

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS INTERPRETABLE STEERING FOR HALLUCINATION MITIGATION IN LARGE VISION–LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large vision-language models (LVLMs) have achieved impressive performance in multimodal understanding and generation, yet they remain prone to *hallucinations*, particularly object hallucinations where entities are described yet do not exist in the input image. Existing mitigation methods often focus on output-level adjustments, while the internal mechanisms driving hallucinations remain poorly understood. In this work, we adopt an internal representation-level perspective by introducing sparse autoencoders (SAEs) to decompose dense visual features into sparse monosemantic neurons for interpreting and steering LVLMs. Building on prior findings that injecting image noise exacerbates hallucinations, we further investigate how noise perturbations reshape internal representations, revealing that noise alters monosemantic neuron activations, disrupts visual semantics, and induces hallucinations. Furthermore, we show that manipulating specific neurons enables controllable influence over LVLM outputs. Based on these insights, we propose **Contrastive Neuron Steering (CNS)**, which selectively amplifies truth neurons while suppressing perturbation-induced activations to mitigate hallucinations, and further enhances understanding of image-specific features through *adaptive neuron constraints* and *always-on neuron suppression*. Extensive experiments and analyses demonstrate that CNS effectively reduces hallucinations. Moreover, our CNS enables interpretable and controllable internal neuron-level interventions, providing both practical mitigation and mechanistic insights into how LVLMs encode and sometimes misrepresent visual information.

1 INTRODUCTION

Large vision-language models (LVLMs) (Liu et al., 2023b; Dai et al., 2023; Bai et al., 2023; Zhu et al., 2023) have achieved remarkable progress in multimodal understanding and generation. Despite these advances, LVLMs remain vulnerable to *hallucinations*, particularly object hallucinations where the model describes entities that are not present in the input image (Lee et al., 2018; Leng et al., 2024). Such errors undermine reliability and user trust, while raising critical concerns for safety-sensitive applications such as autonomous systems, medical imaging, and decision support.

To mitigate hallucinations, numerous techniques have been investigated, including visual instruction fine-tuning (Liu et al., 2023b; 2024b; Yu et al., 2024a), integration with external expert models, and contrastive decoding strategies (Leng et al., 2024; Chen et al., 2024; Favero et al., 2024; Wan et al., 2025). Nevertheless, the mechanistic origins of hallucinations remain poorly understood. Existing explanations predominantly attribute hallucinations to language biases, such as the “anchor pattern” (Huang et al., 2023) and “text inertia” (Liu et al., 2024d), which posit that hallucinations emerge from the dominance of linguistic priors over visual features. However, these perspectives largely neglect the internal visual representation space of LVLMs. In this paper, we seek to explore the relationship between internal visual representations and hallucinations, addressing the following fundamental questions: how are visual features organized internally, how they change under perturbations, and which aspects of the representation most directly contribute to hallucinations?

To enable deep and comprehensive analysis, we adopt an internal representation-level perspective to address these questions. The complex, entangled visual features produced by LVLM encoders

054 are difficult to interpret and control. To make them tractable, we introduce sparse autoencoders
 055 (SAEs) (Makhzani & Frey, 2013; Templeton et al., 2024), which have shown strong promise in
 056 interpretability research for large language models. **By applying SAEs to LVLMs, we decompose**
 057 **dense embeddings into sparse neurons that tend to represent interpretable, concept-specific features**
 058 (Durmus et al., 2024; Templeton et al., 2024). This enables us to analyze the drivers of hallucinations
 059 and design interventions directly within the internal representation space.

060 Prior works (Leng et al., 2024; Wan et al., 2025) have shown that injecting image noise amplifies
 061 visual uncertainty, aggravates hallucinations. We leverage the interpretable latent space to probe
 062 how such perturbations manifests in internal visual representations. Through extensive analysis, we
 063 find that as noise increases, an increasing number of neurons undergo activation changes, which
 064 alters the semantic structure of visual representations and ultimately exacerbates hallucinations and
 065 degrades performance (Figs. 5, 8). Our global image-level (Figs. 4, 9) and local patch-level anal-
 066 yses (Figs. 3, 10) further reveal two key patterns: a subset of “always-on” neurons consistently
 067 dominates activations while encoding generic global information, whereas most neurons capture
 068 concrete, meaningful visual features. Moreover, we demonstrate (Figs. 2, 13, 14, 11) that enhancing
 069 or suppressing specific neurons in the sparse space can strengthen or diminish the model’s ability
 070 to recognize particular concepts. Together, these findings show that noise reshapes the semantic
 071 structure of visual features, thereby inducing hallucinations, and importantly, that neuron-level in-
 072 terventions in the sparse space provide a tractable means to steer LVLMs.

073 Building on these insights, we propose a novel and efficient method, **Contrastive Neuron Steer-**
 074 **ing (CNS)**, for hallucination mitigation from the perspective of internal visual representation space.
 075 Specifically, CNS employs noisy images to activate hallucination-related neurons and contrasts them
 076 with neurons derived from clean images. To selectively enhance informative neurons while sup-
 077 pressing unstable ones, we design an *adaptive neuron constraint* incorporating both positional and
 078 magnitude regularization. Furthermore, to mitigate the influence of *redundant and non-informative*
 079 activations and sharpen attention to image-specific features, we introduce *always-on neuron suppres-*
 080 *sion*, which explicitly down-weights neurons persistently active across all images. By directly op-
 081 erating within the visual representation space, CNS offers an effective and complementary solution
 082 for hallucination mitigation that remains fully compatible with existing decoding-based approaches.

083 Extensive experiments across multiple LVLMs and diverse benchmarks demonstrate that CNS sub-
 084 stantially reduces hallucination rates. In addition, our detailed analyses and visualizations highlight
 085 the interpretability of neuron-level interventions. Together, these findings show that CNS not only
 086 improves the reliability of LVLMs in practice but also advances mechanistic understanding of inter-
 087 nal visual representations and their role in hallucinations.

088 In summary, our contributions are as follows:

- 089 • We introduce SAEs to interpret and steer the internal visual representations of LVLMs, pro-
 090 viding extensive analyses and visualizations that reveal how image noise perturbs neurons,
 091 disrupts visual semantics, and ultimately induces hallucinations.
- 092 • We find that neuron-level interventions, such as enhancing or suppressing specific neurons
 093 in the internal visual representations, can modulate LVLM outputs for targeted concepts,
 094 and that coordinating multiple neurons is more effective than manipulating single neurons.
- 095 • We propose **CNS**, which amplifies meaningful neurons while suppressing perturbation-
 096 induced activations for hallucination mitigation. CNS is compatible with decoding-based
 097 mitigation approaches and consistently reduces hallucinations across diverse benchmarks.

099 2 RELATED WORK

100 **Hallucinations in LVLMs.** LVLMs (OpenAI et al., 2024; Anthropic, 2024; DeepSeek-AI et al.,
 101 2025; Comanici et al., 2025; Yang et al., 2025a) have achieved significant progress by combining
 102 visual encoders with large language models, enabling multimodal understanding and generation.
 103 However, these models remain prone to hallucinations, particularly object hallucinations (Liu et al.,
 104 2024a; Lee et al., 2023; Gunjal et al., 2024; Chen et al., 2024; Chuang et al., 2023), where the
 105 model generates references to objects not present in the image. The causes include pretraining data
 106 biases (Agarwal et al., 2020; Agrawal et al., 2016), over-reliance on parametric knowledge (Leng
 107 et al., 2024; Lee et al., 2023; Zhibo et al., 2023), and biased visual feature learning (Zhu et al., 2024;
 Huang et al., 2023; Yue et al., 2024; Han et al., 2022).

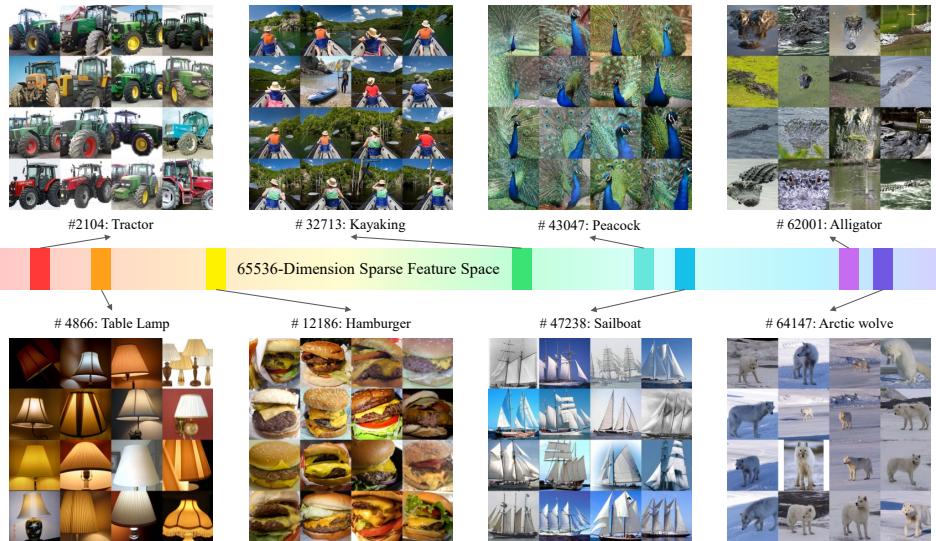


Figure 1: Neuron visualizations from SAE, showing diverse visual patterns and semantic structures.

Existing mitigation strategies fall into two groups: training-driven and training-free. Training-driven approaches fine-tune LVLMs via data augmentation, or reinforcement learning (Liu et al., 2023a; Sun et al., 2023; Zhou et al., 2024a; Liu et al., 2024b; Zhai et al., 2024). Training-free approaches mainly rely on contrastive decoding, which constructs positive/negative pairs to adjust inference-time generation (Yin et al., 2023; Park et al., 2025a; Wang et al., 2024; Li et al., 2023a).

SAEs for Interpreting and Steering LVLMs. SAEs (Templeton et al., 2024; Pach et al., 2025; Shu et al., 2025) decompose hidden activations into sparse, monosemantic neurons, providing an interpretable basis for analyzing and steering LVLMs. Recent improvements enhance both sparsity and reconstruction, including BatchTopK (Bussmann et al., 2024a), JumpReLU (Rajamanoharan et al., 2024), and hierarchical Matryoshka variants (Nabeshima, 2024; Bussmann et al., 2024b).

In LLMs, SAEs have been applied to explanation and control (Templeton et al., 2024; Durmus et al., 2024), enabling neuron-level steering to reduce toxicity, sycophancy, or refusal (Gallifant et al., 2025; Nanda et al., 2024), as well as facilitating hallucination detection (Ferrando et al., 2025), in-context learning (Demircan et al., 2025), and improved safety (Wu et al., 2025). Extensions to vision and multimodal domains include Revelio (Kim et al., 2024a), which uncovers interpretable features in diffusion models; Matryoshka SAEs (MSAEs) (Bussmann et al., 2024b), which balance sparsity and reconstruction on CLIP embeddings; and Universal SAEs (USAEs) (Thasarathan et al., 2025), which align concepts across networks. For LVLMs, SAE-V (Lou et al., 2025) enables fine-grained interpretation of cross-modal interactions, while Zhang et al. (Zhang et al., 2024a) show that disentangled features can be directly exploited to steer model behavior.

3 PRELIMINARIES: SPARSE AUTOENCODERS (SAEs)

Background. The hidden states inside LVLMs are dense and highly entangled, making attribution and control difficult. *SAEs* (Olshausen & Field, 1997; Bricken et al., 2023) address this issue by mapping dense embeddings into a sparse latent space with human-interpretable neurons. Formally, given an input feature $\mathbf{v} \in \mathbb{R}^d$, the SAE encoder produces sparse activations

$$z(\mathbf{v}) = \text{TopK}(\text{ReLU}(W_{\text{enc}}\mathbf{v} - \mathbf{b})), \quad (1)$$

and the decoder reconstructs the feature as

$$\hat{\mathbf{v}} = W_{\text{dec}}^{\top} z(\mathbf{v}) + \mathbf{b}. \quad (2)$$

This process can be viewed as learning an overcomplete dictionary of concepts, where each latent neuron corresponds to a basis element.

Inserting SAEs into LVLMs. SAEs can in principle be applied at different stages of LVLMs, such as intermediate LLM layers or the visual encoder. In this work, we focus on the *visual encoder stage* of LVLMs. This choice is motivated by both scientific and practical considerations: (1) It

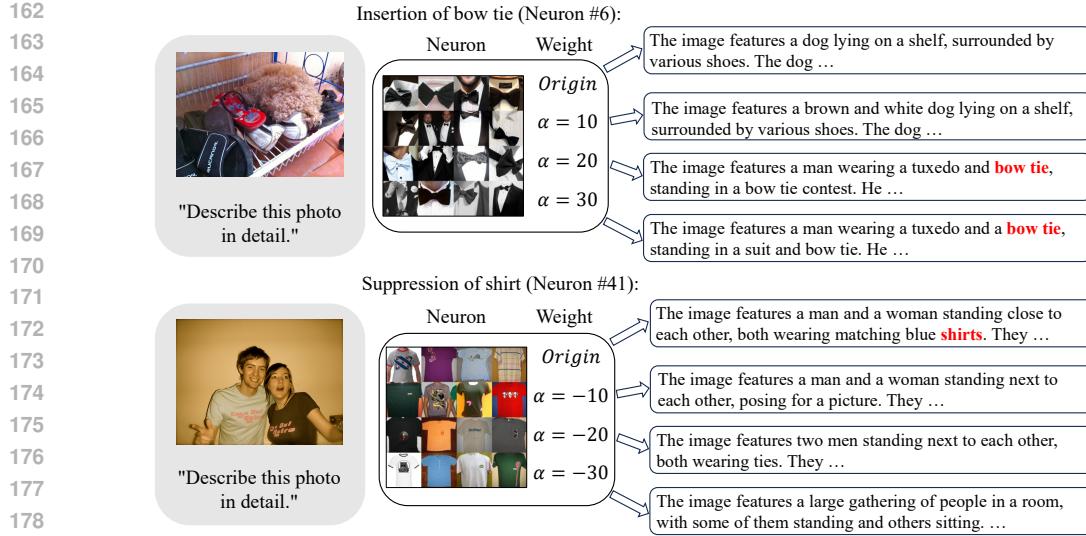


Figure 2: Steering an LVLM: (a) amplifying a “bow tie” neuron emphasizes this concept in generated descriptions, while (b) suppressing a “shirt” neuron prevents it from appearing.

enables deeper mechanistic studies of hallucinations by isolating the specific impact of the visual encoder, distinguishing whether errors arise from corrupted or ambiguous visual encodings, cross-modal misalignment during fusion, or the decoder’s reliance on language priors. (2) Some LVLMs adopt same visual backbones, so an SAE trained on one backbone can be reused across LVLMs that share it. (3) Operating on encoder outputs preserves the downstream fusion and decoding pipeline, making SAE-based interventions compatible with existing decoding-level mitigation methods such as contrastive decoding. (4) Inserting SAEs into the visual encoder requires only a single additional encoder forward pass, making it much more efficient than full model re-inference.

Interpreting and Steering LVLMs. The sparse latent space of SAEs exhibits two key properties: (1) Sparsity: only a few neurons are active per input, making the representation sparse. Moreover, the magnitude of each active neuron reflects its relative importance, providing an inherent measure of feature relevance; (2) Monosemanticity: each neuron tends to encode a single, consistent concept, in contrast to polysemantic neurons in dense embeddings. To visualize these learned neurons, we identify, for each neuron, the top-16 images with the highest activation values, as shown in Figs. 1, 7. This allows inspection of the concepts captured by each neuron. These properties make SAEs a natural tool for both *interpreting* and *steering* LVLMs. On the analysis side, the neuron dictionary provides a principled way to *interpret* model behavior, enabling us to track how visual features shift under perturbations or correlate with hallucinations. On the control side, SAEs support *neuron-level steering*: by selectively *amplifying* or *suppressing* neurons, we can guide LVLM outputs toward or away from specific concepts. For example, amplifying a “bow tie” neuron emphasizes this concept in generated descriptions, while suppressing a “shirt” neuron prevents it from appearing (Fig.2). In summary, SAEs provide fine-grained interpretability of internal LVLM representations and serve as a foundation for both automated steering and user-guided feature control.

