
Sample Efficient Reinforcement Learning in Mixed
Systems through Augmented Samples and Its

Applications to Queueing Networks

Honghao Wei
Washington State University
honghao.wei@wsu.edu

Xin Liu
ShanghaiTech University

liuxin7@shanghaitech.edu.cn

Weina Wang
Carnegie Mellon University

weinaw@cs.cmu.edu

Lei Ying
University of Michigan, Ann Arbor

leiying@umich.edu

Abstract

This paper considers a class of reinforcement learning problems, which involve
systems with two types of states: stochastic and pseudo-stochastic. In such systems,
stochastic states follow a stochastic transition kernel while the transitions of pseudo-
stochastic states are deterministic given the stochastic states/transitions. We refer to
such systems as mixed systems, which are widely used in various applications, in-
cluding manufacturing systems, communication networks, and queueing networks.
We propose a sample efficient RL method that accelerates learning by generating
augmented data samples. The proposed algorithm is data-driven and learns the
policy from data samples from both real and augmented samples. This method
significantly improves learning by reducing the sample complexity such that the
dataset only needs to have sufficient coverage of the stochastic states. We analyze
the sample complexity of the proposed method under Fitted Q Iteration (FQI) and
demonstrate that the optimality gap decreases as Õ(

√
1/n+

√
1/m), where n is

the number of real samples and m is the number of augmented samples per real
sample. It is important to note that without augmented samples, the optimality
gap is Õ(1) due to insufficient data coverage of the pseudo-stochastic states. Our
experimental results on multiple queueing network applications confirm that the
proposed method indeed significantly accelerates learning in both deep Q-learning
and deep policy gradient.

1 Introduction

Reinforcement learning (RL) algorithms have recently achieved superhuman performance in gaming,
such as AlphaGo (Silver et al., 2017), and AlphaStar (Vinyals et al., 2019), under the premise that vast
amounts of training data can be collected. However, collecting data in real-world could be expensive
and time-consuming applications such as clinical trials and autonomous driving, posing a significant
challenge to extending the success of RL to broader applications. In this paper, we are interested in
sample efficient algorithms for a class of problems in which environments (also called systems in this
paper) include both stochastic and deterministic transitions, resulting in two types of states: stochastic
states and pseudo-stochastic states. For example, in a queueing system, customers arrive and depart,
following certain stochastic processes, but the evolution of the queues given arrivals and departures
are deterministic. We call these kinds of systems mixed systems. Mixed systems are common in
various RL applications, including data centers, ride-sharing systems, and communication networks,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

which can be modeled as queueing networks so as mixed systems. The broad application of mixed
systems makes it crucial to explore whether current RL approaches are efficient in learning optimal
policies for such systems. However, existing RL approaches are often not sample efficient due to the
curse of dimensionality. For instance, in a queueing system, the state space (i.e. the queue lengths) is
unbounded, which means that a tremendous amount of data samples are required to adequately cover
the state space in order to learn a near-optimal policy. To highlight the challenge, in a recent paper
(Dai and Gluzman, 2022), a 96-core processor with 1, 510 GB of RAM was used to train a queueing
policy for a queueing network with only a few nodes.

This paper proposes a new approach to handling the curse of dimensionality based on augmented
samples. Our approach is based on two observations:

• When dealing with a mixed system that has a large state space, model-based approaches are
incredibly challenging to use. For example, as of today, it remains impossible to analytically
determine the optimal policy for a queueing network. On the other hand, using a deep neural
network can be regarded as a numerical method for solving a large-scale optimization problem.
Therefore, a data-driven, neural network-based solution could be a much more efficient approach.

• It is well-known that training deep learning is data-hungry. While, in principle, model-free
approaches can be directly used for mixed systems, they are likely to be very inefficient in sample
complexity for mixed systems whose state space is large. In this paper, we will utilize the knowledge
of deterministic transitions to generate new data samples by augmenting existing real samples. In
other words, we can generalize real samples to a large (even infinite) number of samples that cover
the unobserved pseudo-stochastic states. These samples are equally useful for training the neural
network as the real samples.

Based on the two observations above, we consider a mixed system that includes two types of states,
stochastic states and pseudo-stochastic states, where the transitions of the stochastic states are driven
by a stochastic kernel, and the transitions of the pseudo-states are deterministic and conditioned on
the current and next stochastic states. We comment that without conditioning the stochastic states,
the pseudo-stochastic states become stochastic. The distributions of stochastic states and pseudo-
stochastic states are correlated, which makes the problem different from MDPs with exogenous
inputs.

With this state separation, we propose an augmented sample generator (ASG). The sample generator
generates virtual samples from real ones while keeping stochastic states and augmenting the pseudo-
stochastic states. Both the real samples and virtual samples are then used to train the deep neural
networks, e.g., Q-networks or policy networks.

We analyze the sample complexity of the proposed approach for mixed systems under Fitted Q
Iteration (FQI Ernst et al. (2005)) which is equivalent to DQN (Mnih et al., 2015a) for tabular setting.
Specifically, we consider the scenario where the size of pseudo-stochastic state space is much larger
than that of stochastic state space, and the set of available real data samples does not provide sufficient
coverage of the joint state space. This is the situation where the proposed approach is expected
to be particularly advantageous. Our analysis demonstrates that the proposed approach yields a
significant improvement in the convergence rate for tabular settings. In particular, by generating m
virtual samples for each real sample, the optimality gap between the learned policy and the optimal
policy decreases as Õ(

√
1/n+

√
1/m), where n is the number of real samples. Note that without

augmented samples, the error is Õ(1) due to the lack of data coverage of the pseudo-stochastic states,
which reduces to Õ(

√
1/n) when we generate at least n augmented samples for each real sample.

We also would like to emphasize that ω(
√

1/n) is also the fundamental lower bound due to the
coverage of the stochastic states.

1.1 Related Work

Deep reinforcement learning with augmented samples is not new. However, the approach in this
paper has fundamental differences compared with existing works in the literature, which we will
explain in detail.

Dyna and its variants: The first group of related methods is Dyna (Sutton, 1988) and its extensions.
Dyna-type algorithms are an architecture that integrates learning and planning for speeding up
learning or policy convergence for Q-learning. However, our proposed method differs fundamentally

2

from these approaches in several aspects: (1) Dyna-type algorithms are model-based methods and
need to estimate the system model which will be used to sample transitions. On the contrary, ASG
does not require such an estimation and instead leverages the underlying dynamics of the system to
generate many augmented samples from one real sample. (2) Dyna is limited to making additional
updates only for states that have been observed previously, whereas ASG has the potential to update
all pseudo-stochastic states, including those that have not yet been explored. (3) Since Dyna is a
model-based approach, the memory complexity is |S|2|X |2|A|, where S is the stochastic state space,
X is the pseudo-stochastic state space and A is the action space. ASG employs a replay buffer only
for real data samples, which typically requires far less memory space. Moreover, some Dyna-type
approaches like Dyna-Q+(Sutton, 1988), Linear Dyna (Sutton et al., 2012), and Dyna-Q(λ) (Yao
et al., 2009), require more computational resources to search the entire state space for updating the
order of priorities.

Dyna-type approaches have been successfully used in model-based online reinforcement learning for
policy optimization, including several state-of-the-art algorithms, including ME-TRPO (Kurutach
et al., 2018), SLBO (Luo et al., 2019), MB-MPO (Clavera et al., 2018), MBPO (Janner et al., 2019),
MOPO (Yu et al., 2020). As we already mentioned above, ASG is fundamentally different from
these model-based approaches. The key differences between Dyna-type algorithms and ASG are
summarized in Table 1.

Table 1: Dyna-type v.s. ASG

Algorithm estimate update computational store convergence
model? unseen states? efficient? all transitions? analysis?

Dyna-type 3 7 7 7 7
ASG 7 3 3 3 3

Data augmentation: It has been shown that data augmentation can be used to efficiently train RL
algorithms. Laskin et al. (2020) showed that simple data augmentation mechanisms such as cropping,
flipping, and rotating can significantly improve the performance of RL algorithms. Fan et al. (2021)
used weak and strong image augmentations to learn a robust policy. The images are weakly or
strongly distorted to make sure the learned representation is robust. However, these methods rely
solely on image augmentation, and none of them consider the particular structure of the mixed
system. The purpose of augmentation and distortion is to improve robustness and generalization. Our
approach is to use virtual samples, which are as good as real samples to learn an optimal policy. The
purpose of introducing the virtual samples is to improve the data coverage for learning the optimal
policy.

Encoding symmetries into the designs of neural networks to enforce translation, rotation, and
reflection equivariant convolutions of images have also been proposed in deep learning, like G-
Convolution (Cohen and Welling, 2016a), Steerable CNN (Cohen and Welling, 2016b), and E(2)-
Steerable CNNs (Weiler and Cesa, 2019). Mondal et al. (2020); Wang et al. (2022) investigated the
use of Equivariant DQN to train RL agents. van der Pol et al. (2020) imposed symmetries to construct
equivariant network layers, i.e., imposing physics into the neural network structures. Lin et al. (2020)
used symmetry to generate feasible virtual trajectories for training robotic manipulation to accelerate
learning. Our approach relies on the structure of mixed systems to generate virtual samples for
learning an optimal policy and can incorporate much more general knowledge than symmetry.

