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ListenFormer: Responsive Listening Head Generation with
Non-autoregressive Transformers

Anonymous Author(s)

ABSTRACT
As one of the crucial elements in human-robot interaction, respon-
sive listening head generation has attracted considerable atten-
tion from researchers. It aims to generate a listening head video
based on speaker’s audio and video as well as a reference listener
image. However, existing methods exhibit two limitations: 1) the
generation capability of their models is limited, resulting in gen-
erated videos that are far from real ones, and 2) they mostly em-
ploy autoregressive generative models, unable to mitigate the risk
of error accumulation. To tackle these issues, we propose Listen-
former that leverages the powerful temporal modeling capability
of transformers for generation. It can perform non-autoregressive
prediction with the proposed two-stage training method, simulta-
neously achieving temporal continuity and overall consistency in
the outputs. To fully utilize the information from the speaker in-
puts, we designed an audio-motion attention fusion module, which
improves the correlation of audio and motion features for accu-
rate response. Additionally, a novel decoding method called sliding
window with a large shift is proposed for Listenformer, demon-
strating both excellent computational efficiency and effectiveness.
Extensive experiments show that Listenformer outperforms the
existing state-of-the-art methods on ViCo and L2L datasets. And
a perceptual user study demonstrates the comprehensive perfor-
mance of our method in generating diversity, identity preserving,
speaker-listener synchronization, and attitude matching.

CCS CONCEPTS
• Information systems→Multimedia content creation.

KEYWORDS
listening head generation, video synthesis, transformer

1 INTRODUCTION
Communication is indispensable in the process of social interaction,
whether in a school setting or in a professional workplace [2, 37, 45].
In face-to-face communication [24], participants take turns playing
the roles of speaker and listener to exchange information. The
speaker directly transmits information to the listener through verbal
expression, while the listener actively considers the information
provided by the speaker, decoding it, and offering real-time feedback
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Figure 1: Concept diagrams of the responsive listening head
generation model. Given the speaker inputs and a refer-
ence listener image, the autoregressive model relies on past
outputs to predict future listener heads, whereas our pro-
posed non-autoregressive model does not depend on previ-
ous outputs, deliberately computing results in parallel at
each timestep.

primarily through non-verbal behaviors such as nodding, smiling,
headshaking, etc.

The speaker-centric synthesis, specifically talking head genera-
tion (THG), has received widespread attention. It plays a significant
role in many human-robot interaction (HRI) applications, such as
film production, games, and education. Researchers use still im-
ages and audio clips to generate vivid speaking videos, advancing
towards improving lip-synchronization quality [8, 9, 17], adding
emotions [15, 23, 49], and achieving free pose control [28, 31, 56].
However, as another crucial component of HRI, research on re-
sponsive listening head generation (LHG), is still in its early stages.
The synthesis of smooth listening head videos is also crucial for
successful communication [34, 40]. Through real-time feedback, the
listener demonstrates their level of engagement in communication,
making the conversation easier to understand for both parties. In
addition to modeling everyday scenarios, it holds great potential for
enriching virtual character modeling, synthesizing fake audiences,
and various other applications involving responsive listeners.

Similar to THG, LHG also involves the synthesis of human heads
and faces. Therefore, there are many aspects that can be borrowed
and applied. For instance, 3D Morphable Models (3DMM) [3, 12, 27]
are often used in facial parameters modeling in the THG tasks.
Similarly, this approach can be applied to LHG [35, 57] in order
to maintain the stability of reconstructed faces. Meanwhile, there
are differences between the two. Firstly, THG focuses solely on the
speaker, while LHG spans both the speaker and the listener, requir-
ing more consideration of how listening behaviors are influenced by
the speaker signals. Additionally, LHG receives signals from both
the speaker’s audio and video modalities, requiring consideration
of the audio-visual fusion issue.
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At the earliest, static images, repeated frames, or pre-scripted
animations were commonly used to synthesize listeners. However,
they often appeared too rigid and were unable to respond realisti-
cally to the speaker [57]. Recently, the LHG task was redefined and
introduced by Zhou et al. [57], who also curated the audio-visual
ViCo dataset comprising video pairs of speakers and listeners. Al-
most simultaneously, Ng et al. [35] released a novel in-the-wild
dataset of dyadic conversations and proposed L2L for understand-
ing human interactional communication. Subsequently, substantial
efforts [7, 21, 41, 54] have been devoted to investigating listening
head generation techniques. However, thesemethods still encounter
three primary limitations. Firstly, the quality and naturalness of
the generated listener videos are currently not good enough. There
is still a significant gap compared to real videos, largely due to
limitations in model performance. Therefore, it is crucial to have a
suitable and effective generative model for this task. Secondly, au-
toregressive models have inherent limitations. As seen in Fig. 1(a),
most existing methods [7, 21, 35, 41, 54, 57] employ autoregressive
models, making it difficult to avoid issues such as slow synthesis
speed and error accumulation. Moreover, there is insufficient atten-
tion to the fusion of audio and video signals for speakers. In LHG,
the input speaker signals consist of two modalities: audio and visual
motion. Most existing methods [7, 21, 54, 57] simply concatenate
the signals from these two modalities, overlooking the importance
of cross-modal fusion. A robust fusion method is necessary to better
extract representative features from the speaker inputs.

