Nocaps (Out-of-Domain)

LLaVA-7B MiniGPT-4 LLaVA-7B MiniGPT-4
CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy 51.8 13.3 40.6 13.7 43.2 14.3 57.4 20.0
Greedy + CNS (ours) 49.6 12.2 40.4 13.2 39.6 13.4 53.8 18.2
DoLA 53.8 13.9 41.0 13.8 42.0 13.7 57.2 20.4
OPERA 50.2 14.5 35.2 12.8 44.2 14.4 46.2 16.2
VCD 55.4 15.7 38.8 14.8 43.6 14.4 48.2 17.5
LURE 51.2 13.4 46.4 14.2 41.8 14.4 55.8 19.6
HALC 50.2 12.4 36.4 11.8 40.2 12.2 53.0 18.0
AD-HH 29.6 8.0 35.2 11.7 35.6 9.4 46.8 16.2
AD-HH + CNS (ours) 28.9 7.8 34.6 11.3 35.1 9.1 46.2 15.6

AMBER (Wang et al., 2023). We adopt the generative subset of the AMBER, where models gener-
ate captions in response to the prompt “Describe the image.” We measure hallucinations and caption
quality using four metrics: CHAIR detects objects mentioned in the caption that are absent from the
annotated descriptions, Cover measures the completeness of object coverage, Hal quantifies the hal-
lucination rate, and Cog evaluates whether hallucinations resemble human-like patterns. To reduce
computational costs for adversarial evaluation, we sample 50 images from this subset.

MMHal-Bench (Sun et al., 2023). This benchmark evaluates LVLMs from multiple perspectives,
including attributes, relations, and counting. It assesses both hallucination rates and overall infor-
mativeness of the generated responses. An automatic GPT-4 evaluator compares model outputs to
human-written references and ground truth object labels, ensuring a comprehensive assessment of
visual understanding.

HallusionBench (Guan et al., 2024). Designed to test image-context reasoning, HallusionBench
comprises 346 images and 1129 carefully crafted questions. It challenges LVLMs on nuanced visual
reasoning, including GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5.

Across all three benchmarks (Tables 15,16 and 17), applying CNS consistently improves perfor-
mance over baseline and other mitigation methods. These results demonstrate that CNS effectively
reduces hallucinations and enhances reasoning and coverage in even more complex and diverse
evaluation settings.

F.3 MORE CASES ILLUSTRATING THE LINK BETWEEN HALLUCINATIONS AND NEURON
ACTIVATIONS

Fig. 15 and Fig. 16 further demonstrate how hallucinations in LVLMs arise from abnormal or com-
peting neuron activations under different captioning or questioning conditions, and how targeted
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Table 14: Results of CHAIR Benchmark for various LVLMs using different decoding models and
methods, following HALC’s setup. Lower CHAIRS and CHAIRI scores indicate fewer hallucina-
tions, while higher BLEU scores generally correspond to better captioning quality.

Method MiniGPT-4 LLaVA-1.5 mPLUG-Owl2
CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑

Greedy 30.87±5.45 12.33±2.07 14.33±0.00 20.80±0.08 6.77±0.07 15.93±0.00 23.20±0.35 8.33±0.28 15.37±0.00
Greedy + CNS(ours) 30.52±3.82 12.05±1.65 14.58±0.00 20.42±0.07 6.55±0.06 16.28±0.00 22.85±0.28 8.08±0.21 15.69±0.00
DoLA 30.87±2.52 11.70±0.13 14.93±0.00 21.00±0.67 6.70±0.38 15.93±0.00 24.60±0.24 8.73±0.30 15.40±0.00
OPERA 30.00±0.43 11.67±0.22 14.87±0.00 21.13±0.12 6.73±0.18 16.27±0.01 22.13±0.86 7.57±0.16 15.53±0.00
Woodpecker 28.87±2.20 10.20±0.85 15.30±0.01 23.85±4.62 7.50±0.01 17.05±0.00 26.33±1.98 8.43±0.80 16.43±0.00
LURE 27.88±2.25 10.20±0.85 15.03±0.11 19.48±2.35 6.5±0.38 15.97±0.01 21.27±0.06 7.67±0.16 15.65±0.05
VCD 30.27±0.44 12.60±0.45 14.33±0.00 23.33±5.66 7.90±0.53 14.67±0.01 27.27±7.32 9.73±1.22 14.40±0.00
HALC 17.80±0.03 8.10±0.14 14.91±0.00 13.80±0.08 5.50±0.14 16.10±0.01 17.33±4.30 7.43±0.11 16.27±0.00
HALC + CNS(ours) 17.35±0.02 7.70±0.12 15.25±0.00 13.30±0.07 5.15±0.12 16.45±0.01 16.70±3.80 7.05±0.09 16.65±0.00