In addition, existing works on low-dimensional state and action representations in RL are also related
to our research focus on representing the MDP in a low-dimensional latent space to reduce the
complexity of the problem. For example, Modi et al. (2021); Agarwal et al. (2020) studied provably
representation learning for low-rank MDPs. Misra et al. (2020); Du et al. (2019) investigated the
sample complexity and practical learning in Block MDPs. There are also practical algorithms (Ota
et al., 2020; Sekar et al., 2020; Machado et al., 2020; Pathak et al., 2017) with non-linear function
approximation from the deep reinforcement learning literature. Although the mixed model studied in
this paper can be viewed as an MDP with a low-dimensional stochastic transition kernel, the state
space of the MDP does not have a low-dimensional structure, which makes the problem fundamentally
different from low-dimensional representations in RL.

3

Factored MDP: A factored MDP (Kearns and Koller, 1999) is an MDP whose reward function and
transition kernel exhibit some conditional independence structure. In a factored MDP, the state space
is factored into a set of variables or features, and the action space is factored into a set of actions
or control variables. This factorization simplifies the representation and allows for more efficient
computation and decision-making. While factored MDPs and mixed systems share some similarities,
they are actually quite different. In a factored MDP, state variables are grouped into sets, allowing for
the factoring of rewards that depend on specific state subsets, and localized (or factorized) transition
probabilities. In a mixed system, the cost/reward function is not assumed to be factored. Furthermore,
although the transition probabilities of stochastic states are localized, depending only on stochastic
states and actions, the transitions of pseudo-stochastic states generally depend on the full state vector
and are not factorized. However, these transitions are deterministic, which allows us to generate
augmented samples. Given the fundamental differences between the two, the analysis and the results
are quite different despite the high-level similarity. Additionally, for the batch offline RL setting
without enough coverage used in our paper, there are no existing approaches, including factored
MDPs, that guarantee performance in this scenario.

MDPs with exogenous inputs: A recent paper considers MDP with exogenous inputs (Sinclair et al.,
2022), where the system has endogenous states and exogenous states. The fundamental difference
between exogenous-state/endogenous state versus stochastic-state/pseudo-stochastic-state is that the
evolution of the exogenous state is independent of the endogenous state, while the evolution of the
stochastic state depends on the action. Since the action is chosen based on the pseudo-stochastic state,
the evolution of a stochastic state, therefore, depends on the pseudo-stochastic state.

The most significant difference between this paper and existing works is that we propose the concept
of mixed systems and mixed system models. Based on the mixed system models, we develop
principled approaches to generate virtual data samples, which are as informative for learning as real
samples and enhance RL algorithms with much lower sample complexity. Equally significant, we
provide sample complexity analysis that theoretically quantifies the sample complexity improvement
under the proposed approach and explains the reason that principled data augmentation improves
learning in RL.

2 Mixed Systems and Mixed System Models

We consider a discrete-time Markov decision process M = (S × X ,A, P,R, γ, η0), whose state
space is S ×X , where S is the set of stochastic states and X is the set of pseudo-stochastic states, and
both S and X are assumed to be finite. Further,A is a finite action space, R : S×X ×A → [0, rmax]
is a deterministic and known cost function, and P : S ×X ×A → ∆(S ×X) is the transition kernel
(where ∆(·) is the probability simplex).

The transition kernel P is specified in the following way. The transitions of the stochastic state follow
a stochastic transition kernel. In particular, the transition of the stochastic state St at time t can be
represented as

pij(a) = P (St+1 = j|St = i, at = a). (1)
We assume that this transition is independent of the pseudo-stochastic state Xt (and everything else
at or before time t). The transition of the pseudo-stochastic state is then deterministic, governed by a
function g as follows:

Xt+1 = g(St, Xt, at, St+1). (2)
Our system M is said to be a mixed system because it includes both stochastic and deterministic
transitions. Our mixed system model then consists of the stochastic transition kernel and the
deterministic transition function g.

We focus on discounted costs in this paper. Given a mixed system, the value function of a policy π is
defined as

V π(s, x) := E

[∞∑
h=0

γhR(sh, xh, ah)

∣∣∣∣∣ (s0, x0) = (s, x), ah = π(sh, xh)

]
, (3)

where γ is the discount factor, and the expectation is taken over the transitions of stochastic states
and randomness in the policy. Let vπ = E(s0,x0)∼η0 [V π(s0, x0)], i.e., the expected cost when the
initial distribution of the state is η0. Let v∗ = minπ v

π.

4

The Q-value function of a policy π is defined as

Qπ(s, x, a) := E

[∞∑
h=0

γhR(sh, xh, ah)

∣∣∣∣∣ (s0, x0) = (s, x), a0 = a, ah = π(sh, xh)

]
. (4)

Let Q be the optimal Q-value function. Then the Bellman equation can be written as

Q(s, x, a) = R(s, x, a) + γEs′∼P (·|s,a)

[
min
a′

Q(s′, g(s, x, a, s′), a′)
]
. (5)

Note that the value function and the Q-value function both take values in [0, Vmax] for some finite
Vmax under any policy, due to the assumption that the cost is in [0, rmax].

2.1 Example: A Wireless Downlink Network

To better illustrate the structure of mixed systems. Consider the example of a wireless downlink
network shown in Fig. 1 with three mobile users. We model it as a discrete-time system such that Λt(i)
is the number of newly arrived data packets for mobile i at the beginning of time slot t, and Ot(i) is
the number of packets that can be transmitted to mobile i during time slot t if mobile i is scheduled.

Flow 1

Flow 2

Flow 3

Figure 1: A Downlink Wireless Network

The base station can transmit to one and only one mobile
during each time slot, and let At ∈ {1, 2, 3} denote the
mobile scheduled at time slot t. The length of queue i
evolves as

qt+1(i) = (qt(i) + Λt(i)−Ot(i)I(At = i))
+
, (6)

where I(·) is the indicator function and (·)+ = max{·, 0}.
To minimize the total queue lengths, the problem can
be formulated as an RL problem such that the state is
(Λt,Ot,qt), the action is At, and the cost is

∑
i qt(i).

We can see that in this problem, St := (Λt,Ot) is the stochastic state and qt is the pseudo-stochastic
state. In general, the state space of the stochastic states is bounded, e.g., both Λt and Ot may be
Bernoulli random variables, but the pseudo-stochastic state such as qt is large or even unbounded.
Therefore, while the distributions of the stochastic states can be learned with a limited number
of samples, learning the distribution of the queue lengths, even under a given policy, will require
orders of magnitude more samples. Therefore, vanilla versions of model-free approaches that do not
distinguish between stochastic and pseudo-stochastic states require an unnecessary amount of data
samples and are not efficient.

Therefore, we propose a sample-efficient, data-driven approach based on deep RL and augmented
samples. Augmented samples guarantee enough coverage based on a limited number of real data
samples. Note that given Λt, Ot and At, we can generate one-slot queue evolution starting from any
queue length.

3 Sample Efficient Algorithms for Mixed Systems

3.1 Augmented Sample Generator (ASG)

We first introduce the Augmented Sample Generator (ASG, Algorithm 1), which augments a
dataset by generating virtual samples. In particular, ASG takes as input a dataset D, an integer
m, and a probability distribution β(·) over the pseudo-stochastic states in X . For each sample
(s, x, a, r, s′, x′) ∈ D, we first sample a pseudo-stochastic state x̂ from β(·), and then construct a
virtual sample (s, x̂, a, r̂, s′, x̂′), where r̂ = R(s, x̂, a) and x̂′ = g(s, x̂, a, s′). Note that we are able
to do this since we assume that functions R and g are given in our applications. For each sample
in D, we repeat this procedure m times independently to generate m virtual samples. Taking the
downlink wireless network as an example, where St := (Λt,Ot), Xt := qt, assume that at some
timeslot t, one of the real samples is

(s, x, a, r, s′, x′) := (({(3, 4, 5}, {1, 2, 0}), {4, 6, 6}, 1, 16, ({(2, 3, 4}, {2, 2, 0)}), {6, 10, 11}) ,

5

where the queue length qt+1 is calculated according to Eq. (6). Using ASG, we generate two
pseudo-stochastic states (queue length) x̂1 = (1, 2, 3), x̂2 = (0, 2, 1), then we are able to obtain two
virtual samples

(s, x̂1, a, r̂1, s
′, x̂′1) := (({3, 4, 5}, {1, 2, 0}), {1, 2, 3}, 1, 6, ({2, 3, 4}, {2, 2, 0}), {3, 6, 8}) ,

(s, x̂2, a, r̂2, s
′, x̂′2) := (({3, 4, 5}, {1, 2, 0}), {0, 2, 1}, 1, 3, ({2, 3, 4}, {2, 2, 0}), {2, 6, 6}) .

Note that all the virtual samples represent true transitions of the mixed system if the queue lengths
were x̂1 and x̂2.

