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Figure 1. We develop CWGrasp, a novel framework for synthesizing 3D whole-body grasps for an object placed on a receptacle. Our
framework builds on a novel combination of geometric-based reasoning and controllable data-driven synthesis methods. By adding a novel
controllability in the synthesis process, we achieve realistic results at a fraction of the computational cost w.r.t. the state of the art [54].

Abstract

Synthesizing 3D whole bodies that realistically grasp ob-
jects is useful for animation, mixed reality, and robotics.
This is challenging, because the hands and body need to
look natural w.r.t. each other, the grasped object, as well
as the local scene (i.e., a receptacle supporting the object).
Moreover, training data for this task is really scarce, while
capturing new data is expensive. Recent work goes beyond
finite datasets via a divide-and-conquer approach; it first
generates a “guiding” right-hand grasp, and then searches
for bodies that match this. However, the guiding-hand syn-
thesis lacks controllability and receptacle awareness, so
it likely has an implausible direction (i.e., a body can’t
match this without penetrating the receptacle) and needs
corrections through major post-processing. Moreover, the
body search needs exhaustive sampling and is expensive.
These are strong limitations. We tackle these with a novel

method called CWGrasp. Our key idea is that performing
geometry-based reasoning “early on,” instead of “too late,”
provides rich “control” signals for inference. To this end,
CWGrasp first samples a plausible reaching-direction vec-
tor (used later for both the arm and hand) from a probabilis-
tic model built via ray-casting from the object and collision
checking. Then, it generates a reaching body with a de-
sired arm direction, as well as a “guiding” grasping hand
with a desired palm direction that complies with the arm’s
one. Eventually, CWGrasp refines the body to match the
“guiding” hand, while plausibly contacting the scene. No-
tably, generating already-compatible “parts” greatly sim-
plifies the “whole”. Moreover, CWGrasp uniquely tack-
les both right- and left-hand grasps. We evaluate on the
GRAB and ReplicaGrasp datasets. CWGrasp outperforms
baselines, at lower runtime and budget, while all compo-
nents help performance. Code and models are available at
https://gpaschalidis.github.io/cwgrasp.

https://gpaschalidis.github.io/cwgrasp


1. Introduction
Synthesizing virtual 3D humans that grasp objects realisti-
cally is important for applications such as virtual assistants,
animation, robotics, games, or synthetic image datasets.
Importantly, this involves the whole body, so that the body
approaches an object, arms reach it, and hands grasp it. But
this is challenging; the body and hands should look natural
and fully coordinated, the body should approach an object
without penetrating the scene, the hands should dexterously
contact the object. Due to these challenges, most of the ex-
isting work tackles only parts of the problem, namely dis-
embodied hands, or bodies with non-dexterous hands.

To make matters worse, 3D training data for whole-body
grasps is very scarce. The recent FLEX [54] method tackles
data scarcity in a divide-and-conquer way. First, it generates
a hand-only grasp through GrabNet [50]. Then, this grasp-
ing hand guides a search for a plausible body. That is, many
bodies are sampled in random poses and locations, and are
optimized to match the guiding hand. However, there ex-
ists a key problem; the guiding hand has a random direction
that likely disagrees with the direction bodies can approach
from without penetrating receptacles. So, the guiding hand
needs major corrections via post-processing. This produces
promising results but needs exhaustive sampling (500 bod-
ies), and is expensive (separate refinement per sample).

We identify two main reasons for the above prob-
lems: (1) Performing body- and receptacle-aware reasoning
“too late”, and (2) GrabNet’s total lack of controllability1.
These are key limitations. We tackle these by developing
CWGrasp (“Controllable Whole-body Grasp synthesis”),
a new method composed of the following novel modules.

ReachingField model: First, we detect the directions
from which a body’s arm and hand can reach an object with-
out penetrating the receptacle supporting the object. Think
of a mug lying on a shelf and emitting “light”; some rays
travel unblocked in free space, while other ones get blocked
by shelf panels. Our key insight is that the “well-lit” space
near the object reveals its reachability. So, we cast rays
from the object, detect collisions with nearby receptacles,
and consider only the non-colliding rays for building a new
probabilistic 3D vector field, called ReachingField.

Sampling the ReachingField provides a single 3D direc-
tion vector that can be used as a “control signal” for the
synthesis of both a reaching body and grasping hand. But
existing synthesizers for this, such as GNet [51] for the body
and GrabNet [50] for the hand, lack such controllability1,2.
We resolve this with two novel modules, as follows.