To address the aforementioned problems and meet the multifac-
eted requirements, we propose a non-autoregressive transformer-
based model ListenFormer, which captures the speaker’s audio and
video signals as well as a reference image to generate highly realis-
tic listener videos. It is important to note that, a two-stage training
method is applied to ListenFormer. During the pre-training stage,
we employ the teacher-forcing method. This means that real and
continuous listener head coefficients were input into the decoder.
In the fine-tuning stage, we modify the decoder input to consist of
repeated reference image coefficients. As shown in Fig. 1(b), in this
way, we achieve the non-autoregressive prediction of ListenFormer.
To capture the representative features, we propose a novel audio-
motion attention fusion module (AMAF) to embed speaker’s audio
and motion features. The proposed module utilizes cross-modal
attention to discover key information aligned along the tempo-
ral sequence. In addition, we experiment with several decoding
methods to address the issue of temporal infinite extrapolation for
ListenFormer. We conduct extensive experiments on ViCo and L2L
datasets and achieve state-of-the-art performance on both datasets.
Our code and benchmark will be released.

Overall, our contributions are summarized as follows:
• We propose a transformer-based model ListenFormer that

can predict diverse and high-quality listening head videos in
a non-autoregressive manner conditioned on the listener’s
reference image and speaker’s audio and motion features.

• The audio-motion attention fusion module (AMAF) is de-
signed to integrate cross-modal features in order to provide
representative speaker-related information to the decoder.

• We present an efficient sliding-window decoding method,
which addresses the transformer’s inability to extrapolate
infinitely.

• Experimental results show a significant improvement achieved
by our proposed method compared to other state-of-the-
art methods on the ViCo and L2L dataset in terms of vi-
sual naturalness, generation diversity, identity-preserving,
speaker-listener synchronization, and attitude matching.

2 RELATEDWORK
2.1 Responsive Listening Head Generation
In early works, several rule-based methods [5, 6] were employed
to produce listener heads. However, those videos fall far short in
terms of naturalness and realism. Subsequently, some data-driven
approaches [14, 36] based on facial keypoints were used to generate
2D listener motions, but they lost many details of facial expressions.

In recent years, many 3D-based methods have been developed
due to their excellent facial reconstruction capabilities. Zhou et
al. [57] established a high-quality speaker-listener dataset, named
ViCo. The proposed baseline utilizes long-short termmemory (LSTM)
as the sequential model to handle the input of speaker audio and
visual signals, generating facial 3DMM coefficients for the listener.
At almost the same time, Ng et al. [35] proposed a novel motion-
encoding VQ-VAE [47] to learn a discrete latent representation
of realistic listener motion. Later, Huang et al. [21] adopted an
enhanced renderer and video restoration module, improving the
quality of the generated listening videos. Recently, some methods
[7, 55] have attempted to incorporate semantic information into
the inputs of the task with the pre-trained language model [26].
However, the methods mentioned above mostly employ autoregres-
sive models, which cannot avoid the issue of error accumulation
during the generation process. In contrast, the non-autoregressive
prediction approach of Listenformer can largely overcome this
limitation.

2.2 Transformers in Audio-Visual Learning
Transformer [48] was initially proposed for sequence-to-sequence
(seq2seq) translation in the field of natural language processing
(NLP). Unlike recurrent neural networks (RNNs) that recursively
process sequence tags, transformers can parallelly attend to all
tokens in the input sequence, effectively modeling contextual infor-
mation. The transformers have proven to be a powerful alternative
to RNNs in various sequential tasks and have achieved marvelous
success in audio-visual learning tasks such as speech recognition
[32, 42], emotion recognition [16, 20, 46, 58] and event detection
[18, 29, 33]. Some of the most recent works on speech-driven THG
[13, 22, 53] have explored the power of transformers in modeling
facial features and produced impressive results.

Despite its many advantages, the transformer as a generative
model also has notable issues. For instance, the traditional Trans-
former, being an autoregressive model, suffers from the problem of
error accumulation during inference. Additionally, the challenge
of temporal infinite extrapolation has been a persistent concern
for many researchers working with transformers [1, 43, 44, 52].
After comprehensive consideration, our work relies on a novel
non-autoregressive transformer for the 3D reconstruction of the
listener’s face due to its excellent temporal modeling capability.
Moreover, we explore various decoding approaches to address the
challenge of infinite extrapolation.