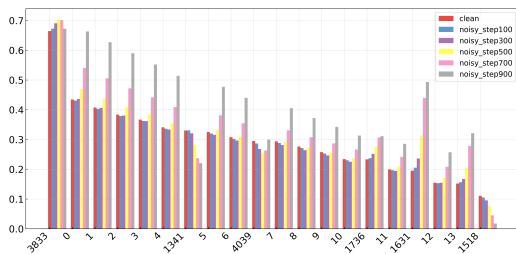


Figure 3: Patch-Level Activation Analysis

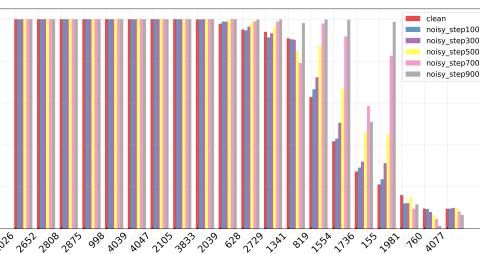


Figure 4: Image-Level Dominance Analysis

4 ANALYZING HALLUCINATION WITH SAEs

We train Matryoshka SAE (Bussmann et al., 2024b) on LLaVA-1.5’s image features extracted from ImageNet, and conduct analyses on the COCO dataset, considering both clean and noisy images.

216 **Neuron-Level Statistical Analysis.** Beyond offering interpretability and controllability, SAEs also
 217 provide a diagnostic lens into how LVLMs encode visual information. We perform two complementary
 218 analyses to characterize neuron activations (Figs. 3, 4): (1) **Patch-Level Activation Analysis**:
 219 for each spatial patch, we record the Top- K neurons, which highlight detectors of local features
 220 such as textures, edges, or object parts. (2) **Image-Level Dominance Analysis**: for each image,
 221 we compute the maximum activation of each neuron across patches, and record the Top- N globally
 222 dominant neurons. This reveals neurons encoding coarse, image-wide concepts.

223 A surprising observation emerges from the image-level analysis: a small group of *Always-on neurons*
 224 (about 10 out of 65k) consistently appear in the Top-20 across nearly all images 9. Most of these
 225 neurons are not particularly strong at the patch level, indicating that they do not correspond to spe-
 226 cific local objects, but rather to global statistical regularities such as smooth regions, edge density, or
 227 background color distributions. Moreover, these neurons activate across images, yet their activation
 228 sets strongly overlap with each other, suggesting that they encode over-generalized “pseudo-global
 229 concepts”. In contrast, patch-level neurons (fig. 10) show semantic consistency: their high activa-
 230 tions concentrate on visually similar images (e.g., cats, grass). Notably, we also identify a unique
 231 neuron that ranks highly under both patch-level and image-level statistics. Unlike other neurons,
 232 this neuron responds to complex multi-object scenes.

233 These phenomena resonate with recent studies on the limitations of SAEs. Bussmann et al. (Buss-
 234 man et al., 2024b; Nabeshima, 2024) report that standard SAEs often suffer from *feature absorp-
 235 tion* and *feature splitting*, where coarse features are either overwritten by more specific ones or
 236 fragmented across multiple neurons. More recently, Chanin et al. (Chanin et al., 2025) identify the
 237 problem of *feature hedging*, where correlated features become entangled when the dictionary size
 238 is mismatched with the true feature complexity, producing latents that activate broadly but lack se-
 239 mantic specificity. Our observed always-on neurons strongly resemble such hedged features: they
 240 dominate global activations across diverse images yet encode ambiguous, over-generalized concepts.

241 **Diagnosing Hallucinations with SAEs.** Prior
 242 works (Leng et al., 2024; Wan et al., 2025)
 243 have shown that injecting image noise amplifies
 244 visual uncertainty and exacerbates hallucina-
 245 tions, resulting in performance degradation. We
 246 leverage the interpretable latent space of SAEs
 247 to probe how such perturbations reshape LVLM
 248 representations and induce hallucinations. To
 249 quantify this effect, we evaluate LLaVA-1.5 on
 250 the POPE benchmark (COCO, random setup)
 251 and report changes in F1 and accuracy under
 252 different perturbation conditions. We further
 253 examine how model performance is affected by selectively zeroing out different types of SAE
 254 neurons. Based on our earlier analysis, we roughly categorize SAE neurons into three groups: top-
 255 ranked always-active neurons (top-10), image-specific neurons (primarily within ranks 10–20), and
 256 ten randomly selected neurons from ranks beyond 20. This allows us to investigate the distinct
 257 characteristics of each neuron group and their respective impacts on model behavior.

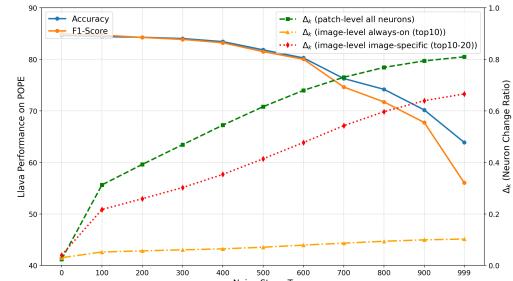
258 Specifically, we measure the *stability* of *Top- K neuron activations* across clean and perturbed inputs.
 259 Given a clean image v and its noisy counterpart \tilde{v} , we define the change ratio as

$$\Delta_K(v, \tilde{v}) = 1 - \frac{|z(v) \cap z(\tilde{v})|}{K}, \quad (3)$$

260 Higher Δ_K indicates that more neurons change, reflecting larger disruption of the visual features.

261 As shown in Fig. 5, increasing noise steps degrades LLaVA performance while raising the neuron-
 262 change ratio. At the token level, patch-level neurons change the fastest, indicating that noise per-
 263 turbs almost every token. At the image level, Always-active neurons remain largely unchanged,
 264 whereas image-specific neurons exhibit substantial variation, approaching the magnitude of patch-
 265 level changes. These results indicate that noise mainly disrupts image-specific neurons, which in
 266 turn triggers hallucinations. This also explains why VCD can use noise to induce hallucinations.

267 Table 1 illustrates the effects of zeroing different neuron groups on model predictions and hallu-
 268 cination behavior. The results show that suppressing Always-active neurons has minimal impact



269 Figure 5: Relationship between noise step, model
 270 performance, and neuron change ratio.

271

272

273

274

275

276

277

278

279

280

281

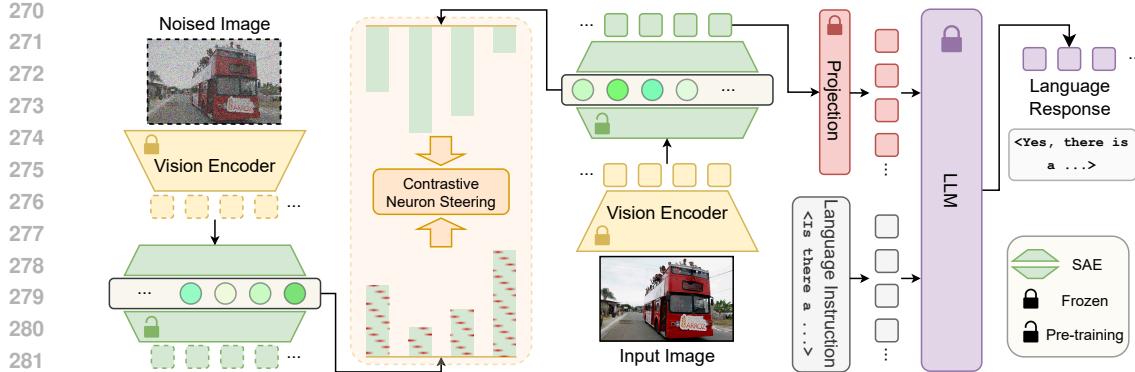


Figure 6: Framework overview. A pretrained SAE is integrated into the LVLM visual encoder to decouple internal dense visual features into sparse, monosemantic neurons, enabling neuron-level interpretation and steering. **Contrastive Neuron Steering (CNS)** amplifies neurons activated by clean inputs while suppressing those triggered by perturbations, mitigating hallucinations.

despite their high baseline activations, and randomly selected neurons have negligible effects due to low relevance. In contrast, zeroing image-specific neurons induces substantial activation changes and significantly alters model outputs. These findings indicate that image-specific neurons are the primary drivers of input-dependent behavior and hallucination sensitivity, whereas Always-active neurons contribute little to image-specific reasoning.

Beyond aggregate statistics, qualitative case studies (Fig.8) further illustrate how noisy perturbations induce hallucinations. For instance, when noise is added to an image of a “camera”, the activations of camera-related neurons gradually diminish as noise intensity increases, leading LLaVA to generate progressively less accurate captions: from “black Konica Minolta camera with a large lens” to “camera with a large lens,” and finally no camera description.

Importantly, such fine-grained instability cannot be captured in the original dense feature space. By contrast, SAEs disentangle activations into sparse, interpretable neurons, allowing us to quantify exactly which concept units vanish and which spurious ones emerge.

In summary, image noise primarily perturbs token-level semantic neurons, especially image-specific neurons, reshaping internal visual representations and thereby inducing hallucinations. SAEs thus serve not only as a principled diagnostic tool to quantify these effects, but also as an interpretable lens into the mechanisms linking image-specific neuron disruptions, visual uncertainty, and hallucinations. Based on these findings, we can mitigate hallucinations by identifying image-specific neurons and enhancing their activations to strengthen input-relevant semantic information.

Table 1: Performance impact of zeroing out different types of SAE neurons.

Neuron Type	Accuracy (%) ↑	F1-score (%) ↑
baseline	84.63	84.99
always-on	84.68	85.08
image-specific	63.08	57.36
random	84.31	84.65

5 METHOD

5.1 OVERVIEW

Our objective is to improve the reliability of LVLMs by mitigating hallucinations while simultaneously enabling interpretable analysis and controllable steering. As shown in Fig. 6, we integrate a pretrained SAE into the LVLM visual encoder to decouple dense internal visual features into sparse, monosemantic neurons, facilitating neuron-level interpretation and steering. We further propose **Contrastive Neuron Steering (CNS)** to amplify image-specific neurons activated by clean inputs while suppressing those triggered by perturbations, thereby mitigating hallucinations.

324 5.2 CONTRASTIVE NEURON STEERING (CNS)
325

326 Our exploratory analysis reveals three key observations: (i) perturbing images (e.g., by adding noise)
327 significantly alters neuron activations, **particularly those of image-specific neurons**, and the extent of
328 change correlates with LVLM performance degradation (Fig. 2); (ii) directly scaling individual neu-
329 ron activations can increase or suppress concept-specific responses, thereby modulating generated
330 outputs (Fig. 5); **(iii) suppressing image-specific neurons induces severe hallucinations, whereas**
331 **suppressing always-on neurons has minimal effect**. Together, these findings suggest that targeted
332 neuron-level regulation, **especially of image-specific neurons**, provides a natural and effective path-
333 way for hallucination mitigation.

334 Building on these insights, we propose **CNS**. CNS leverages perturbed inputs to contrastively iden-
335 tify neuron types: neurons whose activations decrease under image perturbations are likely *image-*
336 *specific neurons*, encoding input-dependent semantics, whereas neurons that remain stable or in-
337 crease are typically *always-on neurons or low-importance, input-agnostic neurons*. CNS then selec-
338 tively amplifies image-specific neurons while suppressing these non-informative neurons, thereby
339 enhancing image-relevant semantic representations and mitigating hallucinations.

340 **Contrastive Neuron Regulation (CNR).** Given a clean image v and a perturbed counterpart v'
341 (e.g., Gaussian noise), both are encoded via the SAE to obtain sparse activations:

$$342 z(v), z(v') \in \mathbb{R}^k. \quad (4)$$

344 We then compute a regulated activation vector:

$$345 \tilde{z} = (1 + \lambda)z(v) - \lambda z(v'), \quad (5)$$

347 where λ controls the steering strength. This contrastive formulation promotes stability by reinforcing
348 neurons consistent across perturbations and attenuating those highly sensitive to noise.

349 **Adaptive Neuron Constraints (ANC).** To ensure reliable and interpretable regulation, we impose
350 two complementary constraints on the updated activations, each acting along a different dimension:

352 *Position constraint:* Only the neurons corresponding to the top- K most active positions in the clean
353 activations $z(v)$ are eligible for regulation:

$$354 \tilde{z}_i = \begin{cases} (1 + \lambda)z_i(v) - \lambda z_i(v'), & i \in \text{Top-}K(z(v)), \\ z_i(v), & \text{otherwise.} \end{cases} \quad (6)$$

356 This ensures that CNS updates only the most salient neuron positions, while leaving inherently
357 inactive or irrelevant positions untouched, thereby avoiding unintended alterations.

359 *Magnitude constraint:* After contrastive updating, neurons with small activations may still be spuri-
360 ous. We therefore apply an adaptive threshold based on the maximum activation of the clean input:

$$361 \tilde{z}_i \leftarrow \begin{cases} \tilde{z}_i, & \tilde{z}_i \geq \tau(z(v)), \\ z_i(v), & \text{otherwise.} \end{cases} \quad (7)$$

364 This preserves only neurons whose updated activations remain sufficiently strong and semantically
365 meaningful, effectively filtering out weak, unstable, or spurious signals.

366 Together, these two constraints ensure that CNS modifies only the most relevant neurons both in
367 terms of *position* and *magnitude*, enhancing the stability and interpretability of neuron-level steering.

368 **Always-on Neuron Suppression (ANS).** Empirical analysis (Fig. 3 and Fig. 4) identifies the always-
369 on neurons that consistently rank high across all images and likely encode generic concepts. **Table 1**
370 shows that **suppressing these neurons has a minimal effect on the overall F1-score and can even**
371 **slightly improve accuracy**. Motivated by this, we propose ANS to reduce their influence and empha-
372 size image-specific semantic information by setting their activations to zero.

$$374 \tilde{z}_i = \begin{cases} 0, & i \in \mathcal{A}, \\ z_i, & \text{otherwise,} \end{cases} \quad (8)$$

377 where \mathcal{A} denotes the set of always-active neurons. This encourages the model to focus on image-
378 specific and grounded features, reducing the propagation of generic or misleading signals.

378 **Reconstruction and Integration into LVLM.** The regulated latent \tilde{z} is decoded into a dense visual
 379 embedding that replaces the original encoder output:

380
$$\hat{\mathbf{v}} = W_{\text{dec}}^{\top} \tilde{z} + \mathbf{b}. \quad (9)$$

383 **5.3 PLUG-AND-PLAY COMPATIBILITY**

385 CNS operates at the *representation level*, while contrastive decoding methods like VCD act on the
 386 *output distribution*. These approaches are naturally complementary: CNS refines encoder features
 387 by amplifying grounded neurons and suppressing noisy ones, producing enhanced embeddings that
 388 directly replace the original image features. This allows seamless integration with various decoding-
 389 based methods for further hallucination mitigation.

390 **6 EXPERIMENTS**

391 **6.1 EXPERIMENTAL SETTINGS**

394 **Evaluated LVLMs.** Following prior work, we use three representative open-source LVLMs:
 395 LLaVA-1.5 (Liu et al., 2023b), InstructBLIP (Dai et al., 2023), and Qwen-VL (Bai et al., 2023).

396 **Benchmarks.** (1) **POPE** (Li et al., 2023b), a widely used benchmark for assessing object hallucinations
 397 in LVLMs through binary yes/no queries about object existence; (2) **CHAIR** (Rohrbach
 398 et al., 2018), which evaluates object hallucinations in image captioning, where LVLMs are
 399 prompted to describe 500 randomly selected images from the MSCOCO validation set; (3) **MME-
 400 Hallucination** (Fu et al., 2023), a comprehensive benchmark consisting of four subsets: *existence*
 401 and *count* for object-level hallucinations, and *position* and *color* for attribute-level hallucinations.

402 **Baselines.** We compare with existing methods: VCD (Leng et al., 2024), M3ID (Favero et al., 2024),
 403 and ONLY (Wan et al., 2025). Unless otherwise specified, we adopt sampling-based decoding as
 404 the default, where the next token is sampled directly from the post-softmax probability distribution.