1GrabNet [50] uses wrist translation and rotation only for training. For
inference the only input is object shape, so grasps have a random direction.

2GNet [51] takes as input only object shape and height.

Figure 2. Controllable reaching-body synthesis (CReach). We
show examples where multiple bodies (shown with several colors)
are generated to reach a target wrist location (shown as a green
sphere), while having a desired 3D arm direction (gray arrow).

Figure 3. Controllable hand-grasp synthesis. The goal is to
grasp the red wineglass. Left – GrabNet [50]: Due to GrabNet’s
lack of controllability1, sampling its latent space produces plausi-
ble grasps (shown with several colors) but with random direction.
Right – Our CGrasp: We add controllability, so drawing samples
produces plausible and varied grasps (shown with several colors),
that have a desired 3D palm direction (shown with a gray arrow).

CReach model: We train a conditional variational au-
toencoder (cVAE) for producing a reaching SMPL-X [44]
body. This goes beyond GNet in three ways: (1) It is
conditioned not only on target object/wrist location, but,
uniquely, also on a desired 3D arm direction; see Fig. 2.
(2) It is trained not only on GRAB [50] data, which has a
limited range of target wrist (and object) locations, but also
on CIRCLE [3] data that is richer for reaching body poses.
(3) It can generate both right- and left-arm reaching. We
call the resulting model CReach for “Controllable Reach.”

CGrasp model: We train a cVAE to generate a grasping
MANO [46] hand. This goes beyond GrabNet in two ways:
(1) It is conditioned not only on object shape1, but also on
a desired 3D palm direction; see examples in Fig. 3-right.
(2) It can generate both right- and left-hand grasps. We call
the resulting model CGrasp for “Controllable Grasp.”

CWGrasp framework: We condition both CReach and
CGrasp on the same direction, produced by ReachingField.
Crucially, this produces a reaching SMPL-X body (CReach)
and a guiding MANO grasping hand (CGrasp) that are al-
ready “compatible” with each other, so they only need a
small refinement to be “put together.” To this end, we con-
duct optimization [26, 44, 54] that searches for the SMPL-X
pose that lets SMPL-X’s hand match the guiding MANO
hand, while the body contacts the floor without penetrating
the receptacle. Thanks to our controllable inference, we can
sample only 1 body and hand from CReach and CGrasp, re-
spectively, in strong contrast to FLEX’s 500 different sam-
ples. This makes our framework roughly 16× faster.



We evaluate on the GRAB [50] and ReplicaGrasp [54]
datasets. Both CGrasp and CReach accurately preserve a
specified palm and arm direction, respectively. Importantly,
adding controllability does not harm; CGrasp performs on
par with three baselines [36, 50, 58] while being able to
control palm direction. Last, our CWGrasp method outper-
forms FLEX [54] in almost all metrics, while its generated
whole-body grasps are perceived as more realistic.

In summary, here we make four main contributions:
1. The ReachingField model that generates 3D directions

for reaching a 3D object, helping as a control signal.
2. The CReach model that generates a SMPL-X body

reaching objects with a desired (right/left) arm direction.
3. The CGrasp model that generates a (right/left) MANO

hand grasping an object with a desired palm direction.
4. The novel CWGrasp method that combines the above for

generating dexterous SMPL-X grasps for an object lying
on a receptacle. This is 16x faster than a SotA baseline,
and uniquely tackles both right- and left-hand grasps.

2. Related Work

2.1. Hand-only Grasps

Early research focused on modeling [14, 41] and classify-
ing [13, 19] grasps. Then, research focused on generating
grasps for robot [5, 32] and human hands [6, 7, 50].

Hand models: Some work models hand shape explic-
itly with 3D meshes [4, 42] with statistical models [35, 46]
being popular. Other work uses implicit shape, such as 3D
distance fields [12, 30] or a sum of 3D Gaussians [47]. Here
we use MANO [46] due its wide user base, and because it
lets us compute accurate contacts and penetrations.

Data: Many datasets have been captured with single-
[8, 9, 20, 24, 38, 69] or two-hand [25, 33] images. Re-
cent work captures whole-body meshes [44] grasping rigid
objects [50], or articulated objects while also containing
RGB images [16]. HOIDiffusion [63] uses a diffusion
model for generating synthetic hand-object images condi-
tioned on 3D hand-object grasps produced by GrabNet [50].
DexGraspNet [58] builds a large dataset by applying an op-
timization framework on 3D objects, leveraging a differen-
tiable force closure estimator and energy functions. Here
we extend the GrabNet [50] model and use its GRAB [50]
dataset to train our model to facilitate fair comparisons.