Algorithm 1: Augmented Sample Generator (ASG)
1 Input: A dataset D = {(s, x, a, r, s′, x′)}, a positive integer m, a distribution β(·) on X ;
2 Initialize virtual sample dataset: D′ = ∅ ;
3 for each sample (s, x, a, r, s′, x′) ∈ D do
4 Sample m virtual pseudo-stochastic states x̂1, x̂2, . . . , x̂m from β(·) independently;
5 Compute r̂i = R(s, x̂i, a) and x̂′i = g(s, x̂i, a, s

′) for i = 1, 2, . . . ,m;
6 Add m virtual samples to virtual dataset: {(s, x̂i, a, r̂i, s′, x̂′i), i = 1, 2, . . . ,m} → D′;
7 Output: D′ ∪D ;

3.2 Batch FQI with ASG

We now formally present our algorithm, Batch FQI with ASG (Algorithm 2), for mixed systems. As
in a typical setup for batch reinforcement learning (Chen and Jiang, 2019), we assume that we have a
dataset D with n samples. The samples are i.i.d. and the distribution of each sample (s, x, a, r, s′, x′)
is specified by a distribution µ ∈ ∆(S × X × A) for (s, x, a), r = R(s, x, a), s′ ∼ P (·|s, a), and
x′ = g(s, x, a, s′). The distribution µ is unknown to the agent.

Our algorithm follows the framework of a batch FQI algorithm. We consider a class of candidate
value-functions F ∈ (S × X × A → [0, Vmax]). We focus on the scenario where the number of
pseudo-stochastic states, |X |, is far more than that of stochastic states, |S|, and the dataset D does
not provide sufficient coverage of the pseudo-stochastic states (n < |X |).
The goal is to compute a near-optimal policy from the given dataset D, via finding an f ∈ F that
approximates the optimal Q-function Q. The algorithm runs in episodes. For each episode k, it
first generates an augmented dataset Dk using ASG(D,m, βk), where βk is some distribution of the
pseudo-stochastic states satisfies that, for each typical pseudo-stochastic state, it can be generated
with at least probability σ1. We assume that the pseudo-stochastic states will not transition to atypical
states, such as extremely large values (possibly infinite) in the queuing example, under a reasonable
policy. Details can be found in Assumption A.4 in the supplemental material. We remark that we can
also use the same β for all the episodes, and in practice, we can simply adopt the estimation of the
pseudo-stochastic states (i.e., with Gaussian distribution) as βk. The algorithm then computes fk as
the minimizer that minimizes the squared loss regression objective over F . The complete algorithm
is given in Algorithm 2.

3.3 Guarantee and Analysis

The guarantee of Algorithm 2 is summarized below.
Theorem 1. We assume the data coverage and completeness assumptions (details in the section A
in the supplemental material). Given a dataset D = {s, x, a, r, s′, x′} with n samples, w.p. at least
1− δ, the output policy of Algorithm 2 after k iterations, πfk , satisfies

vπfk − v∗ ≤ 2

(1− γ)2

(√
(m+ 1)C

mσ1

(
5

(
1

n
+

1

m

)
V 2

max log

(
nK|F|2

δ

)
+

3δV 2
max

n

)

+
√
c0σ2Vmax + γk(1− γ)Vmax

)
, (7)

where C is a constant related to the data coverage assumption A.3, and c0, σ1, σ2 are constants
defined in Assumption A.4 to ensure a typical set of reasonable typical pseudo-stochastic states.

6

Algorithm 2: Batch FQI with ASG
1 Input: A dataset D = {(s, x, a, r, s′, x′)}, a function class F , a positive integer m, distributions
{βk}Kk=1;

2 Initialize approximate Q-function: Choose f0 randomly from F .;
3 for episode k = 1, 2, . . . ,K do
4 Generate augmented dataset D̂k = ASG(D,m, βk);
5 Define loss function as:

LD̂k(f ; fk−1) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D̂k

(f(s, x, a)− r − γVfk−1
(s′, x′))2

fk = arg minf∈F LD̂k(f ; fk−1), Vfk(s, x) = mina∈A fk(s, x, a);
6 πfk(s, x) = arg mina∈A fk(s, x, a);
7 Output: πfK ;

Theorem 1 shows that ASG significantly improves the (real) sample complexity, i.e., the number of
real data samples needed. When the tail of pseudo-stochastic states decays fast, e.g. an exponential
tails link in a typical queueing network, we can choose a sampling distribution β that guarantees
that σ2 = Õ(1/n) and σ1 = Ω(1/ log n). Therefore, for sufficiently large k and sufficiently small
σ2, the first term is the dominating term. As m increases from 1 to n, the first term of the bound
decreases from Õ(1) to Õ(

√
1/n). Remark that we cannot establish a convergence result without

using ASG (when m = 0) since using the dataset D alone doesn’t have a sufficient data coverage
guarantee, which is critical for batch RL. Due to the page limit, we only present the outline behind
our analysis. The detailed proof is deferred to the supplemental material.

Proof Outline:

1. First we will show that using performance difference lemma (Kakade and Langford, 2002) it is
sufficient by bounding ‖fk −Q∗‖2,ξ, where ξ is some distribution.

2. Then, by considering how rare the distribution of the pseudo-stochastic states is under ξ and then
classify the pseudo-stochastic states into typical and atypical sets based on a threshold σ2 on the dis-
tribution. Along with the augmented data generator under βk(·). Then later we show that the term
‖fk − Q∗‖2,ξ can be bounded by O

(
‖fk − T fk−1‖2,µβk + γ‖fk+1 −Q∗‖2,ξ′ +

√
σ2Vmax

)
,

where µβk is the data distribution after augmenting virtual samples. The first two terms are related
to the typical set given that a sufficient coverage of the data after data augmentation. The last term
is easy to obtain by considering the atypical set.

3. Therefore, it is obvious that if we can have a bound on ‖fk−T fk−1‖2,µβk which is independent of
the episode k, we can prove the final result by expanding ‖fk −Q∗‖2,ξ iteratively for k times. We
finally show that the term ‖fk −T fk−1‖2,µβk can indeed be bounded by using the FQI minimizer
at each episode and a concentration bound on the offline dataset after augmenting virtual samples.

3.4 Extension to the case when |X | is infinite

Theorem 1 assumes the number of the pseudo-stochastic states is finite. The result can be generalized
to infinite pseudo-stochastic state space |X | if we make the following additional assumption:
Assumption 1. For the typical set B of pseudo-stochastic states (formally defined in Assumption A.4
in the supplemental material), for any s, a ∈ S × A, f ∈ F , if x ∈ B, then f(s, x, a) ≤ Vmax

otherwise if x /∈ B, we have |f(s, x, a) − Q∗(s, x, a)| ≤ Vmax. Furthermore, for any given f ∈
F , (s, x), x ∈ B, we have |Vf (s′, x′) − Vf (s′′, x′′)| ≤ Vmax, where x′ = g(s, x, πf , s

′), x′′ =
g(s, x, πf , s

′′).

The first part in assumption 1 means that the function f ∈ F is always bounded when x ∈ B.
Otherwise, the difference between f and the optimal Q−function Q∗ is bounded, which indicates that
although f could be extremely large or even unbounded for the pseudo-stochastic states, including
the infinite case, in the atypical set, it is also true for the optimal Q−function Q∗. Therefore the
difference between f and Q∗ is assumed to be bounded, which is reasonable in practice. The second

7

part states that for any given x ∈ B, the difference between the value functions of any possible
next transitions (s′, x′′) and (s′′, x′′) is always bounded, which is also true in general especially in
queuing literature since the changing of queue lengths between two timeslots is small.

Assumption 1 is easy to be satisfied in a typical queueing system (e.g. the wireless downlink
network in Section 2.1). If the control/scheduling policy is a stabilizing policy, then the queues have
exponential tails, i.e., the probability decays exponentially as queue length increases, and the policy
can drive very large queues to bounded values exponentially fast. Therefore, if all functions in F are
from stabilizing policies, Assumption 1 holds because any policy in F including the optimal policy
can reduce the queue lengths exponentially fast (in expectation) and the difference in Q-functions
therefore is bounded.

Under the additional Assumption 1, we show that the same order of the result is achievable. Details
can be found in Section A.2 in the supplemental material.

4 Experiments

To evaluate the performance of our approach, we compared our results with several baselines in
extensive queuing environments. In our simulations, when augmenting virtual samples, we only
require that the augmented samples are valid samples for which the action from the real sample
remains to be feasible.

4.1 The Criss-Cross Network

The criss-cross network is shown in Fig. 2a, which consists of two servers and three classes of
jobs. Each job class is queued in a separate buffer if not served immediately. Each server can
only serve one job at a time. Server 1 can process jobs of both class 1 and class 3; server 2 can
only process jobs of class 2. Class 3 jobs become class 2 jobs after being processed, and class
2 and class 3 jobs leave the system after being processed. The service time of a class i job is
exponentially distributed with mean mi. The service rate of a class i job is defined to be µi := 1/mi,
and jobs of class 1 and class 3 arrive to the system following the Poisson processes with rates
λ1 and λ3. To make sure the load can be supportable (i.e. queues can be stabilized), we assume
λ1m1 + λ3m3 < 1 and λ1m2 < 1. In the simulation, we consider the imbalanced medium traffic
regime, where µ1 = µ3 = 2, µ2 = 1.5, λ1 = λ3 = 0.6.