2
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Figure 2: Overview of our proposed ListenFormer. An encoder-decoder model G𝑚 with Transformer architecture takes the
speaker’s audioH𝑡 and motion featuresM𝑠

𝑡 as well as the reference listener coefficient𝑚𝑙1 as inputs and generates a sequence
of listener coefficient M̂𝑙

𝑡+1, which are fed into a renderer G𝑟 along with the reference listener image 𝑣𝑙1 and identity-dependent
coefficients I𝑙 to produce responsive listening videosV𝑙

𝑡+1. The audio-motion attention fusionmodule (blue block) is designed
for cross-modal robust representation extraction. In addition, the two-stage training method implements non-autoregressive
prediction for ListenFormer. 𝑁𝑒 and 𝑁𝑑 respectively represent the number of layers in the transformer encoder and decoder.

3 METHOD
3.1 Problem Formulation
We formulate the LHG task as a seq2seq learning problem. Given
an input video V𝑠

𝑡 = {𝑣𝑠1, · · · , 𝑣
𝑠
𝑡 } of a speaker head in timestamps

ranging from {1, ..., 𝑡}, containing a corresponding audio signal S𝑡 .
The goal here is to produce a model G (Fig. 2) that can synthesize
the whole listener’s head video sequence V̂𝑙

𝑡+1 = {𝑣𝑙2, · · · , 𝑣
𝑙
𝑡+1}.

Formally,

V̂𝑙
𝑡+1 = G(V𝑠

𝑡 ,S𝑡 , 𝑣𝑙1) (1)

where 𝑣𝑙1 denotes the reference head image of the listener.
Following [57], we apply the 3D-based method and divide the G

into G𝑚 and G𝑟 . As shown in Fig. 2, G𝑚 consists of a speaker en-
coder and a listener decoder, which is used to predict the 3D recon-
struction coefficients of listeners. AndG𝑟 is used for 3D face render-
ing, as depicted in the ’Renderer’ part in Fig 2. In the proposed G𝑚 ,
the transformer encoder transforms audio featureH𝑡 = {ℎ1, . . . , ℎ𝑡 }
into deep representation A𝑡 = {𝑎1, . . . , 𝑎𝑡 }. Meanwhile, we extract
the 3D reconstruction coefficients {𝛼, 𝛽, 𝛿, 𝑝,𝛾} which denote the
identity, expression, texture, pose, and lighting, respectively. They
are split into two components: I = (𝛼, 𝛿,𝛾) to represent relatively
fixed, identity-dependent coefficients, and 𝑚 = (𝛽, 𝑝) to repre-
sent relatively dynamic, identity-independent coefficients. These

identity-independent coefficients extracted from speaker videos can
be denoted as M𝑠

𝑡 = {𝑚𝑠1, · · · ,𝑚
𝑠
𝑡 }. Then, the audio-motion fusion

module fuses M𝑠
𝑡 and A𝑡 to get the fusion representation F𝑡 . The

transformer decoder receives F𝑡 and the identity-independent co-
efficient𝑚𝑙1 of the reference listener image to non-autoregressively
predict the listener coefficients M̂𝑙

𝑡+1 = {�̂�𝑙2, · · · , �̂�
𝑙
𝑡+1}. We formu-

late the procedure as:

M̂𝑙
𝑡+1 = G𝑚 (M𝑠

𝑡 ,H𝑡 ,𝑚
𝑙
1) (2)

Finally, we use the pre-trained rendering model [39] to generate
the realistic listening video. Formally,

V̂𝑙
𝑡+1 = G𝑟 (M̂𝑙

𝑡+1,I
𝑙 , 𝑣𝑙1) (3)

where I𝑙 is the identity-dependent coefficient of the given listener.
For the remainder of this section, we describe each component

of the ListenFormer architecture in detail.

3.2 Transformer Encoder
We adopt the vanilla Transformer encoder [48]. It is composed of a
sinusoidal positional encoding and a stack of sub-layers, converting
the audio feature vectorsH𝑡 into contextualized representationsA𝑡 .
Each encoder layer consists of multi-head self-attention and fully
connected feed-forward networks. Note that layer normalization

3
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and residual connection are omitted for simplicity in Fig. 2. The
audio representations outputted by the encoder are sent to the
audio-motion fusion module.

3.3 Transformer Decoder and Two-stage
Training

The decoder is also composed of a sinusoidal positional encoding
and a stack of sub-layers. Different from the encoder, each decoder
layer consists of self-attention, cross-attention, and feed-forward
networks. The output identity-independent 3D facial coefficients
of listeners are sent to the renderer for video reconstruction.