Contact: ContactGrasp [7] uses real contact maps from
the ContactDB [6] dataset to infer a grasping hand pose,
given a posed object mesh. ContactOpt [23] infers likely
hand-object contacts and optimizes hand pose to match
these. GraspTTA [29] infers an initial grasp for an object
point cloud, and optimizes it to match a target contact map.
Grasp’D [56] takes a hand, an object as a point cloud and
as a SDF, and generates grasps via optimization on con-
tact forces. ContactGen [36] learns an object-conditioned

joint distribution of a contact-, part- and direction-map, ex-
ploiting the direction of contact at a low level for synthesis.
GrabNet [50] infers an initial grasp for a BPS-encoded [45]
object and refines it with a neural net that considers a per-
vertex contact likelihood. GrabNet lacks controllability, so
it produces grasps with random directions. Here we extend
GrabNet by adding the missing controllability; only our and
concurrent work [62] condition on the palm’s direction.

Grasps from images: ObMan [28] infers hand and ob-
ject meshes from a color image, while H+O [53] infers key-
points. GanHand [11] infers object pose and grasp type with
a rough hand pose [19], refining it via contact constraints.
TOCH [67] does a refinement using a 3D SDF. More recent
work tackles grasps with unknown objects from color video
[18, 49]. For a more detailed overview please see [17].

Motion generation: D-Grasp [10] learns hand-object
interaction via RL; the task is to grasp and move a given
object to a goal pose. ManipNet [61] generates hand-object
interaction (HOI) motions for single or both hands, using
spatial features. GeneOH Diffusion [37] denoises HOI mo-
tion via diffusion, and a hand-keypoint trajectory represen-
tation. GRIP [52] and GEARS [68] synthesize interacting
finger motion from given hand and object trajectories. Con-
currently to us, GraspXL [62] generates grasping motions
via RL (without using pre-captured HOI data) while condi-
tioning on the palm direction, as we do for static synthesis.

2.2. Whole-body Grasps

The shape representation used for body models ranges from
cylinders [40] and super-quadrics [21] to mesh-based statis-
tical 3D models [1, 2, 39, 43, 44, 60]. We use the SMPL-X
[44] statistical model that is widely used for interactions.

Interacting with scenes: Wang et al. [57] first infer in-
termediate key poses and then generate in-between motions.
SAMP [27] and NSM [48] infer several goal locations and
orientations on target objects, (stochastically and determin-
istically, respectively), and then infer in-between motion.
Given a body pose and chair mesh, COUCH [65] infers di-
verse contacts on the chair, and body poses that match these.

Static grasps: FLEX [54] generates SMPL-X grasps, by
optimizing the body to match a guiding hand-grasp inferred
via GrabNet [50]. Our CWGrasp method is inspired by this,
but is more efficient thanks to its controllable inference.

Dynamic grasps: CIRCLE [3] and WANDR [15] infer
(short- and long-term, respectively) motion for reaching a
target wrist location. GOAL [51] infers a static target body
grasp via interaction-aware features, and infers motion to
the goal. SAGA [59] generates such motions stochastically.
IMoS [22] infers guiding arm-only motions that “drive” the
whole body. Given object trajectories, OMOMO [34] uses
a conditional denoising diffusion model to generate wrist
joint positions for each object state, and then conditions on
these to generate a full body with non-articulated hands.



Figure 4. CWGrasp framework. We first sample a single reaching direction from ReachingField. Next, we condition both CGrasp and
CReach on the same direction and obtain a guiding hand grasp (shown in blue) and a reaching body (shown in gray), respectively, that
satisfy the sampled direction, so they are “compatible” with each other. Finally, an optimization stage refines the body to match the guiding
hand while resolving penetrations with the object and/or receptacle. Note that our framework can generate both left- and right-hand grasps.
Parts in purple are used for both training and inference, in green only for training, in brown only for inference, and in red for optimization.

3. Method
We build CWGrasp, a novel framework (Fig. 4) that gen-
erates a whole-body grasp, given an object on a receptacle.
To this end, we develop ReachingField (Sec. 3.2), a novel
model that generates a likely reaching direction. We condi-
tion on the same direction two novel models for producing a
reaching body (CReach, Sec. 3.3) and hand grasp (CGrasp,
Sec. 3.4). We combine all these in CWGrasp (Sec. 3.5).