405 **Implementation Details.** We train SAEs on ImageNet (Deng et al., 2009) using image features
 406 extracted from the visual encoder of each LVLM (before the projection layer). We experiment with
 407 Matryoshka BatchTopK SAEs (Bussmann et al., 2024b). Unless otherwise stated, the Matryoshka
 408 groups are set as $\mathcal{M} = \{0.0625\omega, 0.1875\omega, 0.4375\omega, \omega\}$, approximately doubling the number of
 409 active neurons per level. We fix the maximum number of non-zero latent neurons to $K = 20$ and
 410 set the expansion factor to 64. All SAEs are trained for 10^5 steps with a batch size of 4096, using
 411 Adam (Kingma & Ba, 2017) with the learning rate $\frac{16}{125\sqrt{\omega}}$, as suggested by (Gao et al., 2025).

412 For LVLM experiments, we follow the default query format of each model. Following VCD (Leng
 413 et al., 2024), we adopt adaptive plausibility constraints (Li et al., 2023a) with $\beta = 0.1$ and $\alpha = 0.5$.
 414 The number of denoising steps is fixed to 500 unless explicitly stated otherwise. All experiments
 415 are conducted on a single NVIDIA RTX 6000 Ada GPU (48GB).

417 **6.2 EXPERIMENTAL RESULTS**

419 **Results on POPE.** As shown in Tab. ??, inserting our method into different baselines consistently
 420 improves performance across multiple LVLM backbones and evaluation settings. These results
 421 demonstrate that CNR is both robust and broadly generalizable.

422 **Results on CHAIR.** On the open-ended CHAIR benchmark (Tab. 3), integrating our method into
 423 various baselines significantly reduces hallucination rates across different LVLMs. This verifies that
 424 CNR enhances open-ended multimodal understanding and yields more faithful generations.

426 **Results on MME.** In Tab. 4, we report results after inserting our method into existing baselines on
 427 the MME benchmark. While evaluated within the same backbone setting, our method consistently
 428 improves both object-level (Existence, Count) and attribute-level (Position, Color) scores, confirming
 429 that CNR strengthens grounding and fine-grained visual reasoning.

430 Overall, the CNR-adjusted features can be viewed as enhanced representations of the original visual
 431 input, reinforcing grounded evidence while suppressing noise and spurious activations. These results
 verify that CNR serves as a plug-and-play module that universally boosts the reliability of LVLMs.

Table 2: Results on the POPE. \uparrow indicates higher is better. +CNS denotes that the original visual features are replaced with CNS-enhanced. The best and second results are **bolded** and underlined.

432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	Setup	Method	LLaVA-1.5				InstructBLIP				Qwen-VL																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	Acc. \uparrow	Prec. \uparrow	Rec. \uparrow	F1 \uparrow	Acc. \uparrow	Prec. \uparrow	Rec. \uparrow	F1 \uparrow	Acc. \uparrow	Prec. \uparrow	Rec. \uparrow	F1 \uparrow																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	MS-COCO	Random	Regular	84.63	83.07	87.00	84.99	83.33	82.38	84.80	83.57	85.17	97.22	72.40	83.00	Regular + CNS	85.10	83.77	87.07	85.39	84.40	83.42	85.87	84.63	86.03	97.37	74.07	84.13	VCD	84.57	82.59	87.60	85.02	84.60	85.12	83.87	84.49	87.37	97.14	77.00	85.91	VCD + CNS	85.23	83.30	88.13	85.65	85.63	86.24	84.80	85.51	88.27	97.36	78.67	87.02	M3ID	86.33	85.30	87.80	86.53	85.00	84.72	85.40	85.06	86.03	97.87	73.67	84.06	M3ID + CNS	86.70	85.72	88.07	86.88	85.57	85.64	85.47	85.55	87.03	97.93	75.67	85.37	ONLY	89.57	90.68	88.20	89.42	86.13	86.04	86.27	86.15	89.63	95.70	83.00	88.90	ONLY + CNS	90.27	91.20	89.13	90.16	87.07	86.92	87.27	87.09	89.90	95.86	83.40	89.20	Popular	Regular	81.33	78.14	87.00	82.33	76.00	72.11	84.80	77.94	84.50	94.73	73.07	82.50	Regular + CNS	82.70	79.60	87.93	83.56	77.07	73.44	84.80	78.71	84.77	94.76	73.60	82.85	VCD	80.80	77.11	87.60	82.02	77.20	74.00	83.87	78.62	85.83	94.02	76.53	84.38	VCD + CNS	81.53	77.69	88.47	82.73	78.23	75.10	84.47	79.51	86.17	94.21	77.07	84.78	M3ID	82.30	79.10	87.80	83.22	77.23	73.41	85.40	78.95	85.43	95.94	74.00	83.55	M3ID + CNS	83.07	80.21	87.80	83.83	78.40	74.91	85.40	79.81	86.07	96.00	75.27	84.38	ONLY	86.10	84.64	88.20	86.39	77.50	73.40	86.27	79.31	87.70	91.92	82.67	87.05	ONLY + CNS	86.90	85.50	88.87	87.15	77.73	73.64	86.40	79.51	87.87	91.95	83.00	87.25	Adversarial	Regular	75.87	71.18	86.93	78.27	74.17	70.04	84.47	76.58	82.53	90.80	72.40	80.56	Regular + CNS	76.13	71.33	87.40	78.55	75.03	70.85	85.07	77.31	83.20	91.29	73.40	81.37	VCD	75.23	70.23	87.60	77.96	75.80	72.29	83.67	77.56	83.10	88.46	76.13	81.83	VCD + CNS	75.83	70.67	88.33	78.52	76.80	73.16	84.67	78.49	83.70	89.16	76.73	82.48	M3ID	76.63	71.79	87.73	78.97	75.40	71.26	85.13	77.58	83.03	91.12	73.20	81.18	M3ID + CNS	77.60	72.85	88.00	79.71	75.83	71.64	85.53	77.97	84.37	91.94	75.33	82.81	ONLY	79.43	75.07	88.13	81.08	75.63	71.28	85.87	77.90	83.77	85.10	81.87	83.45	ONLY + CNS	79.83	75.27	88.87	81.50	75.97	71.46	86.47	78.25	84.60	85.65	83.13	84.37	Random	Regular	82.17	76.47	92.93	83.90	81.60	77.40	89.27	82.91	86.13	94.72	76.53	84.66	Regular + CNS	82.43	76.57	93.47	84.18	82.97	78.87	90.07	84.10	86.97	95.04	78.00	85.68	VCD	81.70	75.55	93.73	83.67	82.53	78.91	88.80	83.56	87.80	94.09	80.67	86.86	VCD + CNS	82.83	76.90	93.87	84.54	82.90	79.05	89.53	83.96	88.40	94.31	81.73	87.57	M3ID	82.90	77.13	93.53	84.54	83.17	79.04	90.27	84.28	87.47	94.89	79.20	86.34	M3ID + CNS	83.90	78.33	93.73	85.34	83.93	80.05	90.40	84.91	88.27	94.98	80.80	87.32	ONLY	86.33	81.21	94.53	87.37	85.40	81.27	92.00	86.30	89.77	92.04	87.07	89.48	ONLY + CNS	86.57	81.50	94.60	87.57	86.40	82.42	92.53	87.19	90.30	92.30	87.93	90.06	Popular	Regular	75.40	68.81	92.93	79.07	74.80	69.23	89.27	77.98	86.17	93.71	77.53	84.86	Regular + CNS	77.00	70.43	93.07	80.18	75.57	69.92	89.73	78.60	86.93	94.25	78.67	85.76	VCD	74.83	68.02	93.73	78.83	76.33	71.08	88.80	78.96	87.03	92.24	80.87	86.18	VCD + CNS	75.60	68.66	94.20	79.43	77.33	71.93	89.67	79.82	87.43	92.70	81.27	86.61	M3ID	75.93	69.18	93.53	79.54	76.27	70.52	90.27	79.18	86.83	94.31	78.40	85.62	M3ID + CNS	76.53	69.78	93.60	79.95	77.47	71.64	90.93	80.14	87.50	94.68	79.47	86.41	ONLY	79.73	72.94	94.53	82.35	77.07	70.84	92.00	80.05	89.30	90.46	87.87	89.14	ONLY + CNS	80.23	73.46	94.67	82.73	77.93	71.75	92.13	80.68	90.03	91.21	88.60	89.89	Adversarial	Regular	67.07	61.33	92.40	73.72	68.30	62.83	89.60	73.87	81.17	93.18	78.13	80.58	Regular + CNS	67.93	61.98	92.80	74.32	68.97	63.40	89.73	74.30	81.77	83.67	78.93	81.23	VCD	67.13	61.27	93.13	73.92	70.07	64.70	88.33	74.69	81.37	81.86	80.60	81.22	VCD + CNS	69.00	62.78	93.33	75.07	71.50	65.97	88.80	75.70	82.03	82.93	80.67	81.78	M3ID	67.20	61.31	93.27	73.98	68.67	63.05	90.20	74.22	81.30	83.42	78.13	80.69	M3ID + CNS	68.97	62.70	93.67	75.11	70.70	64.75	90.87	75.62	82.37	84.07	79.87	81.91	ONLY	69.10	62.67	94.47	75.35	68.17	62.41	91.33	74.15	82.17	78.87	87.87	83.13	ONLY + CNS	70.53	63.85	94.67	76.26	69.80	63.79	91.60	75.21	82.97	79.52	88.80	83.91	Random	Regular	82.00	76.09	93.33	83.83	80.10	76.17	87.60	81.49	84.47	89.83	77.73	83.35	Regular + CNS	82.53	76.61	93.67	84.28	80.80	76.77	88.33	82.15	85.50	90.62	79.20	84.53	VCD	81.90	75.38	94.73	83.96	81.10	77.92	88.80	82.12	86.10	90.87	80.27	85.24	VCD + CNS	82.33	75.74	95.13	84.34	81.97	78.70	87.67	82.94	86.73	91.00	81.53	86.01	M3ID	83.10	77.00	94.40	84.82	81.63	77.80	88.53	82.82	86.13	91.63	79.53	85.15	M3ID + CNS	83.73	77.71	94.60	85.33	82.67	79.17	88.67	83.65	87.07	92.31	80.87	86.21	ONLY	86.87	81.24	95.87	87.95	83.23	79.69	89.20	84.18	88.13	89.50	86.40	87.92	ONLY + CNS	87.77	82.35	96.13	88.71	83.50	79.89	89.53	84.44	88.53	90.19	86.47

486 Table 3: Results on CHAIR. ↓ indicates lower is better.
487

Method	LLaVA-1.5				InstructBLIP				Qwen-VL			
	Max Token 64		Max Token 128		Max Token 64		Max Token 128		Max Token 64		Max Token 128	
	CHAIR _S ↓	CHAIR _I ↓										
Regular	26.5	9.4	55.1	16.4	31.5	11.4	57.4	17.6	33.8	12.9	52.1	16.7
Regular + CNS	25.7	8.8	54.8	16.0	30.9	11.1	57.2	16.8	33.6	12.7	51.6	16.0
VCD	24.8	8.0	54.4	16.6	30.0	10.1	60.7	18.0	33.3	13.1	50.4	17.2
VCD + CNS	24.3	7.6	54.3	16.3	30.0	10.1	60.6	17.7	33.1	12.3	49.8	16.6
M3ID	21.4	6.4	56.6	15.8	31.1	10.5	62.3	18.2	32.3	11.9	49.8	17.4
M3ID + CNS	20.7	6.2	55.9	15.3	31.1	10.2	61.9	17.9	32.2	11.7	49.2	16.6
ONLY	20.1	6.3	49.9	14.7	23.9	8.3	52.5	15.7	27.7	8.6	48.1	14.4
ONLY + CNS	19.7	5.7	49.6	14.6	23.4	7.7	52.4	15.3	27.0	7.8	47.4	14.1

488 Table 4: Results on MME-Hallucination.

Method	Object-level		Attribute-level		MME Score ↑
	Existence ↑	Count ↑	Position ↑	Color ↑	
Regular	185.00	126.67	128.33	148.33	588.33
Regular + CNS	187.00	127.33	129.67	149.33	593.33
VCD	185.00	136.67	128.33	158.33	608.33
VCD + CNS	186.00	138.67	131.67	159.33	615.67
M3ID	190.00	136.67	128.33	158.33	613.33
M3ID + CNS	191.00	138.33	129.67	159.67	618.67
ONLY	190.00	143.33	133.33	148.33	614.99
ONLY + CNS	191.00	144.33	134.67	149.67	619.67

490 Table 5: Ablations studies on CNS components.

Strategy	POPE ↑				CHAIR ↓	
	Acc.	Prec.	Rec.	F1	CHAIR _S	CHAIR _I
Regular	84.63	83.07	87.00	84.99	26.5	9.4
+SAE	84.63	83.07	87.00	84.99	26.5	9.4
+CNR	84.87	83.45	87.01	85.19	26.2	9.2
+ANC	85.00	83.66	87.01	85.30	25.9	8.9
+ANS(full CNS)	85.10	83.77	87.07	85.39	25.7	8.8
+Zeroing #3833	85.03	83.73	87.02	85.34	25.9	8.9

501 **CNS Components.** We progressively add components to the baseline LVLM: (i) **Baseline**, the unmodified model; (ii) **+SAE**, using only SAE-reconstructed features; (iii) **+ANC**, adding adaptive neuron constraints; (iv) **+ANR**, further applying adaptive neuron regulation; (v) **+ANS**, incorporating always-on neuron suppression, which constitutes the full CNS; (vi) **+Zeroing #3833**, setting neuron #3833 to zero. As shown in Tab. 5, +SAE preserves baseline performance, confirming faithful reconstruction. Adding ANC, ANR, and ANS yields incremental gains. However, explicitly suppressing neuron #3833 leads to a slight performance drop, indicating that only neurons lacking fine-grained semantic meaning should be removed. The full configuration achieves the strongest hallucination mitigation, demonstrating the effectiveness of our design.

511 For more analysis, experiments, and visualizations, please refer to the appendix.

513 7 CONCLUSION

514 In conclusion, we present a representation-level approach to understanding and mitigating hallucinations in LVLMs. We show how image noise perturbs internal monosemantic neurons, reshapes visual semantics, and exacerbates hallucinations. Our CNS amplifies meaningful neurons while suppressing perturbation-induced activations for hallucination mitigation. Furthermore, it enables interpretable and controllable neuron-level interventions, providing both practical benefits and deeper mechanistic insights into LVLMs’ internal visual representations and hallucinations.

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Vedika Agarwal, Rakshith Shetty, and Mario Fritz. Towards causal vqa: Revealing and reducing
543 spurious correlations by invariant and covariant semantic editing. In *CVPR*, pp. 9690–9698, 2020.

544 Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of visual question
545 answering models. *arXiv preprint arXiv:1606.07356*, 2016.

546 Anthropic. Introducing Claude 3.5 Sonnet. June 2024. URL <https://www.anthropic.com/news/clause-3-5-sonnet>. Announcement of Claude 3.5 Sonnet model release, featuring
547 improved intelligence, vision capabilities, and new Artifacts feature.

548 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
549 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

550 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
551 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
552 2025.

553 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
554 Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
555 posing language models with dictionary learning. *Transformer Circuits Thread*, 2, 2023.

556 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *arXiv preprint*
557 *arXiv:2412.06410*, 2024a.

558 Bart Bussmann, Patrick Leask, and Neel Nanda. Learning multi-level features with matryoshka
559 saes. *AI Alignment Forum*, 2024b.

560 David Chanin, Tomáš Dulka, and Adrià Garriga-Alonso. Feature hedging: Correlated features break
561 narrow sparse autoencoders. *arXiv preprint arXiv:2505.11756*, 2025.

562 Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu Yao, Bo Li, and Jiawei Zhou. Halc: Object
563 hallucination reduction via adaptive focal-contrast decoding. *arXiv preprint arXiv:2403.00425*,
564 2024.

565 Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
566 Decoding by contrasting layers improves factuality in large language models. *arXiv preprint*
567 *arXiv:2309.03883*, 2023.