In the pre-training stage, we apply the teacher-forcing scheme,
which is shown in the middle of Fig. 2 (light blue background).
At each time step, the decoder receives the real target coefficients
M𝑙
𝑡 = {𝑚𝑙1, · · · ,𝑚

𝑙
𝑡 } (ground truth) along with the fusion repre-

sentation, instead of using predictions generated by the model
itself. This speeds up the training process and minimizes cumula-
tive errors during the training phase. We also apply masks in the
self-attention in the first training stage to prevent current output
from being affected by subsequent positions according to [48].

Although the teacher-forcing scheme helps the model learn tem-
poral continuity of the output, the model must rely on its own
generated previous coefficients and generate predictions autore-
gressively during the inference phase, leading to inconsistency
between training and inference. Therefore, we modify the input of
the decoder in the fine-tuning stage. Specifically, as shown in the
right of Fig. 2 (light green background), the 3D coefficient𝑚𝑙1 of
the reference listener image is replicated along the time axis and
inputted into each time step to replace the ground truth M𝑙

𝑡 . As
shown in Fig. 1(b), the model can perform non-autoregressive infer-
ence consistent with the training phase, thereby avoiding the issue
of cumulative errors. Additionally, such approach does not require
masks in self-attention and tends to provide a globally consistent
motion.

On the one hand, the first teacher-forcing pre-training stage
forces the model to optimize in the right direction in the early
stages of training. During the experimental phase, we find that
skipping the pre-training stage and directly proceeding to the non-
autoregressive training in the second stage does not yield more
satisfactory results. For more details, refer to Section 4.5.2. This
indicates the importance of the pre-training stage for the final
performance of ListenFormer. On the other hand, the prediction
approach in the second fine-tuning stage is the non-autoregressive
method we ultimately aim for in inference. Since people usually
do not make large head movements during the listening process,
using repeated reference frames as the input for the decoder helps
maintain the stability of the predictions. As a result, the combination
of the two training stages allow ListenFormer to simultaneously
learn temporal continuity and overall consistency, achieving a good
balance between facial motion diversity and stability.

Once the complete 3D facial coefficient sequence is produced,
the model is trained by minimizing the regression loss between the

a

 Self-Attention

Feed Forward

Positional Encoding

Masked Self-Attention

Feed Forward

Positional Encoding

Cross-Attention

Render

Self-Attention

Feed Forward

Positional Encoding

Cross-Attention

Ground Truth

a a a

a a a a

a a a a

a a a a

Audio-visual Fusion
a a a a

Predicted Frames

a

Render

a a a a

Predicted Frames

Stage 1 Stage 2

Reference Frame

Speaker Motions

Speaker Audio

Ne×

Ne× Ne×

 Audio Representation

 Self-Attention Cross-Attention

Add & Norm

 Motion Feature

Feed Forward

Fusion Representation

Add & Norm

Add & Norm

t

s

t

t

t


Q K V V K Q

Figure 3: Structure of the AMAF module.

decoder outputs and ground truths, which is calculated as:

𝐿 =

𝑇∑︁
𝑡=2

| |𝛽𝑙𝑡 − 𝛽𝑙𝑡 | |2 + ||𝑝𝑙𝑡 − 𝑝𝑙𝑡 | |2

+
𝑇∑︁
𝑡=2

𝑤1 | |𝜇 (𝛽𝑙𝑡 ) − 𝜇 (𝛽𝑙𝑡 ) | |2 +
𝑇∑︁
𝑡=2

𝑤2 | |𝜇 (𝑝𝑙𝑡 ) − 𝜇 (𝑝𝑙𝑡 ) | |2

(4)

where 𝛽𝑙𝑡 and 𝑝
𝑙
𝑡 represent the generated expression and pose co-

efficients of listeners, respectively. The last two terms of Eq. 4
are applied to guarantee the inter-frame continuity, where 𝜇 (·)
measures the inter-frame changes. 𝑤1 and 𝑤2 are the adjustable
parameters for different losses.

3.4 Audio-Motion Attention Fusion
When we listen to others, the speaker’s audio, facial expressions,
and headmotions can conveymessages to us. Often, there is a strong
correlation between them. Therefore, it is crucial to effectively
utilize multi-modal features (audio and motion) in the LHG task.
The previous works [7, 21, 54, 57] only concatenated audio and
motion features, which is a coarse fusion fashion. Here, we design
a novel AMAF module for finer interaction, as shown in Fig. 3.