3.1. Preliminaries

Hand model (used in CGrasp): We use MANO [46],
a differentiable function Mh(βh, θh, γh) parameterized by
translation, γh ∈ R3, shape, βh ∈ R10, and pose, θh.
The output is a 3D mesh, Mh, rigged with a skeleton of
16 joints; 1 for the wrist and 15 for fingers. The pose
θh ∈ R16×3 is encoded as axis-angle rotations; the global
rotation (first 3 parameters) is θwrist

h ∈ R3. The shape pa-
rameters βh live in a low-dimensional linear space.

Whole-body model (used in CReach, CWGrasp): We
use the SMPL-X [44] model, a differentiable function
Mwb(βwb, θwb, γwb) parameterized by shape, βwb ∈ R10,
pose, θwb, and translation, γwb ∈ R3; here we ignore facial
parameters. The output is a 3D mesh, Mwb, rigged with
a skeleton of 22 body joints and 15 joints per hand. The
pose θ = (θb, θh) consists of θb ∈ R22×3 for the body and
θh ∈ R2×15×3 for hands as axis-angle rotations. The shape
parameters βwb live in a low-dimensional linear space.

CoarseNet – part of GrabNet [50]: GrabNet gener-
ates 3D MANO grasps for a given object, and consists of:
CoarseNet, for producing an initial grasp, and RefineNet,

for refining it. Here we focus only on grasp genera-
tion, so we build on CoarseNet. This is modeled as a
VAE; given an object shape represented with Basis Point
Sets [45], BPSo, a wrist rotation, θwrist

h , and translation, γh,
the encoder Q generates a latent code Z ∈ R16, namely:
Q(Z|θwrist

h , γh, BPSo). The decoder maps this, concate-
nated with the object shape, BPSo, to an estimated MANO
translation, γ̄h ∈ R3, and joint angles, θ̄h ∈ R16×6, i.e.:
P (θ̄h, γ̄h|Z,BPSo). To train CoarseNet we use both its en-
coder and decoder, and use 5 losses: LKL, Ledge, Lvertex,
Ldo2h

, Ldh2o
; for details see [50]. In test time, we use only

the decoder conditioned on object shape, BPSo; there is no
other input. Thus, sampling different latent codes produces
grasping hands with a random direction; see Fig. 3.

GNet – part of GOAL [51]: GNet generates a SMPL-X
grasping body for a given object shape and location. GNet
is modeled with a VAE, like CoarseNet, so it has an encoder,
Q(Z|θwb, γwb, Ltarget), and decoder, P (θ̄wb, γ̄wb|Z,Ltarget),
where Z is the latent code, θwb is body pose, γwb is trans-
lation. Ltarget is a target condition comprising the object’s
shape, BPSo, and its centroid height. For details see [51].

3.2. ReachingField – Reaching Direction

Given an object on a receptacle, we build ReachingField,
a novel probabilistic 3D vector field of directions the ob-
ject can be reached by a body (see Fig. 5). To this end, we
cast 3D rays from the object to surrounding space, check for
collisions with the receptacle, filter out colliding ones (con-
sidering also the arm’s volume and standing on the ground),
and assign probabilities to remaining rays, as follows.



Ray casting: Let O be a 3D mesh for the object, and
c ∈ R3 be its centroid. We sample uniformly a (unit) sphere
centered at c, constructing a spherical point grid S = {si}.
Then, we cast rays ri going from c through each point si.

Ray filtering: Let M be a 3D mesh for the receptacle.
We evaluate and filter the casted rays ri with the following.
Filter #1. Arm/hand direction (Fig. 5): We traverse each
ray ri and evaluate whether it intersects with M. Intersect-
ing rays are pruned, as they represent a direction from which
an arm or hand would “directly” penetrate the receptacle.
Filter #2 - Body orientation (Fig. 6): To (optionally) save
computational resources (on the expense of pruning some
plausible directions), we project the curated rays onto a hor-
izontal plane parallel to the ground, and detect further inter-
sections with M. Intersecting rays denote directions that
hinder a body from “easily” approaching the object. How-
ever, in case all rays intersect, e.g. when the object is inside
a box or drawer, then this step is disregarded altogether.
Filter #3 - Standing places: To grasp an object, a body
needs to stand at a nearby place on the ground without pen-
etrating any “occluders.” To find such places, we traverse
the curated rays ri, and at regular intervals (every 30 cm) we
cast vertical rays rij and check whether these collide with
M or other “occluders” hindering a body from standing. In
case of collision we prune the “parent” ray ri altogether.
Filter #4 - Wiggle room for arm volume: The above steps
“detect” plausible rough body positions and arm directions.
However, they ignore that a body has a certain volume, so
its vertices can still penetrate the receptacle. To resolve this,
we “swipe” all projected filtered rays within a small range
around the vertical axis, and discard those intersecting M.