568 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
569 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
570 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
571 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

572 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
573 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
574 with instruction tuning. *NIPS*, 36:49250–49267, 2023.

575 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
576 registers. In *ICLR*, 2024.

577 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
578 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
579 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
580 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
581 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
582 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
583 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
584 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
585 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
586 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
587 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,

594 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 595 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghai Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 596 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 597 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen
 598 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 599 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 600 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaoqin Shen, Xi-
 601 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 602 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 603 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 604 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 605 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 606 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 607 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 608 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 609 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 610 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 611 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

612 Can Demircan, Tankred Saanum, Akshay Kumar Jagadish, Marcel Binz, and Eric Schulz. Sparse
 613 autoencoders reveal temporal difference learning in large language models. In *The Thirteenth
 614 ICLR*, 2025. URL <https://openreview.net/forum?id=2tIyA5cri8>.

615 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 616 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 617 pp. 248–255. Ieee, 2009.

618 Esin Durmus, Alex Tamkin, Jack Clark, Jerry Wei, Jonathan Marcus, Joshua Batson, Kunal
 619 Handa, Liane Lovitt, Meg Tong, Miles McCain, Oliver Rausch, Saffron Huang, Sam Bow-
 620 man, Stuart Ritchie, Tom Henighan, and Deep Ganguli. Evaluating feature steering: A case
 621 study in mitigating social biases, 2024. URL <https://anthropic.com/research/evaluating-feature-steering>.

622 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
 623 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control
 624 by visual information grounding. In *CVPR*, pp. 14303–14312, 2024.

625 Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know
 626 this entity? knowledge awareness and hallucinations in language models. In *The Thirteenth ICLR*,
 627 2025. URL <https://openreview.net/forum?id=WCRQFlji2q>.

628 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 629 Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multi-
 630 modal large language models. *arXiv preprint arXiv:2306.13394*, 2023.

631 Jack Gallifant, Shan Chen, Kuleen Sasse, Hugo Aerts, Thomas Hartvigsen, and Danielle S Bit-
 632 terman. Sparse autoencoder features for classifications and transferability. *arXiv preprint
 633 arXiv:2502.11367*, 2025.

634 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 635 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth ICLR*,
 636 2025.

637 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 638 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for
 639 entangled language hallucination and visual illusion in large vision-language models. In *CVPR*,
 640 pp. 14375–14385, 2024.

641 Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision
 642 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 643 pp. 18135–18143, 2024.

648 Yudong Han, Liqiang Nie, Jianhua Yin, Jianlong Wu, and Yan Yan. Visual perturbation-aware col-
 649 laborative learning for overcoming the language prior problem. *arXiv preprint arXiv:2207.11850*,
 650 2022.

651 Jinghan He, Kuan Zhu, Haiyun Guo, Junfeng Fang, Zhenglin Hua, Yuheng Jia, Ming Tang, Tat-Seng
 652 Chua, and Jinqiao Wang. Cracking the code of hallucination in lmlms with vision-aware head
 653 divergence. In *Proceedings of the 63rd Annual Meeting of the Association for Computational
 654 Linguistics (Volume 1: Long Papers)*, pp. 3488–3501, 2025.

655 Lehan He, Zeren Chen, Zhelun Shi, Tianyu Yu, Jing Shao, and Lu Sheng. A topic-level self-
 656 correctional approach to mitigate hallucinations in mllms. *arXiv preprint arXiv:2411.17265*,
 657 2024.

658 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 659 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 660 via over-trust penalty and retrospection-allocation. *arXiv preprint arXiv:2311.17911*, 2023.

661 Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao Wang, Zhicheng Chen, and Peilin Zhao.
 662 Self-introspective decoding: Alleviating hallucinations for large vision-language models. *arXiv
 663 preprint arXiv:2408.02032*, 2024.

664 Nicholas Jiang, Xiaoqing Sun, Lewis Smith, and Neel Nanda. Towards data-centric interpretability
 665 with sparse autoencoders. In *Mechanistic Interpretability Workshop at NeurIPS 2025*, 2025a.

666 Nick Jiang, Amil David, Alexei Efros, and Yossi Gandelsman. Vision transformers don't need
 667 trained registers. In *NeurIPS*, 2025b.

668 Nick Jiang, Anish Kachinthaya, Suzie Petryk, and Yossi Gandelsman. Interpreting and editing
 669 vision-language representations to mitigate hallucinations. In *ICLR*, 2025c.

670 Omri Kaduri, Shai Bagon, and Tali Dekel. What's in the image? a deep-dive into the vision of vision
 671 language models. In *CVPR*, pp. 14549–14558, 2025.

672 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
 673 attention sink in large multimodal models. *arXiv:2503.03321*, 2025.

674 Dahye Kim, Xavier Thomas, and Deepti Ghadiyaram. Revelio: Interpreting and leveraging semantic
 675 information in diffusion models. *arXiv preprint arXiv:2411.16725*, 2024a.

676 Junho Kim, Hyunjun Kim, Kim Yeonju, and Yong Man Ro. Code: Contrasting self-generated
 677 description to combat hallucination in large multi-modal models. *Advances in Neural Information
 678 Processing Systems*, 37:133571–133599, 2024b.

679 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 680 <https://arxiv.org/abs/1412.6980>.

681 Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, and David Sussillo. Hallucinations
 682 in neural machine translation. *OpenReview*, 2018.

683 Seongyun Lee, Sue Hyun Park, Yongrae Jo, and Minjoon Seo. Volcano: mitigating multimodal
 684 hallucination through self-feedback guided revision. *arXiv preprint arXiv:2311.07362*, 2023.

685 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 686 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 687 coding. In *CVPR*, pp. 13872–13882, 2024.

688 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 689 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 690 arXiv:2408.03326*, 2024.

691 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori B Hashimoto, Luke
 692 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimiza-
 693 tion. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
 694 (Volume 1: Long Papers)*, pp. 12286–12312, 2023a.

702 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 703 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
 704

705 Bingqian Liu, Fu Zhang, Guoqing Chen, and Jingwei Cheng. Multi-frequency contrastive decoding:
 706 Alleviating hallucinations for large vision-language models. In *Proceedings of the 2025
 707 Conference on Empirical Methods in Natural Language Processing*, pp. 28556–28572, 2025.

708 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigat-
 709 ing hallucination in large multi-modal models via robust instruction tuning. *arXiv preprint
 710 arXiv:2306.14565*, 2023a.

711 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
 712 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv
 713 preprint arXiv:2402.00253*, 2024a.

714

715 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NIPS*, 36:
 716 34892–34916, 2023b.

717 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 718 tuning. In *CVPR*, pp. 26296–26306, 2024b.

719

720 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 721 Llavanext: Improved reasoning, ocr, and world knowledge, 2024c.

722

723 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 724 for alleviating hallucination in lmlms. *arXiv preprint arXiv:2407.21771*, 2024d.

725

726 Hantao Lou, Changye Li, Jiaming Ji, and Yaodong Yang. Sae-v: Interpreting multimodal models
 727 for enhanced alignment. In *Forty-second International Conference on Machine Learning*, 2025.

728

729 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.

730

731 Noa Nabeshima. Matryoshka sparse autoencoders. *AI Alignment Forum*, 2024.

732

733 Neel Nanda, Arthur Conmy, Lewis Smith, Senthooran Rajamanoharan, Tom Lieberum, János
 734 Kramár, and Vikrant Varma. Progress update# 1 from the gdm mech interp team: Full update. In
 735 *AI Alignment Forum*, 2024.

736

737 Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
 738 employed by v1? *Vision research*, 37(23):3311–3325, 1997.

739

740 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 741 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 742 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 743 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 744 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 745 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 746 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 747 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 748 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 749 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 750 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 751 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 752 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 753 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 754 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 755 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 mal, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiro, Matt Knight, Daniel
 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel

756 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 757 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 758 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 759 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 760 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 761 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 762 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 763 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 764 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 765 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 766 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 767 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 768 Rimbach, Carl Ross, Bob Rotstetd, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 769 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 770 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 771 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 772 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 773 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
 774 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 775 jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 776 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lillian Weng,
 777 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 778 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 779 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
<https://arxiv.org/abs/2303.08774>.

780 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Clip-dpo: Vision-
 781 language models as a source of preference for fixing hallucinations in lylms. In *European Con-
 782 ference on Computer Vision*, pp. 395–413. Springer, 2024.

783 Mateusz Pach, Shyamgopal Karthik, Quentin Bouliot, Serge Belongie, and Zeynep Akata.
 784 Sparse autoencoders learn monosemantic features in vision-language models. *arXiv preprint
 785 arXiv:2504.02821*, 2025.

786 Woohyeon Park, Woojin Kim, Jaeik Kim, and Jaeyoung Do. Second: Mitigating perceptual hal-
 787 lucination in vision-language models via selective and contrastive decoding. In *Forty-second
 788 International Conference on Machine Learning*, 2025a.

789 Woohyeon Park, Woojin Kim, Jaeik Kim, and Jaeyoung Do. Second: Mitigating perceptual hal-
 790 lucination in vision-language models via selective and contrastive decoding. *arXiv preprint
 791 arXiv:2506.08391*, 2025b.

792 Shangpin Peng, Senqiao Yang, Li Jiang, and Zhuotao Tian. Mitigating object hallucinations via
 793 sentence-level early intervention. In *CVPR*, pp. 635–646, 2025.

794 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 795 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 796 autoencoders. *arXiv preprint arXiv:2407.14435*, 2024.

797 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 798 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.

799 Dong Shu, Xuansheng Wu, Haiyan Zhao, Daking Rai, Ziyu Yao, Ninghao Liu, and Mengnan Du.
 800 A survey on sparse autoencoders: Interpreting the internal mechanisms of large language models.
 801 *arXiv preprint arXiv:2503.05613*, 2025.

802 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 803 models. *arXiv:2402.17762*, 2024.

804 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 805 Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 806 factually augmented rlhf. *arXiv preprint arXiv:2309.14525*, 2023.

810 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 811 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
 812 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 813 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 814 Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. *Transformer*
 815 *Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html>.

817 Harrish Thasarathan, Julian Forsyth, Thomas Fel, Matthew Kowal, and Konstantinos Derpanis.
 818 Universal sparse autoencoders: Interpretable cross-model concept alignment. *arXiv preprint*
 819 *arXiv:2502.03714*, 2025.

821 Zifu Wan, Ce Zhang, Silong Yong, Martin Q Ma, Simon Stepputtis, Louis-Philippe Morency, Deva
 822 Ramanan, Katia Sycara, and Yaqi Xie. Only: One-layer intervention sufficiently mitigates hallu-
 823 cinations in large vision-language models. *arXiv preprint arXiv:2507.00898*, 2025.

824 Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Jiaqi Wang, Haiyang
 825 Xu, Ming Yan, Ji Zhang, et al. Amber: An llm-free multi-dimensional benchmark for mllms
 826 hallucination evaluation. *arXiv preprint arXiv:2311.07397*, 2023.

827 Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large
 828 vision-language models with instruction contrastive decoding. *arXiv preprint arXiv:2403.18715*,
 829 2024.

831 Xuansheng Wu, Jiayi Yuan, Wenlin Yao, Xiaoming Zhai, and Ninghao Liu. Interpreting and steer-
 832 ing llms with mutual information-based explanations on sparse autoencoders. *arXiv preprint*
 833 *arXiv:2502.15576*, 2025.

834 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 835 language models with attention sinks. *arXiv:2309.17453*, 2023.

837 Shangyu Xing, Fei Zhao, Zhen Wu, Tuo An, Weihao Chen, Chunhui Li, Jianbing Zhang, and Xinyu
 838 Dai. Efuf: Efficient fine-grained unlearning framework for mitigating hallucinations in multi-
 839 modal large language models. *arXiv preprint arXiv:2402.09801*, 2024.

840 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 841 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 842 *arXiv:2505.09388*, 2025a.

843 Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Mitigating hallucination in large vision-language
 844 models via modular attribution and intervention. In *Adaptive Foundation Models: Evolving AI*
 845 *for Personalized and Efficient Learning*, 2025b.

847 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
 848 Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabora-
 849 tion. In *CVPR*, pp. 13040–13051, 2024.

850 Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao Wang, Dianbo Sui, Yunhang Shen, Ke Li,
 851 Xing Sun, and Enhong Chen. Woodpecker: Hallucination correction for multimodal large lan-
 852 guage models. *arXiv preprint arXiv:2310.16045*, 2023.

854 Itay Yona, Ilia Shumailov, Jamie Hayes, Federico Barbero, and Yossi Gandelsman. Interpreting the
 855 repeated token phenomenon in large language models. *arXiv preprint arXiv:2503.08908*, 2025.

856 Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang, Qi Tian,
 857 and Yueting Zhuang. Hallucidoctor: Mitigating hallucinatory toxicity in visual instruction data.
 858 In *CVPR*, pp. 12944–12953, 2024a.

859 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
 860 Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for
 861 super gpt-4v trustworthiness. *arXiv e-prints*, pp. arXiv–2405, 2024b.

863 Zihao Yue, Liang Zhang, and Qin Jin. Less is more: Mitigating multimodal hallucination from an
 eos decision perspective. *arXiv preprint arXiv:2402.14545*, 2024.

864 Bohan Zhai, Shijia Yang, Chenfeng Xu, Sheng Shen, Kurt Keutzer, Chunyuan Li, and Manling
 865 Li. Halle-control: Controlling object hallucination in large multimodal models. *arXiv preprint*
 866 *arXiv:2310.01779*, 2024. URL <https://arxiv.org/abs/2310.01779>.

867
 868 Kaichen Zhang, Yifei Shen, Bo Li, and Ziwei Liu. Large multi-modal models can interpret features
 869 in large multi-modal models. *arXiv preprint arXiv:2411.14982*, 2024a.

870
 871 Xiaofeng Zhang, Yihao Quan, Chaochen Gu, Chen Shen, Xiaosong Yuan, Shaotian Yan, Hao Cheng,
 872 Kaijie Wu, and Jieping Ye. Seeing clearly by layer two: Enhancing attention heads to alleviate
 873 hallucination in lmlms. *arXiv preprint arXiv:2411.09968*, 2024b.

874
 875 Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond hal-
 876 lucinations: Enhancing lmlms through hallucination-aware direct preference optimization. *arXiv*
 877 *preprint arXiv:2311.16839*, 2023.

878
 879 Ren Zhibo, Wang Huizhen, Zhu Muhua, Wang Yichao, Xiao Tong, and Zhu Jingbo. Overcoming
 880 language priors with counterfactual inference for visual question answering. In *Proceedings of*
 881 *the 22nd Chinese National Conference on Computational Linguistics*, pp. 600–610, 2023.

882
 883 Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit
 884 Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language
 885 models. *arXiv preprint arXiv:2310.00754*, 2023.

886
 887 Yiyang Zhou, Chenhang Cui, Rafael Rafailev, Chelsea Finn, and Huaxiu Yao. Aligning modalities
 888 in vision large language models via preference fine-tuning. *arXiv preprint arXiv:2402.11411*,
 889 2024a.

890
 891 Yiyang Zhou, Chenhang Cui, Rafael Rafailev, Chelsea Finn, and Huaxiu Yao. Aligning modalities
 892 in vision large language models via preference fine-tuning. *arXiv preprint arXiv:2402.11411*,
 893 2024b.

894
 895 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 896 hancing vision-language understanding with advanced large language models. *arXiv preprint*
 897 *arXiv:2304.10592*, 2023.

898
 899 Lanyun Zhu, Deyi Ji, Tianrun Chen, Peng Xu, Jieping Ye, and Jun Liu. Ibd: Alleviating
 900 hallucinations in large vision-language models via image-biased decoding. *arXiv preprint*
 901 *arXiv:2402.18476*, 2024.