Table 15: MMHal-Bench evaluates LVLMs on multiple aspects of visual understanding, including
object attributes, relations, and counting. Metrics include Average Score (overall informativeness,
higher is better) and Hallucination Rate (percentage of incorrect or hallucinated content, lower is
better).

Method MMHal-Bench

Average Score ↑ Hallucination Rate ↓
baseline 1.86 63.5
baseline + CNS (ours) 2.09 54.8
VCD 2.12 54.2
VCD + CNS (ours) 2.28 53.6
OPERA 2.33 50.0
Less-is-more 2.15 54.2
VACoDe 2.13 54.4

neuron modulation provides a principled way to suppress spurious signals and improve factual reli-
ability.

In the black-apple case (Fig. 15), the model is asked a factual attribute question: “What is the
color of the apple?”. Although the image clearly contains a black apple, the model incorrectly
answers “red.” This error originates from the activation patterns inside the model. Neuron 2836,
which is associated with red strawberries, shows unusually strong activation that overwhelms the
evidence coming from apple-related neurons. This dominance causes the model to prioritize an
irrelevant concept, leading to the hallucinated prediction. By suppressing neuron 2836 or enhancing
apple-specific neurons 3085 and 1941, the activation distribution shifts toward the correct concept,
enabling the model to output the accurate color “black.” This case illustrates that hallucinations can
emerge when irrelevant semantic units become overly activated and that controlling specific neurons
helps restore proper grounding.

In the sheep and dog case (Fig. 16), the model is first asked to describe the image and successfully
identifies the sheep as the primary object because sheep-related neurons exhibit strong and focused
activation. However, because the sheep is partially occluded, neurons associated with other animals,
such as the dog, are also activated. These extra activations do not affect general captioning, where
the model only needs to describe the main scene. However, when the prompt shifts to a concept-
specific question such as “Is there a dog in the image?”, the residual activation of the dog-related
concept becomes influential enough to mislead the model into answering “yes.” After suppressing
the dog-related neuron 2480 by setting its weight to a strongly negative value, the model correctly
responds “no.” This case shows that even mild unintended activation of unrelated concepts can pro-
duce hallucinations under targeted queries and that neuron-level control is effective in suppressing
such spurious signals.

Together, these examples reveal a consistent pattern. Hallucinations often arise when semantically
irrelevant neurons receive excessive activation or when competing concepts are inadvertently trig-
gered by visual ambiguity or occlusion. By adjusting the activations of specific neurons, either by
suppressing misleading semantic units or by amplifying the correct ones, the model’s internal rep-
resentation becomes more aligned with ground-truth visual evidence, resulting in more reliable and
factual outputs.
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Table 16: AMBER benchmark focuses on generative captioning hallucinations. Key metrics are
CHAIR (detects objects mentioned in captions that do not exist in the image, lower is better), Cover
(measures completeness of ground truth object coverage, higher is better), Hal (hallucination rate,
lower is better), and Cog (evaluates human-like hallucination patterns, lower is better).