ReachingField: The curated rays are plausible reaching
directions. But not all directions are equally likely. When
changing a light bulb on the ceiling, our hand likely ap-
proaches it from below, while when tying shoelaces, it ap-
proaches from above. Thus, likelihood depends on how
high above the ground an object lies and is defined as:

pi =
exp (−1/(siai))∑
i exp (−1/(siai))

, (1)

where ai is the smallest angle of ray ri w.r.t. the vertical axis
z, while si = −1 when the object height is ≥0.7m above
ground and ri is directed downward, or the height is <0.7m
and ri is directed upward. Else, si = 1. See likelihood
examples in Fig. 7. For details see Sup. Mat. (Sec. S.1.1).

Inference: ReachingField is probabilistic, so sampling
it produces a plausible 3D reaching direction. Note that
objects can be reached from multiple directions; drawing
different samples accounts for this.

3.3. CReach – Controllable Reaching Bodies

Our goal is controllable synthesis of a SMPL-X body
“reaching” an object. We do this by extending GNet [51]
with a condition on arm direction; see Fig. 4 bottom.

Figure 5. Arm/hand direction (Sec. 3.2, Filter #1). Left: We cast
rays from the object to surrounding space. Right: We prune rays
intersecting with a receptacle and keep non-intersecting ones; the
latter represent directions an arm/hand can reach the object from.

Figure 6. Body orientation (Sec. 3.2), Filter #2. We project the
curated rays parallel to the ground and detect whether any recep-
tacle parts hinder a body from approaching the object from certain
directions; the red rays are discarded, while green ones are kept.

Figure 7. ReachingField – Ray likelihood (Sec. 3.2, Eq. (1)),
shown with color-coding; red shows high and blue low likelihood.
Objects near the ground are likely grasped from above (left). Ob-
jects high above the ground are likely grasped from below (right).

Formulation: The direction from which a body-arm ap-
proaches objects is key for grasping. We provide this to
CReach as a normalized vector, darm ∈ R3. Generated bod-
ies should have an arm direction that aligns with this, so we
compute SMPL-X’s normalized elbow-to-wrist vector.

Training: We use CIRCLE [3] and GRAB [50] data
for training; crucially, the former has a rich range of target
wrist locations. We use the direction, darm, as condition for
both encoder Q(Z|θwb, γwb, βwb, Ltarget, darm) and decoder
P (θ̄wb, γ̄wb|Z, βwb, Ltarget, darm, hint), where Z is the latent
code, θwb is body pose, γwb is translation, βwb is shape,
darm is the desired arm direction (new over GNet), Ltarget is
the target GT wrist joint (as a proxy for object centroid, as
CIRCLE has no objects), and hint denotes using the right
(hint = 0) or left arm (hint = 1). We add (on top of GNet
losses) a loss on arm direction as follows, where wdarm = 5:

Ldarm = wdarm · E
[
|darm − d̄arm|

]
. (2)

Inference: The decoder takes the arm direction, darm
(from ReachingField), the “target” object centroid, Ltarget
(in training we approximate this with the wrist), and param-
eters βwb and hint, and outputs a SMPL-X body; see Fig. 2.



3.4. CGrasp – Controllable Grasping Hands

Our goal is controllable synthesis; we build CGrasp by ex-
tending GrabNet [50] with a condition on palm direction.

Formulation: The direction a hand grasps from is key.
We provide this to CGrasp as a unit vector, dgrasp ∈ R3. All
generated hands need to have a palm direction that agrees
with dgrasp. To this end, we annotate (offline) two vertices
on the outer palm of MANO, as it is quasi-rigid so vertices
stay consistent during motion. These vertices define dgrasp.