All queues are first-in-first-out (FIFO). Let et(i) ∈ {−1, 0,+1} denote the state of class i jobs at
time t, where −1 means a departure, +1 means a arrival and 0 denotes no changes for job i. Then
et = (et(1), et(2), et(3)) be the event happens at time t in the system, which is the stochastic state
in this mixed system. Let qt = (qt(1), qt(2), qt(3)) be the vector of queue lengths at time t, where
qt(i) is the number of class i jobs in the system. Obviously, qt is the pseudo-stochastic state in the
system, which can be derived from (qt−1, et−1) and action at. We combine ASG with Q−learning
and compare it with several baselines: (i) the vanilla Q-learning, (ii) a proximal policy optimization
(PPO) based algorithm proposed in Dai and Gluzman (2022) designed for queuing networks, (iii)
a random policy, and (iv) a priority policy such that the server always serves class 1 jobs when its
queue length is not empty, otherwise it serves class 3 jobs. Simulation results in Fig. 2d demonstrate
that using ASG significantly improves the performance, and achieves the performance of the optimal
policy, which was obtained by solving a large-scale MDP problem, after only 4 training episode (4k
training steps). All other policies are far away from the optimal policy, and barely learn anything,
as we mentioned that the state space is quite large and is not even sufficiently explored after 4k
training steps. To further demonstrate the fundamental difference between ASG and Dyna-type
algorithms, we also compared ASQ with the model-based approach: Q-learning with Dyna. We can
observe that Dyna also fails to learn a good policy since, as we mentioned before, ASG is built for
improving sample efficiency with augmented samples that represent true transitions for possible all
all the pseudo-stochastic states, but dyna-type algorithms can only generate addition samples from an
estimated model, which are limited by the samples that have been seen before.

4.2 Two-Phase Criss-Cross Network:

To further evaluate the power of ASG beyond the tabular setting, We combine ASG with Deep Q-
network (Mnih et al., 2015b) named DQN-ASG and evaluate it on a more complicated variant of the

8

Criss-Cross network presented in Fig. 2b, where class 3 jobs have two phases. Class 3 jobs at phase 1
become phase 2 after being processed with probability 1− p, leave the system with probability p; and
class 3 jobs at phase 2 leave the system after completed processing. Results in Fig. 2e indicate that
combining ASG with DQN also has a significant improvement on the performance, and our method
only needs 100 episodes to achieve a near-optimal policy. We also remark here that the training time
for DQN-ASG is three times faster than the baseline (4 hours v.s. 12 hours). In the simulation, all
the parameters are set to be the same as those in the previous case, and we use p = 0.8. Both the
criss-cross and two-phase criss-cross networks are continuous-time Markov chains (CTMCs). We
use the standard uniformization (Puterman, 2014; Serfozo, 1979) approach to simulate them using
discrete-time Markov chains (DTMCs).

We remark here that the two-phase Criss-Cross network cannot be modeled as MDPs with exogenous
inputs. Note that the phase a job is in is a stochastic state, which depends on the action (whether a job
is selected for service). Since the scheduling action depends on the queue lengths, the evolution of
stochastic states depends on the pseudo-stochastic states (the queue lengths). However, the exogenous
input in an MDP with exogenous inputs has to be an observable random process independent of the
action. Therefore, the current phase of a job of the phases Criss-Cross network is not an exogenous
input and the system is not an MDP with exogenous inputs.

4.3 Wireless Networks

In addition to the criss-cross networks, we also evaluate our approach on the downlink network
described in Section 2.1 with three mobiles. We let the arrivals are Poisson with rates Λ = {2, 4, 3},
and the channel rates O to be {12, 12, 12}.We use the Max-Weight (Tassiulas and Ephremides, 1992)
algorithm, a throughput-optimal and heavy-traffic delay optimal algorithm, as the baseline. As shown
in Fig. 2f, the learned policy outperforms Max-Weight. To the best of our knowledge, no efficient RL
algorithms exist that can outperform Max-Weight.

𝑆!𝑆"𝐵" 𝐵!

𝐵#class 1
arrivals

class 3
arrivals

class 2
departures

class 3
departures

(a) Criss-Cross network

𝑆!𝑆"𝐵" 𝐵!

𝐵#
class 1
arrivals

class 3
arrivals

class 2
departures

phase 1 phase 2

𝑝
1 − 𝑝

class 3
departures

(b) Phases Criss-Cross network

Flow 1

Flow 2

Flow 3

(c) Wireless network

(d) Testing reward (e) Testing reward (f) Testing reward

Figure 2: Performance on queuing systems

4.4 Additional Simulations on the criss-cross network

To further verify the performance of our algorithm on more scenarios, we first consider a more general
criss-cross network where the size of both class 1 and class 3 jobs can vary over time. Then all class 1
and class 3 jobs need multiple timeslots to be processed instead of 1. In particular, when a new job of
either class 1 or 2 joins the system, the job size of such job is chosen uniformly. The environment in
Fig. 2b can be seen as a special case where class 1, and 3 have a fixed job size 1 and 2, respectively.
The performances of different cases are presented in Fig. 3. Our approach still obtains the best result.

9

The details of the parameters can be found in section B.2. We do not include the optimal solution
since, for the general case, the state space is quite large, and using value iteration to obtain the optimal
solution is very time-consuming. The priority policy already provides a reasonable good baseline.

(a) (b) (c)

Figure 3: Performance on Criss-Cross network with general job size

4.5 Additional Simulations on the Wireless Network

We also evaluate the performance of our algorithm on the wireless network (Fig. 1) under different
sets of arrival rates. The results of average queue length compared with those of Max-Weight are
summarized in Table 2. We can observe that ASG performs better than Max-Weight in all the
cases. Simulation results on a more complicated two-phase wireless network can be found in the
supplemental material (Section B.3).

4.6 Combining ASG with Policy Gradient-type Algorithm

We also investigate the possibilities of using ASG in policy gradient-type algorithms (i.e., TD3 (Fu
et al., 2018), SAC (Haarnoja et al., 2018)) and compare our approach with one of the state-of-art
algorithms MBPO (Janner et al., 2019). Our approach still achieves the best performance. Due
to page limit, the detailed simulation and algorithm are deferred to Section B in the supplemental
material.

Arrival Rates Service Rates Max-Weight DQN-ASG
{2, 3, 4} {12, 12, 12} 10.979 10.403
{1, 7, 2} {12, 12, 12} 13.811 13.273
{2, 2, 6} {12, 12, 12} 13.774 13.137
{3, 1, 5} {12, 12, 12} 10.895 10.091

Table 2: Best testing average queue length after training for 120k steps

5 Conclusions

In this work, we considered RL problems for mixed systems which have two types of states: stochastic
states and pseudo-stochastic states. We proposed a sample efficient RL approach that accelerates
learning by augmenting virtual data samples. We theoretically quantified the (real) sample complexity
gain by reducing the optimality gap from Õ(1) to Õ(1/

√
n). Experimental studies further confirmed

the effectiveness of our approach on several queuing systems. The possible limitation of using ASG
is that it introduces more computation during each learning iteration when generating virtual samples,
though it is not obvious in our experiments.

References
Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W. (2020). Flambe: Structural complexity and

representation learning of low rank mdps. In Advances Neural Information Processing Systems
(NeurIPS), page 20095–20107. Curran Associates Inc.

Chen, J. and Jiang, N. (2019). Information-theoretic considerations in batch reinforcement learning.
In Int. Conf. Machine Learning (ICML), pages 1042–1051. PMLR.

10

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T., and Abbeel, P. (2018). Model-based
reinforcement learning via meta-policy optimization. CoRR, abs/1809.05214.

Cohen, T. and Welling, M. (2016a). Group equivariant convolutional networks. In Int. Conf. Machine
Learning (ICML), pages 2990–2999. PMLR.

Cohen, T. S. and Welling, M. (2016b). Steerable cnns. arXiv preprint arXiv:1612.08498.

Dai, J. G. and Gluzman, M. (2022). Queueing network controls via deep reinforcement learning.
Stochastic Systems, 12(1):30–67.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., and Langford, J. (2019). Provably
efficient rl with rich observations via latent state decoding. In Int. Conf. Machine Learning (ICML),
pages 1665–1674. PMLR.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556.

Fan, L., Wang, G., Huang, D.-A., Yu, Z., Fei-Fei, L., Zhu, Y., and Anandkumar, A. (2021). SECANT:
self-expert cloning for zero-shot generalization of visual policies. In Int. Conf. Machine Learning
(ICML).

Fu, L., Fu, X., Zhang, Z., Xu, Z., Wu, X., Wang, X., and Lu, S. (2018). Joint optimization of multicast
energy in delay-constrained mobile wireless networks. IEEE/ACM Transactions on Networking,
26(1):633–646.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft Actor-Critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Int. Conf. Machine Learning
(ICML), pages 1861–1870.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based policy
optimization. In Advances Neural Information Processing Systems (NeurIPS), volume 32.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learning. In
Int. Conf. Machine Learning (ICML), pages 267–274.

Kearns, M. and Koller, D. (1999). Efficient reinforcement learning in factored mdps. In Proc. Int.
Joint Conf. Artif. Intell. Org (IJCAI), volume 16, pages 740–747.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-ensemble trust-region
policy optimization. arXiv preprint arXiv:1802.10592.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. (2020). Reinforcement
learning with augmented data. In Advances Neural Information Processing Systems (NeurIPS).
Curran Associates Inc.