902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **A ADDITIONAL NEURON VISUALIZATIONS**
919

920 Fig. 7 presents additional examples of neurons discovered by our sparse autoencoder (SAE). Many
 921 neurons exhibit strong associations with concrete objects or concepts, such as #14174 for corn,
 922 #46469 for oranges, and #61697 for dogs wearing Christmas hats. Beyond object-level semantics,
 923 some neurons capture more abstract structural cues, such as #62747, which consistently responds to
 924 spiral or fan-shaped patterns. These examples demonstrate the richness and diversity of the learned
 925 neuron space, ranging from fine-grained objects to higher-level structural abstractions. Such diver-
 926 sity not only enhances the interpretability of internal visual representations but also provides a strong
 927 foundation for precise neuron-level interventions, thereby facilitating both mechanistic understand-
 928 ing and controllable steering of LVLM outputs.

930 **B NOISE-INDUCED DISRUPTION OF INTERNAL VISUAL FEATURES LEADING
931 TO HALLUCINATIONS**
932

933 In Sec. 4, we quantitatively analyzed how noise perturbs internal visual features, causing neuron ac-
 934 tivations to shift and destabilize. These disruptions reshape the semantics of visual representations,
 935 inducing hallucinations and degrading LVLM performance (see Fig. 5).

936 To illustrate this phenomenon more intuitively, Fig. 8 shows an example image containing a camera.
 937 As increasing levels of noise are applied, the activation of the “camera” neuron gradually dimin-
 938 ishes. Correspondingly, the LVLM output exhibits a progressive semantic drift: initially describing
 939 a “black Konica Minolta camera with a large lens,” then simplifying to “camera with a large lens,”
 940 and eventually omitting the camera entirely. This case demonstrates how noise-induced disruptions
 941 at the neuron level directly erode semantic fidelity in visual features, ultimately manifesting as hal-
 942 lucinations in model outputs.

943 Importantly, this example underscores the value of SAEs: by decomposing dense visual embed-
 944 dings into sparse, monosemantic neurons, we gain the ability to trace how specific semantic con-
 945 cepts evolve under perturbations. This neuron-level perspective provides interpretability and ana-
 946 lytical clarity, enabling us to pinpoint which neurons are destabilized and how this relates to output
 947 degradation. Such insights establish a principled foundation for designing targeted interventions to
 948 mitigate hallucinations and improve LVLM reliability.

950 **C HIGH-FREQUENCY NEURON ANALYSIS AND VISUALIZATION**
951

952 To gain deeper insights into the functional roles of individual neurons in LVLM visual representa-
 953 tions, we perform both image-level and patch-level analyses. These qualitative results complement
 954 the quantitative findings in Sec. 4, providing a more intuitive understanding of how neurons encode
 955 semantic information.

956 **Image-Level Analysis and Visualizations.** Fig. 9 highlights neurons with consistently high ac-
 957 tivation across different images. We observe that a small subset of “always-on” neurons remain
 958 persistently active regardless of image content, often encoding recurring textures or repetitive small
 959 objects rather than scene-specific information. The bottom panel further visualizes the top-activated
 960 images for each neuron, confirming that these neurons capture similar global patterns across diverse
 961 inputs. Within CNS, we reduce their disproportionate influence via Always-on Neuron Suppression
 962 (ANS), which decreases redundancy, emphasizes image-specific content, and improves the inter-
 963 pretability of downstream neuron-level interventions.

964 **Patch-Level Analysis and Visualizations.** Fig. 10 illustrates neuron activations at the patch level.
 965 Unlike always-on neurons, most patch-level neurons respond reliably to localized, semantically
 966 meaningful concepts, such as distinctive textures or object parts. This indicates that individual neu-
 967 rons often encode interpretable, fine-grained features, which are particularly well-suited for targeted
 968 interventions. By selectively modulating these neurons, we can directly influence which visual
 969 concepts are emphasized or suppressed in LVLM outputs, enabling fine-grained and interpretable
 970 control.

972 **Summary.** Together, the image-level and patch-level analyses reveal a dual organization of neuron
 973 activations: broadly active global features and selectively tuned local features. This dual perspective
 974 underpins our CNS approach, where targeted neuron-level interventions enable controllable and
 975 interpretable mitigation of hallucinations, while also deepening mechanistic insights into LVLM
 976 visual processing.

978 D MORE COMPLEX AND DIVERSE CASES FOR STEERING LVLMs

980 We further present diverse and challenging case studies to illustrate how neuron-level steering en-
 981 ables fine-grained and interpretable control in LVLMs. These examples highlight not only the fea-
 982 sibility of manipulating specific concepts but also the varying levels of difficulty imposed by scene
 983 complexity and semantic distribution across neurons.

985 **Multi-Concept Suppression.** Fig. 11 shows a scene containing multiple objects (dog and chair).
 986 By suppressing the neurons corresponding to each object, we can selectively remove them from
 987 generated captions or descriptions. Interestingly, the difficulty of suppression varies across concepts.
 988 Suppressing “chair” neurons is relatively straightforward, with a weight of $\alpha = -30$ sufficient
 989 to eliminate chairs from outputs. In contrast, suppressing “dog” neurons requires much stronger
 990 intervention, sometimes leaving residual references until $\alpha = -100$ fully removes them. Closer
 991 inspection reveals that the SAE encodes a hierarchy of dog-related concepts (e.g., different breeds),
 992 making suppression more challenging when the concept is distributed across multiple fine-grained
 993 neurons.

994 **Concept Insertion in Simple and Complex Contexts.** We also examine concept insertion across
 995 scenes of different complexity. As shown in Fig. 12, inserting a dog concept into a simple bird-
 996 dominated scene requires only a modest weight ($\alpha = 50$) for the concept to appear in outputs.
 997 However, inserting the same concept into a more complex scene containing multiple objects de-
 998 demands a much larger weight ($\alpha = 500$) to manifest reliably. This contrast underscores how scene
 999 complexity significantly affects the intervention strength required for successful concept insertion.

1000 **Multi-Neuron Steering in Complex Contexts.** In highly complex visual scenes, steering a single
 1001 dog-related neuron requires very large weights (e.g., $\alpha = 500$) before the concept emerges in outputs
 1002 (Fig. 13). By contrast, jointly adjusting three dog-related neurons with smaller weights ($\alpha = 20$
 1003 each) produces a more natural and robust insertion. A similar pattern is observed for suppression
 1004 (Fig. 14): targeting a single neuron requires extreme negative weights (e.g., $\alpha = -100$), whereas
 1005 coordinated modulation of three neurons with smaller magnitudes ($\alpha = -10$ each) removes the
 1006 concept more effectively and smoothly. These findings highlight the superior stability and efficiency
 1007 of multi-neuron steering, providing strong support for our CNS design, which automatically selects
 1008 and adjusts multiple neurons to achieve reliable fine-grained control.

1009 **Summary.** Across multi-concept suppression, concept insertion, and multi-neuron steering, we
 1010 find that the effectiveness of interventions depends critically on both the semantic distribution of
 1011 concepts across neurons and the contextual complexity of the scene. These case studies collectively
 1012 validate neuron-level steering as a powerful and interpretable mechanism for controlling LVLM
 1013 behavior in diverse scenarios.

1018 E ADDITIONAL ABLATION STUDIES

1021 We conduct ablation studies to examine the influence of key hyperparameters and neuron-level com-
 1022 ponents in **Contrastive Neuron Steering (CNS)**. All experiments are performed on the POPE and
 1023 CHAIR benchmarks using LLaVA-1.5.

1025 E.1 ABLATION ON CONTRASTIVE REGULARIZATION WEIGHT λ

1026
 1027 To evaluate how the strength of contrastive neu-
 1028 ron steering affects hallucination suppression
 1029 and content preservation, we vary the weight
 1030 λ of Contrastive neuron regulation (CNR) over
 1031 0.25, 0.5, 0.75, 1.0, 2.0, keeping other param-
 1032 eters at default. As shown in Tab. 6, a moder-
 1033 ate value of $\lambda = 0.5$ achieves the best trade-
 1034 off, demonstrating the effectiveness of CNS in
 1035 balancing hallucination reduction and per-
 1036 formance retention.

1037 E.2 ABLATION ON PLAUSIBILITY THRESHOLD τ

1038 We vary the adaptive neuron magnitude thresh-
 1039 old τ of Adaptive neuron constraints (ANC)
 1040 over 0.001, 0.01, 0.1, 0.2, 0.3 to examine its
 1041 impact on CNS performance. Other parameters
 1042 remain at default. Tab. 7 shows that $\tau = 0.1$
 1043 achieves the best balance, effectively filtering
 1044 weak neuron signals while retaining salient vi-
 1045 sual features, confirming the robustness of our
 1046 method.

1047 E.3 ABLATION 1048 ON TOP- k NEURONS FOR ANS

1049 To evaluate the effect of the number of top-
 1050 k neurons in Always-on Neuron Suppression
 1051 (ANS), we vary k over 10, 20, 30, 40. Tab. 8
 1052 shows that $k = 20$ provides the optimal trade-
 1053 off, effectively suppressing generic neurons
 1054 without removing informative, image-specific
 1055 signals.

1056 E.4 ABLATION ON NOISE STEPS IN 1057 ADAPTIVE CONSTRAINTS

1058 We investigate how the number of denoising
 1059 steps in the adaptive plausibility constraint af-
 1060 fects neuron stability and hallucination reduc-
 1061 tion, testing steps from 0 to 999. Tab. 9 shows
 1062 that increasing the number of steps improves
 1063 stability and reduces hallucinations, with 500
 1064 steps achieving the best performance while bal-
 1065 ancing computational cost.

Table 6: Ablation study on the contrastive regu-
 larization weight λ .

λ	POPE \uparrow				CHAIR \downarrow	
	Acc.	Prec.	Rec.	F1	CHAIR _S	CHAIR _I
0.25	85.17	83.78	87.19	85.45	25.8	8.9
0.5	85.20	83.85	87.20	85.49	25.7	8.8
0.75	85.13	83.71	87.17	85.41	25.8	8.9
1.0	84.87	83.38	87.25	85.27	26.1	9.1
2.0	84.77	83.14	87.29	85.17	26.2	9.2

Table 7: Ablation study on the plausibility thresh-
 old τ .

λ	POPE \uparrow				CHAIR \downarrow	
	Acc.	Prec.	Rec.	F1	CHAIR _S	CHAIR _I
0.001	85.13	83.74	87.10	85.39	25.9	9.1
0.01	85.20	83.82	87.17	85.46	25.8	8.9
0.1	85.20	83.85	87.20	85.49	25.7	8.8
0.2	85.17	83.83	87.12	85.44	25.8	8.9
0.3	85.10	83.68	87.09	85.35	25.9	9.1

Table 8: Ablation study on the number of top- k
 neurons for ANS.

Top- k	Acc.	Prec.	Rec.	F1	CHAIR _S	CHAIR _I
10.0	85.20	83.84	87.19	85.48	25.8	8.9
20.0	85.20	83.85	87.20	85.49	25.7	8.8
30.0	85.17	83.83	87.12	85.44	25.8	8.9
40.0	85.16	83.82	87.06	85.41	25.9	9.1

Table 9: Effect of denoising steps in adaptive
 plausibility constraints.

Steps	Acc.	Prec.	Rec.	F1	CHAIR _S	CHAIR _I
0	85.00	83.61	87.07	85.30	26.5	9.4
100	85.17	83.97	86.93	85.42	26.4	9.2
200	85.10	83.86	86.93	85.37	26.2	9.3
300	85.13	83.87	87.00	85.41	26.1	9.1
400	85.20	83.89	87.13	85.48	26.0	8.9
500	85.20	83.85	87.20	85.49	25.7	8.8
600	85.20	83.63	87.53	85.54	25.9	8.9
700	85.10	83.51	87.47	85.44	26.2	9.1
800	85.07	83.42	87.53	85.43	26.3	9.2
900	84.73	83.02	87.33	85.12	26.6	9.4
999	84.93	83.25	87.47	85.31	26.9	9.6

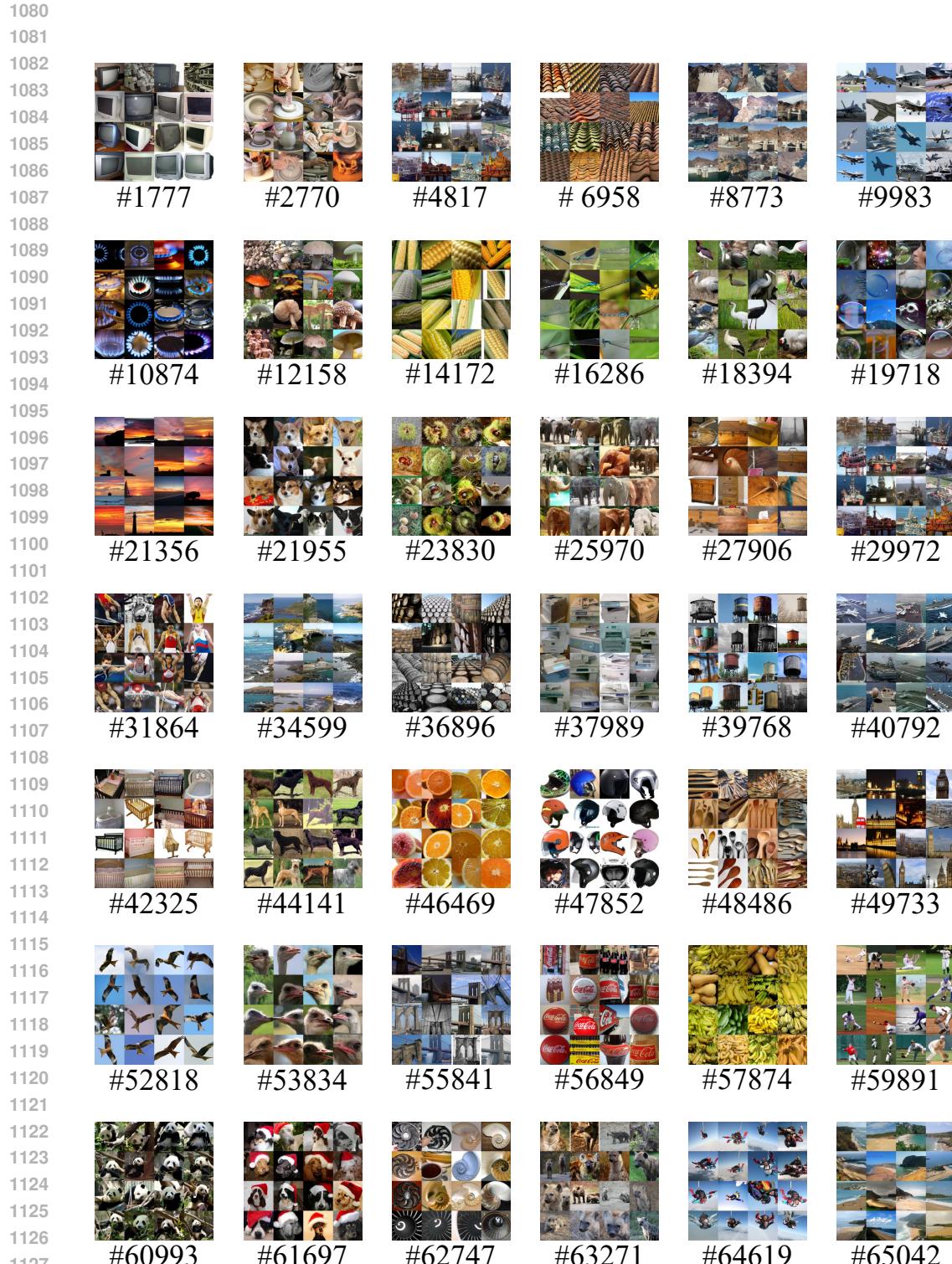


Figure 7: Additional visualizations of monosemantic neurons learned by the SAE. The neurons exhibit diverse semantics, ranging from specific objects (e.g., corn #14174, oranges #46469, Christmas-hat dogs #61697) to abstract structural patterns (e.g., spirals or fan-like shapes #62747). This diversity demonstrates the interpretability of the internal representation space and provides a strong foundation for explaining and steering LVLMs through neuron-level interventions.