Moreover, we enhance the spatial awareness of CGrasp.
Inspired by GNet [51] and others [16, 61], we com-
pute 3D hand-to-object InterField vectors, finter ∈ R99×3.
In detail, we sample (offline) 99 “interaction” vertices,
vinter
h,i , i ∈ {1, . . . , 99}, evenly distributed across MANO’s

inner-palm/finger surface. Then, we compute 3D vectors,
finter, encoding the distance and direction from the sampled
hand vertices, vinter

h , to their closest object ones, v′o.
Training: We train on the GRAB [50] dataset. Dur-

ing training, we add the GT InterField, finter, to the
encoder Q(Z|BPSo, finter). In test time, the decoder
P (θ̄h, γ̄h, f̄inter|Z,BPSo, dgrasp) predicts MANO parame-
ters, (θ̄h, γ̄h), and the InterField, f̄inter. Z is the latent code,
and BPSo is the object shape. We also add (on top of
GrabNet losses) a loss on direction and on InterField:

Lgrasp = (1− cKL) · E
[
|dgrasp − d̄grasp|

]
, (3)

Linter = (1− cKL) · E
[
|finter − f̄inter|

]
, (4)

where cKL = 0.005 is a KL-divergence constant.
Inference: The decoder takes the desired grasp direc-

tion, dgrasp (sampled from ReachingField), concatenated
with the object shape, BPSo, and outputs a MANO grasp.
For inference we append a frozen pretrained RefineNet [50].

3.5. CWGrasp – Whole-Body Synthesis

Given a 3D object lying on a receptacle, we aim to generate
a dexterous and physically-plausible SMPL-X body grasp.

Objective function: We build the objective function:

Lopt =λhmLhm + λθLθ + λgLg+

λgrdLgrd + λpLp + λregLreg,
(5)

consisting of a hand-matching term, Lhm, a body pose
term, Lθ, a head-direction term, Lg (often called “gaze”),
a ground-body penetration term, Lgrd, a receptacle-body
penetration term, Lp, and a regularizer term, Lreg . These
terms are similar to FLEX [54], except for Lgrd and Lreg.
For details on our loss terms, see Sup. Mat. (Sec. S.1.4).

Search space: We operate in the original search space
[26, 44] for flexibility. This contrasts to FLEX [54] that uses
a compact “black-box” latent space but loses some control.
Even if CReach generates a body from a desired approach-
ing direction, sometimes the body penetrates the receptacle

(see Fig. 9-left). Starting the optimization from such a local
minimum might trap the optimizer. To prevent this, we first
translate the body by 1m along the the floor-projected direc-
tion used to condition CReach, so we free it from big pen-
etrations (see Fig. 9-middle). Then, optimization (Eq. (5))
pulls the body back to the object while refining body and
finger pose (see Fig. 9-right). This makes CWGrasp robust.

Optimizer: We use Adam; for 1 body and for 1500 iter-
ations it takes ∼ 20 sec on an Nvidia RTX 4500-Ada GPU.

Sample efficiency: We sample from ReachingField just
one direction and condition on it both CReach and CGrasp.
Thus, our reaching body and guiding hand are already com-
patible, and refine only the body to match the (fixed) hand.
Instead, FLEX [54] samples 500 bodies, and refines both
bodies and guiding hands, due to using the non-controllable
GrabNet. Therefore, our method is very sample efficient.

Left-hand interaction for whole bodies: CWGrasp
uniquely generates both right- and left-hand whole-body
grasps. For the latter, conditioning CReach with hint =
1 (see Sec. 3.3) produces a body that reaches the object
with its left arm. Then, we mirror both the object and
ReachingField’s direction (w.r.t. the object’s sagittal plane),
generate a right hand grasp with CReach, and mirror back
the hand and object. Last, we run CWGrasp optimization.

4. Experiments

4.1. Conditioning for CReach & CGrasp

We evaluate how accurately CGrasp and CReach preserve
their conditioning, i.e., the desired arm and palm direction.
Table 1 reports results (incl. runtime) computed as follows.

CGrasp: This is conditioned on a palm direction vector.
We extract all hand directions from GRAB’s [50] test set
and cluster them into 200 centers using K-Means. We then
use GRAB’s 6 test objects and generate for each of these
2000 grasps; to this end, we run CGrasp 10 times per cluster
center while conditioning on its direction. We then compute
the palm direction of each generated grasp and its angular
error w.r.t. the conditioning direction. A mean angular error
of 4.57°denotes accurate generation; this is also reflected in
qualitative results in Sup. Mat. (Fig. S.2).

CReach: This is conditioned on an arm direction and
wrist location. We extract all arm directions and wrist lo-
cations of ReplicaGrasp’s [54] and GRAB’s [50] test sets,
and cluster each of these 2 modalities into 200 centers via
K-means. With these, we obtain 40000 combinations of arm
directions and wrist locations for conditioning CReach and
generating 40000 reaching bodies for each (left/right) arm.
Then, we compute over all generated bodies the mean an-
gular error for arm direction (as above for palm direction
for CGrasp), and the Mean Squared Error (MSE) for wrist
locations. The values in Tab. 1 denote accurate synthesis.