In our view, audio conveys richer information in communication
compared to motion, for example, semantic information is lacking
in motion. In cross-modal fusion, we prioritize audio as the pri-
mary information stream, with motion serving as supplementary
modality. Experimental results in Section 4.5.1 demonstrate that this
approach performs better than regarding motion as the primary
modality. Before the cross-modal fusion, to model the temporal
relations of audio representation A𝑡 , we feed it into a multi-head
self-attention module. Then, enhanced representation A ′

𝑡 interacts
with motion representationM𝑠

𝑡 in a cross-attention way, where the
queries are fromM𝑠

𝑡 , keys and values are from A ′
𝑡 , respectively:

Interact(A ′
𝑡 ,M𝑠

𝑡 ) = Softmax(
M𝑠
𝑡𝑊

𝑄 · (A ′
𝑡𝑊

𝐾 )T
√
𝑑

)A ′
𝑡𝑊

𝑉 (5)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are learnable parameters and 𝑑 is a scaling
factor.

4
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We expect that the motion feature plays a role as queries in the
cross-attention mechanism, strengthening the audio representa-
tion closely associated with head motion and facial expressions to
obtain a more comprehensive fused representation F𝑡 . At last, a
feed-forward layer is applied to output the fusion representation.
Residual connection and layer normalization are employed after
attention and feed-forward layers to ensure the training stability
of the fusion process.

3.5 Decoding
Because there is a significant disparity in the lengths of videos in the
training datasets (ranging from 1 to 71 seconds), the video clips are
divided into fixed-length segments for training. This results in lim-
ited generalization ability of the transformer during the decoding
phase for longer sequences. Methods to enhance the length extrap-
olation ability of transformers have garnered widespread attention.
Existing approaches mainly fall into relative position encoding
[38, 43, 44], context window extension [1, 10, 50], and so on. There
is, however, a scarcity of methods specifically addressing seq2seq
tasks. To address this issue for non-autoregressive ListenFormer,
we explore three different decoding methods, corresponding to the
three subfigures in Fig. 4.

Fig. 4(a) represents the all-in decoding method, where the entire
clip with length𝑇 is inputted at once, and all predictions are gener-
ated in a single decoding step. This method not only results in high
computational complexity 𝑂 (𝑇 2) but also yields poor performance
due to limitations in extrapolation ability. Fig. 4(b) represents the
step-by-step decoding method. The input segment has a fixed win-
dow length 𝐿 and only one frame is slid in at each step. Meanwhile,
the output of the last frame of each segment is concatenated to the
final predictions. Although its computational complexity is reduced
compared to the all-in approach, its 𝑂 (𝑇𝐿2) complexity can con-
siderably slow down the decoding process when dealing with long
videos. Furthermore, while this stepping approach performs well
in autoregressive large language models (LLMs) [52], it is not suit-
able for ListenFormer which computes all inputs’ results in parallel.
While each input is step-by-step, for non-autoregressive inference,
even small changes in input can result in non-coherent outputs
between each step. Therefore, the step-by-step method may lead to
significant temporal jitter in the final output.

Fig. 4(c) represents the proposed sliding window with a large
shift decoding method. Similar to the step-by-step method, the
input window length 𝐿 remains fixed, but the sliding shift 𝑆 is
expanded to approach the size of the window length 𝐿. A slight
overlap helps to smooth the output at the junctions of segments.
The outputs of non-overlapping frames are concatenated to the final
prediction at each step. This method not only further reduces the
complexity to 𝑂 (𝑇𝐿), but also alleviates the jitter issue associated
with the stepping method. To further maintain the predictions
coherence, in the (b) and (c)methods, the reference image is replaced
by the output of the beginning frame taken from the previous
segment after the first step. More performance comparisons can be
found in Section 4.5.3.
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(a) All-in
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(b) Step-by-step
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(c) Sliding Window

Figure 4: Illustration of three decoding methods. The non-
autoregressive ListenFormer, trained on inputs of length 𝐿,
predicts the outputs of length 𝑇 (𝑇 ≫ 𝐿). And the shift
length in (c) is 𝑆 (𝑆 ≈ 𝐿).

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Dataset. We train and validate our model on two conver-
sation portrait datasets, the ViCo [57] and L2L [35] datasets. The
ViCo dataset contains 483 video clips ranging from 1 to 71 seconds.
Specifically, it includes the identities of 76 listeners and 67 speak-
ers, and each clip contains face-to-face interaction between two
realistic subjects. It is divided into training D𝑡𝑟𝑎𝑖𝑛 , test D𝑡𝑒𝑠𝑡 , and
out-of-domainD𝑜𝑜𝑑 subsets. All identities present inD𝑡𝑒𝑠𝑡 are also
found inD𝑡𝑟𝑎𝑖𝑛 , while identities inD𝑜𝑜𝑑 do not overlap with those
in D𝑡𝑟𝑎𝑖𝑛 . The L2L dataset is a 72-hour versus 95-minute dataset
collected in the wild, which comes from YouTube with six identities.
Each video features a plethora of interviewees and hosts from a
variety of backgrounds. Note that the L2L dataset only provides 3D
expression and pose coefficients along with corresponding speaker-
only audio features, and does not include the original videos.