Lin, Y., Huang, J., Zimmer, M., Guan, Y., Rojas, J., and Weng, P. (2020). Invariant transform
experience replay: Data augmentation for deep reinforcement learning. IEEE Robotics and
Automation Letters, 5(4):6615–6622.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. (2019). Algorithmic framework for
model-based deep reinforcement learning with theoretical guarantees. In Int. Conf. on Learning
Representations (ICLR).

Machado, M. C., Bellemare, M. G., and Bowling, M. (2020). Count-based exploration with the
successor representation. In AAAI Conf. Artificial Intelligence, pages 5125–5133.

Misra, D., Henaff, M., Krishnamurthy, A., and Langford, J. (2020). Kinematic state abstraction and
provably efficient rich-observation reinforcement learning. In Int. Conf. Machine Learning (ICML),
pages 6961–6971. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., and Ostrovski, G. (2015a). Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533.

11

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015b). Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533.

Modi, A., Chen, J., Krishnamurthy, A., Jiang, N., and Agarwal, A. (2021). Model-free representation
learning and exploration in low-rank mdps. arXiv preprint arXiv:2102.07035.

Mondal, A. K., Nair, P., and Siddiqi, K. (2020). Group equivariant deep reinforcement learning.
ICML 2020 Worshop on Inductive Biases, Invariances and Generalization in RL.

Ota, K., Oiki, T., Jha, D., Mariyama, T., and Nikovski, D. (2020). Can increasing input dimensionality
improve deep reinforcement learning? In Int. Conf. Machine Learning (ICML), pages 7424–7433.
PMLR.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by
self-supervised prediction. In Int. Conf. Machine Learning (ICML), pages 2778–2787. PMLR.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., and Pathak, D. (2020). Planning
to explore via self-supervised world models. In Int. Conf. Machine Learning (ICML), pages
8583–8592. PMLR.

Serfozo, R. F. (1979). An equivalence between continuous and discrete time markov decision
processes. Operations Research, 27(3):616–620.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge. nature,
550(7676):354–359.

Sinclair, S. R., Frujeri, F., Cheng, C.-A., and Swaminathan, A. (2022). Hindsight learning for mdps
with exogenous inputs. arXiv preprint arXiv:2207.06272.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. P. (2012). Dyna-style planning with
linear function approximation and prioritized sweeping. arXiv preprint arXiv:1206.3285.

Tassiulas, L. and Ephremides, A. (1992). Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom.
Control, 37:1936–1948.

van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and Welling, M. (2020). MDP homomor-
phic networks: Group symmetries in reinforcement learning. In Advances Neural Information
Processing Systems (NeurIPS), volume 33, pages 4199–4210.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354.

Wang, D., Walters, R., and Platt, R. (2022). SO(2)-equivariant reinforcement learning. In iclr.

Weiler, M. and Cesa, G. (2019). General e(2)-equivariant steerable cnns. In Advances Neural
Information Processing Systems (NeurIPS), volume 32, page 14357–14368. Curran Associates,
Inc.

Yao, H., Bhatnagar, S., and Diao, D. (2009). Multi-step linear dyna-style planning. In Advances
Neural Information Processing Systems (NeurIPS), NIPS’09, page 2187–2195, Red Hook, NY,
USA. Curran Associates Inc.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based offline policy optimization. Advances Neural Information Processing Systems
(NeurIPS), 33:14129–14142.

12

Supplementary Material

A Proof of Theorem 1

In this section, we present the proof of Theorem 1. We first introduce and recall some necessary
notations and assumptions. Then, we present some auxiliary lemmas and their proofs. Finally, we
combine the lemmas to prove the main result.

Notations: Define P (ν) as distribution over states such that (s′, x′) ∼ P (ν) ⇔ (s, x, a) ∼
ν, s′ ∼ P (s′|s, a), x′ = g(s, a, s′). In other words, it is the distribution of the next state if
the state action pair follows ν. For f : S × X × A → R, ν ∈ ∆(S × X × A), where ∆(·)
is the probability simplex, and p > 1, define ‖f‖p,ν = (E(s,x,a)∼ν [|f(s, x, a)|p])1/p. Define
πf,f ′(s, x) := arg mina∈Amin{f(s, x, a), f ′(s, x, a)}.
Recall that in Alg. 2, at iteration k,

LD̂k(f ; fk−1) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D̂k

(f(s, x, a)− r − γVfk−1
(s′, x′))2,

where
fk : = arg min

f∈F
LD̂k(f ; fk−1) and Vfk(s, x) := min

a∈A
fk(s, x, a).

Assumptions:

Assumption A.1. (Realizability) For the optimal policy, Q∗ ∈ F .
Assumption A.2. (Completeness) For the policy π to be evaluated, ∀f ∈ F , T f ∈ F , where
T : RS×X×A → RS×X×A is the Bellman update operator, ∀f :

(T f)(s, x, a) := R(s, x, a) + γEs′∼P (·|s,a)[Vf (s′, x′ = g(s, x, a, s′))].

We say a distribution ν ∈ ∆(S ×A) is admissible in MDP (S,X ,A, P,R, γ), if there exist h ≥ 0
and a policy π such that ν(s, a) =

∑
x∈X Pr(sh = s, xh = x, ah = a|s0, x0, π). The following

assumption is imposed to limit the distribution shift. Note that “admissible” is defined on the
stochastic state and action. Later, we will also abuse the notation and call ν ∈ ∆(S × X × A) is
admissible if ν(s, a) =

∑
x ν(s, x, a) is admissible.

Assumption A.3. For a data distribution µ, we assume that there exists C <∞ such that for any
admissible v and any (s, a) ∈ S ×A,

ν(s, a)

µ(s, a)
≤ C,

where ν(s, a) =
∑
x∈X ν(s, x, a) and µ(s, a) =

∑
x∈X µ(s, x, a).

Assumptions A.2-A.3 are standard assumptions in batch reinforcement learning (Chen and Jiang,
2019). However, in assumption A.3, we only require the data coverage of stochastic states which is
the fundamental difference.
Assumption A.4. We assume that there exists a set B of typical pseudo-stochastic states such that the
distributions βk(x), k = 1, . . . ,K used for augmenting virtual samples satisfy βk(x) ≥ σ1,∀x ∈ B.
We also assume that the marginal distribution over using a reasonable policy π, that is, dπη0(s, x) :=

(1− γ)
∑∞
t=0 γ

t−1 Pr(st = s, xt = x|(s0, x0) ∼ η0, π) satisfies
∑
s∈S

∑
x∈X ,x/∈B d

π
η0(s, x) ≤ σ2,

where η0 is the initial distribution. Furthermore, if we have for a distribution η of the states satisfying∑
s∈S

∑
x∈X ,x/∈B η(s, x) ≤ σ2, then under any reasonable policy π, the marginal distribution

ηπh(s, x) := Pr(sh = s, xh = x|(s0, x0) ∼ η, π) satisfies
∑
s∈S

∑
x∈X ,x/∈B η

π
h(s, x) ≤ c0σ2,∀h >

0, for some constant c0 ≥ 1. In particular, all the policies at each iteration, the optimal policy and
their joint policies are assumed to be reasonable policies.

We remark that in a queuing network, under any stable policy, the queue distribution has an exponential
tail; in other words, large queue lengths occur with a small probability. In such a case, we can use
a uniform distribution for pseudo-stochastic states in set B to guarantee that σ1 = Θ

(
1

log(1/σ2
)
)
.

Therefore, if we choose σ2 = 1
n , then σ1 = 1

logn .

13

Auxiliary Lemmas

In the following lemma, we will show that when all admissible distributions are not far away from the
data distribution µ over stochastic state S and action A, we can have a good coverage of S × X ×A
by generating virtual samples.

For a given dataset D of size |D| = n and data distribution µ, let µ̄β denote the expected distribution
of the the state action pair (s, x, a) in the combined datase after using Algorithm 2 with a virtual
sample distribution β(x).

Lemma A.1. Given a virtual sample generating distribution β(x) of the pseudo-stochastic state, if
β(x) ≥ σ1,∀x ∈ B. Then given any admissible distribution ν, then under Assumptions A.3, we have
for any (s, x, a) ∈ S × X ×A, x ∈ B,

ν(s, x, a)

µ̄β(s, x, a)
≤ (m+ 1)C

mσ1
,

where

µ̄β(s, x, a) =µ(s, x, a)
n

nm+ n
+
∑
x̂∈X

µ(s, x̂, a)

(
β(x)

nm

nm+ n

)
(8)

Proof. Given the data distribution µ, we know that the real samples are drawn according to µ(s, x, a).
Then

ν(s, x, a)

µ̄β(s, x, a)
≤
∑
x̂∈X ν(s, x̂, a)

µ̄β(s, x, a)
=

∑
x̂∈X ν(s, x̂, a)∑
x̂∈X µ(s, x̂, a)

×
∑
x̂∈X µ(s, x̂, a)

µ̄β(s, x, a)

=
ν(s, a)

µ(s, a)
×
∑
x̂∈X µ(s, x̂, a)

µ̄β(s, x, a)

≤(1)C ×
µ(s, a)

µ̄β(s, x, a)

=(2)C

(
µ(s, a)

µ(s,x,a)
m+1 + m

m+1 ·
∑
x̂∈X µ(s, x̂, a)β(x)

)

≤C
(

(m+ 1)µ(s, a)

m
∑
x̂∈X µ(s, x̂, a)β(x)

)
≤C

(
(m+ 1)µ(s, a)

m
∑
x̂∈B µ(s, x̂, a)β(x)

)
≤C · m+ 1

m
· 1

σ1
,

where the inequality (1) holds because of Assumption A.3, the equality (2) holds by substituting
equation (8) and the last inequality is true because the fact that β(x) ≥ σ1,∀x ∈ B.