Method CHAIR (↓) Cover (↑) Hall (↓) Cog (↓)
Regular 7.8 51.0 36.4 4.2
Regular + CNS (ours) 7.2 51.8 34.1 3.8
VCD 7.5 50.8 36.2 4.1
VCD + CNS (ours) 7.1 51.6 33.2 3.4
OPERA 7.3 49.6 32.0 3.5
DoLA 7.6 51.6 36.0 4.0
Woodpecker 6.9 48.9 30.4 3.6
M3ID 7.4 49.9 33.2 3.7

Table 17: HallusionBench measures LVLM performance on complex image-context reasoning tasks.
Metrics include Question Pair Accuracy (consistency between related questions), Figure Accuracy
(reasoning on figures), Easy Question Accuracy, Hard Question Accuracy, and Overall Question
Accuracy. Higher values indicate better reasoning performance.

Model Q. Pair Acc Figure Acc Easy Q. Acc Hard Q. Acc Question Acc
LLaVA-1.5 (GPT Eval) 10.55 24.86 49.67 29.77 46.94
+ VCD 10.92 25.13 49.88 30.05 47.12
+ CNS (ours) 11.10 25.30 50.02 30.21 47.25
+ VCD + CNS (ours) 11.35 25.58 50.19 30.44 47.38

F.4 ABLATION ON SAE SCALE

Table 18: Ablation study on the effect of scaling
the SAE.

Expand factor Acc. F1 CHAIRS CHAIRI

64 85.20 85.49 25.7 8.8
128 87.43 87.56 22.4 7.2
192 88.28 88.34 20.6 6.4
256 89.09 89.18 19.4 5.6

Since the SAE architecture consists of only two
linear layers, one for encoding and one for de-
coding, scaling is achieved by increasing the di-
mensionality of these layers. Beyond our de-
fault setting of 64, we tested expansion factors
of 128, 192, and 256. As shown in Table 18,
increasing the expansion factor generally im-
proves performance and enhances hallucination
mitigation. However, the gains diminish as the
expansion factor grows larger because training
SAEs with very high dimensionalities is more challenging. In particular, dead neurons, which re-
main inactive during training, become increasingly prevalent at higher dimensions and limit practical
improvements. Fortunately, SAE architectures and training strategies are still evolving. We use the
current state-of-the-art Matryoshka SAE and expect that future advances in SAE design or training
methods may further improve feature disentanglement and reduce hallucinations.

F.5 DISCUSSION AND COMPARISON WITH PREVIOUS APPROACHES THAT EDIT INTERNAL
REPRESENTATIONS OF VLMS

We provide explicit discussion and comparison here. Jiang et al. (Jiang et al., 2025c) leverage
a logits lens technique to project intermediate VLM features into the vocabulary space, enabling
interpretation and editing of internal representations. Their intervention performs global orthogo-
nalization in the latent space during decoding to suppress hallucination-related components. Kaduri
et al. (Kaduri et al., 2025) present a detailed analysis of attention flow in VLMs, examining how
visual information is encoded in query tokens and how cross-modal signals propagate across layers.
Their study is inherently attention-centric and focuses on token-level interventions during decoding,
including knockout experiments on attention modules.
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In contrast, our work provides a complementary perspective. By employing Sparse Autoencoders,
we decompose visual features into fine-grained, interpretable neuron-level components, which al-
lows direct analysis and intervention on the semantic factors underlying hallucinations. Furthermore,
our method operates entirely during the prefill stage, avoiding the need to modify representations at
each decoding step. This results in a efficient, and mechanistically grounded approach that differs
from prior decoding-side editing strategies and can naturally complement them in future studies.
We sincerely thank the reviewers again for highlighting these works, which helped strengthen the
positioning of our contribution.

F.6 DISCUSSION AND COMPARISON WITH STANDARD FINE-TUNING-BASED ROBUSTNESS
TECHNIQUES

Based on common observations, targeted fine-tuning may achieve stronger performance than a
training-free approach. Fine-tuning large LVLMs for hallucination mitigation is generally com-
putationally expensive and time-consuming, which is why training-free mitigation strategies remain
more practical and widely adopted in current literature. In addition, prior work has lacked intu-
itive tools for directly comparing and interpreting internal feature activations, making it difficult to
systematically analyze how perturbations affect the model’s internal representations. This partially
explains why fine-tuning-based robustness studies are rare in LVLM hallucination research.