4.1.2 Evaluation Metrics. On the ViCo dataset, both the feature-
level and video-level metrics are applied for comprehensive compar-
ison. For the former one, the L1 distance is employed to represent
the disparity between the predicted angles, expressions, translation
coefficients, and the ground truth. Angle and translation coefficients
are two components that constitute the pose coefficient 𝑝 . For the
latter one, we adopt Fréchet Inception Distance (FID) [19], Struc-
tural Similarity (SSIM) [51], Peak Signal-to-Noise Ratio (PSNR), and
Cumulative Probability of Blur Detection (CPBD) [4]. Additionally,
to evaluate identity preservation, we utilize cosine similarity (CSIM)
between identity features extracted from ArcFace [11] on generated
and source videos.

On the L2L dataset, due to the unavailability of the original
videos, only feature-level metrics (L1 distance and Fréchet distance
(FD)) for the expression and angle coefficients are applied.

4.1.3 Comparison Methods. Five state-of-the-art responsive lis-
tener head generation methods are selected as comparing methods.
ViCo [57] utilizes an LSTM-based sequential decoder to predict the
pose and expression features of the listener subject. PCHG [21]
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Table 1: The L1 Distance (×100) of different listening head generation methods on ViCo dataset. Each cell in the table repre-
sents the feature distance of angle/expression/translation coefficients respectively. Lower is better. The bold and underlined
notations represent the Top-2 results. The ∗ indicates that we directly follow the official report results of MFR-Net, while the
results of other comparison methods are reproduced on our own system.

Method Testset Positive Neutral Negative Average
Angle Exp Trans Angle Exp Trans Angle Exp Trans Angle Exp Trans

ViCo [57] D𝑡𝑒𝑠𝑡 7.22 14.66 6.16 5.33 12.87 6.80 13.86 17.73 6.96 9.53 15.57 6.59
D𝑜𝑜𝑑 8.45 16.68 7.05 7.05 15.17 6.38 6.85 17.66 6.96 7.54 16.41 6.79

PCHG [21] D𝑡𝑒𝑠𝑡 7.24 14.71 6.06 5.32 12.90 7.37 13.84 17.94 6.89 9.53 15.68 6.60
D𝑜𝑜𝑑 8.42 16.73 7.05 7.01 15.32 6.79 6.86 17.70 6.81 7.51 16.50 6.90

DSPN [54] D𝑡𝑒𝑠𝑡 4.82 5.80 12.89 5.32 11.84 5.71 14.39 17.83 7.74 8.71 14.67 6.55
D𝑜𝑜𝑑 7.69 15.77 7.08 6.30 13.11 6.20 7.76 14.58 6.37 7.23 14.53 6.58

MFR-Net∗ [30] D𝑡𝑒𝑠𝑡 5.36 13.73 5.94 5.35 12.32 4.58 11.78 13.46 5.48 6.82 13.37 6.02
D𝑜𝑜𝑑 9.03 13.72 6.29 6.27 12.96 4.77 7.77 15.51 5.78 8.12 14.70 6.37

Ours D𝑡𝑒𝑠𝑡 4.24 11.61 5.62 3.30 9.25 4.89 12.47 17.04 6.49 7.35 13.36 5.84
D𝑜𝑜𝑑 4.89 13.63 5.94 3.72 12.09 5.62 6.23 12.92 6.51 4.95 12.90 5.98

Table 2: Quantitative results on video-level metrics with dif-
ferent methods on ViCo dataset. The upward arrow indi-
cates that higher values correspond to better results, while
the downward arrow indicates the opposite.

Method SSIM ↑ CPBD ↑ PSNR ↑ FID ↓ CSIM ↑
ViCo [57] 0.57 0.16 17.34 27.03 0.49
PCHG [21] 0.56 0.16 16.79 26.57 0.49
DSPN [54] 0.59 0.15 17.64 26.33 0.58

MFR-Net∗ [30] 0.59 0.18 17.82 20.08 -
Ours 0.62 0.17 18.89 24.52 0.63

modifies the post-processing approach during the rendering pro-
cess based on ViCo.DSPN [54] is a dual-stream prediction network,
which consists of LSTMs and temporal convolutional networks
(TCN) [25]. MFR-Net [30] employs the probabilistic denoising dif-
fusion model to predict multi-faceted response. L2L [35] learns
a realistic manifold of listener motion through a novel sequence-
encoding.

4.1.4 Implementation Details. On the ViCo dataset, the input video
frames are cropped to 256 × 256 size at 30 FPS and the audio signals
are extracted into 45-dimensional acoustic features, including mel-
frequency cepstral coefficients (MFCC), energy, zero-crossing rate
(ZCR), and loudness. The window length of the speaker clip is set to
be 90 frames with a shift of 80 frames. The 3DMM coefficients are
extracted with the guides of PIRender [39]. The identity-dependent
features are in R187, and the identity-independent features are in
R70.