The next lemma transforms the norm in terms of distribution ν to distribution µ̄β (Eq. (8)).
Lemma A.2. Let ν be any admissible distribution, µ̄β denote the new data distribution defined in
Eq. (8) after generating virtual samples with β(x). If β(x) ≥ σ1,∀x ∈ B, then under Assumption

A.3, for any function f : S × X ×A → R, we have ‖f‖2,ν ≤
√

m+1
m

C
σ1
‖f‖2,µ̄β , where

‖f‖2,ν =

 ∑
(s,x,a)∈S×X×A,x∈B

|f(s, x, a)|2ν(s, x, a)

1/2

.

Proof. For any function f, we have

‖f‖2,ν =

 ∑
(s,x,a)∈S×X×A,x∈B

|f(s, x, a)|2ν(s, x, a)

1/2

14

≤

 ∑
(s,x,a)∈S×X×A,x∈B

|f(x, x, a)|2µ̄β(s, x, a)
(m+ 1)C

mσ1

1/2

≤

√
(m+ 1)C

mσ1
‖f‖2,µ̄β ,

where the first inequality is a result of Lemma A.1.

Lemma A.3. Consider two functions f, f ′ : S × X × A → R and define a policy πf,f ′(s, x) :=
arg mina∈Amin {f(s, x, a), f ′(s, x, a)} . Then we have ∀ν ∈ ∆(S × X ×A),

‖Vf − Vf ′‖2,P (ν) = ‖f − f ′‖2,P (ν)×πf,f′ . (9)

Proof.

‖Vf − Vf ′‖22,P (ν)

=
∑

(s,x,a)∈S×X×A

∑
s′∈S

P (s′|s, a)

(
min
a′∈A

f(s′, g(s, x, a, s′), a′)− min
a′∈A

f ′(s′, g(s, x, a, s′), a′)

)2

≤
∑

(s,x,a)∈S×X×A

∑
s′∈S

P (s′|s, a) (f(s′, g(s, x, a, s′), πf,f ′(s
′, g(s, x, a, s′)))

−f ′(s′, g(s, x, a, s′), πf,f ′(s
′, g(s, x, a, s′))))

2

=‖f − f ′‖22,P (v)×πf,f′ .

Lemma A.4. Under Assumptions A.3 and A.4, for any admissible distribution ν ∈ ∆(S × X ×A),
and a data distribution µ̄β associated with a virtual sample distribution β(x), define P (ν) as a
distribution generated as s′i ∼ P (ν), then for any policy π, and f, f ′ : S × X ×A → R, we have

‖f −Q∗‖2,ν ≤
√

(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖f ′ −Q∗‖2,P (ν)×πf′,Q∗ (10)

Proof.

‖f −Q∗‖2,ν = ‖f − T f ′ + T f ′ −Q∗‖2,ν
≤(1)‖f − T f ′‖2,ν + ‖T f ′ −Q∗‖2,ν

≤(2)

√
(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + ‖T f ′ −Q∗‖2,ν

≤(3)

√
(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖Vf ′ − V ∗‖2,P (ν)

≤
√

(m+ 1)C

mσ
‖f − T f ′‖2,µ̄β + γ‖f ′ −Q∗‖2,P (ν)×πf′,Q∗ ,

where inequality (1) holds because of triangle inequality, inequality (2) comes from lemma A.2,
inequality (3) holds because

‖T f ′ −Q∗‖22,ν = ‖T ∗f ′ − T Q∗‖22,ν = E(s,x,a)∼ν

[
((T f ′)(s, x, a)− (T Q∗)(s, x, a))

2
]

=E(s,x,a)∼ν

[(
γEs′∼P (·|s,a) [Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′))]
)2]

≤γ2E(s,x,a)∼ν,s′∼P (·|s,a)

[
(Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′)))2
]

=γ2Es′∼P (ν)

[
(Vf ′(s

′, g(s, x, a, s′))− V ∗(s′, g(s, x, a, s′)))2
]

=γ2‖Vf ′ − V ∗‖22,P (ν),

and the last inequality holds due to Lemma A.3.

15

Lemma A.5. For a given data sample (s, x, a, r, s′, a′) generated from a data distribution µ,
such that (s, x, a) ∼ µ, s′ ∼ P (·|s, a), x′ = g(s, x, a, s′), for any f, f ′ ∈ F , define Vf (s, x) =
mina′ f(s, x, a′), then

E
[
(f(s, x, a)− r − γVf ′(s′, x′))

2
]

=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)] (11)

Proof.

E
[
(f(s, x, a)− r − γVf ′(s′, x′))

2
]

=E
[
(f(s, x, a)− (T f ′)(s, x, a) + (T f ′)(s, x, a)− (r + γVf ′(s

′, x′)))
2
]

=E
[
(f(s, x, a)− (T f ′)(s, x, a))

2
]

+ E
[
((T f ′)(s, x, a)− (r + γVf ′(s

′, x′)))
2
]

+ 2E [(f(s, x, a)− (T f ′)(s, x, a)) ((T f ′)(s, x, a)− (r + γVf ′(s
′, x′)))]︸ ︷︷ ︸

(1)=0

=E
[
(f(s, x, a)− (T f ′)(s, x, a))

2
]

+ γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)],

where the equation (1) = 0 because that condition on (s, x, a), we have f and Vf ′ are independent.

Lemma A.6. Under Algorithm 2, at iteration k, we have

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′) = ‖f − T f ′‖22,µ̄βk , (12)

where Lµ̂βk (f ; f ′) = E[LD̂k(f ; f ′)].

Proof. Recall that D̂k = D ∪Dk and |D̂k| = nm+ n. The expectation is w.r.t. the random draw of
the dataset D and the random generation of dataset Dk with virtual sample distribution βk. We know
that

LD̂k(f ; f ′) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D

(f(s, x, a)− r − γVf ′(s′, x′))2

+
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈Dk

(f(s, x, a)− r − γVf ′(s′, x′))2

Let M(s,x,a,s′,x′)
k denote the set of virtual samples that are associated with the real sample

(s, x, a, s′, x′) at iteration k. Then

Lµ̂βk (f ; f ′) := E[LD̂k(f ; f ′)]

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
(by using Lemma A.5)

+
1

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

∑
(s,x̄,a,r̄,s̄′,x̄′)∈M(s,x,a,r,s′,x′)

k

(f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2


=

n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

1

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

E

 ∑
(s,x̄,a,r̄,s̄′,x̄′)∈M(s,x,a,r,s′,x′)

k

(f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

∣∣∣∣∣∣∣ s, x, a, r, s′, x′



=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
16

+
m

nm+ n
E

 ∑
(s,x,a,r,s′,x′)∈D

∑
x̄∈X

βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2


=

n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

mn

nm+ n

∑
(s,x,a)∈S×X×A

µ(s, x, a)
∑
x̄∈X

βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

mn

nm+ n

∑
(s,x̄,a)∈S×X×A

µ(s, a)βk(x̄) (f(s, x̄, a)− r̄ − γVf ′(s̄′, x̄′))
2

=
n

nm+ n

(
‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a)]

)
+

nm

nm+ n

(
‖f − T f ′‖22,µk + γ2E(s,x,a)∼µk [Var(Vf ′(s′, x′)|s, x, a)]

)
, (by using Lemma A.5)

where r̄ = R(s, x̄, a), µk(s, x, a) =
∑
x′∈X µ(s, x′, a)βk(x) = µ(s, a)βk(x). Since we have

µ̄βk(s, x, a) = 1
m+1µ(s, x, a) + m

m+1µ(s, a)βk(x).

Therefore,

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ′; f ′) = ‖f − T f ′‖22,µ̄βk .

The next lemma shows an upper bound on ‖fk+1 − T fk‖22,µ̄βk .

Lemma A.7. Given the MDP M = (S,X , P,R, γ), we assume that the Q−function classes F
satisfies ∀f ∈ F , T f ∈ F . The dataset D is generated as: (s, x, a) ∼ µ, r = R(s, x, a), s′ ∼
P (·|s, a), x′ = g(s, x, a, s′), and the new dataset D̂k = D ∪Dk is generated by following Alg. 1
with virtual sample generating distribution βk(x) at kth iteration. Then with probability at least
1− δ, ∀f ∈ F , and k = 0, . . . ,K we hvae

‖fk+1 − T fk‖22,µ̄βk ≤ 5

(
1

n
+

1

m

)
V 2

max log(nK|F|2/δ) +
3δV 2

max

n
(13)

Proof. Using Lemma A.6 we know that

‖f − T f ′‖22,µ̄βk = Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′).

Then it is sufficient to bound ‖f − T f ′‖22,µ̄βk by bounding

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ; f ′) = E[LD̂k(f ; f ′)− LD̂k(T f ; f ′)].

For any f, f ′, recall that

LD̂k(f ; f ′) =
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈D

(f(s, x, a)− r − γVf ′(s′, x′))
2

︸ ︷︷ ︸
LD(f ;f ′)

+
1

|D̂k|

∑
(s,x,a,r,s′,x′)∈Dk

(f(s, x, a)− r − γVf ′(s′, x′))
2

︸ ︷︷ ︸
LDk (f ;f ′)

.