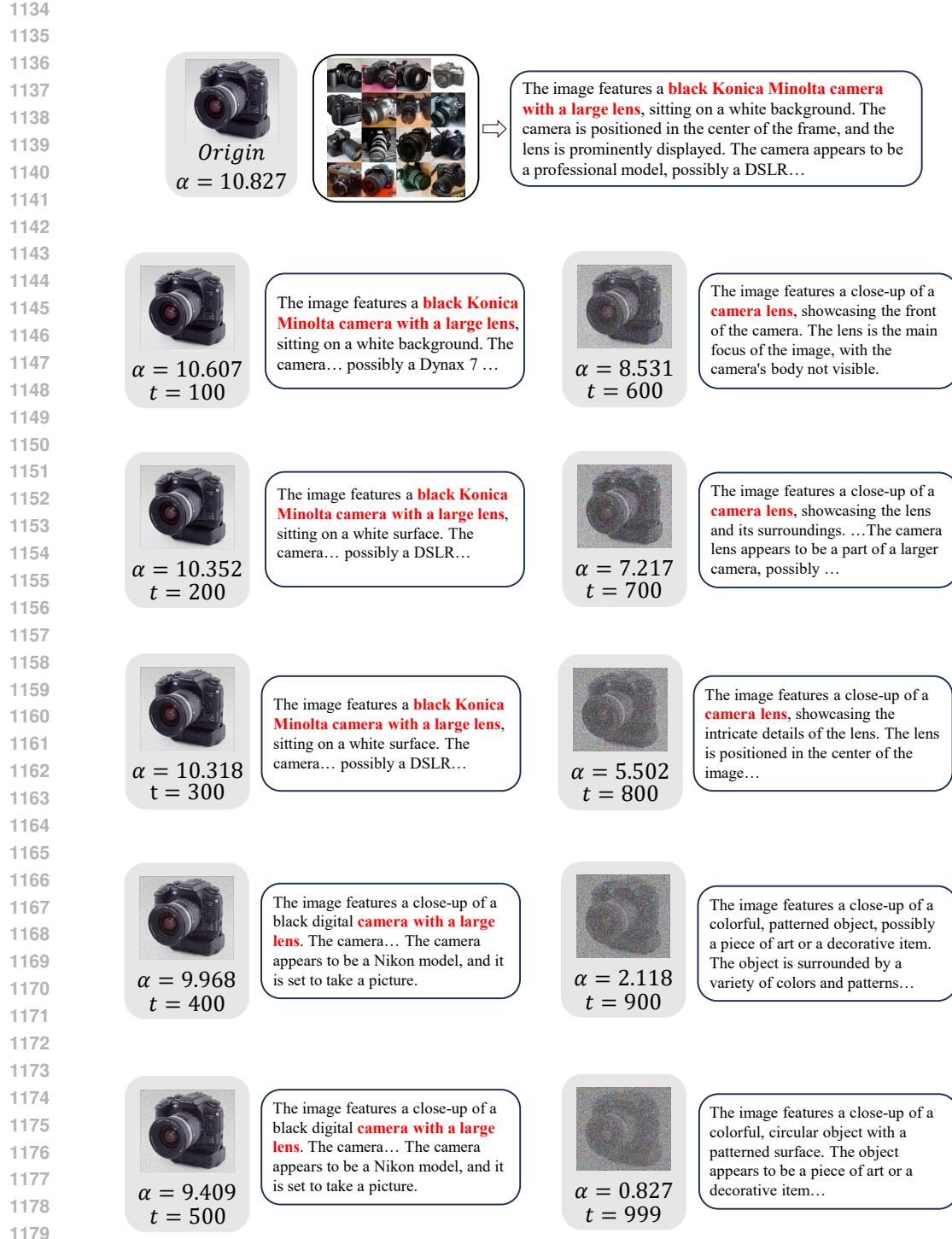


Figure 8: Example of noise affecting visual feature representations. The image contains a camera. As noise increases, the activation of the “camera” neuron gradually decreases, and the LViM output progressively loses detail: from “black Konica Minolta camera with a large lens” to “camera with a large lens,” and finally no camera description. This demonstrates how noise disrupts internal semantic representations, leading to hallucinations. It also highlights the advantage of SAEs in decoupling dense LViM features into sparse, monosemantic neurons, allowing us to track and analyze internal visual feature changes at the neuron level.

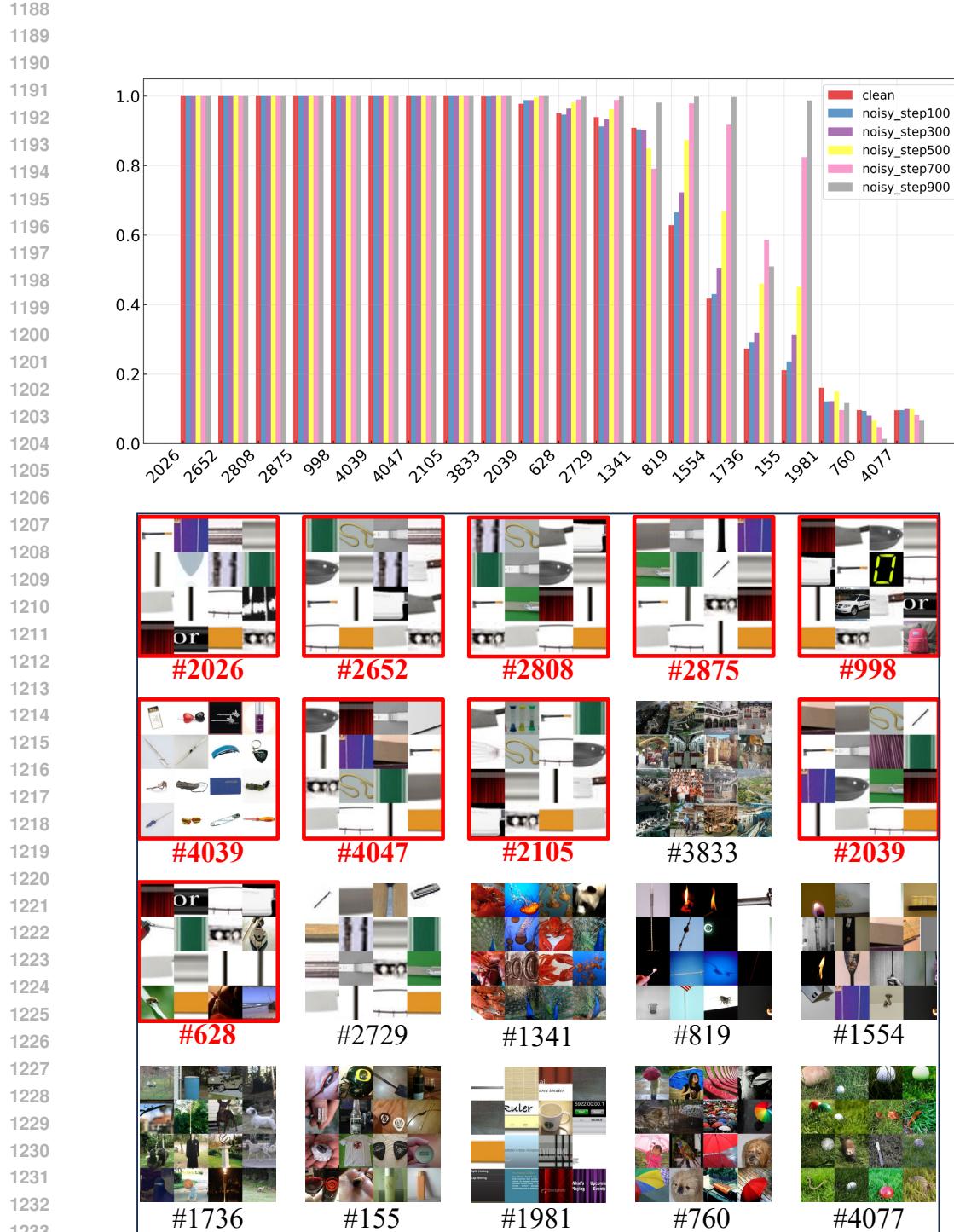


Figure 9: Image-Level Dominance Analysis and Visualization. The top panel shows neurons with consistently high activation rates across different images. The bottom panel visualizes the top-activated images for each neuron. These “always-on” neurons often correspond to recurring textures or small objects and represent similar global information. Red highlights indicate neurons selected for suppression in CNS via ANS. Suppressing these neurons emphasizes image-specific objects, providing an interpretable basis for our method.



Figure 10: Patch-Level Activation Analysis and Visualization. At the patch level, neurons often capture concrete, localized concepts. Activation patterns show that most neurons reliably represent specific visual features, supporting fine-grained neuron-level interventions.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

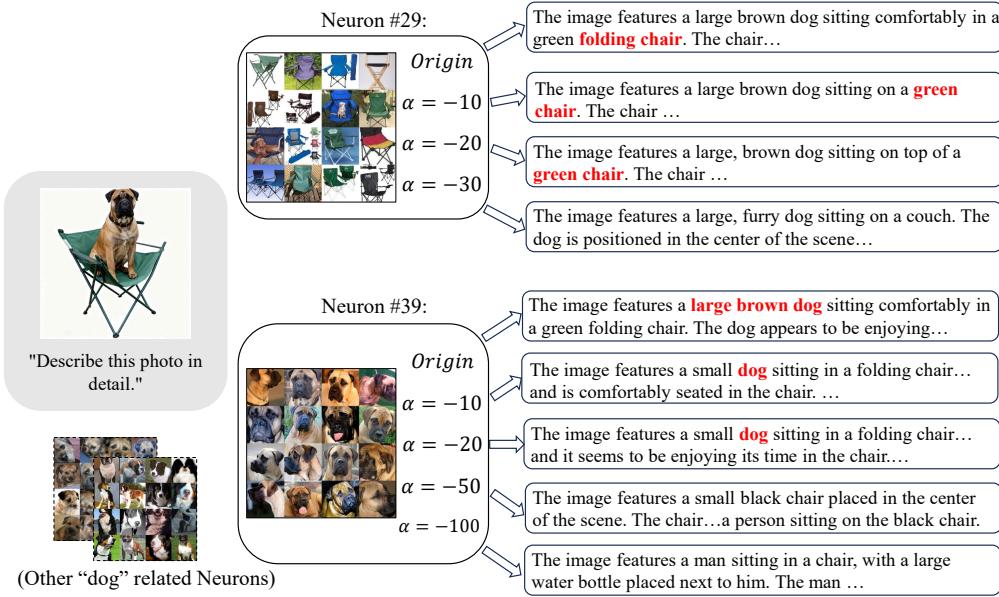


Figure 11: Multi-concept suppression. Suppressing “chair” neurons effectively removes chairs from model outputs. Suppressing “dog” neurons is more challenging, requiring stronger intervention since the SAE has learned a hierarchy of dog-related concepts (e.g., different breeds). This highlights the difficulty of eliminating concepts encoded in multiple fine-grained neurons.

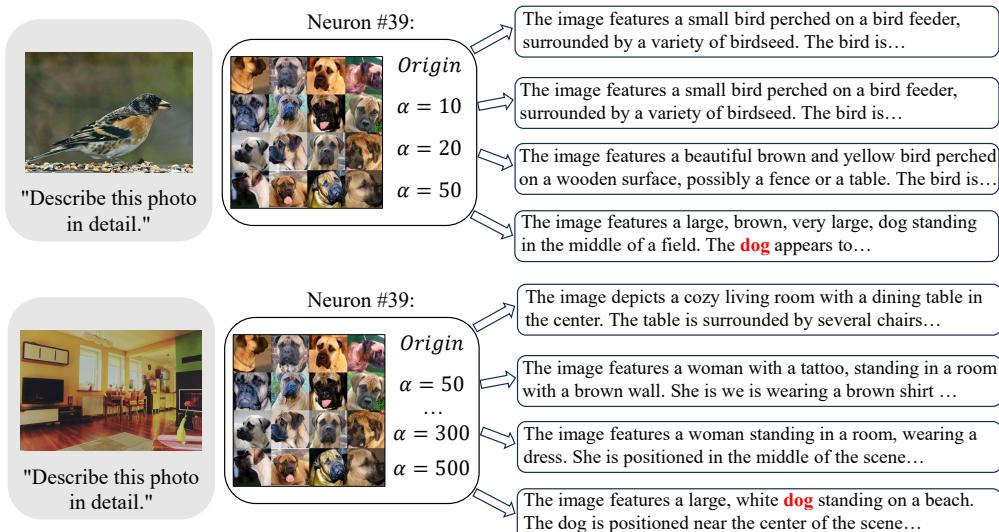


Figure 12: Concept insertion in simple contexts. By slightly amplifying a single dog-related neuron, the model begins to hallucinate the presence of dogs in unrelated scenes. Compared to suppression, concept insertion is easier: small weights suffice to introduce the new concept.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

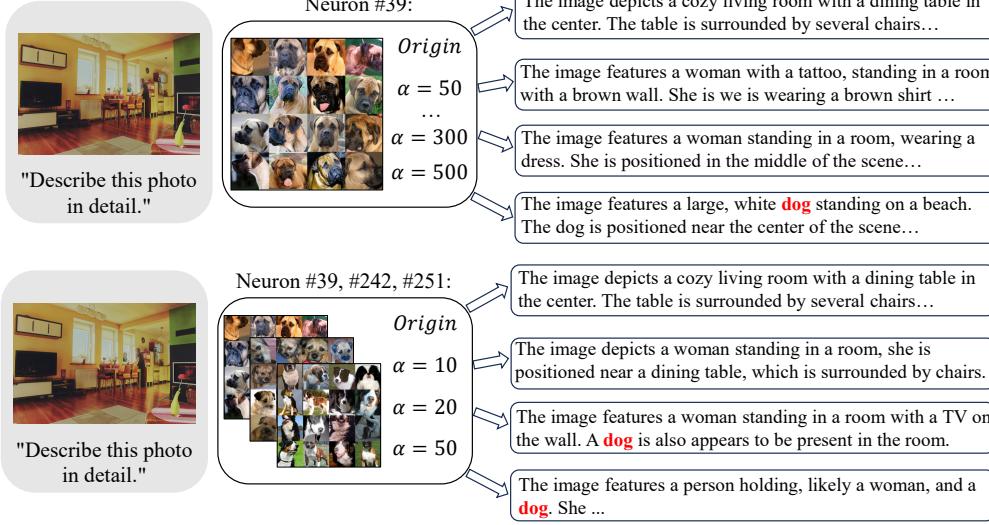


Figure 13: Concept insertion in complex contexts. (a) Steering with a single dog-related neuron requires a very large weight ($\alpha = 500$) to produce visible effects. (b) Coordinated steering of three dog-related neurons with smaller weights ($\alpha = 20$ each) yields natural insertions. This demonstrates the advantage of multi-neuron steering and motivates our CNS approach.

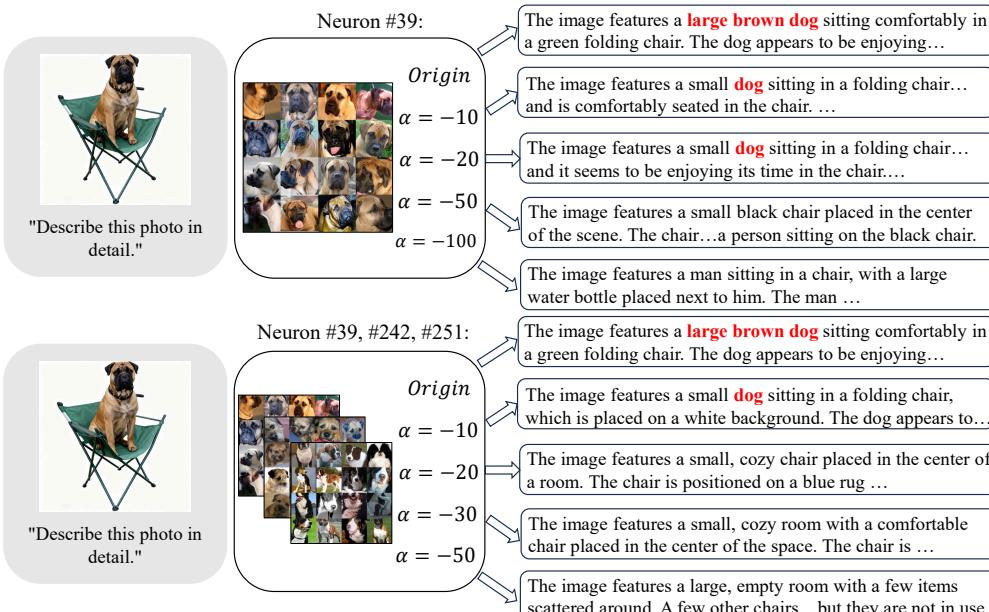


Figure 14: Concept suppression in complex contexts. (a) Suppressing a single dog-related neuron requires a very large negative weight ($\alpha = -100$) before the concept disappears from outputs. (b) Jointly suppressing three dog-related neurons with smaller weights ($\alpha = -10$ each) removes the concept more naturally and reliably, illustrating the effectiveness of multi-neuron steering.