Our SAE-based framework can be combined with fine-tuning-based robustness techniques, offering
a complementary and highly interpretable perspective. By examining neuron-level activations for
clean versus noisy inputs, we can directly observe how perturbations reshape semantic representa-
tions, an insight that was previously inaccessible. Beyond forcibly aligning entire representations,
SAEs further allow alignment of the top-k core semantic components between clean and noisy in-
puts, ensuring that the model consistently focuses on essential concepts rather than noise-induced
spurious ones.

While combining fine-tuning with our SAE-based analysis would be an excellent and promising
direction for future work, limited computational resources, along with the absence of established
benchmarks and baselines for such LVLM-scale robustness fine-tuning, currently prevent us from
pursuing this direction. Nevertheless, we believe our internal neuron-level approach provides a
unique and valuable angle for understanding and mitigating hallucinations in LVLMs. This is indeed
a valuable direction for future exploration, and we sincerely appreciate the reviewer’s insightful
suggestion.

F.7 DISCUSSION AND COMPARISON WITH REGISTER NEURONS

We are actively exploring potential connections between our always-on neurons and other phenom-
ena such as register neurons (Darcet et al., 2024; Jiang et al., 2025b), massive activations (Sun et al.,
2024), and attention sinks (Xiao et al., 2023; Kang et al., 2025). Intuitively, these phenomena may
be related, as all involve high-norm activations and exhibit input-invariant behavior. In our obser-
vations, always-on neurons typically have activation magnitudes between 10–80, whereas most of
the top-40 neurons are in the 5–15 range. They consistently appear across inputs and primarily
correspond to non-core, global features.

Shared characteristics: input-invariant, globally stable activations

• Activation pattern: persistently active across diverse inputs.
• Input-independence: independent of specific local visual content.
• Global role: encode global computations or statistical factors within the model.

However, there are key differences between always-on neurons and register neurons:

• Origin: Register neurons arise from the outputs of MLPs within a layer, whereas always-on
neurons are extracted via SAE decomposition from the entire output of the layer.

• Distribution and consistency: Register neurons vary in number across images, with ab-
normal activations appearing on a different number of tokens for each input. Always-on
neurons, in contrast, are consistently present in the same set of neurons across nearly all
images, hence the name “always-on”.
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Table 19: Hallucination intervention results following the setup of Jiang et al. (Jiang et al., 2025c)
on InstructBLIP and LLaVA-1.5.

Model Method CHAIRi ↓ CHAIRs ↓

LLaVA-1.5

Greedy 49.2 14.2
Greedy + CNS (ours) 47.6 13.4
Nucleus 55.8 17.1
Nucleus + CNS (ours) 54.6 16.3
Beam Search 52.4 15.0
Beam Search + CNS (ours) 51.8 14.6
OPERA 44.8 12.8
OPERA + CNS (ours) 44.2 12.1
Jiang et al. 42.0 12.2
Jiang et al. + CNS (ours) 41.4 11.8

Table 20: Comparison against both training-free and fine-tuning–based hallucination mitigation
methods on the AMBER benchmark evaluated with LLaVA-1.5-7B. Results are reported in terms of
CHAIR, Hallucination, and Cognitive Hallucination (Cog.), with lower scores indicating improved
hallucination reduction.