On the L2L dataset, the audio signals are extracted into 128-dim
mel features. Following [35], the parameters representing identity-
independent features include 50 expression coefficients along with
a 3D jaw rotation, as well as 3D head rotation in Euler angles.

As for model details, we utilize 3 transformer encoder layers and
3 transformer decoder layers along with 4 attention heads. Due to
the lack of original videos, the rendering part is not required when
conducting experiments on the L2L dataset.

Table 3: Quantitative results on feature-level metrics with
different methods on L2L dataset.

Method Expression Angle
L1 ↓ FD ↓ L1 ↓ FD ↓

ViCo [21] 30.28 15.08 7.15 6.77
DSPN [54] 23.65 3.16 5.82 1.54
L2L [35] 37.22 17.6 9.90 8.13
Ours 10.45 2.66 2.71 1.33

4.2 Quantitative Evaluation
4.2.1 ViCo dataset. Tab. 1 shows the feature-level metrics on the
D𝑡𝑒𝑠𝑡 and D𝑜𝑜𝑑 subsets of the ViCo dataset, through evaluations
conducted on generated angle, expression, and translation features.
Following [57] and [30], results are presented for three different
attitudes, along with their average values. Listenformer outper-
forms other existing methods onmost metrics across three attitudes,
with particularly outstanding performance on the D𝑜𝑜𝑑 set. Specif-
ically, it shows improvements of 3.75, 2.20, and 0.39 on average
results of angle, expression, and translation coefficients, respec-
tively. This could be attributed to the enhanced robustness of our
non-autoregressive training and inference method, as well as the ef-
fectiveness of the proposed cross-modal fusion method in capturing
representative information within audio and motion features.

Meanwhile, various video-level metrics are displayed in Tab. 2.
Listenformer achieves the best performance in SSIM, PSNR, and
CSIM, with improvements of 0.03, 1.07, and 0.05, respectively. How-
ever, it slightly lags behind the state-of-the-art model MFR-Net in
CPBD and FID. It could be due to the fact that MFR-Net has made
improvements to the rendering model, giving it a certain advan-
tage in facial reconstruction. Improving the rendering model of
Listenformer is also one of our future research directions.

4.2.2 L2L dataset. Tab. 3 presents the feature-level results of our
proposed method and other existing methods on the L2L dataset.
One can see that the proposed method outperforms all state-of-the-
art approaches, which supports that the proposed non-autoregressive
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Figure 5: Snapshots of the generated listener head videos (left: positive listener, right: neutral listener).

Table 4: User study results on ViCo dataset.

Method ON ↑ MD ↑ IP ↑ Sync ↑ AT ↑
ViCo [57] 12.2% 20.2% 14.7% 15.6% 40.7%
PCHG [21] 13.3% 16.9% 12.9% 14.2% 38.9%
DSPN [54] 13.1% 15.8% 17.1% 12.9% 38.7%

Ours 58.1% 46.4% 55.3% 58.0% 43.2%

ListenFormer also exhibits significant advantages in modeling head
motions and facial expressions on large datasets.

4.3 Qualitative Evaluation
To qualitatively evaluate different methods, we provide the respon-
sive listening head frames generated by the proposed method and
other methods in Fig. 5. We can see that Listenformer provides a
reasonable response, which may not align entirely with ground
truth but remains generally consistent. Both ViCo and PCHG strug-
gle to maintain accurate identity information, specifically in (a),
where ViCo and PCHG model eye movements unnaturally, and in
(b), where generated listeners consistently maintain a weird smile.
Although DSPN doesn’t exhibit the aforementioned glaring short-
comings, it lacks sensitivity in capturing the positive attitude in
(a) and neutral attitude in (b). Conversely, our approach ensures
the preservation of accurate identity information without visible
artifacts. Furthermore, the generated videos present more natural
facial expressions and more precise attitude conveyance. Please
watch the supplementary video for the dynamic comparison.

4.4 User Study
We invite 15 people to evaluate the generated listening head videos
of our method with the other three methods. Each generated video
along with its corresponding speaker’s video is concatenated into
the same video for presentation. 30 videos from the ViCo dataset

Table 5: Ablation study for fusion methods in ListenFormer
tested on ViCo and L2L datasets.

Fusion Method ViCo L2L
PSNR ↑ FID ↓ CSIM ↑ L1 ↓ FD ↓

Concat 18.82 25.24 0.62 10.06 12.90
Motion-dominated 18.52 25.25 0.62 10.22 12.94
Audio-dominated 18.89 24.52 0.63 9.27 12.90

are involved in this user study with human measures in overall
naturalness (ON), motion diversity (MD), identity preserving (IP),
speaker-listener synchronization (Sync), and attitudematching (AT).
Except for attitude matching, which offers a choice between posi-
tive, negative, and neutral, the remaining four options are selected
as the best among the four methods. The results from all partic-
ipants are averaged and listed in Tab. 4. ListenFormer achieves
the best performance among all subjective measures, especially
in terms of motion diversity, identity preservation, and synchro-
nization. This verifies the capability of our method in generating
diverse and natural listening head videos.