1404
 1405 Table 10: Results of the newer and stronger LLaVA-Next and LLaVA-OneVision models on the
 1406 POPE benchmark, following SECOND’s setup.

1407 Model	1408 LLM	1409 Method	1410 F1 (↑)		
			1411 MSCOCO	1412 OKVQA	1413 GQA
1410 LLaVA-Next (CLIP-336)	1411 Vicuna-7B	1412 baseline	1413 86.5	1414 88.8	1415 86.3
		1416 baseline + CNS (ours)	1417 87.0	1418 89.3	1419 86.8
		1420 VCD	1421 87.3	1422 88.6	1423 84.9
		1424 SECOND	1425 87.5	1426 89.1	1427 86.3
		1428 SECOND + CNS (ours)	1429 88.2	1430 90.2	1431 87.1
1432 LLaVA-OneVision (SigLIP-384)	1433 Qwen2-0.5B	1434 baseline	1435 87.4	1436 88.7	1437 86.3
		1438 baseline + CNS (ours)	1439 87.9	1440 89.2	1441 86.8
		1442 VCD	1443 86.4	1444 88.9	1445 86.4
		1446 SECOND	1447 86.3	1448 88.1	1449 86.7
		1450 SECOND + CNS (ours)	1451 87.1	1452 89.6	1453 87.6

1420
 1421 Table 11: Results of the more recent and stronger Qwen2.5-VL on the POPE benchmark, following
 1422 MFCD’s setup.

1423 Model	1424 Decoding	1425 F1 Score (↑)		
		1426 Random	1427 Popular	1428 Adversarial
1429 Qwen2.5-VL	1430 Sample (base)	1431 80.03	1432 78.93	1433 80.03
	1434 Sample + CNS (ours)	1435 80.61	1436 79.52	1437 80.58
	1438 Dola	1439 77.46	1440 77.43	1441 77.47
	1442 VCD	1443 81.39	1444 79.91	1445 79.98
	1446 SID	1447 79.95	1448 79.38	1449 78.82
	1450 MFCD (ours)	1451 82.91	1452 82.01	1453 81.75
	1454 MFCD + CNS (ours)	1455 83.45	1456 82.54	1457 82.29

F REBUTTAL

F.1 EVALUATION ON MORE METHODS AND MODELS

1438 To further verify the generality and robustness of VDC, we extend our evaluation to a broader set
 1439 of **hallucination mitigation methods**, including DoLA (Chuang et al., 2023), OPERA (Huang
 1440 et al., 2023), VCD (Leng et al., 2024), Woodpecker (Yin et al., 2023), LURE (Zhou et al., 2023),
 1441 HALC (Chen et al., 2024), CODE (Kim et al., 2024b), EAH (Zhang et al., 2024b), VHR (He et al.,
 1442 2025), AD-HH (Yang et al., 2025b), SID (Huo et al., 2024), SECOND (Park et al., 2025b), and
 1443 MFCD (Liu et al., 2025), as well as diverse **LVLM architectures**, including MiniGPT-4 (Zhu et al.,
 1444 2023), mPLUG-Owl2 (Ye et al., 2024), and the more recent and stronger LLaVA-Next (Liu et al.,
 1445 2024c), LLaVA-OneVision, (Li et al., 2024) and Qwen2.5-VL (Bai et al., 2025). We evaluate these
 1446 models on both the **POPE** and **CHAIR** benchmarks.

1447 As shown in Tabs. 10, 11, 12, and 14, our proposed **CNS** consistently improves performance across
 1448 different decoding strategies and hallucination mitigation methods. Specifically, CNS reduces hal-
 1449 lucination rates (lower $CHAIR_S$ and $CHAIR_I$ scores) while maintaining or improving captioning
 1450 quality (higher F1 and BLEU scores), demonstrating its effectiveness across a wide range of **LVLM**
 1451 architectures and mitigation strategies. These results confirm that CNS is a generally applicable
 1452 and robust module for enhancing the reliability of open-ended visual question answering and image
 1453 captioning tasks.

F.2 EVALUATION ON MORE CHALLENGING BENCHMARKS

1454 We further evaluate our CNS method on several recently proposed, more challenging benchmarks
 1455 to assess its robustness and generality.

1458

1459 Table 12: Results of the newer and stronger LLaVA-Next with a maximum token length of 128 on
1460 CHAIR Benchmark, following the VHR’s setup.

Method	CHAIRs ↓	CHAIRi ↓
Greedy	29.08 ± 2.09	8.08 ± 0.74
Greedy + CNS (ours)	28.22 ± 1.82	7.26 ± 0.56
DoLa	28.76 ± 2.58	8.12 ± 0.78
VCD	30.80 ± 2.48	8.72 ± 0.94
CODE	27.84 ± 2.73	7.98 ± 0.92
EAH	28.13 ± 1.13	6.62 ± 0.49
VHR	24.96 ± 2.09	6.80 ± 0.59
VHR + CNS (ours)	24.42 ± 1.68	6.28 ± 0.36

1473

1474 Table 13: Following the evaluation protocol of AD-HH, we report results of CHAIR_S and CHAIR_I
1475 on COCO and Nocaps (out-of-domain) image captioning tasks, where lower scores indicate better
1476 performance. Our method yields strong improvements over existing approaches and can be seam-
1477 lessly combined with AD-HH, achieving further reductions in hallucination rates.

Methods	COCO				Nocaps (Out-of-Domain)			
	LLaVA-7B		MiniGPT-4		LLaVA-7B		MiniGPT-4	
	CHAIR _S ↓	CHAIR _I ↓	CHAIR _S ↓	CHAIR _I ↓	CHAIR _S ↓	CHAIR _I ↓	CHAIR _S ↓	CHAIR _I ↓
Greedy	51.8	13.3	40.6	13.7	43.2	14.3	57.4	20.0
Greedy + CNS (ours)	49.6	12.2	40.4	13.2	39.6	13.4	53.8	18.2
DoLA	53.8	13.9	41.0	13.8	42.0	13.7	57.2	20.4
OPERA	50.2	14.5	35.2	12.8	44.2	14.4	46.2	16.2
VCD	55.4	15.7	38.8	14.8	43.6	14.4	48.2	17.5
LURE	51.2	13.4	46.4	14.2	41.8	14.4	55.8	19.6
HALC	50.2	12.4	36.4	11.8	40.2	12.2	53.0	18.0
AD-HH	29.6	8.0	35.2	11.7	35.6	9.4	46.8	16.2
AD-HH + CNS (ours)	28.9	7.8	34.6	11.3	35.1	9.1	46.2	15.6

1487

1488

1489 **AMBER (Wang et al., 2023).** We adopt the generative subset of the AMBER, where models gener-
1490 ate captions in response to the prompt “Describe the image.” We measure hallucinations and caption
1491 quality using four metrics: CHAIR detects objects mentioned in the caption that are absent from the
1492 annotated descriptions, Cover measures the completeness of object coverage, Hal quantifies the hal-
1493 lucination rate, and Cog evaluates whether hallucinations resemble human-like patterns. To reduce
1494 computational costs for adversarial evaluation, we sample 50 images from this subset.

1495

1496 **MMHal-Bench (Sun et al., 2023).** This benchmark evaluates LVLMs from multiple perspectives,
1497 including attributes, relations, and counting. It assesses both hallucination rates and overall infor-
1498 mativity of the generated responses. An automatic GPT-4 evaluator compares model outputs to
1499 human-written references and ground truth object labels, ensuring a comprehensive assessment of
1500 visual understanding.

1501

1502 **HallusionBench (Guan et al., 2024).** Designed to test image-context reasoning, HallusionBench
1503 comprises 346 images and 1129 carefully crafted questions. It challenges LVLMs on nuanced visual
1504 reasoning, including GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5.

1505

1506 Across all three benchmarks (Tables 15, 16 and 17), applying CNS consistently improves per-
1507 formance over baseline and other mitigation methods. These results demonstrate that CNS effectively
1508 reduces hallucinations and enhances reasoning and coverage in even more complex and diverse
1509 evaluation settings.

1510

1511

F.3 MORE CASES ILLUSTRATING THE LINK BETWEEN HALLUCINATIONS AND NEURON 1512 ACTIVATIONS

1513 Fig. 15 and Fig. 16 further demonstrate how hallucinations in LVLMs arise from abnormal or com-
1514 peting neuron activations under different captioning or questioning conditions, and how targeted

1512

1513 Table 14: Results of CHAIR Benchmark for various LVLMs using different decoding models and
1514 methods, following HALC’s setup. Lower CHAIR_S and CHAIR_I scores indicate fewer hallucina-
1515 tions, while higher BLEU scores generally correspond to better captioning quality.

Method	MiniGPT-4			LLaVA-1.5			mPLUG-Owl2		
	$\text{CHAIR}_S \downarrow$	$\text{CHAIR}_I \downarrow$	BLEU↑	$\text{CHAIR}_S \downarrow$	$\text{CHAIR}_I \downarrow$	BLEU↑	$\text{CHAIR}_S \downarrow$	$\text{CHAIR}_I \downarrow$	BLEU↑
Greedy	30.87 \pm 5.45	12.33 \pm 2.07	14.33 \pm 0.00	20.80 \pm 0.08	6.77 \pm 0.07	15.93 \pm 0.00	23.20 \pm 0.35	8.33 \pm 0.28	15.37 \pm 0.00
Greedy + CNS(ours)	30.52 \pm 3.82	12.05 \pm 1.65	14.58 \pm 0.00	20.42 \pm 0.07	6.55 \pm 0.06	16.28 \pm 0.00	22.85 \pm 0.28	8.08 \pm 0.21	15.69 \pm 0.00
DoLA	30.87 \pm 2.52	11.70 \pm 0.13	14.93 \pm 0.00	21.00 \pm 0.67	6.70 \pm 0.38	15.93 \pm 0.00	24.60 \pm 0.24	8.73 \pm 0.30	15.40 \pm 0.00
OPERA	30.00 \pm 0.43	11.67 \pm 0.22	14.87 \pm 0.00	21.13 \pm 0.12	6.73 \pm 0.18	16.27 \pm 0.01	22.13 \pm 0.86	7.57 \pm 0.16	15.53 \pm 0.00
Woodpecker	28.87 \pm 2.20	10.20 \pm 0.85	15.30 \pm 0.01	23.85 \pm 4.62	7.50 \pm 0.01	17.05 \pm 0.00	26.33 \pm 1.98	8.43 \pm 0.80	16.43 \pm 0.00
LURE	27.88 \pm 2.25	10.20 \pm 0.85	15.03 \pm 0.11	19.48 \pm 2.35	6.5 \pm 0.38	15.97 \pm 0.01	21.27 \pm 0.06	7.67 \pm 0.16	15.65 \pm 0.05
VCD	30.27 \pm 0.44	12.60 \pm 0.45	14.33 \pm 0.00	23.33 \pm 5.66	7.90 \pm 0.53	14.67 \pm 0.01	27.27 \pm 7.32	9.73 \pm 1.22	14.40 \pm 0.00
HALC	17.80 \pm 0.03	8.10 \pm 0.14	14.91 \pm 0.00	13.80 \pm 0.08	5.50 \pm 0.14	16.10 \pm 0.01	17.33 \pm 4.30	7.43 \pm 0.11	16.27 \pm 0.00
HALC + CNS(ours)	17.35 \pm 0.02	7.70 \pm 0.12	15.25 \pm 0.00	13.30 \pm 0.07	5.15 \pm 0.12	16.45 \pm 0.01	16.70 \pm 3.80	7.05 \pm 0.09	16.65 \pm 0.00

1523

1524

1525

1526 Table 15: MMHal-Bench evaluates LVLMs on multiple aspects of visual understanding, including
1527 object attributes, relations, and counting. Metrics include Average Score (overall informativeness,
1528 higher is better) and Hallucination Rate (percentage of incorrect or hallucinated content, lower is
1529 better).

Method	MMHal-Bench	
	Average Score ↑	Hallucination Rate ↓
baseline	1.86	63.5
baseline + CNS (ours)	2.09	54.8
VCD	2.12	54.2
VCD + CNS (ours)	2.28	53.6
OPERA	2.33	50.0
Less-is-more	2.15	54.2
VACoDe	2.13	54.4

1536

1537

1538

1539 neuron modulation provides a principled way to suppress spurious signals and improve factual reli-
1540 ability.

1541

1542 In the black-apple case (Fig. 15), the model is asked a factual attribute question: “What is the
1543 color of the apple?”. Although the image clearly contains a black apple, the model incorrectly
1544 answers “red.” This error originates from the activation patterns inside the model. Neuron 2836,
1545 which is associated with red strawberries, shows unusually strong activation that overwhelms the
1546 evidence coming from apple-related neurons. This dominance causes the model to prioritize an
1547 irrelevant concept, leading to the hallucinated prediction. By suppressing neuron 2836 or enhancing
1548 apple-specific neurons 3085 and 1941, the activation distribution shifts toward the correct concept,
1549 enabling the model to output the accurate color “black.” This case illustrates that hallucinations can
1550 help restore proper grounding.

1551

1552 In the sheep and dog case (Fig. 16), the model is first asked to describe the image and successfully
1553 identifies the sheep as the primary object because sheep-related neurons exhibit strong and focused
1554 activation. However, because the sheep is partially occluded, neurons associated with other animals,
1555 such as the dog, are also activated. These extra activations do not affect general captioning, where
1556 the model only needs to describe the main scene. However, when the prompt shifts to a concept-
1557 specific question such as “Is there a dog in the image?”, the residual activation of the dog-related
1558 concept becomes influential enough to mislead the model into answering “yes.” After suppressing
1559 the dog-related neuron 2480 by setting its weight to a strongly negative value, the model correctly
1560 responds “no.” This case shows that even mild unintended activation of unrelated concepts can
1561 produce hallucinations under targeted queries and that neuron-level control is effective in suppressing
1562 such spurious signals.

1563

1564 Together, these examples reveal a consistent pattern. Hallucinations often arise when semantically
1565 irrelevant neurons receive excessive activation or when competing concepts are inadvertently trig-
1566 gered by visual ambiguity or occlusion. By adjusting the activations of specific neurons, either by
1567 suppressing misleading semantic units or by amplifying the correct ones, the model’s internal rep-
1568 resentation becomes more aligned with ground-truth visual evidence, resulting in more reliable and
1569 factual outputs.

1570

1566

1567 Table 16: AMBER benchmark focuses on generative captioning hallucinations. Key metrics are
1568 CHAIR (detects objects mentioned in captions that do not exist in the image, lower is better), Cover
1569 (measures completeness of ground truth object coverage, higher is better), Hal (hallucination rate,
1570 lower is better), and Cog (evaluates human-like hallucination patterns, lower is better).

Method	CHAIR (↓)	Cover (↑)	Hal (↓)	Cog (↓)
Regular	7.8	51.0	36.4	4.2
Regular + CNS (ours)	7.2	51.8	34.1	3.8
VCD	7.5	50.8	36.2	4.1
VCD + CNS (ours)	7.1	51.6	33.2	3.4
OPERA	7.3	49.6	32.0	3.5
DoLA	7.6	51.6	36.0	4.0
Woodpecker	6.9	48.9	30.4	3.6
M3ID	7.4	49.9	33.2	3.7

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Table 17: HallusionBench measures LVLM performance on complex image-context reasoning tasks. Metrics include Question Pair Accuracy (consistency between related questions), Figure Accuracy (reasoning on figures), Easy Question Accuracy, Hard Question Accuracy, and Overall Question Accuracy. Higher values indicate better reasoning performance.