Figure 8. Whole-body grasps produced by CWGrasp (top row) and FLEX [54] (bottom). FLEX samples 500 initial bodies and produces
10 ones; we show the smallest-loss one. Our CWGrasp samples only 1 body and also generates one, yet it produces more realistic grasps.

4.2. Hand-Only Grasps (CGrasp)

We evaluate CGrasp on the GRAB [50] dataset against
DexGraspNet [58], ContactGen [36], and GrabNet [50].
For each method, we generate 200 grasps for each of the
6 test objects, and compute the following metrics as in
[28, 29, 31, 36, 56, 59, 64, 66]. We report results in Tab. 2
Contact ratio [36]: We detect the contacting MANO ver-
tices by thresholding its distances (1mm) from the object,
and compute the ratio of these over all MANO vertices.
Penetration percentage (%) [54]: We compute the per-
centage of hand vertices penetrating the object via the
signed distances of the two meshes (distance ≤ −1mm).
Penetration volume [28]: We voxelize the hand and object
meshes using voxels of volume v = 1mm3, and detect in-
tersecting voxels N . Then, the penetration volume is N · v.
Penetration depth [28]: We compute the minimum trans-
lation along the opposite palmar direction (dgrasp in Sec. 3.4)
necessary for resolving any hand-object penetrations.
Hand pose diversity [54]: We align all hands at the same
wrist location and palm orientation, and compute the mean
Euclidean vertex distance over all possible mesh pairs.

Table 2 shows that CGrasp performs on par with base-
lines. That is, CGrasp’s benefit of controllability does not
harm performance. We show qualitative results in Sup. Mat.
(Fig. S.4); these reflect quantitative ones. We also compare
contact heatmaps in Fig. 10. Baselines involve mainly the
fingertips, while CGrasp involves also parts of the palm.

4.3. Whole-Body Grasps (CWGrasp)

We evaluate CWGrasp on the ReplicaGrasp dataset [54] and
compare it against the state-of-the-art FLEX [54] method.

Experimental setup: ReplicaGrasp places GRAB [50]
objects on various receptacles, e.g., sofas, tables. Each of
the 50 GRAB objects appears in 192 configurations, vary-
ing the receptacle and the object’s location and orientation

Angle (degrees) ↓ MSE (cm) ↓ Inf. time (s) ↓

CReach-RA 7.67 4 0.46

CReach-LA 7.23 3.6 0.46

CGrasp 4.57 N/A 0.47

Table 1. Condition accuracy. CReach and CGrasp generate
bodies and hands conditioned on a (arm/hand) direction. We
report the angular error of the arm/palm direction, the Mean
Squared Error (MSE) of wrist joints, and inference time. For
CReach we evaluate right- (RA) and left-arm (LA) reaching.

Figure 9. CReach failure. CReach might produce a reaching body
that penetrates the receptacle (left). To correct for this, we translate
the body by 1m (middle) along the opposite floor-projected arm
direction. Then, CWGrasp’s optimization (Sec. 3.5) pulls the body
back to the object, while refining body and finger pose (right).

on it. For our experiments, we use the 6 test objects and
6 randomly-sampled training objects of GRAB, and ran-
domly select 20 configurations per object. For each config-
uration, we generate grasping bodies with both CWGrasp
and FLEX and compare the two methods. Note that FLEX
optimizes 500 samples, and eventually keeps 10 samples
with smaller losses; we consider the “best” (smallest-loss)
one. Instead, our CWGrasp uses only a single sample.

Quantitative evaluation: We report the five metrics de-
fined in Sec. 4.2 also here in Tab. 3, but with the following
adaptations due to switching to whole-body context. We
compute the “penetration percentage” separately for body–



receptacle (B − M) and for right-hand–object (RH − O)
interaction. We compute the “contact ratio” for right-hand–
object (RH −O) interaction. We compute the “body pose
diversity” by extending “hand pose diversity” to whole-
body meshes. Last, we report the mean optimization time
for each method. We observe that our CWGrasp framework
is highly competitive against FLEX, while using 500× less
samples and being one order of magnitude faster.

Qualitative evaluation: We visualize several whole-
body grasps produced by CWGrasp and FLEX in Fig. 8. We
observe that CWGrasp produces more natural-looking body
poses. For many more qualitative results, including close-
up views into hands, as well as left-hand whole-body inter-
actions, please see Sup. Mat. (Sec. S.3). We also compare
aggregated contact heatmaps in Fig. 11. We see that FLEX
grasps tend to use mainly the fingertips, while CWGrasp
grasps activate also parts of the palm, so they look richer.