For any f, f ′ define

Y (f ; f ′) :=(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf ′(s′, x′))2

Then for each (s, x, a, s′, x′) ∈ D, we get i.i.d. variables Y1(f ; f ′), . . . , Yn(f ; f ′).

17

We also define

Xi(f ; f ′) :=(f(si, x̂i, ai)− r̂i − γVf ′(si′, x̂i′))2 − (T f ′(si, x̂i, ai)− r̂i − γVf ′(si′, x̂i′))2,

where (si, x̂i, ai, r̂i, s
′
i, x̂
′
i) is an augmented sample based on the ith real sample (si, xi, ai, ri, s

′
i).

Denote the m i.i.d virtual samples by Xi1(f ; f ′), . . . , Xim(f ; f ′). Therefore

LD̂k(f ; f ′)− LD̂k(T f ′; f ′) =
n

nm+ n
× 1

n

n∑
i=1

Yi(f ; f ′) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (f ; f ′).

(14)

Taking the expectations on both sides, we obtain for any f, f ′ ∈ F ,

Lµ̂βk (f ; f ′)− Lµ̂βk (T f ′; f ′) =
n

nm+ n
E [Y (f ; f ′)] +

nm

nm+ n
× 1

n
E

[
n∑
i=1

Xi(f ; f ′)

]
We need to introduce 1

n

∑n
i=1 Yi(f ; f ′) and 1

m

∑n
i=1

∑m
j=1Xij (f ; f ′) to bound the above terms.

For the first term, we know that the variance of Y can be bounded by:

Var(Y (f ; f ′)) ≤E[Y (f ; f ′)2]

=E[
(
(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf (s′, x′))2

)2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a) + T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]

≤4V 2
maxE

[
(f(s, x, a)− T f ′(s, x, a))

2
]

=4V 2
max‖f − T f ′‖22,µ

=4V 2
maxE[Y (f ; f ′)], (15)

where the last equality is true because

E[Y (f ; f ′)] = E[LD(f ; f ′)]− E[LD(T f ′; f ′)]
=‖f − T f ′‖22,µ + γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a]

− ‖T f ′ − T f ′‖22,µ − γ2E(s,x,a)∼µ[Var(Vf ′(s′, x′)|s, x, a] (using Lemma A.5)

=‖f − T f ′‖22,µ.

Then by applying Bernstein’s inequality, together with a union bound over all f, f ′ ∈ F , we obtain
with probability 1− δ we have

E [Y (f ; f ′)]− 1

n

n∑
i=1

Yi(f ; f ′) ≤
√

2Var(Y (f ; f ′)) log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

≤
√

8V 2
maxE[Y (f ; f ′)] log(|F|2/δ)

n
+

4V 2
max log(|F|2/δ)

3n
(16)

For the second term, note that for any given ith sample (si, xi, ai, s
′
i, x
′
i) all the variables {Xij} are

i.i.d. Then following a similar argument, then for all f, f ′ ∈ F , we have with probability at least
1− δ/n,

E[Xi(f ; f ′)|si, xi, ai]−
1

m

m∑
j=1

Xij (f ; f ′)

≤
√

8V 2
maxE[Xi(f ; f ′)|si, xi, ai] log(n|F|/δ)

m
+

4V 2
max log(n|F|2/δ)

3m

Then it is easy to obtain that we have for all f, f ′ ∈ F ,

1

n

n∑
i=1

E

Xi(f ; f ′)− 1

m

m∑
j=1

Xij (f ; f ′)


18

≤ 1

n

n∑
i=1

(√
8V 2

maxE[Xi(f ; f ′)] log(n|F|/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n
(17)

Combining Eq.(17) and Eq.(16) we can obtain with probability at least 1− δ, for all f, f ′ ∈ F ,

n

n+ nm
× E [Y (f ; f ′)]− n

n+ nm
× 1

n

n∑
i=1

Yi(f ; f ′) +
nm

nm+ n
× 1

n

n∑
i=1

E

Xi(f ; f ′)− 1

m

m∑
j=1

Xij (f ; f ′)


≤ 1

1 +m
×

(√
8V 2

maxE[Y (f ; f ′)] log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

)

+
nm

nm+ n

(
1

n

n∑
i=1

(√
8V 2

maxE[Xi(f ; f ′)] log(n|F|/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n

)
(18)

Let f = fk+1, f
′ = fk, then according to Algorithm 2 we know that

fk+1 = T̂k,Ffk := arg minLD̂k
f∈F

(f ; fk).

According to Eq. (14), we have

LD̂k(f ; fk)− LD̂k(T fk; fk) =
n

nm+ n
× 1

n

n∑
i=1

Yi(f ; fk) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (f ; fk).

Then it is easy to observe that T̂k,Ffk minimizes LD̂k(·; fk), it also minimizes

n

nm+ n
× 1

n

n∑
i=1

Yi(·; fk) +
nm

nm+ n
× 1

nm

n∑
i=1

m∑
j=1

Xij (·; fk)

because the two objectives only differ by a constant LD̂k(T fk; fk). Therefore under assumption A.2
we know that T fk ∈ F , we are able to obtain that

1

nm+ n

n∑
i=1

Yi(T̂k,Ffk; fk) +
1

mn+ n

n∑
i=1

m∑
j=1

Xij (T̂k,Ffk; fk)

≤ 1

nm+ n

n∑
i=1

Yi(T fk; fk) +
1

nm+ n

n∑
i=1

m∑
j=1

Xij (T fk; fk) = 0, (19)

where the last equality holds due to the definitions of Yi and Xij . Therefore plugging the result from
Eq.(19) into Eq.(18), we can obtain

1

m+ 1
E[Y (fk+1; fk)] +

m

mn+ n

n∑
i=1

E[Xi(fk+1; fk)]

≤ 1

1 +m

(√
8V 2

maxE[Y (fk+1; fk)] log(|F|2/δ)
n

+
4V 2

max log(|F|2/δ)
3n

)

+
nm

nm+ n

(
1

n

n∑
i=1

(√
8V 2

maxE[Xi(fk+1; fk)] log(n|F|2/δ)
m

+
4V 2

max log(n|F|2/δ)
3m

)
+
δV 2

max

n

)
By solving the quadratic formula, we get

Lµ̂βk (fk+1; fk)− Lµ̂βk (T fk; fk) = ‖fk+1 − T fk‖22,µ̄βk

=
1

m+ 1
E[Y (fk+1; fk)] +

m

nm+ n

n∑
j=1

E[Xi(fk+1; fk)]

≤5

(
1

n
+

1

m

)
V 2

max log(n|F|2/δ) +
3δV 2

max

n

Finally, apply a union bound over all t = 0 . . .K, we conclude the proof.

19

A.1 Proof of Theorem 1

Now we are ready to show the main theorem. Given a dataset D. After generating virtual samples
Dk we get a new combined dataset D̂k = D ∪Dk at each iteration k with virtual sample generating
distribution βk(x). We first have

vπfk − v∗ =
1

1− γ
E

(s,x)∼d
πfk
η0

(s,x)
[Q∗(s, x, πfk)− V ∗(s, x)]

≤ 1

1− γ
E

(s,x)∼d
πfk
η0

(s,x)
[Q∗(s, x, πfk)− fk(s, x, πfk) + fk(s, x, π∗)− V ∗(s, x)]

≤ 1

1− γ

(
‖Q∗ − fk‖1,dπfkη0

(s,x)×πfk
+ ‖Q∗ − fk‖1,dπfkη0

(s,x)×π∗

)
≤ 1

1− γ

(
‖Q∗ − fk‖2,dπfkη0

(s,x)×πfk
+ ‖Q∗ − fk‖2,dπfkη0

(s,x)×π∗

)
, (20)

where the first equality follows from the performance difference lemma (Kakade and Langford, 2002),
the first inequality holds because πfk ∈ arg mina fk(s, x, a) and the last inequality is true by using
the fact that for any vector a = (a1, . . . , an) and a valid distribution d = (d1, . . . , dn),

∑
i di = 1

‖a‖1,d =
∑
i

|ai|di =
∑
i

|ai|
√
di
√
di (Cauchy–Schwarz inequality)

≤
√∑

i

di ×
√∑

i

|ai|2di = ‖a‖2,d.

According to Assumption A.4, we know that
∑
s∈S

∑
x∈X ,x/∈B d

πfk
η0 (s, x) ≤ σ2, which implies that∑

(s,x,a)∈S×X×A,x/∈B{d
πfk
η0 (s, x) × π∗}(s, x, a) ≤ σ2, and

∑
(s,x,a)∈S×X×A,x/∈B{d

πfk
η0 (s, x) ×

πfk}(s, x, a) ≤ σ2. Define ξ = {dπfkη0 (s, x)× πfk}(s, x, a), then we have

‖fk −Q∗‖2,ξ =

 ∑
(s,x,a)∈S×X×A

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

≤

 ∑
(s,x,a)∈S×X×A,x∈B

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

+

 ∑
(s,x,a)∈S×X×A,x/∈B

|fk(s, x, a)−Q∗(s, x, a)|2ξ(s, x, a)

1/2

≤‖fk −Q∗‖2,ξ +
√
σ2Vmax

≤

√
(m+ 1)C

mσ1
‖fk − T fk−1‖2,µ̄βk + γ‖fk−1 −Q∗‖2,P (ξ)×πfk−1,Q

∗ +
√
σ2Vmax, (21)

where the first inequality holds because
√
a+ b ≤

√
a+
√
b (a ≥ 0, b ≥ 0) and the last inequality

comes from Lemma A.4.