Model	Q. Pair Acc	Figure Acc	Easy Q. Acc	Hard Q. Acc	Question Acc
LLaVA-1.5 (GPT Eval)	10.55	24.86	49.67	29.77	46.94
+ VCD	10.92	25.13	49.88	30.05	47.12
+ CNS (ours)	11.10	25.30	50.02	30.21	47.25
+ VCD + CNS (ours)	11.35	25.58	50.19	30.44	47.38

1590

1591

1592

1593

F.4 ABLATION ON SAE SCALE

1594

Since the SAE architecture consists of only two linear layers, one for encoding and one for decoding, scaling is achieved by increasing the dimensionality of these layers. Beyond our default setting of 64, we tested expansion factors of 128, 192, and 256. As shown in Table 18, increasing the expansion factor generally improves performance and enhances hallucination mitigation. However, the gains diminish as the expansion factor grows larger because training SAEs with very high dimensionalities is more challenging. In particular, dead neurons, which remain inactive during training, become increasingly prevalent at higher dimensions and limit practical improvements. Fortunately, SAE architectures and training strategies are still evolving. We use the current state-of-the-art Matryoshka SAE and expect that future advances in SAE design or training methods may further improve feature disentanglement and reduce hallucinations.

1609

1610

1611

F.5 DISCUSSION AND COMPARISON WITH PREVIOUS APPROACHES THAT EDIT INTERNAL REPRESENTATIONS OF VLMs

1612

1613

1614

1615

1616

1617

1618

1619

Table 18: Ablation study on the effect of scaling the SAE.

Expand factor	Acc.	F1	CHAIR _S	CHAIR _I
64	85.20	85.49	25.7	8.8
128	87.43	87.56	22.4	7.2
192	88.28	88.34	20.6	6.4
256	89.09	89.18	19.4	5.6

We provide explicit discussion and comparison here. Jiang et al. (Jiang et al., 2025c) leverage a logits lens technique to project intermediate VLM features into the vocabulary space, enabling interpretation and editing of internal representations. Their intervention performs global orthogonalization in the latent space during decoding to suppress hallucination-related components. Kaduri et al. (Kaduri et al., 2025) present a detailed analysis of attention flow in VLMs, examining how visual information is encoded in query tokens and how cross-modal signals propagate across layers. Their study is inherently attention-centric and focuses on token-level interventions during decoding, including knockout experiments on attention modules.

1620 In contrast, our work provides a complementary perspective. By employing Sparse Autoencoders,
 1621 we decompose visual features into fine-grained, interpretable neuron-level components, which al-
 1622 lows direct analysis and intervention on the semantic factors underlying hallucinations. Furthermore,
 1623 our method operates entirely during the prefill stage, avoiding the need to modify representations at
 1624 each decoding step. This results in a efficient, and mechanistically grounded approach that differs
 1625 from prior decoding-side editing strategies and can naturally complement them in future studies.
 1626 We sincerely thank the reviewers again for highlighting these works, which helped strengthen the
 1627 positioning of our contribution.

1628

1629 F.6 DISCUSSION AND COMPARISON WITH STANDARD FINE-TUNING-BASED ROBUSTNESS 1630 TECHNIQUES

1631 Based on common observations, targeted fine-tuning may achieve stronger performance than a
 1632 training-free approach. Fine-tuning large LVLMs for hallucination mitigation is generally com-
 1633 putationally expensive and time-consuming, which is why training-free mitigation strategies remain
 1634 more practical and widely adopted in current literature. In addition, prior work has lacked intu-
 1635 itive tools for directly comparing and interpreting internal feature activations, making it difficult to
 1636 systematically analyze how perturbations affect the model’s internal representations. This partially
 1637 explains why fine-tuning-based robustness studies are rare in LVLM hallucination research.

1638 Our SAE-based framework can be combined with fine-tuning-based robustness techniques, offering
 1639 a complementary and highly interpretable perspective. By examining neuron-level activations for
 1640 clean versus noisy inputs, we can directly observe how perturbations reshape semantic representa-
 1641 tions, an insight that was previously inaccessible. Beyond forcibly aligning entire representations,
 1642 SAEs further allow alignment of the top- k core semantic components between clean and noisy in-
 1643 puts, ensuring that the model consistently focuses on essential concepts rather than noise-induced
 1644 spurious ones.

1645 While combining fine-tuning with our SAE-based analysis would be an excellent and promising
 1646 direction for future work, limited computational resources, along with the absence of established
 1647 benchmarks and baselines for such LVLM-scale robustness fine-tuning, currently prevent us from
 1648 pursuing this direction. Nevertheless, we believe our internal neuron-level approach provides a
 1649 unique and valuable angle for understanding and mitigating hallucinations in LVLMs. This is indeed
 1650 a valuable direction for future exploration, and we sincerely appreciate the reviewer’s insightful
 1651 suggestion.

1652

1653 F.7 DISCUSSION AND COMPARISON WITH REGISTER NEURONS

1654 We are actively exploring potential connections between our *always-on neurons* and other phenom-
 1655 ena such as *register neurons* (Darcel et al., 2024; Jiang et al., 2025b), *massive activations* (Sun et al.,
 1656 2024), and *attention sinks* (Xiao et al., 2023; Kang et al., 2025). Intuitively, these phenomena may
 1657 be related, as all involve high-norm activations and exhibit input-invariant behavior. In our obser-
 1658 vations, always-on neurons typically have activation magnitudes between 10–80, whereas most of
 1659 the top-40 neurons are in the 5–15 range. They consistently appear across inputs and primarily
 1660 correspond to non-core, global features.

1661

1662 Shared characteristics: input-invariant, globally stable activations

1663

- 1664 • **Activation pattern:** persistently active across diverse inputs.
- 1665 • **Input-independence:** independent of specific local visual content.
- 1666 • **Global role:** encode global computations or statistical factors within the model.

1667 However, there are key differences between always-on neurons and register neurons:

1668

- 1669 • **Origin:** Register neurons arise from the outputs of MLPs within a layer, whereas always-on
 1670 neurons are extracted via SAE decomposition from the entire output of the layer.
- 1671 • **Distribution and consistency:** Register neurons vary in number across images, with ab-
 1672 normal activations appearing on a different number of tokens for each input. Always-on
 1673 neurons, in contrast, are consistently present in the same set of neurons across nearly all
 images, hence the name “always-on”.

1674

1675 Table 19: Hallucination intervention results following the setup of Jiang et al. (Jiang et al., 2025c)
1676 on InstructBLIP and LLaVA-1.5.

Model	Method	CHAIR _i ↓	CHAIR _s ↓
LLaVA-1.5	Greedy	49.2	14.2
	Greedy + CNS (ours)	47.6	13.4
	Nucleus	55.8	17.1
	Nucleus + CNS (ours)	54.6	16.3
	Beam Search	52.4	15.0
	Beam Search + CNS (ours)	51.8	14.6
	OPERA	44.8	12.8
	OPERA + CNS (ours)	44.2	12.1
	Jiang et al.	42.0	12.2
	Jiang et al. + CNS (ours)	41.4	11.8

1688

1689

1690

1691 Table 20: Comparison against both training-free and fine-tuning-based hallucination mitigation
1692 methods on the AMBER benchmark evaluated with LLaVA-1.5-7B. Results are reported in terms of
1693 CHAIR, Hallucination, and Cognitive Hallucination (Cog.), with lower scores indicating improved
1694 hallucination reduction.

Method	AMBER		
	CHAIR ↓	Hal. ↓	Cog. ↓
baseline	8.4	35.5	4.0
baseline + CNS (ours)	7.6	34.2	3.4
VCD (Leng et al., 2024)	9.1	39.8	4.2
VCD + CNS (ours)	8.4	38.2	3.8
OPERA (Huang et al., 2023)	6.5	28.5	3.1
OPERA + CNS (ours)	5.8	27.2	2.8
DoLa (Chuang et al., 2023)	6.2	27.7	2.9
DoLa + CNS (ours)	5.6	26.4	2.3
HA-DPO (Zhao et al., 2023)	6.7	30.9	3.3
EFUF (Xing et al., 2024)	5.8	28.2	3.1
POVID (Zhou et al., 2024b)	5.3	28.7	3.0
CLIP-DPO (Ouali et al., 2024)	3.7	16.6	1.3
RLAIF-V (Yu et al., 2024b)	2.8	15.7	0.9
TPO (He et al., 2024)	3.6	20.5	1.6
SENTINEL (Peng et al., 2025)	2.9	14.6	1.2

1711

1712

1713

- **Analysis and interpretability:** Always-on neurons can be directly visualized through SAE, providing intuitive insights into model behavior. Register neurons are primarily analyzed numerically and interpreted indirectly via their effect on model outputs.

1717

1718 In summary, while both exhibit stable, input-invariant activations, our always-on neurons represent
1719 global latent factors in the feature space, enabling direct and interpretable analysis of internal representations.
1720 In contrast, register neurons are structural components tied to MLP parameters.

1721

1722 **Further exploration:** Investigating deeper connections between always-on neurons and phenomena
1723 such as register neurons, massive activations, and attention sinks may require carefully designed
1724 experiments. Analyzing SAE factors from a norm-based perspective could also provide valuable
1725 insights, complementing traditional magnitude-based analyses. Importantly, SAEs offer a mechanism
1726 to interpret the underlying structure of these persistent or abnormal activations, potentially revealing
1727 why certain neurons consistently exhibit high activation across inputs. This interpretability enables
1728 a more intuitive understanding of these phenomena and represents a promising direction for future
1729 research.

1728 **F.8 COMPARISON AGAINST BOTH TRAINING-FREE AND FINE-TUNING-BASED**
 1729 **HALLUCINATION MITIGATION METHODS**

1731 We briefly review several representative hallucination-mitigation fine-tuning techniques. These ap-
 1732 proaches vary in supervision format, optimization strategy, and data construction pipeline, offering
 1733 a broad landscape of current practice.

- 1734 • **EFUF** (Xing et al., 2024). EFUF mitigates hallucinations without requiring paired data
 1735 by combining gradient ascent with three specialized loss functions. The method performs
 1736 gradient descent on real objects and gradient ascent on hallucinated ones, refining the model
 1737 through contrastive adjustment of generation behaviors.
- 1738 • **HA-DPO** (Zhao et al., 2023). HA-DPO formulates hallucination mitigation as a prefer-
 1739 ence optimization task. Given two responses for the same image, the model is trained to
 1740 prefer the non-hallucinated response using a DPO-style loss, augmented with a causal LM
 1741 objective for stability. All samples are rewritten with GPT-4 to ensure stylistic consistency.
- 1742 • **POVID** (Zhou et al., 2024b). Povid strengthens inferior responses by generating aug-
 1743 mented hallucinated samples via GPT-4V and image perturbations. Using 17k preference
 1744 pairs, the method fine-tunes LLaVA-1.5-7B to distinguish and avoid hallucinated outputs.
- 1745 • **CLIP-DPO** (Ouali et al., 2024). CLIP-DPO replaces human or large-model scoring with
 1746 CLIP-based preference signals. It uses CLIP as a reward evaluator to judge which response
 1747 aligns better with image content, enabling scalable preference optimization without costly
 1748 annotation or GPT judging.
- 1749 • **RLAIF-V** (Yu et al., 2024b). RLAIF-V employs “feedback from peer models,” decom-
 1750 posing a response into sub-responses and aggregating feedback from smaller models to
 1751 reduce reliance on GPT-4. The final model is aligned through four iterative rounds of DPO
 1752 training.
- 1753 • **TPO** (He et al., 2024). TPO focuses on topic-level hallucinations through self-correction.
 1754 It generates best/worst alternatives for each semantic topic using the model itself and con-
 1755 structs strong preference pairs via a deconfounded topic replacement process.
- 1756 • **SENTINEL** (Peng et al., 2025). SENTINEL performs sentence-level early intervention
 1757 to stop hallucinations before they propagate. It detects hallucinated objects using open-
 1758 vocabulary detectors, labels faithful vs. hallucinated captions without human annotation,
 1759 and applies preference training so the model favors hallucination-free descriptions.

1761 Across these representative fine-tuning approaches, we observe that lightweight preference- or loss-
 1762 based methods such as EFUF (Xing et al., 2024), HA-DPO (Zhao et al., 2023), and Povid (Zhou
 1763 et al., 2024b) achieve moderate improvements while relying on modest training data and limited
 1764 optimization. Their performance is comparable to training-free strategies, indicating that early-stage
 1765 fine-tuning alone provides limited hallucination suppression.

1766 In contrast, CLIP-DPO (Ouali et al., 2024), RLAIF-V (Yu et al., 2024b), TPO (He et al., 2024), and
 1767 SENTINEL (Peng et al., 2025) introduce newly constructed preference datasets, external scoring
 1768 modules, or multi-stage reinforcement-style optimization. Starting from CLIP-DPO, these methods
 1769 achieve substantial gains in hallucination reduction, but at the cost of large-scale data generation,
 1770 full-model fine-tuning, and multi-stage training.

1771 Importantly, our SAE-based analysis may further improve these pipelines. By decomposing model
 1772 representations into sparse, interpretable features, our method reveals which neurons are responsi-
 1773 ble for specific hallucination behaviors and why certain failure modes emerge. These insights can
 1774 support these fine-tuning approaches in several ways. SAE-identified hallucination-related neurons
 1775 highlight characteristic failure patterns, guiding the construction of more targeted and informative
 1776 preference datasets. Examining neuron activations before and after each optimization stage can
 1777 expose which hallucination behaviors remain unaddressed, providing diagnostics for multi-stage
 1778 RL/DPO pipelines. Similarly, applying our neuron-level analyzes or techniques such as the logits
 1779 lens analyzes proposed by Jiang et al. (Jiang et al., 2025c) to training data can help analyze under-
 1780 performing data regions or training stages that require further refinement.

1781 Some recent works have begun exploring SAE-driven data analysis for both LLMs (Jiang
 1782 et al., 2025a; Yona et al., 2025) and LVLMs (Lou et al., 2025), demonstrating the promise of

1782

1783

1784

1785

1786

1787

1788

1789

1790

Q: What is the color of the apple?

A: The color of the apple is red.

Suppress the 2836 neuron associated with red strawberries.

Q: What is the color of the apple?

A: The color of the apple is black.

Enhance the 3085, 1941 neurons associated with apple.

Q: What is the color of the apple?

A: The color of the apple is black.

1815

Figure 15: The image shows a fruit bowl containing multiple fruits, including a black apple. When asked “What is the color of the apple?” the model initially answers “red,” reflecting a hallucinated prediction. This mistake arises because neuron 2836, which is associated with red strawberries (green boxes), exhibits unusually strong activation that overwhelms the evidence coming from apple-related neurons (red boxes). After suppressing neuron 2836 or enhancing apple-specific neurons 3085 and 1941, the model correctly outputs “black.” This case illustrates how abnormal activation of irrelevant semantic units can lead to hallucinations and how targeted modulation of specific neurons can restore proper visual grounding and factual accuracy, thereby mitigating hallucinations.

1824

representation-level tools in guiding data-centric improvements. Building on these advances, our framework enables richer analyses from multiple perspectives, including the behavior of different neuron types and their roles in hallucination emergence, thereby offering new interpretative angles for understanding and improving model training.

1829

Leveraging such representation-level insights for data management and dataset design may ultimately yield more effective fine-tuning and stronger hallucination mitigation.

1831

1832

1833

1834

1835

1880
1881 Figure 16: The activation maps indicate that the model primarily focuses on the sheep, with sheep-related neurons strongly activated (red boxes), allowing it to describe the image correctly, However,
1882 because the sheep is partially occluded, neurons linked to other animal concepts, such as the dog (green boxes), are also activated. While these additional activations do not affect general image
1883 description, they become problematic when the model is asked a concept-specific question such as
1884 “Is there a dog in the image?” leading it to incorrectly answer “yes.” After suppressing the dog-related
1885 neuron 2480 by setting its weight to -10 , the model correctly responds “no.” This example
1886 highlights that extra activation of irrelevant concepts can mislead the model under targeted queries
1887 and that neuron-level modulation provides an effective means to suppress such spurious signals and
1888 mitigate hallucinations.
1889