Perceptual Study: To evaluate the perceived realism of
generated grasps, we conduct a perceptual study. To this
end, we sample object-and-receptacle configurations from
the ReplicaGrasp [54] dataset, and for each one, we gener-
ate two whole-body grasps (referred to as “samples”) with
CWGrasp and FLEX, respectively. For each sample, we
conduct two comparisons by rendering a whole-body view
and a zoomed-in view onto the hand and object (see exam-
ples in Sup. Mat. Fig. S.8). We randomize the order that
we present samples, as well as their placement. Each sam-
ple is shown to 35 participants, who choose which method
generates the most realistic grasp (see the protocol shown
to participants in Sup. Mat. Fig. S.7). In total, we show 28
samples, of which 4 are catch trials (letting us filter out 2 of
the participants). Considering the full-body view, CWGrasp
is preferred 70.8% of the times. Considering the zoomed-
in view, it is preferred 71.6% of the times. Considering
both views, it is preferred 71.23% of the times. That is,
our CWGrasp produces grasps that are perceived as signifi-
cantly more realistic than the state of the art.

5. Conclusion
We develop CWGrasp, a method that generates whole-body
grasps for objects through novel controllable synthesis. To
this end, we first learn ReachingField, a novel model for
estimating directions a body can approach the object from.
However, current body and grasp generators lack control-
lability. To fill this gap, we learn the novel CReach and
CGrasp models that generate a reaching body and a grasp-
ing hand with a desired arm and palm 3D direction, respec-
tively. We condition both CReach and CGrasp on the same
direction sampled from ReachingField to produce a grasp-
ing hand and reaching body that are compatible with each
other. Last, our CWGrasp method combines these with only
a small refinement, efficiently producing grasps that are per-
ceived as significantly more realistic than the state of the art.

DexGraspNet ContactGen GrabNet CGrasp (ours)

Figure 10. Contact maps: CGrasp & SotA (Sec. 4.2). Contact
likelihood is color-coded via heatmaps; red denotes a high likeli-
hood and blue a low one. We compare against DexGraspNet [58],
ContactGen [36], and GrabNet [50]. Existing methods involve
mostly finger tips, while CGrasp also involves parts of the palm.

Ty
pe

C
on

tr
ol Cont.

ratio
↑

Penetr.
perc.
% ↓

Penetr.
vol. ↓
mm3

Penetr.
depth
mm ↓

Hand
pose div.
cm ↑

DexGraspNet O ✗ 0.11 0.13 1.25 1.2 7.08

ContactGen R ✗ 0.09 1.15 1.04 2 6.75

GrabNet R ✗ 0.13 2.4 1.27 2.6 6.72

CGrasp (ours) R ✓ 0.12 2.9 1.16 2.8 6.72

Table 2. Evaluation: CGrasp & SotA (Sec. 4.2). The “type”
column denotes regression (R) or optimization (O) methods. The
“control” column indicates whether a method is controllable via
directional conditioning. Our CGrasp performs on par with ex-
isting methods, while being controllable via a direction condition.
That is, the benefit of controllability does not harm performance.

FLEX [54] CWGrasp (ours)

Figure 11. Contact maps: CWGrasp & FLEX [54] (Sec. 4.3).
Contact likelihood is color-coded via heatmaps; red denotes a high
likelihood and blue a low one. FLEX involves mainly the finger-
tips, while our CWGrasp also involves parts of the pam.

Samples Pen.%
B−M

Pen.%
RH−O

Contact
RH−O

Body div. Time

# ↓ ↓ ↑ cm ↑ (s) ↓
FLEX [54] 500 0.3 1.16 0.15 63.86 357

CWGrasp 1 0.7 0.7 0.3 61.77 23

Table 3. Evaluation: CWGrasp & FLEX (Sec. 4.3): We re-
port the number of body samples, the number of optimization it-
erations, the penetration percentage for the whole body (B) and
receptacle (M), and for the right-hand (RH) and object (O), the
contact ratio, body pose diversity, and average runtime.

Future Work: We tackle right- and left-hand grasps; fu-
ture work will look into bi-manual grasping [16, 22, 50, 61].
Sometimes bodies look “unstable” when kneeling down or
stretching up; intuitive-physics reasoning [55] might help.
Last, we will use generated grasps as targets for motion syn-
thesis [27, 51, 57, 59] to navigate scenes and grasp objects.
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