Method AMBER
CHAIR ↓ Hal. ↓ Cog. ↓

baseline 8.4 35.5 4.0
baseline + CNS (ours) 7.6 34.2 3.4
VCD (Leng et al., 2024) 9.1 39.8 4.2
VCD + CNS (ours) 8.4 38.2 3.8
OPERA (Huang et al., 2023) 6.5 28.5 3.1
OPERA + CNS (ours) 5.8 27.2 2.8
DoLa (Chuang et al., 2023) 6.2 27.7 2.9
DoLa + CNS (ours) 5.6 26.4 2.3

HA-DPO (Zhao et al., 2023) 6.7 30.9 3.3
EFUF (Xing et al., 2024) 5.8 28.2 3.1
POVID (Zhou et al., 2024b) 5.3 28.7 3.0
CLIP-DPO (Ouali et al., 2024) 3.7 16.6 1.3
RLAIF-V (Yu et al., 2024b) 2.8 15.7 0.9
TPO (He et al., 2024) 3.6 20.5 1.6
SENTINEL (Peng et al., 2025) 2.9 14.6 1.2

• Analysis and interpretability: Always-on neurons can be directly visualized through
SAE, providing intuitive insights into model behavior. Register neurons are primarily ana-
lyzed numerically and interpreted indirectly via their effect on model outputs.

In summary, while both exhibit stable, input-invariant activations, our always-on neurons represent
global latent factors in the feature space, enabling direct and interpretable analysis of internal repre-
sentations. In contrast, register neurons are structural components tied to MLP parameters.

Further exploration: Investigating deeper connections between always-on neurons and phenom-
ena such as register neurons, massive activations, and attention sinks may require carefully designed
experiments. Analyzing SAE factors from a norm-based perspective could also provide valuable in-
sights, complementing traditional magnitude-based analyses. Importantly, SAEs offer a mechanism
to interpret the underlying structure of these persistent or abnormal activations, potentially revealing
why certain neurons consistently exhibit high activation across inputs. This interpretability enables
a more intuitive understanding of these phenomena and represents a promising direction for future
research.
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F.8 COMPARISON AGAINST BOTH TRAINING-FREE AND FINE-TUNING–BASED
HALLUCINATION MITIGATION METHODS

We briefly review several representative hallucination-mitigation fine-tuning techniques. These ap-
proaches vary in supervision format, optimization strategy, and data construction pipeline, offering
a broad landscape of current practice.

• EFUF (Xing et al., 2024). EFUF mitigates hallucinations without requiring paired data
by combining gradient ascent with three specialized loss functions. The method performs
gradient descent on real objects and gradient ascent on hallucinated ones, refining the model
through contrastive adjustment of generation behaviors.

• HA-DPO (Zhao et al., 2023). HA-DPO formulates hallucination mitigation as a prefer-
ence optimization task. Given two responses for the same image, the model is trained to
prefer the non-hallucinated response using a DPO-style loss, augmented with a causal LM
objective for stability. All samples are rewritten with GPT-4 to ensure stylistic consistency.

• POVID (Zhou et al., 2024b). POVID strengthens inferior responses by generating aug-
mented hallucinated samples via GPT-4V and image perturbations. Using 17k preference
pairs, the method fine-tunes LLaVA-1.5-7B to distinguish and avoid hallucinated outputs.

• CLIP-DPO (Ouali et al., 2024). CLIP-DPO replaces human or large-model scoring with
CLIP-based preference signals. It uses CLIP as a reward evaluator to judge which response
aligns better with image content, enabling scalable preference optimization without costly
annotation or GPT judging.

• RLAIF-V (Yu et al., 2024b). RLAIF-V employs “feedback from peer models,” decom-
posing a response into sub-responses and aggregating feedback from smaller models to
reduce reliance on GPT-4. The final model is aligned through four iterative rounds of DPO
training.

• TPO (He et al., 2024). TPO focuses on topic-level hallucinations through self-correction.
It generates best/worst alternatives for each semantic topic using the model itself and con-
structs strong preference pairs via a deconfounded topic replacement process.

• SENTINEL (Peng et al., 2025). SENTINEL performs sentence-level early intervention
to stop hallucinations before they propagate. It detects hallucinated objects using open-
vocabulary detectors, labels faithful vs.hallucinated captions without human annotation,
and applies preference training so the model favors hallucination-free descriptions.