By using LemmaA.7 we have with at least probability 1− δ
‖fk − T fk−1‖22,µ̄βk ≤ ‖fk − T fk−1‖22,µ̄βk ≤ ε1 (22)

where ε1 = 5
(

1
n + 1

m

)
V 2

max log(nK|F|2/δ) +
3δV 2

max

n . Therefore, we obtain

‖fk −Q∗‖2,ξ ≤ γ‖fk−1 −Q∗‖2,P (ξ)×πfk−1,Q
∗ +

√
(m+ 1)Cε1

mσ1
+
√
σ2Vmax. (23)

Now define ξ′ = P (ξ) × πfk−1,Q∗ . Then based on Assumption A.4, it is easy to obtain∑
(s,x,a)∈S×X×A,x/∈B ξ

′(s, x, a) ≤ c0σ2. Note that the distribution ξ′′ = P (ξ′)× πfk−2,Q∗ still sat-
isfies

∑
(s,x,a)∈S×X×A,x/∈B ξ

′′(s, x, a) ≤ c0σ2 according to Assumption A.4, because πfk−1
, πfk−2

and Q∗ are all assumed to be reasonable policies.

20

Repeating the expansion above for k times, we have

‖fk −Q∗‖2,ξ ≤
1− γk

1− γ

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax

+ γkVmax.

All the above analyses are still applied to the case when ξ = {dπfkη0 (s, x) × π∗}. Therefore, it is
straightforward to obtain

v∗ − vπfk ≤ 2

(1− γ)2

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax + γk(1− γ)Vmax

 . (24)

Substituting ε1 completes the proof.

A.2 Extension of Theorem 1

We repeat the assumption for extending our main results to the case when |X | can be infinite such
that f(s, x, a) may not be bounded by Vmax.

Repeat of Assumption 1: For the typical set B of pseudo-stochastic states (defined in Assump-
tion A.4), for any s, a ∈ S × A, f ∈ F , if x ∈ B, then f(s, x, a) ≤ Vmax otherwise if x /∈ B, we
have |f(s, x, a)−Q∗(s, x, a)| ≤ Vmax. Furthermore, for any given f ∈ F , (s, x), x ∈ B, we have
|Vf (s′, x′)− Vf (s′′, x′′)| ≤ Vmax, where x′ = g(s, x, πf , s

′), x′′ = g(s, x, πf , s
′′).

There are two places we need to pay attention to: (1) : a bound on ‖f0 −Q∗‖2,P (ξ)×πf0,Q∗ , (2) : a
bound on the variance of Y as shown in Eq. (15). For the first case, it automatically holds due to
assumption 1. For the second term, we first have

Var(Y (f ; f ′)) ≤ E[Y (f ; f ′)2]

=E[
(
(f(s, x, a)− r − γVf ′(s′, x′))2 − (T f ′(s, x, a)− r − γVf (s′, x′))2

)2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a) + T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]

=E
[
(f(s, x, a)− T f ′(s, x, a))

2
(f(s, x, a)− T f ′(s, x, a) + 2T f ′(s, x, a)− 2r − 2γVf ′(s

′, x′))
2
]
.

We also know that

(f(s, x, a)− T f ′(s, x, a) + 2T f ′(s, x, a)− 2r − 2γVf ′(s
′, x′))

2

≤2(f(s, x, a)− T f ′(s, x, a))2 + 2(2T f ′(s, x, a)− 2r − 2γVf ′(s
′, x′))2

=2(f(s, x, a) +Q∗(s, x, a)−Q∗(s, x, a)− T f ′(s, x, a))2 + 8γ2(E[V ′f ′(ŝ, x̂)|s, x, a]− Vf ′(s′, x′))2

≤16V 2
max.

Therefore, we have Var(Y (f ; f ′)) ≤ 16V 2
maxE[Y (f ; f ′)].

Then we can obtain a similar result of the same order, which only differs for some constant c̃ such
that

v∗ − vπfk ≤ 2c̃

(1− γ)2

√ (m+ 1)Cε1
mσ1

+
√
c0σ2Vmax + γk(1− γ)Vmax

 . (25)

B Additional Simulations

B.1 Combining PSG with Policy Gradient-type algorithms

In this section, we investigate the possibilities of using ASG in policy gradient-type algorithms. In
particular, we use ASG in the phase of policy evaluation. An algorithm (SAC-ASG) that incorporates
ASG into SAC is presented in Alg. 3. We also compare our algorithm SAC-ASG with state-of-art
Dyna-type model-based approaches, i.e., MBPO (Janner et al., 2019) on the phases criss-cross
network environment (Fig. 2b). The simulation results are shown in Fig.4. We can observe that

21

Algorithm 3: SAC-ASG
1 Input: Critic Networks: Qθ1 , Qθ2 , Target Critic Networks: Qθ′1 , Qθ′2 ;
2 Actor-Network: Aφ, Empty sample reply buffer: D, Learning rate: λ ;
3 for each iteration do
4 for each environment interaction do
5 Take action at ∼ Aφ(at|st, xt), observe next state (st+1, xt+1), and reward rt ;
6 Store the transition into replay buffer: D ← D ∪ {st, xt, at, rt, st+1, xt+1} ;
7 for each training step do
8 Sample mini-batch d of n transitions from replay buffer D;
9 for Each virtual training loop do

10 Obtain virtual dataset d′ := ASG(d,m) ;
11 Combine training dataset d ∪ d′ := {s, x, a, r, s′, x′} ;
12 ã← Aφ(s′, x′), y ← r + γ(mini=1,2Qθ′i(s

′, x′, ã)− α log(Aφ(ã|s′, x′)) ;
13 JQ(θi) = (nm+ n)−1

∑
(y −Qθi(s, x, a))

2 for i ∈ {1, 2} ;
14 θi ← θi − λ∇θiJQ(θi) for i ∈ {1, 2} // Update Critic networks
15 Jπ(φ) = (nm+ n)−1

∑
(α logAφ(a|s)−mini=1,2Qθi(s, a))) ;

16 φ← φ− λ∇φJπ(φ) // Update Actor network
17 θ′i ← τθi + (1− τ)θ′i // Update target network weights
18 Output: Actor Network Aφ ;

the performance of our approach is significantly better than the baselines’. We also would like to
emphasize that the training time of our approach is much less than that of MBPO (4 hours v.s. 3
days).

Figure 4: Performance on the Two-phase Criss-Cross Network

B.2 Details of the Environment in Section 4.4

In this section, we summarize the detailed parameters used in section 4.4 in Table 3.

Setting Arrival Rates Service Rates Job Size Range
(a) {0.6, 0.6} {2, 1.5, 1.5} 2
(b) {0.6, 0.6} {7, 3.5, 7} 5
(c) {0.6, 0.6} {2.5, 4.5, 2.5} 5

Table 3: Detailed Environment Parameters

B.3 Two-phase Wireless Network

The two-phase wireless network is a modified version of the downlink network in Section 2.1, which
cannot be modeled as an MDP with exogenous inputs. In this example, each packet has two phases.
When a packet from a mobile is scheduled, if it is in phase 1, it leaves with probability 0.2 or moves
from phase 1 to phase 2; and if it is in phase 2, it leaves the system. We considered Poisson arrivals

22

with rates Λ = {2, 4, 3}, and the channel rates O = {12, 12, 12}. As the result shown in Figure. 5
ASG outperforms Max-weight in this environment as well.

Figure 5: Performance on the Two-phase Downlink Wireless Network

C Simulation Details

In our simulations, the reward function is the total queue length (or a scaled version: divided by 20 i
the wireless networks). We used Gaussian distributions fitted with real data samples as βk, for each
real sample, we generated 50 augmented samples and repeated the process 10 times. We use a simple
two layer neural network with hidden size 128 with learning rate 0.0003. The batch size used in all
the simulations is 256.

C.1 Experimental settings

For all the simulations, We used a single NVIDIA GeForce RTX 2080 Super with AMD Ryzen 7
3700 8-Core Processor.

23

	Introduction
	Related Work

	Mixed Systems and Mixed System Models
	Example: A Wireless Downlink Network

	Sample Efficient Algorithms for Mixed Systems
	Augmented Sample Generator (ASG)
	Batch FQI with ASG
	Guarantee and Analysis
	Extension to the case when Lg is infinite

	Experiments
	The Criss-Cross Network
	Two-Phase Criss-Cross Network:
	Wireless Networks
	Additional Simulations on the criss-cross network
	Additional Simulations on the Wireless Network
	Combining ASG with Policy Gradient-type Algorithm

	Conclusions
	Proof of Theorem 1
	Proof of Theorem 1
	Extension of Theorem 1

	Additional Simulations
	Combining PSG with Policy Gradient-type algorithms
	Details of the Environment in Section 4.4
	Two-phase Wireless Network

	Simulation Details
	Experimental settings