4.5 Ablation Study
4.5.1 Effect of the audio-motion fusion module. In this section, we
conduct experiments to compare three different fusion methods.
"Concat" refers to directly concatenating audio and motion features.
"Audio-dominated" denotes the proposed AMAF method in Section
3.4, while "motion-dominated" involves swapping the positions of
audio and motion features in the AMAF module. Tab. 5 presents the
performance of three methods on two datasets. It can be observed
that the "audio-dominated" method outperforms the other two
methods in all metrics. This not only indicates the effectiveness
of the proposed audio-motion attention fusion method but also
suggests that the speaker’s audio may be more crucial than motion
for LHG, as it can convey more information, such as semantics.
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Figure 6: Qualitative results of ListenFormer with different
training methods.
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Figure 7: L1 distance of ListenFormer trained under differ-
ent pre-training epochs on ViCo and L2L datasets.

4.5.2 Effect of the training method. Fig. 6 respectively illustrates
the generation results of ListenFormer trained using autoregressive
(AR) and non-autoregressive (NAR) methods (two-stage training).
It is evident that the generated video of the autoregressive model
exhibits an abnormal slant in the head, which is difficult to correct
in subsequent inference steps. The non-autoregressive model con-
sistently maintains stable head movement throughout the whole
generated video. This demonstrates that non-autoregressive meth-
ods can significantly alleviate the inherent issue of error accumu-
lation in autoregressive methods. Moreover, blinking and other
motions also appear in generated videos of the NAR model, indi-
cating that the NAR model retains excellent motion diversity due
to the two-stage training method.

Fig. 7 specifically demonstrates the L1 results of models trained
with different pre-training epochs for the expression and pose co-
efficients. On the ViCo dataset, the model achieves optimal per-
formance with 100 pre-training epochs, while on the L2L dataset,
the model performs best with 400 pre-training epochs. This may
be attributed to the larger volume of data in the L2L compared to
the ViCo dataset. Overall, the non-autoregressive method signifi-
cantly outperforms the autoregressive method, even without the
pre-training stage.

4.5.3 Effect of the decoding method. We conduct experimental com-
parisons of three different decoding methods mentioned in Section
3.5. Fig. 8 displays frames selected from a 26-second video clip
spanning 5 to 15 seconds. It is evident that the all-in method, when
inferred beyond the length of the training clips (3 seconds), leads
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Figure 8: Qualitative results of ListenFormer with different
decoding methods.

to static facial expressions and induces slight but rapid back-and-
forth head movements. This is due to that the sinusoidal positional
encoding fails to capture the modeling of position information
for extended lengths. For the step-by-step method, although the
generated facial expressions are no longer static, there are more pro-
nounced back-and-forth head movements. As mentioned in Section
3.5, this may be attributed to the fact that for non-autoregressive
ListenFormer, step-by-step inputs do not necessarily yield coherent
results. The step-by-step approach introduces significant temporal
jitters in the predictions, resulting in a visibly less smooth appear-
ance. In comparison, our proposed method offers several advan-
tages. On the one hand, the utilization of a sliding window helps
to overcome the limitations associated with sinusoidal positional
encoding for length extrapolation in decoding phase. On the other
hand, the utilization of a large shift ensures that the generated
frames do not exhibit jitters within the window. As a result, our
method achieves superior visual quality compared to the other
two methods. Additionally, it also leads to significant savings in
computational resources according to Section 3.5.

5 CONCLUSION
We introduce a novel transformer-based model for the responsive
listening head generation task. Our proposed Listenformer achieves
non-autoregressive inference through teacher-forcing pre-training
and input-changed fine-tuning stage, ensuring consistency between
training and inference prediction modes. Additionally, to provide
more accurate responses to the speaker inputs, an audio-motion
attention fusion method is proposed, which better captures the
audio-motion correlation information in the speaker’s signals. To
further enhance performance, we propose a sliding window with a
large shift approach to address infinite-length inference scenarios,
which performs well in terms of both effectiveness and compu-
tational efficiency. Qualitative and quantitative experiments have
validated the superiority of our method over other state-of-the-art
methods in generating high-quality listening head responses.
Limitations: The renderer and transformer are treated as indepen-
dent components in our proposed method. In the future, we plan to
explore joint optimization of these two components. Furthermore,
we consider abandoning the rendering model and applying our
method to 2D-based generation approaches.
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