Across these representative fine-tuning approaches, we observe that lightweight preference- or loss-
based methods such as EFUF (Xing et al., 2024), HA-DPO (Zhao et al., 2023), and POVID (Zhou
et al., 2024b) achieve moderate improvements while relying on modest training data and limited
optimization. Their performance is comparable to training-free strategies, indicating that early-stage
fine-tuning alone provides limited hallucination suppression.

In contrast, CLIP-DPO (Ouali et al., 2024), RLAIF-V (Yu et al., 2024b), TPO (He et al., 2024), and
SENTINEL (Peng et al., 2025) introduce newly constructed preference datasets, external scoring
modules, or multi-stage reinforcement-style optimization. Starting from CLIP-DPO, these methods
achieve substantial gains in hallucination reduction, but at the cost of large-scale data generation,
full-model fine-tuning, and multi-stage training.

Importantly, our SAE-based analysis may further improve these pipelines. By decomposing model
representations into sparse, interpretable features, our method reveals which neurons are responsi-
ble for specific hallucination behaviors and why certain failure modes emerge. These insights can
support these fine-tuning approaches in several ways. SAE-identified hallucination-related neurons
highlight characteristic failure patterns, guiding the construction of more targeted and informative
preference datasets. Examining neuron activations before and after each optimization stage can
expose which hallucination behaviors remain unaddressed, providing diagnostics for multi-stage
RL/DPO pipelines. Similarly, applying our neuron-level analyzes or techniques such as the logits
lens analyzes proposed by Jiang et al. (Jiang et al., 2025c) to training data can help analyze under-
performing data regions or training stages that require further refinement.

Some recent works have begun exploring SAE-driven data analysis for both LLMs (Jiang
et al., 2025a; Yona et al., 2025) and LVLMs (Lou et al., 2025), demonstrating the promise of
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Q: What is the color of the apple?
A: The color of the apple is red.

Suppress the 2836 neuron associated with red strawberries.
Q: What is the color of the apple?
A: The color of the apple is black.

Enhance the 3085, 1941 neurons associated with apple.
Q: What is the color of the apple?
A: The color of the apple is black.

Figure 15: The image shows a fruit bowl containing multiple fruits, including a black apple. When
asked “What is the color of the apple?” the model initially answers “red,” reflecting a hallucinated
prediction. This mistake arises because neuron 2836, which is associated with red strawberries
(green boxes), exhibits unusually strong activation that overwhelms the evidence coming from apple-
related neurons (red boxes). After suppressing neuron 2836 or enhancing apple-specific neurons
3085 and 1941, the model correctly outputs “black.” This case illustrates how abnormal activation of
irrelevant semantic units can lead to hallucinations and how targeted modulation of specific neurons
can restore proper visual grounding and factual accuracy, thereby mitigating hallucinations.

representation-level tools in guiding data-centric improvements. Building on these advances, our
framework enables richer analyses from multiple perspectives, including the behavior of different
neuron types and their roles in hallucination emergence, thereby offering new interpretative angles
for understanding and improving model training.

Leveraging such representation-level insights for data management and dataset design may ulti-
mately yield more effective fine-tuning and stronger hallucination mitigation.
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Q: Please describe the image in detail.
A: The image features two people walking down a road... They 
are accompanied by a sheep, which is following them closely….

Q: Is there a dog in the image?
A: Yes, …

Suppress the 2480 neuron associated with dog.
Q: Is there a dog in the image?
A: No, …

Figure 16: The activation maps indicate that the model primarily focuses on the sheep, with sheep-
related neurons strongly activated (red boxes), allowing it to describe the image correctly. However,
because the sheep is partially occluded, neurons linked to other animal concepts, such as the dog
(green boxes), are also activated. While these additional activations do not affect general image
description, they become problematic when the model is asked a concept-specific question such as
“Is there a dog in the image?” leading it to incorrectly answer “yes.” After suppressing the dog-
related neuron 2480 by setting its weight to –10, the model correctly responds “no.” This example
highlights that extra activation of irrelevant concepts can mislead the model under targeted queries
and that neuron-level modulation provides an effective means to suppress such spurious signals and
mitigate hallucinations.
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